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Abstract  

Precise spatiotemporal regulation of O2
•- -generating NADPH oxidases (Nox) is a vital 

requirement. In the case of Nox1-3, which depend on the small GTPase Rac, acceleration of 

GTP hydrolysis by GTPase activating protein (GAP) could represent a feasible temporal 

control mechanism. Our goal was to investigate the molecular interactions between RacGAPs 

and phagocytic Nox2 in neutrophilic granulocytes. In structural studies we revealed that 

simultaneous interaction of Rac with its effector protein p67phox and regulatory protein 

RacGAP was sterically possible. The effect of RacGAPs was experimentally investigated in a 

cell-free O2
•- -generating system consisting of isolated membranes and recombinant p47phox 

and p67phox proteins. Addition of soluble RacGAPs decreased O2
•- -production and there was 

no difference in the effect of four RacGAPs previously identified in neutrophils. Depletion of 

membrane-associated RacGAPs had selective effect: a decrease in ARHGAP1 or 

ARHGAP25 level increased O2•- -production but a depletion of ARHGAP35 had no effect. 

Only membrane-localized RacGAPs seem to be able to interact with Rac when it is assembled 

in the Nox2 complex. Thus, in neutrophils multiple RacGAPs are involved in the control of 

O2
•- -production by Nox2, allowing selective regulation via different signaling pathways.  
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Introduction 

NADPH oxidases (Nox) are transmembrane electron carriers that transfer one electron 

from cytosolic NADPH to molecular oxygen and form superoxide (O2•-) and other reactive 

oxygen species (ROS) [1-3]. In humans Nox family proteins are involved in vital 

physiological functions such as antimicrobial defense [4], vestibular function [5], thyroid 

hormone synthesis [6], or cellular signaling [7]. Defective function of some of these proteins 

leads to serious pathologic conditions in humans [8, 9]. However, numerous reports show that 

inappropriate activation of Nox proteins results in serious damage, mainly in the 

cardiovascular system [7, 10]. Thus, strict spatiotemporal control of the activity of Nox family 

proteins is vitally important. 

 Nox2, highly expressed in phagocytic cells, is the best- and longest-known member of 

the family. The active Nox2 enzyme complex assembles from several subunits which reside 

in different compartments in resting cells. Upon activation, p47phox, p67phox and p40phox 

translocate from the cytosol to the (plasma or phagosomal) membrane, where they bind to the 

complex of gp91phox and p22phox, which together form cytochrome b558. Details of the 

molecular interactions within the complex have been investigated and reviewed extensively 

[1, 11, 12]. The essential role of the small GTPase Rac (Rac1 in macrophages, Rac2 in 

neutrophilic granulocytes) was discovered soon after the identification of the Nox-related 

subunits [13, 14] and was confirmed later in both human pathology [15] and in genetically 

modified mice [16]. In the Nox2 complex, p67phox has been identified as the effector protein 

of Rac [17]. The molecular interaction between the tetratricopeptide repeat (TPR) motif of 

p67phox and RacGTP was suggested [18] and later verified on the basis of crystal structure [19, 

20]. A direct interaction between Rac and gp91phox has also been suggested [21] although not 

accepted in all published models [22, 23]. Nox1 and Nox3 are the closest homologs of Nox2. 

Both require cytosolic subunits for activity [24-26] and Rac regulates both [27]. 
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 Rac is a member of the Rho subfamily of small GTPases (smg) [28]. Similar to other 

smgs, Rac’s activity depends on GTP binding, and declines slowly due to the slow GTP-

hydrolytic activity of the protein. GTPase activating proteins (GAPs) accelerate GTP-

hydrolysis by several orders of magnitude, and thus serve as important temporal regulators of 

smg-signaling [29, 30]. The human genome contains approx 70 potential Rho-family GAPs 

[31, 32] from which each cell type expresses its own „GAP-repertoire” [33]. The specific or 

overlapping function of these proteins needs further investigation [30, 34]. 

 RacGAP(s) limit the prevalence of Rac in the active, GTP-bound state, and thus are 

potentially important negative regulators of Rac-dependent Nox proteins, that would curb the 

intensity of O2
.- -production. Due to their complex domain structure [32, 34] and extensive 

regulation [30, 35], RacGAPs could fine tune Nox activity. In fact, a role for RacGAPs in the 

regulation of assembly and function of the Nox2 complex has been indicated in previous in 

vitro studies [36-40] and in genetically modified animals [41-43]. These were all isolated 

studies and comparative aspects have not been raised.  

