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Abstract

Background and purpose

Vitamin D deficiency (VDD) is a global health problem, which can lead to several pathophys-

iological consequences including cardiovascular diseases. Its impact on the cerebrovascu-

lar system is not well understood. The goal of the present work was to examine the effects

of VDD on the morphological, biomechanical and functional properties of cerebral arterioles.

Methods

Four-week-old male Wistar rats (n = 11 per group) were either fed with vitamin D deficient

diet or received conventional rat chow with per os vitamin D supplementation. Cardiovascu-

lar parameters and hormone levels (testosterone, androstenedione, progesterone and 25-

hydroxyvitamin D) were measured during the study. After 8 weeks of treatment anterior

cerebral artery segments were prepared and their morphological, biomechanical and func-

tional properties were examined using pressure microangiometry. Resorcin-fuchsin and

smooth muscle actin staining were used to detect elastic fiber density and smooth muscle

cell counts in the vessel wall, respectively. Sections were immunostained for eNOS and

COX-2 as well.

Results

VDD markedly increased the wall thickness, the wall-to-lumen ratio and the wall cross-sec-

tional area of arterioles as well as the number of smooth muscle cells in the tunica media. As

a consequence, tangential wall stress was significantly lower in the VDD group. In addition,

VDD increased the myogenic as well as the uridine 5’-triphosphate-induced tone and

impaired bradykinin-induced relaxation. Decreased eNOS and increased COX-2 expression

were also observed in the endothelium of VDD animals.
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Conclusions

VDD causes inward hypertrophic remodeling due to vascular smooth muscle cell prolifera-

tion and enhances the vessel tone probably because of increased vasoconstrictor prosta-

noid levels in young adult rats. In addition, the decreased eNOS expression results in

endothelial dysfunction. These morphological and functional alterations can potentially com-

promise the cerebral circulation and lead to cerebrovascular disorders in VDD.

Introduction

Vitamin D deficiency (VDD) or insufficiency affects 1 billion people from all age groups

worldwide. In addition to its well-characterized roles in calcium and phosphate homeostasis as

well as in bone metabolism, 1,25-dihydroxyvitamin D—the active metabolite of vitamin D

(VitD)—has numerous biological actions [1]. Besides interacting with the intracellular VitD

receptor and regulating the expression of up to 200 genes, it mediates non-genomic actions as

well [2]. VDD is associated with an increased risk of malignant tumor formation, autoimmune

and infectious diseases as well as depression [1]. Diabetes mellitus and metabolic syndrome

are also linked to VDD, as 1,25-dihydroxyvitamin D improves β-cell function and insulin

sensitivity [3]. There is a growing body of evidence linking VDD to cardiovascular diseases

including hypertension, atherosclerosis and coronary artery disease. Furthermore, a direct

impact of VDD on endothelial dysfunction, arterial stiffness and vascular inflammation was

also reported [2, 4, 5].

The effects of VDD on the cerebrovascular system are as yet less understood, although sev-

eral studies highlight the importance of sufficient VitD status in cerebrovascular health. Low

concentrations of VitD are associated with an increased risk of cerebrovascular diseases

including ischemic stroke [6–9] and with poor poststroke outcome [10]. In addition, VDD is

linked to chronic brain injury associated with cerebral small vessel disease [11]. The effect of

VitD status on stroke severity was confirmed in rodent models as well: the infarction volume

was larger and more severe poststroke behaviour impairment was observed in VitD-deficient

rats as compared to VitD-sufficient ones [12].

In the present study, we hypothesized that the aforementioned adverse effects of VDD in

stroke are related—at least in part—to VDD-induced alterations in cerebral arterioles. There-

fore, we aimed to analyze the changes in the morphological, biomechanical and functional

properties of the anterior cerebral artery (ACA) in a rodent model of VDD.

