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ABSTRACT 
 

The most frequent form of hereditary blindness, Autosomal Dominant Optic Atrophy 

(ADOA) is caused by the mutation of the mitochondrial protein Opa1 and the ensuing 

degeneration of retinal ganglion cells. Previously we found that knockdown of OPA1 

enhanced mitochondrial Ca
2+

 uptake (Fülöp et al.,PLoS One 2011). Therefore we studied 

mitochondrial Ca
2+

 metabolism in fibroblasts obtained from members of an ADOA family. 

Gene sequencing revealed heterozygosity for a splice site mutation (c. 984+1G>A) in 

intron 9 of the OPA1 gene. ADOA cells showed a higher rate of apoptosis than control 

cells and their mitochondria displayed increased fragmentation when forced to oxidative 

metabolism. The ophthalmological parameters critical fusion frequency and ganglion cell 

– inner plexiform layer thickness were inversely correlated to the evoked mitochondrial 

Ca
2+

 signals. The present data indicate that enhanced mitochondrial Ca
2+

 uptake is a 

pathogenetic factor in the progress of ADOA. 
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1. Introduction 

 

The most frequent form of hereditary blindness is autosomal dominant optic atrophy 

(ADOA, OMIM165500). The disorder is due to cell death confined to retinal ganglion 

cells which results in bilateral central visual loss, impaired color vision and central visual 

field defects [1,2]. The prevalence of ADOA is estimated to be between 1/50,000 and 

1/10,000 [3,4]. The most frequent cause of type 1 ADOA is the mutation of the OPA1 

gene [5-7]. Opa1 is a dynamin-related GTPase protein and due to alternative splicing its 

gene is transcribed into 8 mRNA isoforms in human [7] encoding proteins of 924-1014 

amino acids. The protein is tethered to the IMM [8-10] and localized in the IMS [8,9]. 

In Western blot analysis 5 separate bands (designated a to e) ranging from 94 to 86 kDa, 

can be detected. Two long isoforms are anchored to the IMM and three soluble short 

forms are located in the IMS. The soluble forms are the proteolytic products of the long 

isoforms [11,12]. (For further details see recently publised excellent reviews [13,14].)  

The fundamental pathology in ADOA is the degeneration of the small (parvo) retinal 

ganglion cells with subsequent atrophy of the optic nerve [13,15,16]. Nevertheless, the 

protein is expressed in all examined human tissues, explaining the accidental development 

of the so-called 'ADOA +' forms characterized by the association of the blindness with 

various neuromuscular disorders [17-19] or hearing loss [20,21]. The vulnerability of 

retinal ganglion cells and that of spiral ganglion cells in the inner ear [22] has been 

attributed to the impairment of ATP production as observed in fibroblasts [23,24] or 

skeletal muscle [25]. Since retinal ganglion cells are unique among neurons in that the 

are exposed to direct sunlight, the ensuing oxidative stress may potentiate the 

consequences of Opa1 dysfunction, leading to apoptosis of these cells [13]. In OPA1
+/-

 

mice the level of postsynaptic density protein 95 and the density of glutamatergic synaptic 

sites were reduced even without loss of mitochondrial membrane potential [26]. This 

observation indicates the significance of Opa1 in maintaining the synaptic architecture and 

connectivity of retinal ganglion cells. 

Knockdown of OPA1 in two human cell lines, in HeLa and H295R (adrenocortical) 

cells, induces enhanced mitochondrial Ca
2+

 uptake [27] and also mitochondrial Ca
2+

 - 

dependent hypersecretion of aldosterone (in H295R cells) [28]. On the other hand, 

excessive accumulation of Ca
2+

 by mitochondria leads to cell death [29-31]. In view of 

these observations it was reasonable to examine mitochondrial Ca
2+

 uptake in ADOA 

patients. Our present data showed a correlation between the Ca
2+

 sequestring ability of 

mitochondria and the grade of impairment of visual parameters.  

 

2. Materials and Methods 

 

2.1 Materials  

 

Bradykinin and digitonin were purchased from Sigma-Aldrich (St. Louis, MO, USA). 