In human neutrophils the RacGAPs Bcr, ARHGAP35 and ARHGAP1 have been 

identified by immunoblotting [40] and all three proteins decreased O2•- -production when they 

were added to a cell-free system [39, 40]. However, the contribution of endogenous, 

membrane-bound RacGAPs has not been investigated. Recently, ARHGAP25 has been 

cloned and shown to be a RacGAP preferentially expressed in hemopoetic cells. In 

neutrophilic granulocytes it functions as a negative regulator of phagocytosis [44]. 

Interestingly, ARHGAP1, that was expressed to a similar extent and had similar RacGAP 

activity as ARHGAP25, did not affect phagocytosis [44]. These data raised the question of 

specificity of different RacGAPs in the regulation of the phagocytic NADPH oxidase.  

 In the present study we i.) investigate – based on existing crystal structures - the 

theoretical possibility of involvement of RacGAPs in the regulation of the phagocytic Nox2 
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complex and ii.) perform a comparative analysis on the contribution of the RacGAPs 

identified hitherto in human neutrophils. 

 

Materials and Methods  

 

Materials 

Non-prenylated Rac1, full length ARHGAP1 and the GAP domain of BCR (residues 

871–1271) were produced in E. coli as GST fusion proteins and purified as described in ref. 

[38]. The E. coli clones producing Rac1, BCR and ARHGAP1 were a gift from A. Hall. GST-

tagged full length ARHGAP25 was produced as previously decribed in ref. [44]. The GAP 

domain of ARHGAP35 (residues 1191-1499) was produced in the form of GST fusion protein 

and purified as described in [45]. Antibodies against ARHGAP1 and ARHGAP25 were raised 

in rabbits and characterized as described in ref. [40, 44]. Isotype control polyclonal rabbit-Ab 

was from Santa Cruz (Dallas, USA). Mouse mAb against ARHGAP35 and isotype control 

monoclonal IgG1 was purchased from BD Transduction Laboratories (Franklin Lakes, NJ 

USA). Horseradish-peroxidase-conjugated anti-rabbit IgG and anti-mouse IgG were 

purchased from GE Healthcare (Uppsala, Sweden). Protein G–Sepharose beads, nitrocellulose 

membranes and Ficoll were from GE Healthcare. Protein A–Sepharose beads were from Life 

Technologies (Carlsbad, Calif. USA). Arachidonic acid (AA), octylglucoside, 

ferricytochrome c (horse heart, type VI), DFP, aprotinin, pepstatin, leupeptin, PMSF, 

superoxide dismutase (SOD), guanosine 5´-[γ-thio]triphosphate (GTP-γ-S) and GTP were 

from Sigma-Aldrich (St. Louis, MO, USA). NADPH was from SERVA (Heidelberg, 

Germany). Sterile endotoxin-free HBSS was from ThermoScientific (Waltham, MA, USA). 

[γ-32P]GTP was from Izotóp Intézet, Hungary. Spin-X Centrifuge Tube Filter with 450nm 

pore size was from Corning (Amsterdam, The Netherlands). All other reagents were of the 
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highest available quality. Incubations were performed in PBS (137mM NaCl, 2.7mM KCl, 

8.1mM Na2HPO4, 1.5mM KH2PO4, pH7.4). Arachidonic acid was dissolved in ethanol at 

20mM and added to the reaction mixture in small volumes (less than 3% of the final volume).  

 

Preparation of neutrophils and subcellular fractions 

Human neutrophils were prepared from buffy coats of healthy volunteers as described 

[46] and isolated PMN cells were suspended in PBS and treated with 1mM DFP for 10 min at 

room temperature. After being washed in PBS, cells were resuspended in PBS supplemented 

with 1mM EGTA, 10µg/ml aprotinin, 2µM pepstatin, 10µM leupeptin, 0.1mM PMSF. 

Thereafter cells were broken by ultrasonic treatment, and membrane and cytosolic fractions 

were prepared on a discontinuous sucrose gradient as described in [38] . 