Materials and methods

Animals

All procedures conformed to the Guide for the Care and Use of Laboratory Animals published

by the US National Institutes of Health (8th edition, 2011) and the EU-conform Hungarian

Law on Animal Care (XXVIII/1998). The Institutional Animal Care and Use Committee of

Semmelweis University approved the study protocol (IRB: 8/2014, PEI/001/1548-3/2014). All

surgery was performed under sodium pentobarbital anesthesia, and all efforts were made to

minimize suffering. Twenty-two 4-week-old male Wistar rats were involved in the experi-

ments. Eleven of them were fed with VitD-deficient diet (VitD content less than 5 IU/kg) for

eight weeks (VDD group). Control animals received conventional rat chow (containing 1500

IU/kg VitD) with per os VitD (Vigantol, 20.000 IU/mL cholecalciferol) supplementation (at
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the second week of the study 500 IU/100 g body weight as loading dose, then 140 IU/100 g b.

w. weekly from week 4 to 7 as maintenance dose). Taken together, the daily VitD intake in the

Control group was approximately 300 IU/100 g b. w. providing optimal VitD supply. Serum

25-hydroxyvitamin D, testosterone, androstenedione and progesterone levels were measured

from blood samples taken at weeks 4 and 8. At week 6 a glucose tolerance test was performed:

fasting as well as 60-minute and 120-minute postload plasma levels were measured before and

after oral administration of 2 g/kg b. w. 30% glucose solution.

After 8 weeks, animals were sacrificed as follows. First, blood pressure was measured by

cannulation of the carotid artery under general surgical anesthesia (pentobarbital, 45 mg/kg b.

w., i. p.). After perfusion via the carotid artery with heparinized Krebs-Ringer solution and

decapitation under anesthesia, the brain was removed and anterior cerebral artery (ACA) seg-

ments were prepared under a stereomicroscope (Wild M3Z, Heerbrugg, Switzerland). Heart

and testes were also removed for weight measurement.

Pressure microangiometry

An approximately 2-mm-long segment of the ACA was immersed into an organ chamber

(Experimetria Ltd., Budapest, Hungary) filled with normal Krebs-Ringer solution, cannulated

at both ends with microcannulas, and extended to its in vivo length. The chamber was placed

on the stage of an inverted microscope (Leica, Wetzlar, Germany). Pressure-servo pumps (Liv-

ing Systems, Burlington, VT, USA)–with the belonging pressure transducer (Living Systems,

Burlington, VT, USA), which had been calibrated with a mercurial manometer—were con-

nected to both cannulas and the arteries were pressurized to maintain 50 mmHg intraluminal

pressure. The cerebral arterioles were allowed to equilibrate for 30 min at this pressure in nor-

mal Krebs-Ringer solution bubbled with a gas mixture containing 5% CO2, 20% O2 and 75%

N2, and the temperature was kept at 37˚C during the entire measurement. After equilibration,

10−4 mol/L UTP was added to the chamber and after a 5-min incubation the pressure was

increased to 150 mmHg, then decreased to 0 mmHg; this challenge was then repeated once

more. Thereafter, the pressure was increased from 0 to 150 mmHg in 10 mmHg steps. All

these procedures were performed rapidly—within 5 minutes—to avoid activation of the myo-

genic response. After the arterioles were allowed to equilibrate at 50 mmHg intraluminal pres-

sure for 10 min, 10−6 mol/L bradykinin was added to the vessel chamber and incubated for 5

min at 50 mmHg intraluminal pressure in order to evaluate endothelium-dependent vasore-

laxation [13]. Finally, the passive diameter of vessels was measured: the organ chamber was

filled with Ca2+-free Krebs solution and after 20 min the pressure-diameter relationship was

determined as described above. Pictures were taken during the experiment by a digital camera

(Leica DFC 320) connected to the microscope. The outer and inner diameters of the vessels

were measured by ImageJ image analysis software (Image J 1.5 NIH, USA). For the calibration,

a micrometer etalon (Wild, Heerbrugg, Switzerland) was used.

Calculations

Wall thickness was expressed as the difference between the outer and inner radii: h = Ro-Ri,
where h is wall thickness, Ro is the outer radius and Ri is the inner radius. The wall cross-sec-

tional area (Aw) was computed according to the following equation: Aw = (Ro2-Ri2)�π. Tangen-

tial wall stress was computed according to the Laplace-equation: σtang = (P�Ri)/h, where σtang is

the tangential wall stress and P is the intraluminal pressure. The elastic modulus was computed

as: E = (ΔP/ΔRo)�2�Ri2�Ro/(Ro2-Ri2), where E is the incremental elastic modulus, ΔP is the

change in intraluminal pressure and ΔRo is the outer radius change in response to ΔP.