Silencing RNA products, Rhod-2 AM, Fluo-4 AM, Mito Tracker Deep Red (MTDR), 

tetramethylrhodamine ethyl ester (TMRE) and 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl-
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imidacarbocyanine iodide (JC-1) were purchased from Life Technologies (Paisley, UK). 

Annexin V-FITC was from BD Biosciences, glucose-free medium (E15-079) was from 

GE Healthcare (Piscataway, NJ). D-galactose was purchased from Reanal (Budapest, 

Hungary). Fetal bovine serum (FBS) was obtained from Lonza (Basel, Switzerland). 

Antibodies were used as follows: anti-OPA1 mouse monoclonal antibody (612606, BD 

Biosciences), anti-protein disulphide isomerase mouse monoclonal antibody (ab2792, 

Abcam, Cambridge, UK), anti-mouse immunoglobulin-HRP (NA 931V, GE Healthcare). 

 

2.2 Clinical studies 

 

Seven members of a family with genetically verified ADOA were subjected to detailed 

ophthalmological and neurological examinations including the tests for far and near visual 

acuity (spec. No. 2305 and 2307) (logarithmic visual acuity chart, from Precision Vision, 

Artesia LA), measurement of thickness of retinal nerve fibre layer, ganglion cell and inner 

plexiform layer (optical coherence tomography, Cirrhus HD-OCT, Carl Zeiss Meditec, 

Dublin LA) and critical flicker fusion frequency (CFF). Written informed consent was 

obtained from all patients and controls. As control, two healthy volunteers were also 

examined. After obtaining appropriate consent skin samples used for fibroblast culturing 

were excised from all five adult subjects. The reserach was approved by Hungarian 

Research Ethical Committee and carried out according to the Helsinki declaration. 

 

2.3 Gene sequencing 

 

Sequencing of the coding region and the exon-intron junctions of the OPA1 gene (NM 

015560.2) in patient I/3 was performed by Dr. Josseline Kaplan at the Service Medicale, 

GH Necker Enf. Malades, F-75743 Paris Cedex 15, France. Subsequently the segregation 

analysis of the mutation in the affected family members was performed in our laboratory 

using ABI Prism 3500 DNA Sequencer (Applied Biosystems, Foster City, CA). Genetic 

sequence was compared with the human reference genome (NM_001005360, 

ENSG00000079805) using NCBI’s Blast® application. 

 

 

2.4 Cell culture and transfection 

 

Fibroblasts acquired from human skin biopsies were grown in DMEM containing 20% 

heat inactivated FBS, 100 U/ml penicillin and 100 µg/ml streptomycin. Passage numbers 3 

-7 were used. 

 

2.5 Apoptosis 

 

Control cells or cells exposed to 0.1 mM H2O2 for 4 hours at 37
o
C were dyed with 

FITC labeled annexin V (1:100) in a binding buffer (10 mM HEPES pH 7.4, 140 mM 

NaCl, 2.5 mM CaCl2) for 15 minutes. The cells were examined with confocal microscopy. 

 

2.6 Experimental conditions 
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The cells were superfused at room temperature with a modified Krebs-Ringer solution 

containing 140 mM Na
+
, 4.5 mM K

+
, 1.2 mM Ca

2+
, 0.5 mM Mg

2+
, 5 mM Hepes and 2 

mM HCO3

 (pH 7.4). Flow rate was ~1ml/min. Permeabilization with 25 µM digitonin 

(for 8 min) was carried out in a cytosol-like medium (117 mM KCl, 6 mM NaCl, 1 mM 

KH2PO4, 2 mM Na
+
 pyruvate, 2 mM Na

+
 succinate, 2 mM K

+
 ADP, 2 mM EGTA, 0.5 

mM Mg
2+

 and 10 mM K
+
 HEPES). The medium containing 5 µM free Ca

2+ 
was composed 

with the Chelator software [32]. 