 

Measurement of O2•- -production in semi-recombinant cell-free system 

The rate of O2•- - production was determined as the superoxide-dismutase-sensitive 

portion of ferricytochrome c reduction measured at 550nm in a Labsystem IeMS microplate 

reader [47, 48]. A two-step activation system was used. Membrane fraction (10µg of protein) 

and recombinant p47phox, p67phox (optimal amounts (0.3-1µg) were determined before use) 

were pre-incubated for 10 min in the presence of arachidonic acid (AA), and 125µM 

cytochrome c in a final volume of 150µL of PBS containing 1mM MgCl2. GAP proteins were 

added either 10 min before or 10 min after AA. Membrane fractions isolated from human 

PMN contained sufficient Rac for NADPH oxidase assembly [38, 49]. For each condition the 

optimal concentration of AA was determined and used in the activation mixture. Superoxide 

production was initiated by addition of NADPH (250 µM final cc.) and followed for 10 min. 

The initial linear portion of the absorption curves (lasting for 2-4 min) was used for 

calculation of the rate of O2•- -production. Parallel samples were run in the presence of 100µg 
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of superoxide dismutase (SOD). For calculation of the O2
•- production, the absorption 

coefficient of ferricytochrome c of 21000M-1·cm-1 was corrected to the properties of the plate 

reader.  

 

Measurement of the GTP-ase Activity of Rac 

The GTP-ase activity was measured by the nitrocellulose filter-binding assay as 

described in [50]. Loading of recombinant Rac1 (1µg of protein) was performed for 5 minutes 

at room temperature with a high specific radioactivity of [γ-32P]GTP (more than 5000Ci/mM) 

in low magnesium buffer (16mM Tris-HCl, pH 7.5, 20mM NaCl, 0.1mM dithiothreitol 

[DTT], 5 mM EDTA, and 100nM [γ-32P]GTP [5 µCi]). Thereafter, MgCl2 was added at 20 

mM to diminish further nucleotide exchange. The solution was kept on ice to decrease 

nucleotide hydrolysis. The GTPase reaction was initiated by the addition of 3µL of small G 

protein loaded with [γ-32P]GTP to 27µL of a warmed (20°C) buffer (16mM Tris-HCl, pH 7.5, 

0.1mM DTT, 1mg/mL bovine serum albumin, and 1mM unlabeled GTP) containing the 

different GAPs. Aliquots (5µL) were taken at regular intervals and filtered through 

nitrocellulose membranes, followed by washing 3 times with 2 mL of cold buffer consisting 

of 50mM Tris-HCl and 5mM MgCl2; pH 7.7. The filters were dried and the radioactivity was 

measured by the Cerenkov-effect in a Beckman LS 5000TD liquid-scintillation spectrometer. 

GAP activity is presented as the decrease in protein-bound radioactivity retained on the filters 

in time.  

 

Immunoprecipitation experiments 

Protein G–Sepharose beads (in the case of ARHGAP35 and isotype control IgG1 Ab) 

or Protein A–Sepharose beads (in the case of ARHGAP1, ARHGAP25 and isotype control 

rabbit-Ab) were incubated with the indicated Ab in the presence of 20mg/mL albumin for 40 
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min and washed five times in PBS to remove traces of unbound immunoglobulins. 

Membranes from human PMN corresponding to approx. 1 mg of protein were solubilized for 

10 min in PBS containing 40mM octylglucoside at room temperature. Immunodepletion was 

performed in three successive steps, incubating the solubilized material each time for 15 min 

with approx. 30µL of antibody-loaded Sepharose beads. For the separation of the beads Spin-

X Centrifuge Tube Filter with 450nm pore was used. The separated beads were washed three 

times in PBS supplemented with 0.1% (v/v) Triton X-100. The immunodepleted probes were 

tested for cell-free in vitro superoxide production described above. Except of the 

solubilization, all steps of immunodepletion were performed at 4°C. 

 

Protein determination 

The protein content was determined as described by Bradford [51], with BSA as 

standard. 