Cerebrovascular disorders in vitamin D deficiency

PLOS ONE | https://doi.org/10.1371/journal.pone.0192480 February 6, 2018 3 / 16

https://doi.org/10.1371/journal.pone.0192480


Incremental distensibility was computed as D = ΔV/V�ΔP, where D is the incremental dis-

tensibility and ΔV is the change in lumen volume relative to the initial volume V in response to

pressure change (ΔP). Myogenic tone was computed asM% = 100�(RiCf-RinKR)/RiCf, where

RiCf is the inner radius in Ca2+-free solution and RinKR is the inner radius in normal Krebs-

Ringer solution. UTP-induced contraction was expressed as a percentage of complete relaxa-

tion: TUTP% = 100�(RiCf-RiUTP)/RiCf, where RiUTP is the inner radius after incubation with

UTP. Bradykinin-induced relaxation was expressed as a percentage of UTP-induced precon-

traction: TBK% = 100�(RiBK-RiUTP)/RiUTP, where RiBK is the inner radius after bradykinin was

added to the chamber.

Histology and immunohistochemistry

ACA segments were freshly fixed with formalin for histological examination and stained for

elastic fibers with Weigert’s resorcin-fuchsin. Paraffin-embedded sections of ACA were immu-

nostained with anti-COX-2 antibody (1:500, 1 h, 37˚C) or with anti-eNOS antibody (1:200, 1

h, 37˚C) after deparaffinization and antigen retrieval (0.1 mmol/L citrate buffer, pH 6, 30 min,

60˚C). Endogenous peroxidase activity was quenched (with hydrogen-peroxide dissolved in

distilled water) and blocked (2.5% normal horse serum). After secondary antibody (biotiny-

lated horse anti-mouse antibody for COX-2 or biotinylated horse anti-rabbit antibody for

eNOS) staining (30 min, RT) the binding sites of primary antibodies were visualized with DAB

Substrate Kit (with 3,3’-diaminobenzidine; 6 min, RT). Sections were counterstained by hema-

toxylin. Artery segments were stained for smooth muscle actin (36 min, 37˚C) using Ventana

Benchmark Ultra System after deparaffinization and antigen retrieval (8 min, 97˚C). Ultra-

View Universal DAB Detection Kit was used for detecting primary antibodies. Data collections

were made by microscope (Zeiss AxioImager.A1) coupled with video-camera (Zeiss AxioCAm

MRc5 CCD). RGB pictures of resorcin-fuchsin-stained segments were analyzed with the Leica

Qwin image analysis software. The green levels (green color was chosen after evaluation of

color histograms) were measured starting at the luminal surface and going radially in an out-

ward direction. In addition, the thicknesses of the intimal and medial layers of arteries and the

intima/media ratio were determined. Pictures of smooth muscle actin, eNOS and COX-2

staining were analyzed with the ImageJ image analysis software using the „Color deconvolu-

tion” profile. Optical density of the endothelial layer after eNOS and COX-2 staining and the

nucleus count of tunica media after demarcation with smooth muscle actin staining were

determined.

Statistical analysis

All data are presented as mean±SEM. For statistical analysis Student’s t test or two-way

repeated measures ANOVA followed by Bonferroni post hoc test was used; p<0.05 was con-

sidered to be statistically significant. GraphPad Prism version 6.0 was used as statistical

software.