 

2.7 Confocal microscopy  

 

Cytoplasmic and mitochondrial Ca
2+

 uptake (monitored with Fluo-4 and Rhod-2, resp.), 

mitochondrial membrane potential (TMRE or JC-1) and mitochondrial morphology (MTDR) 

were examined with confocal microscopy (LSM 510) as described [27]. Apoptosis was 

studied applying annexin V-FITC with a Zeiss LSM 710 confocal laser scanning 

microscope, equipped with a 63x/1.4 oil immersion objective (Plan-Apochromat, Zeiss) 

and operated with ZEN 9.0 software.  

 

2.8 Electrophoresis and immunoblotting 

 

SDS electrophoresis and immunoblotting were performed as described [27]. Anti-

Opa1 and anti-PDI primary antibodies and anti-mouse secondary antibody were applied at 

a dilution of 1:500, 1:3000 and 1:5000, respectively. Protein content of the samples was 

measured with BCA assay. 

 

2.9 Statistics 

 

Means + S.E.M. are shown. For estimating significance of differences Kruskal-Wallis 

test (followed by Dunnett’s test) was used. Correlation was calculated with Pearson’s or 

Spearman’s test. Data were analyzed with Statistica 11.  

 

3. Results 

 

3.1 Clinical examinations and genetic analysis 

 

Seven members of a family with hereditary visual impairment were subjected to 

detailed ophthalmological and neurological examination (Fig 1a, Table 1 and Suppl. 

Tables 1 – 5). The most severe progress of ADOA has been diagnosed in patient I/1. 

Patient I/1 and I/2 beside the visual impairment, had mild neurological symptoms. The 

four children did not have any neurological symptoms. We had no contact with the mother 

of the three adult siblings but based on the hetero-anamnestic data, she had serious visual 

impairment. The diagnosis has been confirmed in all the seven patients by genetic 

investigations which revealed a new heterozygous splice site mutation (c. 984+1G>A) in 

the OPA1 gene. Western blot analysis of fibroblasts from patient I/1 detected reduced 

expression of Opa1 (as related to protein disulphide isomerase), however, there was no 

change in the pattern of OPA1 isoforms (Fig. 1b). The results of the Western blot are 
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compatible with the ability of the antibody to recognize amino acids 708-830, a site 

downstream of the splice site mutation.  

For studying mitochondrial state and function, fibroblasts were cultured from the three 

adult patients (I/1, I/2 and I/3) who also showed mild neurological symptoms (Suppl. 

Tables 3-5) and two healthy controls (Ctrl2 and Ctrl2). In these five subjects strong 

correlation was found between the functional parameter CFF and the thickness of retinal 

gangion cell - inner plexiform layer (R
2 
= 0.961, p = 0.0197) (Suppl. Fig. 1). 

 

3.2 Morphology of mitochondria 

 

Morphology of mitochondria in fibroblasts of the most severely diseased patient I/1 

(Table 1) was examined with MTDR staining. No difference could be observed between 

control and ADOA samples under control conditions. When oxidative (mitochondrial) 

metabolism was forced by culturing the cells in galactose containing medium for 72 hours 

[23] significant mitochondrial fragmentation took place in the mutant cells whereas the 

effect was negligible in the controls (Suppl. Figs 2 - 4). 

 

3.3 Mitochondrial Ca
2+

 uptake 

 

In order to elucidate whether mutant fibroblast cells have enhanced mitochondrial Ca
2+

 

uptake as observed in Opa1 silenced human cell lines [27] we monitored cytosolic and 

mitochondrial [Ca
2+

] with Fluo-4 and Rhod-2, respectively. Stimulation with 1 nM 

bradykinin evoked a rapid cytosolic Ca
2+

 signal that was ensued by a more prolonged 

increase in mitochondrial [Ca
2+

] (Figs 2a, c and d). Since mitochondrial Ca
2+

 uptake 

depends on the amplitude of cytosolic Ca
2+

 signal, the mitochondrial responses were also 

related to the cytosolic responses (Fig. 2e). The peak of mitochondrial Ca
2+

 signal 

exceeded that of the pooled controls only in the cells of patient I/1 (p = 0.015) who, out of 

the 3 siblings, displayed the greatest progress of ADOA. Mitochondrial membrane 

potential in her fibroblasts, measured with TMRE and JC-1, was comparable with that of 

controls (not shown), therefore no change in the driving force could account for the 

enhanced mitochondrial Ca
2+

 uptake.  