 

Immunoblotting 

Identical amount of protein (50µg) of the indicated samples was lysed in 4x Laemmli 

sample buffer containing β-mercaptoethanol (300µM), boiled and run on 10% (w/v) SDS 

polyacrylamide gels and transferred to nitrocellulose membranes. After blocking for 1 h in 

PBS containing 5% defatted milk powder and 0.1% (w/v) Tween 20, blots were incubated 

with indicated Ab (anti-ARHGAP25 and anti-ARHGAP1 Ab in 1:1000 dilution; anti-

ARHGAP35 in 1:1000 dilution in PBS containing 5% defatted milk powder). Bound Ab was 

detected with enhanced chemiluminescence using horseradish peroxidase-conjugated anti-

rabbit-Ig (from donkey) or anti-mouse-Ig (from sheep) secondary antibodies used in 1:5000 

dilution in PBS containing 5% defatted milk powder. 
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Structure analysis 

Homologs of Rac and GAP were found in the Protein Database (PDB) via BLAST 

searches and the subset that contain both Rac and GAP homologs were identified. Crystal 

structures were visualized and analyses performed in the UCSF Chimera package [52]. The 

Rho homolog of each of several crystallized Rho-family smg-GAP complexes [1GRN[53], 

1TX4[54], 1OW3[55], 1AM4[56], 3MSX (Utepbergenov, D.,  Cooper, D.R.,  Derewenda, U.,  

Somlyo, A.V.,  Derewenda, Z.S. Mechanism of molecular specificity of RhoGAP domains 

towards small GTPases of RhoA family. Unpublished)] was superimposed onto the Rac 

protein in a crystal structure of the Rac-p67phox complex (PDB 1E96) using the default 

settings of Chimera’s Matchmaker program [57], allowing circular permutation and iteration 

of superposition/alignment; RMSD values for the superimposed Rho homolog and Rac were 

obtained.  

 

Results 

 

Structural considerations 

ARHGAP1 interacts equally with RhoA and Rac1 [58]. Thus, as a first step to 

investigation of the interaction of RacGAPs with the Nox2 complex, we inspected 

superpositions of 5 crystal structures (PDB ids 1GRN, 1TX4, 10W3, 1AM4, 3MSX) of Rho- 

or Cdc42/GAP complexes (hereafter referred to as Rho/GAP complexes) onto the crystal 

structure of the Rac/p67phox complex (PDB 1E96 ), using the Rac protein as the reference 

structure. Several of the Rho/GAP complexes were obtained in the presence of fluoride 

compounds, thought to simulate the GTP hydrolysis transition state [59]. Consistent with their 

high sequence similarity, Rho or Cdc42 superpositions onto Rac exhibited small RMSDs, 

ranging from 0.74 to 0.86 Angstroms, indicating very close structural similarity. The 
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superposition of Cdc42 and Rac reveals that Rac has identical residues in positions 

corresponding to those identified as participating in binding of Cdc42 to ARHGAP1[56], 

identifying Rac’s presumed interaction surface with GAP. Inspections of the superimposed 

crystal structures shows that in every case GAP and p67phox TPR bind to distinct, non-

overlapping faces of the Rho or Rac protein; one example illustrating the positions of p67phox 

and ARHGAP1 when RhoA and Rac are superimposed is shown in Figure 1. All of the 

superpositions of these static structures contain a small area of steric clash (circled, Figure 

1A) between the extreme N-terminus of p67phox and the GAP protein, but given the usual 

mobility of protein termini in the dynamic aqueous environment we concluded that this would 

not necessarily represent a significant hindrance to simultaneous binding of GAP proteins and 

p67phox to Rac. The C-terminus of the TPR structure connects to the remainder of the p67phox 

polypeptide, most of which has not been crystallized, but inspection of the structure reveals a 

large area away from Rac and GAP available for occupation by the remainder of p67phox. 

Similarly, there is space available for the N-terminal domain of the GAP proteins.    

These observations indicate that simultaneous binding of GAP and p67phox to Rac may 

be sterically possible.  Furthermore, as illustrated in Figure 1B, these superpositions indicate 

that several faces of Rac/p67phox would remain available for interaction with Nox2 if GAP and 

p67phox were to bind Rac simultaneously. One of these faces includes the insert domain of 

Rac, shown to be critical for the interaction of Rac and Nox2 [21].   

 

Effect of added RacGAPs on Nox2 activity. 