Materials

Vigantol 20.000 IU/mL was obtained from Merck Serono (Mumbai, India). Vitamin D defi-

cient (EF R/M, E15312-24) and conventional rat chow (SM R/M, S8106-S011) were purchased

from ssniff Spezialdiäten GmbH (Soest, Germany). Pentobarbital was obtained from Ceva-

Phylaxia (Budapest, Hungary). The composition of normal Krebs-Ringer solution (in mmol/

L) was: NaCl 119; KCl 4.7; NaH2PO4 1.2; MgSO4 1.17; NaHCO3 24; CaCl2 2.5; glucose 5.5 and

EDTA 0.034. The composition of Ca2+-free Krebs solution (in mmol/L) was: NaCl 92; KCl 4.7;

NaH2PO4 1.18; MgCl2 20; MgSO4 1.17; NaHCO3 24; glucose 5.5; EGTA 2 and EDTA 0.025.
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Uridine 5’-triphosphate (UTP) and bradykinin were purchased from Sigma-Aldrich (Darm-

stadt, Germany). Anti-eNOS [14] and anti-COX-2 [14] antibodies were obtained from Abcam

(Cambridge, MA, USA). Anti-smooth muscle actin antibody (1A4) [15] and UltraView Uni-

versal DAB Detection Kit were obtained from Ventana Medical Systems, Inc. (Tucson, AZ,

USA). Secondary antibodies and DAB Substrate Kit [14] were purchased from Vector Labora-

tories (Burlingame, CA, USA).

Results

Physiological parameters and serum levels of hormones,

25-hydroxyvitamin D and glucose

At the end of the experiments the measured physiological parameters of the rats (body weight,

heart/body weight ratio, testis weight, mean arterial blood pressure, heart rate, as well as serum

testosterone, androstenedione and progesterone levels) did not differ between the two groups

(Table 1), indicating that the VitD-deficient diet, at least within 8 weeks, does not affect these

parameters. To assess the efficacy of VitD deprivation, serum 25-hydroxyvitamin D levels

were measured and found to be significantly lower in VDD as compared to control animals at

the 8th week of treatment (Table 1). In the glucose tolerance test performed at the 6th week of

treatment, blood glucose levels before and after oral glucose administration did not show any

difference between the two groups (Table 1). These findings exclude the possibility that any

morphological or functional changes of the ACA in the present study would be secondary con-

sequences of VDD-induced hypertension, metabolic syndrome or altered androgenic hor-

mone status.

Table 1. Physiological parameters and serum levels of hormones, 25-hydroxyvitamin D and glucose in the two

experimental groups.

MEASURED PARAMETER CONTROL

n = 11

VDD

n = 11

Body weight (g) 435.7±17.7 444.5±10.3

Heart/body weight 0.34±0.01 0.34±0.01

Testis weight (g) 3.74±0.16 3.71±0.33

Mean arterial blood pressure (mmHg) 131±4 134±4

Heart rate (1/min) 357±18 348±11

Serum testosterone (ng/mL) 6.56±0.84 5.94±0.91

Serum androstenedione (ng/mL) 0.57±0.14 0.54±0.12

Serum progesterone (ng/mL) 14.42±2.31 19.86±2.61

Serum 25-hydroxyvitamin D (ng/mL) 19.66±0.81 3.59±0.21 ���

Glucose (OGTT 0 min) (mmol/L) 6.24±0.46 5.49±0.20

Glucose (OGTT 60 min) (mmol/L) 7.61±0.33 7.59±0.37

Glucose (OGTT 120 min) (mmol/L) 5.51±0.39 5.41±0.31

The body and testis weight as well as the heart/body weight ratio of rats did not differ between the groups. VDD did

not influence the mean arterial blood pressure, the heart rate or the serum hormone levels. Serum levels of glucose

did not show any significant difference between the two groups during the oral glucose tolerance test (OGTT). The

VitD-deficient diet induced significantly lower serum 25-hydroxyvitamin D level (��� p<0.0001). All parameters

except blood glucose levels were measured at the 8th week of treatment. OGGT was performed at week 6. Data are

presented as mean±SEM.

��� p<0.0001

https://doi.org/10.1371/journal.pone.0192480.t001
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Arterial geometry

The artery segments were examined in Ca2+-free Krebs solution with pressure myograph to

determine vessel geometry under passive conditions, as we hypothesized that a VitD-deficient

diet could cause remodeling of cerebral arteries. In Ca2+-free Krebs solution the artery seg-

ments showed their fully relaxed inner radii, which decreased tendentiously in the VDD as

compared to the Control group, but the difference did not reach the level of statistical signifi-

cance (89.6±6.3 μm for Control, 78.4±5.6 μm for VDD, at 50 mmHg intraluminal pressure).