To rule out any cytosolic factor modifying mitochondrial Ca
2+

 metabolism, the 

transport was examined also in permeabilized cells. Replacing the Ca
2+

 free cytosol-like 

superfusion medium with one containing 5 M Ca
2+ 

induced a rapid increase in 

mitochondrial [Ca
2+

] (Fig. 2b). Both the slope and the peak of mitochondrial Ca
2+

 signal in 

the fibroblasts of patient I/1 exceeded those of controls (p = 0.007 and 0.015, resp., Fig. 

2f), ruling out the role of cytosolic factors in the enhancement of mitochondrial Ca
2+

 

sequestring ability. 

 

3.4 Apoptosis 

 

Deficient Opa1 function enhances apoptotic processes both under control conditions 

and after exposure to apoptotic stimuli. It may have diagnostic significance that 

progression of ADOA is indicated by increased apoptosis rate [13]. Therefore we 

examined the apoptotic state of the cultured fibroblasts with FITC-labelled annexin V. 

This fluorescent ligand attaches to the cell membrane already in an early stage of the 
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apoptosis. Under resting conditions the apoptotic rate was already higher in the ADOA 

patients (15 % vs. 2.5 % in average, Fig. 3c). Four hours after exposing the fibroblasts to 

the apoptotic reagent H2O2 (0.1 mM) the apoptotic rate in the ADOA cells (27 % in 

average) far exceeded that in the controls (5.3 %) (Fig. 3d and Suppl. Fig. 5). These 

observations show increased sensitivity of ADOA cells to apoptotic stimuli.  

 

3.5 Clinical data in function of mitochondrial Ca
2+

  

 

The purpose of the present study was to elucidate the role of mitochondrial Ca
2+

 in the 

development of visual impairment in ADOA patients. Therefore we analyzed the 

correlation between the peak of bradykinin-induced mitochondrial Ca
2+

 uptake and the 

clinical parameters in all five examined subjects. A significant correlation was found 

between [Ca
2+

]m and CFF (p=0.0232, Fig. 3a) as well as [Ca
2+

]m and the thickness of 

ganglion cell layer (p=0.0283, Fig. 3b) of these patients. Very high apoptosis rate was 

observed in resting (Fig. 3c) and H2O2 - stimulated cells ( Fig. 3d) of patient I/1 who 

showed the highest Ca
2+

 response to bradykinin. At the same time, the fibroblasts of 

patient I/3 displayed moderate ophthalmological alterations despite displaying control-like 

mitochondrial Ca
2+

 parameters. This latter observation indicates that retinal damage may 

begin before any detectable change in cellular Ca
2+

 metabolism occurs.  

 

4. Discussion 

 

Opa1 regulates mitochondrial morphology [33]. Knockdown of the OPA1 gene 

brings about the fragmentation of mitochondria [10,34,35] and drastic desorganisation 

of the cristae [34,36-39]. Also, Opa1 defect often leads to apoptosis [34,40].  

 The majority of cytochrome c reductase and F1F0 ATPase [41], that of cytochrome c 

oxidase [42] as well as the uncoupling protein 1 (in brown adipocytes) [43] are found 

within the crista membrane. Only 10-15 % of cytochrome c is found free in the 

intermembrane space while the major fraction can be found in the cristae [44,45]. The 

release of cytochrome c from digitonin-permeabilized mitochondria is significantly 

enhanced after exposure to t-Bid that evokes the disassembly of Opa1 oligomers [40,46] 

and a drastic increase in the junction diameter (i.e. the transition between the so-called 

inner boundary membrane and crista membrane) [45]. These data indicate that diffusion 

through the junction is controlled by Opa1. Dilatation of the junction may facilitate the 

diffusion between the intermembrane space and the lumen of cristae and thus may modify 

mitochondrial metabolism [13,47]. 