 Immunoblots revealed the presence of all identified RacGAPs both in the cytosolic 

and in the membrane fractions [40, 44]. To mimic the potential effect of cytosolic RacGAPs, 

we first added these proteins to the semirecombinant cell-free O2
•- -generation system. In 

previous studies it has been shown that addition of Bcr, ARHGAP1 or ARHGAP35 decreased 
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O2
•- -production in crude cell-free systems [39, 40]. However, these studies were carried out 

under different experimental conditions so that a direct comparison of individual RacGAP 

effects was not possible. Therefore we carried out a comparative study including the recently 

discovered hemopoetic cell specific ARHGAP25. In parallel radioactive GTPase 

measurements we controlled the RacGAP activity of each protein preparation (data not 

shown). The amount of RacGAP added to the semi-recombinant cell-free system was varied 

in order to achieve equal GTP hydrolytic activity in all samples.  

 As shown in Figure 2, when added before arachidonic acid-triggered assembly of the 

Nox2 complex, all four RacGAPs reduced the rate of O2
•- -production. In 5 separate 

experiments we observed no significant difference between the effect of the applied 

RacGAPs, ARHGAP25 was as effective as the other three previously studied proteins. 

Similar to previous observations [40], reduction of O2
•- -production changed in parallel with 

the amount of added GAPs. In contrast to these results, when the same amount of the various 

RacGAPs was added to the reaction mixture 10 min after initiation of the activation process, 

the rate of O2•- -production was the same as that in the absence of any RacGAP. This result 

agrees with previous observations [38]. Identical results were obtained when membranes were 

solubilized in octylglucoside. 

 Apparently, soluble RacGAPs – representing proteins localized in the cytosol – have 

similar access to RacGTP under resting conditions, but none of them has access to RacGTP 

embedded in the assembled Nox2 complex. 

    

Immunodepletion of the membrane fraction 

 Next we turned our attention to endogenous RacGAPs localized to the isolated 

membrane fraction of neutrophilic granulocytes. In order to keep the NADPH oxidase activity 

high, membranes were solubilized in octylglucoside [60]. Immunodepletion was carried out 
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from the solubilized membranes with repeated short exposure to specific antibodies, taking 

care to preserve the activity of both Nox2 and the remaining GAPs. One typical experiment 

and the average of more than 10 separate measurements are represented in Figure 3. On the 

average we succeeded in depleting 70% of ARHGAP1, 65% of ARHGAP25 and 65% of 

ARHGAP35 from the solubilized membranes. Combining the two polyclonal antibodies, we 

also carried out double-depletion, achieving 60% decrease in ARHGAP1 and 50% decrease in 

ARHGAP25.    

 

Nox2 activity in immunodepleted membranes 

 We tested the capacity of O2
•- -production of intact membranes and membranes treated 

with isotype control serum or specific antibodies against one or two membrane-associated 

RacGAPs (Figure 4). Depletion of ARHGAP1 or ARHGAP25 alone resulted in a greater than 

two-fold increase in the rate of O2
•- -generation. Moreover, the effect of the two RacGAPs was 

additive: in double-depleted membranes O2
•- -production was more than 3 times higher than in 

the isotype treated membranes. In contrast, in 6 separate experiments, depletion of 

ARHGAP35 from the membranes did not affect O2
•- -production at all.  

 Apparently, some but not all of the membrane-localized RacGAPs do interact with 

Rac in the Nox2 complex and constitutively diminish O2
•- -production.  

 

Effect of membrane-associated RacGAPs on assembly or activity of the Nox2 complex  

Finally we tested whether membrane-associated RacGAPs can only interact with 

uncomplexed Rac, thus inhibiting the assembly/activation of the Nox2 complex; or 

alternatively if they can interact with Rac in the already-assembled complex. NaF was 

previously shown to stabilize the smg-GAP complex [59]. In our earlier experiments, addition 

of NaF reduced the RacGAP effect on O2
•- -production of neutrophil membranes [36-38, 40], 
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but it did not affect the activity of purified cytochrome b558 [38, 40]. These findings suggested 

that NaF acted by sequestering the GAP(s) – present in neutrophil membranes but absent in 

the cytochrome b558 preparation - into a stable complex. To strengthen the specificity of the 

effect of NaF, we tested its effect on O2
•- -production in the different GAP-depleted 

membranes (Fig. 5A). Both in ARHGAP35-depleted membranes and in control membranes 

treated with isotype serum, NaF brought about an approx. 4-fold increase of O2•- -production. 

In contrast, in double-depleted membranes, the increase was only about 1.3-fold.     