However, wall thickness (Fig 1A) and wall thickness / lumen diameter ratio (Fig 1B) showed a

significant increase in the VDD group under passive conditions. In addition, VitD-deficient

Fig 1. Cerebral artery geometry and nucleus count of the smooth muscle layer. (A) VDD significantly increased the wall thickness (� p<0.05,

n = 10–11) as well as (B) the wall thickness / lumen diameter ratio (�� p<0.01, n = 10–11). (C) The cross-sectional area of the vessel walls increased

significantly in VDD as compared to the Control group (� p<0.05, n = 9–9) at 50 mmHg intraluminal pressure. All these parameters were measured

under passive conditions. (D) Significantly more nuclei were detected in the smooth muscle layer of anterior cerebral arteries of VDD animals as

compared to controls (��� p<0.0001, n = 4–6). (E) The thickness of the tunica media was increased in the VDD group as compared to the control

animals (� p<0.05, n = 4–4). (F) In addition, VDD significantly decreased the intima / media ratio of cerebral arteries (� p<0.05, n = 4–4).

https://doi.org/10.1371/journal.pone.0192480.g001
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feeding increased the wall cross-sectional area as compared to the Control group (Fig 1C),

indicating the development of hypertrophic remodeling in the VDD group.

Arterial elasticity

As previously mentioned, the wall thickness / lumen diameter ratio increased in the arterioles

of the VDD group. In accordance with this finding, the tangential wall stress was significantly

lower in the VDD group under passive conditions (Fig 2), as this biomechanical parameter is

inversely proportional to the wall-to-lumen ratio. The incremental elastic modulus and the

distensibility did not change significantly between the groups at 50 mmHg intraluminal pres-

sure measured under passive conditions (elastic modulus: 2.89±0.27 log(kPa) and 2.65±0.19

log(kPa), distensibility: 1.41±0.12 log(Pa-1) and 1.18 ± 0.23 log(Pa-1) for the Control and VDD

groups, respectively).

Smooth muscle tone and endothelial reactivity

ACA possesses myogenic tone under resting conditions as well [16]. In our present experi-

ment, the myogenic tone values of excised ACA segments were determined at 50 mmHg intra-

luminal pressure. Segments from VDD animals showed a two-fold increase in myogenic tone

as compared to control ones, indicating that the 8-week VitD deprivation doubled the sponta-

neous tone of vessels (Fig 3A). Because UTP is a potent vasoconstrictor of cerebral arteries

[17], the agonist-induced responsiveness with this agent was also tested at 50 mmHg intralum-

inal pressure. UTP caused potent constriction in both groups, but the induced tone was signifi-

cantly greater in the VDD group (Fig 3B). To evaluate endothelial function, bradykinin was

applied after precontraction with UTP. Whereas bradykinin induced slight vasodilatation in

the Control group, it failed to relax the arteries from the VDD group (Fig 3C), indicating endo-

thelial dysfunction in VitD-deficient animals.

Fig 2. The tangential wall stress of the cerebral arteries in relaxed condition. VDD caused a decrease in the

tangential stress of the vessel wall throughout the entire pressure range under passive conditions (� p<0.05, n = 10–11).

https://doi.org/10.1371/journal.pone.0192480.g002
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Histology and immunohistochemistry

To gain further insight into the mechanism responsible for the above-mentioned observations,

the density of the elastic components of the vessel wall was determined using resorcin-fuchsin

staining, which did not show any difference between the groups based on the green color den-

sity measurements made in radial direction, outward from the luminal surface (Fig 4A and

4B). Furthermore, after immunohistological staining of smooth muscle actin the amount of

nuclei was determined in the tunica media. The significantly increased nucleus count found in

the smooth muscle layer of arteries from the VDD group (Fig 1D) indicated the presence of

more vascular smooth muscle cells (VSMCs) in the vessel wall of VitD-deficient animals.