In the fibroblasts of ADOA patients mutations in the GTPase domain or deletion of the 

GTPase effector domain increased the susceptibility to apoptosis, irrespective of whether 

mitochondria were fragmented or not [48]. Cell death may be a consequence of excessive 

Ca
2+

 loading of mitochondria [29-31]. Yet, we are not aware of studies on mitochondrial 

Ca
2+

 metabolism in ADOA patients. Therefore we studied mitochondrial Ca
2+

 uptake in 

ADOA patients, using their cultured fibroblasts under well-controlled laboratory 

conditons. 

Ca
2+

 uptake from the mitochondrial intermembrane space into the mitochondrial 

matrix occurs predominantly through the MCU complex containing the Ca
2+

 selective ion 

channel MCU (Mitochondrial Calcium Uniporter) [49,50] and several accessory 
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proteins [51-54]. Recalling that OPA1 knockdown increases the diffusibility of 

cytochrome c through the crista junctions [38,45,46] we postulated that if significant 

Ca
2+

 uptake into the matrix occurs from the lumen of the cristae, reduced expression of 

Opa1 would increase the access of Ca
2+

 to the transporters in the crista membrane and 

consequently would enhance Ca
2+

 uptake. Experimental results have supported this 

postulation. In HeLa and H295R adrenocortical cells agonist-induced cytosolic 

Ca
2+ 

signals were transferred into the mitochondria. The rate and amplitude of the 

secondary mitochondrial [Ca
2+

] rise were increased after knockdown of OPA1, as 

compared with cells transfected with control RNA or mitofusin1 siRNA. (Mfn1 siRNA 

was applied as control for OPA1 siRNA since they induced comparable fragmentation of 

the mitochondrial network.) In permeabilized cells the rate of Ca
2+ 

uptake by depolarized 

mitochondria was also increased in OPA1-silenced cells. The enhancement of Ca
2+

 

transport seemed to be independent of Mitochondrial Permeability Transition Pore, since it 

was not influenced by its inhibitor cyclosporin A [27]. The biological significance of the 

enhanced Ca
2+

 uptake in OPA1-silenced H295R cells was indicated by enhanced 

aldosterone production [28]. Although our data in HeLa cells were partly at variance with 

those of Kushnareva et al. [55] (in this respect see [56]), studies on the Ca
2+

 retention 

capacity of mitochondria in OPA1-silenced murine retinal ganglion cells [16] and the 

Ca
2+

 sensitivity of mitochondrial permeability transition pore in OPA1-silenced HeLa cells 

[55] are in harmony with our observations. The report that knock-down of Opa1 

increased the amplitude of Ca
2+

 uptake and the Ca
2+

 retention capacity in murine cardiac 

mitochondria [57] also supports the conclusion that an impairment of OPA1 function 

may lead to enhanced mitochondrial Ca
2+

 signalling. 

The alteration of Ca
2+

 metabolism in OPA1-silenced cells led to the idea that enhanced 

mitochondrial Ca
2+

 uptake in ADOA patients may be a factor participating in the 

pathogenesis of blindness. In this respect it has no significance whether the increase of 

mitochondrial Ca
2+

 uptake was induced solely by enhanced diffusion of Ca
2+

 to MCU 

within the cristae or also alteration in the expression profile or location of mitochondrial 

Ca
2+

 handling proteins. In the family investigated in this study three generations of 

patients showed the dominant nature of their visual impairment. Sequence analysis of 

OPA1 gene detected a previously non-described mutation (c. 984+1G>A) in intron 9. The 

Western blot analysis of the fibroblasts revealed reduced expression of Opa1 protein but 

no detectable change in the isoform pattern. In fact, no change in the ratio of long and 

short isoforms are expected in case of mutation at the splice site of the 9th intron since 

alternate splicings (yielding short isoforms) are evoked by cleavage in exons 4, 4b or 5b 

[13,58]. The applied antibody recognizes amino acids 708-830 therefore it may not 

recognize any mutant protein. 