Finally, we compared the effect of NaF before and after assembly of the catalytically 

active enzyme complex (Fig. 5B).  Addition of NaF before assembly of Nox2 complex 

increased O2•- -production approximately threefold, but when NaF was added to the assembled 

complex, O2
•- -generation still increased more than twofold (Figure 5). This observation 

indicates that RacGAP(s) may have access to Rac also in the assembled Nox2 complex.  

 

Discussion   

 

Physiological functioning of NADPH oxidases requires strict spatiotemporal control. 

For Rac-dependent oxidases (Nox1-3) acceleration of GTP hydrolysis by GAPs provides a 

reasonable control mechanism. In case of Nox2 it was shown that both the activation and the 

sustained turn-over of the enzyme requires the active, GTP-bound form of Rac [37, 38], hence 

regulatable RacGAPs could ensure the efficient fine-tuning of both phases. In this study we 

provide molecular data supporting this hypothesis.  

We report here the first structural analysis to explore the possible interaction of GAP 

and Nox2 subunits. Our investigations using static superposition of existing crystal structures 

of Rac and Rho complexes indicate that simultanous interaction of Rac, p67phox, RacGAP and 

Nox2 is plausible. 
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In human neutrophils RacGAPs are present both in the cytosol and in the membrane 

fraction. We investigated the potential contribution of RacGAPs at both locations. The effect 

of cytosolic GAPs was mimicked by addition of soluble RacGAPs to the cell-free activation 

system. When different proteins were added at equal GAP-activity, all four RacGAPs 

identified hitherto in PMN similarly decreased O2
•- -production. Interestingly, the same 

proteins had no effect on O2
•- -production when they were added to the already assembled 

enzyme complex. Apparently soluble RacGAPs were able to interact with free RacGTP, but 

had no access to their target embedded in the Nox2 complex. 

In contrast, RacGAPs associated with the membrane fraction seem capable of 

interacting with Rac even after its incorporation into the assembled Nox2 complex. We show 

that addition of NaF after the assembly of the enzyme complex still increases O2
•- -production. 

As small GTPases can form a stable complex with fluoride compounds only in the presence 

of their GAP [59] our finding indicates that membrane-localized RacGAP(s) have access to 

the assembled enzyme complex. Our structural analysis supports this possibility. 

We observed, however, differences in the interaction of membrane-associated 

RacGAPs to the Nox2 complex. Depletion of more than 50% of the amount of ARHGAP1 or 

ARHGAP25 resulted in a clear increase of O2
•- -production, indicating a constitutive 

downregulation of Nox2 activity by these proteins. The effect of ARHGAP1 and ARHGAP25 

was additive, increasing the rate of O2
•- -production approx. threefold. However, maximal O2

•- 

-production (detected in the presence of GTPγS or NaF) was not achieved. Thus, involvement 

of further, not yet identified RacGAP(s) can not be excluded at this point.  

In contrast to ARHGAP1 and ARHGAP25, depletion of ARHGAP35 to a similar 

extent had no effect on the enzyme activity of Nox2, although the RacGAP activity of 

ARHGAP35 has been confirmed also in cellular context [61] . The lack of effect upon 

immunodepletion of ARHGAP35 agrees with data obtained in mice with ARHGAP35-
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deficient hemopoetic system [62]. Apparently, membrane-associated RacGAPs exhibit 

selectivity in their interactions with the Nox2 complex. The basis of this selectivity may 

simply be the size, as ARHGAP35 (190 kD) is significantly larger than either ARHGAP1 

(50kD) or ARHGAP25 (73kD). On the other hand, the structural investigations indicate the 

possibility of an interacting surface between RacGAP and the Rac-effector p67phox. Such a 

surface presents one possible basis of discrimination between different RacGAPs. In the case 

of guanine nucleotide exchange factors (GEFs) examples of a trimolecular interaction 

between the regulatory protein, the small GTPase and the effector protein have been described 

[63-65]. Simultanous interaction of Rac with the effector protein p67phox and the regulatory 

protein RacGAP may represent a similar mechanism resulting in specific regulation of the 

NADPH oxidase.  