Related to this alteration, increased thickness of the tunica media of arteries was observed

in the VDD group (Fig 1E), however VDD did not affect the thickness of tunica intima

(3.15±0.19 μm for Control, 3.15±0.24 μm for VDD). Therefore, VDD decreased the intima /

media ratio of ACA (Fig 1F). To evaluate the possible role of NO and prostanoids in the effect

of VDD, the expression of eNOS and COX-2 was determined by immunostaining. The optical

Fig 3. Alterations of vascular reactivity in VDD. VDD caused alterations in the smooth muscle tone and endothelium-dependent relaxation capacity

of arterioles. (A) Anterior cerebral arteries possessed myogenic tone and this tone was greater in the VDD group measured at 50 mmHg intraluminal

pressure (�� p<0.01, n = 8–8). (B) In addition, UTP-induced contraction also increased in the VDD group at 50 mmHg intraluminal pressure

(� p<0.05, n = 10–9). (C) Bradykinin induced endothelium-dependent relaxation after precontraction in the Control group, but did not relax the

arterioles in the VDD group at 50 mmHg intraluminal pressure (� p<0.05, n = 9–9).

https://doi.org/10.1371/journal.pone.0192480.g003
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density of endothelial eNOS staining was lower in the VDD group, indicating lower expression

of eNOS (Fig 5A and 5B). In contrast, COX-2 expression was enhanced in the endothelial

layer of arteries from the VDD group (Fig 5C and 5D).

Discussion

To our knowledge, the present study provides the first report of the deleterious changes in

geometry and reactivity of cerebral arteries due to VDD. These alterations were associated

with hypertrophic remodeling, increased myogenic tone, endothelial dysfunction, increased

COX-2 and decreased eNOS expression. Interestingly, marked changes of morphology and

reactivity developed in healthy young adult animals within a relatively short period (8 weeks)

of VDD indicating the importance of normal VitD status for the maintenance of cerebrovascu-

lar functions.

In humans, the cardiovascular consequences of VDD include hypertension, atherosclerosis,

cardiac hypertrophy, cerebrovascular diseases, coronary artery disease, peripheral artery dis-

ease, dyslipidemia, insulin resistance and diabetes mellitus [2]; in addition, VDD during preg-

nancy leads to cardiomyopathy in infants [2, 18]. However, the associations, for instance,

between VDD and insulin resistance [19, 20] or between VDD and hypertension [21] are not

fully confirmed, especially in young healthy subjects [22–24]. The cardiovascular impacts of

VitD are attributed to the modulation of immune, inflammatory and endothelial functions,

furthermore to the regulation of VSMC proliferation and migration, renin expression, and

extracellular matrix homeostasis [2].

In rodent models of VDD similar disorders of the cardiovascular system have been

described as in humans, although their manifestation depends markedly on the experimental

protocol applied. For instance, in a number of studies hypertension developed as a conse-

quence of VDD, whereas the blood pressure remained unaltered in other studies (Table 2).

According to the literature, VDD during the prenatal period leads to increased blood pressure

in rodents’ offsprings [25–29] probably due to the upregulation of the renin-angiotensin

system [18, 30]. Interestingly, VDD in utero contributes to the development of hypertension

in later life even if the offsprings were fed with VitD sufficient chow after weaning [25, 26],

which implies that VDD during pregnancy can severely impact the offspring’s long-term

health and lead to vulnerability to cardiovascular disease in adult life [18, 31]. However, when

VDD affects only the postnatal period of life, the observations are controversial both in grow-

ing and adult rodents; nevertheless longer exposure to VDD appears to increase the risk of

Fig 4. Elastic components of the vessel wall. (A) Representative images of cerebral arterioles stained with Weigert’s

resorcin-fuchsin. (B) Elastic fiber density did not differ between the groups according to measurement of green color

intensity as a function of distance from the luminal surface measured on resorcin-fuchsin-stained segments.

https://doi.org/10.1371/journal.pone.0192480.g004
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manifestation of hypertension [25, 32–38]. Taken together, the development of hypertension

appears to depend on the time of onset and the duration of VDD (Table 2). In our study, wean-

ling rats were exposed to VDD for only 8 weeks, which explains the unaltered blood pressure

levels. Although VDD is a complex disorder linked to several cardiovascular risk factors in the

long run, we examined its short-term effects, and found altered cerebrovascular morphology

and reactivity without the development of hypertension.