Based on the severity of their complains, their visual acuity, thickness of the retinal 

ganglion cell layer and CFF patient I/1 showed the most progressed stage of ADOA. All 

the examined adult patients exhibited slight neurological symptoms as well, therefore the 

disease of this family may be regarded as "ADOA +". Their mitochondrial morphology 

was comparable to that of the two control subjects when the fibroblasts were cultured 

under conventional conditions., However, when fibroblasts were forced to rely on 

oxidative (mitochondria – dependent) metabolism by the application of a galactose-

containing medium [23] striking mitochondrial fragmentation took place. This 

observation revealed the incipient impairment of mitochondrial function.  
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The present study revealed a significant negative correlation between mitochondrial 

Ca
2+

 uptake and two clinically important ophthalmological parameters, namely CFF and 

the thickness of the retinal ganglion cell – inner plexiform layer. Now the question may 

arise what the causal relation between Ca
2+

 uptake and retinal damage is. The bulk of 

evidence shows that excessive Ca
2+

 uptake may lead to cell death. On the other hand, 

moderate impairment of several ophthalmological parameters could already be measured 

in patient I/3, although her Ca
2+

 parameters were comparable with those of the controls. 

As far as conclusion may be drawn at the low number of observations the present data 

suggest that retinal damage may begin without a detectable change in mitochondrial Ca
2+

 

uptake whereas further enhancement of Ca
2+

 uptake contributes to the progress of the 

disease. However, if mitochondrial turnover rate is higher in the retinal ganglion cells than 

in fibroblasts depletion of the normal Opa1 pool might occur earlier in the ganglion cells 

than in fibroblasts and in such a case a causative role of Ca
2+

 in triggering ADOA cannot 

be ruled out. 
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Legend of Figures     

 

Fig. 1. Mutation OPA1 gene and reduced expression of intact Opa1 protein. (A) 

Genealogical tree of the examined ADOA family. The filled-in symbols represent carriers 

of a splice site mutation (c. 984+1G>A) in intron 9 of the OPA1 gene. The arrow shows 

the proband (the first affected family member who sought medical attention for her genetic 

disorder). (B) Western blot revealed reduced protein expression but maintained ratio of L 

(long) and S (short) isoforms in patient I/1 as compared to the control person Ctrl1. (NB 

The applied anti-Opa1 antibody does not recognize the mutated protein.) Protein 

disulphide isomerase (PDI) was used as loading control. 

 

Fig. 2. Mitochondrial Ca
2+

 uptake. (A) Bradykinin (1 nM) - induced Ca
2+

 signal as 

monitored with laser scanning confocal microscopy in an intact control cell. The cell was 

preloaded with Fluo-4 and Rhod-2 for monitoring changes of cytosolic and mitochondrial 

[Ca
2+

], respectively. Stimulation is indicated by horizontal line. (B) Mitochondrial Ca
2+

 

signal (Ca
2+

m) in a permeabilized, Rhod-2 preloaded cell. Ca
2+

 uptake was induced by 

replacing the Ca
2+

 -free cytosol-like superfusion medium with one containing 5 M Ca
2+

, 

as indicated by horizontal line. (C) The peak of bradykinin - induced cytosolic Ca
2+

 signal, 

related to Fluo-4 fluorescence in the control period, is shown. (D) The peak of bradykinin 

- induced mitochondrial Ca
2+

 signal, related to Rhod-2 fluorescence in the control period, 

is shown. (E) The peak of bradykinin - induced mitochondrial Ca
2+

 signal related to the 

corresponding cytosolic Ca
2+

 peak (Ca
2+

m/Ca
2+

c) is shown. (F) The initial rate of 

mitochondrial Ca
2+

 uptake (Ca
2+

m/t, blue) and maximal mitochondrial Ca
2+

 uptake 

(yellow) in permeabilized cells after raising the [Ca
2+

] of the Ca
2+

 -free cytosol-like 

superfusion medium with one containing 5 M Ca
2+

. In panels C-E the number of cells is 

shown in the bottom of the respective columns. 