Our data clearly indicate that in neutrophilic granulocytes more than one RacGAP is 

involved in the regulation of the NADPH oxidase. Both the activity and the localization of 

GAPs was shown to be modulated by diverse mechanisms such as phosphorylation, lipid or 

protein interactions, autoinhibition, etc.[30]. Regulation of one Rac-dependent process by 

multiple GAPs could allow selective modulation by various signaling pathways and 

contribute to the fine-tuning of the generation of the toxic superoxide anion.    
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Figure legends 

 

Figure 1: Example of superposition of crystal structures of rho/GAP complexes onto 

Rac/p67phox complex. A. Cdc42 (cyan) in complex with ARHGAP1 (pink) (PDB 1AM4) 

superimposed onto Rac (green) in complex with the tetraticopeptide repeat domain of 

p67phox (gray) (PDB 1E96) reveals distinct faces for Rac interaction with p67phox and 

(potentially) ARHGAP1. The arginine (blue) critical for GAP-activated GTP hydrolysis, and 
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GTP (pink from Cdc42 structure, gray from Rac), are shown in stick representation.  Blue 

circle indicates a small region of steric clash between the extreme N-terminus of p67phox and 

ARHGAP1.  B. Surface view of the same superimposed structures (Cdc42 hidden for clarity) 

shows interaction surfaces on Rac and p67phox that remain available to other parts of the Nox 

assembly assuming that ARHGAP1 binds to Rac.  Surface colors correspond to ribbon colors 

in A, except that cyan indicates insert region of Rac. 

   

Figure 2: Effect of soluble GAPs on the activation and catalytic activity of NADPH oxidase.  

PBS control represents the rate of O2
•- -production obtained in the semi-recombinant system 

and is taken as 100% activity (mean for rate in 5 separate experiments was 72.6 nmol O2
•- 

/min/mg membrane protein). Amounts of GAPs added were adjusted to produce equal 

GTPase activity (as determined separately in a nitrocellulose filter-binding assay). GAPs were 

added 10 min before (black bars) or 10 minutes after (gray bars) induction of assembly of the 

Nox2 complex by AA. Mean + SEM of 5 (pre-activation) or 3 (post-activation) separate 

experiments are shown (*P < .05 compared with control). 

 

Figure 3: Western blot of the immunodepletion of the membrane fractions. Intact sample 

shows the amount of ARHGAP35, ARHGAP25 and ARHGAP1 in the non-treated 

membrane. Isotype depleted membrane serves as a control for the specificity of the depletion 

process. Equal amounts of membrane protein (50µg) were used for analysis (A). 

Densitometric analysis of ARHGAP25 (black bar) and ARHGAP1 (gray bar) signal relative 

to total protein content of the samples. Mean + SEM of 15 (isotype control and ARHGAP1), 

14 (intact and ARHGAP25) or 8 (ARHGAP1+ARHGAP25) separate experiments are shown 

(B). Densitometric analysis of ARHGAP35 signal relative to total protein content of the 

samples. Mean + SEM of 4 separate experiments are shown (C). ARHGAP35 serves as 
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loading control for ARHGAP1 and ARHGAP25 and the two latter serve as loading control 

for ARHGAP35.  

 

Figure 4: Effect of immunodepletion of membrane-localized GAPs on the activity of 

NADPH oxidase. Isotype control Ab depleted membrane (black bar) was taken as 100% O2
•- - 

production activity (mean of 15 separate experiments was 39.7 nmol O2•- /min/mg membrane 

protein).  White bar: O2•- -production of the intact membrane (mean + SEM of 14 separate 

experiments) relative to the isotype depleted control. Gray bars: O2•- -production of specific 

immunodepleted membrane fractions relative to isotype control depleted membrane. Mean + 

SEM of 15 (ARHGAP1), 14 (ARHGAP25), 8 (ARHGAP1+ARHGAP25) or 4 (ARHGAP35) 

separate experiments are shown (*P < .05 compared with isotype control).  

 

Figure 5: Effect of membrane-localized GAPs on the activity of NADPH oxidase. Activation 

of the enzyme was carried out in the presence of 30 µM GTP. NaF (40mM) was added to the 

GAP-depleted (A) or to non-depleted (B) membranes either 10 min before the activation 

phase or 10 min later, after completion (→) of the activation of the enzyme. Mean + SEM of 

8 (Isotype control, ARHGAP1+ARHGAP25) or 4 (ARHGAP35, part B) separate experiments 

are shown. 
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