Surprisingly, in spite of the well-preserved systemic cardiovascular and metabolic parame-

ters, marked inward hypertrophic remodeling was observed in the cerebral arteries of VDD

animals, similar to that observed in secondary hypertension [39]. In rats and humans suffer-

ing from secondary hypertension the increase in the wall-to-lumen ratio of small vessels is

due to hypertrophic remodeling as a consequence of smooth muscle cell proliferation [39,

40]. In contrast, the hypertrophic remodeling observed in our present study develops at

normal blood pressure and therefore is likely to be the direct effect of VDD on VSMCs.

1,25-dihydroxyvitamin D can modulate VSMC proliferation and migration [4]. In our study

Fig 5. Evaluation of immunohistochemical staining of arterioles. (A) Representative immunohistochemical images of cerebral arterioles stained

for eNOS. (B) VDD caused a decrease in the expression of eNOS in the endothelium of arterioles (� p<0.05, n = 4–6). (C) Representative

immunohistochemical images of cerebral arterioles stained for COX-2. (D) The expression of COX-2 in the endothelial layer increased in VDD as

compared to Control (� p<0.05, n = 4–4).

https://doi.org/10.1371/journal.pone.0192480.g005
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the increased cross-sectional area of the vessel wall appears to be the consequence of VSMC

proliferation, because we observed increased number of smooth muscle cells in the tunica

media of VitD-deficient arteries as compared to controls. On the contrary, we did not

observe any changes in the tunica intima of arteries from the VDD group. The literature is

controversial regarding the effects of VitD on VSMC proliferation and migration: some stud-

ies report enhanced migration and proliferation [41, 42], whereas others found VitD-induced

inhibition of VSMC growth [43, 44]. VitD could inhibit VSMC proliferation via blunting c-

myc RNA induction [42], up-regulating the negative modulators of cell proliferation includ-

ing TGF-β [45] or decreasing cyclin-dependent kinase 2 activity [46]. The effect of VitD on

VSMC definitely depends on the applied dose, and both insufficient and supraphysiological

levels of VitD appear to lead to VSMC proliferation. In accordance, U-shaped association has

been reported between VitD concentrations and cardiovascular diseases [4] [47]. Therefore,

only physiological concentrations of VitD appear to be appropriate for maintaining normal

VSMC function.

In hypertension, increased tangential wall stress facilitates wall thickening to compensate

increased circumferential stress [48]. In our study, however, mean arterial blood pressure

did not differ between the groups, thus the observed wall thickening resulted in decreased tan-

gential wall stress according to the Laplace equation. The incremental elastic modulus and dis-

tensibility did not differ between the groups, indicating that elastic element density and

arrangement were not influenced by VDD. This presumption was also confirmed by the unal-

tered elastic fiber density.

Cerebral arteries possess intrinsic myogenic tone [16], which can increase harmfully under

pathophysiological conditions. In our study, arteries of VitD-deficient animals developed

greater myogenic tone, which is similar to the observation of Tare et al., who reported a two-

fold enhancement of the myogenic tone of mesenteric arteries in male VitD-deficient rats as

compared to VitD-sufficient ones [29]. In addition, UTP—a potent and partly thromboxane

A2-mediated constrictor of cerebral arteries [49]—induced greater tone in the ACA of VDD

animals. VitD is an important modulator of the prostanoid system, since it downregulates the

expression of COX-2 [50], therefore VDD can lead to enhanced COX-2 expression, as we

found in the endothelium of cerebral arteries. In addition, VitD suppresses the expression of

Table 2. Alterations of blood pressure in rodent models of VDD induced by VitD deficient feeding.