 

Fig. 3. Correlation between the ratio of mitochondrial to cytosolic Ca
2+

 signals (mean + 

S.E.M., see Fig. 2E) and (A) Critical Fusion Frequency (CFF, see Table 1), (B) thickness 

of ganglion cell and inner plexifrom layer (see Table 1) and (C) percentage of apoptotic 

fibroblasts incubated without or (D) after 4 hr exposure to 0.1 mM H2O2 . Control data are 

shown in white, ADOA data are shown in red. The number of examined cells was between 

60 and 300 per subject. 
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Table 1  Ophthalmological data of the examined subjects 

 

name gender age 

(year) 

visual 

acuity (far, 

right) 

mean RNFL 
thickness 

(right) 

 

mean ganglion 
cell + IPL 

thickness   (right) 

CFF 
(Hz), 
right 

 

CFF 
(Hz), 
left 

 

I/1 F 38 0.16 59 (1) 42 (1) 32 32 

I/2 M 43 0.1 59 (1) 49 (1) 34 34 

I/3 F 36 0.16 61 (1) 55 (1) 36 36 

II/1 M 11 0.25     

II/2 M 6 0.1     

II/3 F 6 0.5     

II/4 F 8 0.32   38 38 

        

Ctrl1 M 28 1.6 88 (22) 86 (59) 40 40 

Ctrl2 M 35 1.25 98 (65) 80 (26) 40 40 
 

RNFL retinal nerve fiber layer, IPL inner plexiform layer, CFF critical flicker fusion frequency  

Normal range for visual acuity is ≥1;  that for  CFF is ≥40. Thickness is expressed in μm, the values in brackets show  the percentile 

values of age-matched controls.  
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Legend of suppl. Figures 

 

Suppl. Fig.1. Correlation of critical flicker fusion frequency (CFF) and mean thickness of 

retinal gangion cell - inner plexiform layer (IPL) (R
2 
= 0.961, p = 0.0197). The patients' 

data are shown with dark circle, the pooled control data are shown with empty circles.  

 

Suppl. Fig.2. Examples for (A) filamentous, (B) balloon-like and (C) fragmented 

mitochondrial pattern. The optical slice was 1.1 µM. 

 

Suppl. Fig.3. Morphology of mitochondria derived from (A) control Ctrl1 and (B) patient 

I/1, after incubating the fibroblasts for 72 hours in galactose-containing medium. The 

optical slice was 1.1 µM. 

 

Suppl. Fig. 4. Mitochondrial morphology. Morphology of mitochondria as classified by 

Zanna et al. [23], is shown after incubation in control (glucose containing) medium or 

after 4 days incubation in galactose containing medium. Forty cells of control Ctrl1 and 31 

cells of patient I/1 were examined after culturing in control medium whereas 27 and 36 

cells, resp., were studied after incubation in galactose containing medium. For images of 

filamentous, balloon-like and fragmented mitochondria see Suppl. Fig. 1. 

  

Suppl. Fig. 5. Examination of apoptosis in fibroblasts of (A) control Ctrl1 and (B) patient 

I/1 after 4 hr exposure to 0.1 µM H2O2. The cells were dyed with Annexin V – FITC. The 

optical slice was 2.5 µM. 
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Supplementary Table 1  Results of ophthalmological examinations* 

 
 

name 
 

gender 
Visual 
acquity 

far, 
right 

Visual 
acuity 
far, left 

Visual 
acuity 
near, 
right 

Visual 
acuity 
near, 
left 

mean  
ganglion 
cell + IPL 
thickness 

right 

mean 
ganglion 
cell + IPL 
thickness  

left 

CFF 
(Hz), 
right 

 

CFF (Hz), 
left 

 

I/1 F 0.16 0.1 0.25 0.2 42 (1) 42 (1) 32 32 

I/2 M 0.1 0.063 0.16 0.1 49 (1) 50 (1) 34 34 

I/3 F 0.16 0.125 0.08 0.1 55 (1) 52 (1) 36 36 

          

Ctrl1 M 1.6 1.6 1 1 86 (59) 85 (53) 40 40 

Ctrl2 M 1.25 1.25 1 1 80 (26) 77 (15) 40 40 
 

*Thickness is expressed in μm, the values in brackets show  the percentile values of age-matched controls 
RNFL retinal nerve fiber layer, IPL inner plexiform layer, CFF critical flicker fusion frequency  

Normal range for visual acuity is ≥1; that for  CFF is ≥40 

 

Supplementary Table 2  Results of ophthalmological examinations: thickness* of retinal 

nerve fibre layer (RNFL) 

 

Name RNFL 
right  

superior 

RNFL 
right 

nasal 

RNFL 
right 

inferior 

RNFL right 

temporal 
RNFL left 

superior 
RNFL 

left 

nasal 

RNFL 
left 

inferior 

RNFL left 

temporal 

I/1 62 (1) 63 (29) 69 (1) 41 (1) 78 (1) 61 (22) 86 (1) 41 (1) 

I/2 70 (1) 55 (7) 63 (1) 49 (5) 82 (1) 56 (13) 64 (1) 46 (3) 

I/3 71 (1) 54 (9) 69 (1) 48 (7) 69 (1) 56 (11) 68 (1) 35 (1) 

         

Ctrl1 121 (48) 62 (22) 113 (19) 57 (21) 126 (62) 59 (17) 104 (6) 63 (43) 

Ctrl2 116 (41) 70 (49) 138 (82) 67 (63) 108 (22) 57 (13) 108 (15) 81 (90) 

 
*Thickness is expressed in μm, the values in brackets show the percentile values of age-matched controls.

 

Supplementary Table 3  The neurological symptoms of Patients I/1, I/2 and I/3 

 

Patient Hypoacusis Paresis Deep tendon 

reflexes 

Ataxia Peripheral 

sensory 

deficit 

I/1 No No Decreased in 

the upper limbs 

Dysmetria and 

mild limb ataxia 

in the upper limbs 

No 

I/2 Yes No Decreased in all 

4 limbs 

Dysmetria and 

mild limb ataxia 

in the upper limbs 

No 

I/3 No No Normal Mild dysmetria in 

the upper limbs 

No 

 

Supplementary Table 4  VEP component latency in full field stimulation of Patients I/1, 

I/2, I/3 
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Patient 

VEP Studies 

Left Eye (Cz-Oz) Right Eye (Cz-Oz) 

N75 (ms) P100.(ms) N145 (ms) N70 (ms) P100.(ms) N145 (ms) 

I/1 U U U U U U 

I/2  U U U U U U 

I/3  91.5 129.8 165.3 91.8 124.5 160.5 

 
N  and P:  positive (P) or negative (N) wave, the following number indicates the average peak latency 

U: unreproducible 

 

 

Supplementary Table 5  Nerve conduction studies 

 
Patient Left median nerve motor Left peroneal nerve motor Right sural nerve 

 
DL 

(ms)  
Ampl 
(mV)  

CV 
(m/s) 

DL 
(ms) 

Ampl 
(mV)  

CV 
(m/s) 

DL 
(ms) 

Ampl 
(mV)  

CV 
(m/s) 

normal 
value 

Norm≥5 Norm≥5 
Norm≥ 

48 
Norm≥5 Norm≥3 

Norm≥ 
40 

Norm≥5 Norm≥5 
Norm≥ 

40 

I/1 4.0 11.7 57 5.4  1.9 49 2.5 8.1 46 

I/2 4.0 6.2 63 4.9 6.8 48 2.9 12 45 

I/3 3.9 4.2 58 4.8 3.9 47 3.1 8.0 45 

II/1 3.1 3.8 54 4.9 2.2 45 3.0 12 53 

II/2 2.5 4.4 54 4.2 1.9 44 2.5 24 62 

II/3 - - - 3.5 1.2 62 2.1 30 58 

II/4 - - - 3.2 2.7 59 2.6 18 53 

 
Ampl amplitude, CV conduction velocity, DL distal latency 

 

 