ONSET OF VDD DURATION OF VDD

(day)

SPECIES, STRAIN

(M: mouse, R: rat)

INCREASE OF BLOOD PRESSURE

(mmHg)

[reference]

Prenatal 20 R, Sprague-Dawley +15 [25]

Prenatal 30 M, Swiss Webster +25 [26]

Prenatal 76 R, Sprague-Dawley +10 [29]

Prenatal 76 M, C57BL/6 J + 20 [28]

Prenatal 200 M, BALB/c +15 [27]

Juvenile 21 R, Sprague-Dawley NO [32]

Juvenile 84 R, Wistar +20 [33]

Juvenile 119 R, Lewis/SSN NO [37]

Juvenile 196 R, Sprague-Dawley +30 [38]

Adolescent 90 R, Wistar +15 [35]

Pubescent 60 R, Wistar NO [34]

Adult 28 R, Wistar +10 [36]

Adult 70 R, Sprague-Dawley NO [25]

https://doi.org/10.1371/journal.pone.0192480.t002
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TNF-α, NADPH oxidase and its subunits and also increases CuZn-SOD protein expression,

therefore prevents inflammatory response and oxidative stress [51]. The increased level of

reactive oxygen species (ROS) in VDD can in turn lead to enhanced vasoconstrictor response,

as ROS inactivate prostacyclin synthase, shifting the prostanoid balance towards vasoconstric-

tion [52]. Bradykinin relaxes cerebral arteries via the B2 receptor and NO release [13]; how-

ever, in the case of endothelial dysfunction bradykinin can cause endothelium-independent

contractions [53]. VitD stimulates NO production through non-genomic eNOS activation via

increase in eNOS phosphorylation [54] or due to an increase in eNOS mRNA and promoter

activity depending on VitD receptor activation [55]. In our study, we observed decreased

eNOS expression in the endothelium of VDD animals, which could contribute to the increased

vessel tone and the impaired endothelium-dependent relaxation capacity. In the case of endo-

thelial dysfunction, bradykinin-induced contractions might be mediated by COX-2 derived

prostanoids and activation of thromboxane-prostanoid receptors [53]. The activation of

thromboxane-prostanoid receptors could in turn impair the NO-mediated dilatation of vessels

as well [56]. In addition, ROS can also contribute to the diminished endothelium-dependent

vasodilatation in VDD due to eNOS uncoupling or inactivation of NO [57]. Enhanced vaso-

constrictor prostanoid release and the impairment of the counterbalancing NO pathway could

lead to increased myogenic tone and constrictor response as well as endothelial dysfunction in

VDD.

VDD influences several pathways relevant to vascular physiology and pathophysiology,

therefore it appears to be a significant risk factor for cardiovascular and cerebrovascular dis-

ease [2]. Since VDD is associated with dysfunction of endothelial and vascular smooth muscle

cells, low VitD levels could predict proinflammatory and prothrombotic alterations, which

might lead to atherosclerosis as well as increased thrombosis and arterial stiffness [2, 58].

VDD is not only a risk factor for coronary disease, acute myocardial infarction and stroke [2,

5, 59], but it also worsens the outcome when myocardial infarction and stroke are already

present [10, 59]. In addition, low levels of VitD are associated with cerebral small vessel dis-

ease related vascular dementia [60, 61] and arterial stiffness associated cognitive impairment

[62]. The observed alterations in cerebrovascular geometry and reactivity can be considered

as prehypertensive changes [39]. Furthermore, the endothelial dysfunction of arteries may

lead to the development of atherosclerosis in the long run, as the reduction of biosynthesis

and enhanced inactivation of prostacyclin and NO are key components in the initiation of

atherogenesis [63]. In addition, the increase in COX-2 expression as well as the proliferation

of smooth muscle cells are also predictive of the development of atherosclerosis [63]. There-

fore, long-term VDD with or without other disturbing pathophysiological conditions can in

turn contribute to hypertension, atherosclerosis and a further increase in constrictor tone as

well as to a more deleterious impairment of relaxation capacity, which can aggravate the risk

of stroke events [64].

Conclusions

The present study demonstrates the harmful effects of VDD on cerebral artery geometry and

function in a rat model. We propose that VDD results in inward hypertrophic remodeling due

to VSMC proliferation as well as in enhanced vessel tone due to increased vasoconstrictor

prostanoid levels. In addition, impaired NO-mediated vasodilatation leads to endothelial dys-

function. Our results imply that a relatively short-term VDD in a relatively young age without

any comorbidities can already induce marked morphological and functional alterations in the

cerebral vasculature, which underlines the importance of sufficient VitD supply throughout

the entire life in order to prevent stroke and other cerebrovascular diseases.
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