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  Abstract
  Massive blood loss leading to hypovolemic shock is still a life-threatening situation. Recently, 
a great number of investigations have been conducted in order to understand the patho-
physiological and immunological changes taking place during shock and to develop treat-
ment strategies. These preclinical trials are based on animal studies. Although a wide spec-
trum of species and experimental models are available to researchers, it is rather difficult to 
create an ideal animal model to study hemorrhagic shock. A major challenge for investigators 
is the generation of a system which is simple, easily reproducible and standardized, while be-
ing an accurate replica of the clinical situation. The goal of this review is to summarize the 
current experimental models of hemorrhagic shock, highlighting their advantages and disad-
vantages to help researchers find the most appropriate model for their own experiments on 
hypovolemic shock.   Copyright © 2013 S. Karger AG, Basel

  Introduction

  Shock is a functional abnormality of the circulatory system. During this condition there 
is a permanent difference between the capacity of blood vessels and the intravascular volume, 
which leads to decreased tissue perfusion, cellular hypoxia and metabolic damage (anaerobic 
glycolysis and lactacidemia) caused by microcirculatory disorder.

  Hemorrhagic shock is one of the most common types of shock. Hemorrhage is the leading 
cause of morbidity and mortality in surgery and trauma patients  [1] . As a result of blood loss, 
the ventricular diastolic filling becomes insufficient and the heart is unable to provide optimal 
blood flow to cells and tissues. Initially, compensatory mechanisms (neurohumoral changes 
such as release of catecholamines, antidiuretic hormone and atrial natriuretic peptide 
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resulting in arterial vasoconstriction and increased heart rate) are able to maintain blood 
pressure and redistribute cardiac output in favor of vital organs such as the brain and heart 
 [2, 3] . However, the compensatory mechanisms are limited, and without early and effective 
therapy, severe cellular hypoxia and organ damage may occur, which may lead to death  [4] .

  In recent decades, serious efforts were made to understand hypovolemic shock. A great 
number of preclinical trials were conducted to study pathophysiological and immunological 
changes during shock and to find sufficient treatment strategies. These preclinical trials are 
based on animal studies.

  The goal of this review is to summarize the current experimental models of hemorrhagic 
shock, highlighting their advantages and disadvantages to help researchers find the most 
appropriate model for their own experiments.

  Animal Models

  Most of our knowledge about the pathophysiology of hemorrhagic shock comes from 
examination of different species. As Swanson et al.  [5]  wrote, ‘the biomedical models are 
determined as surrogates for a human biologic system, that researchers use to understand 
physiological and pathological function of the human body and to provide a basis therapeutic 
intervention in diseases’.

  An ideal animal model is easy to perform and suitable for drawing meaningful conclu-
sions. A good model is a simplified, miniature counterpart of the mimicked system, which 
creates conditions essential for investigation. While important information can be obtained 
from studying model organisms, one should be extremely careful when drawing generaliza-
tions about various organizations. The different genetic background of different species can 
result in distinct systemic responses to the same insult. Therefore, it is by no means certain 
that the results can be applied to human cases.

  Various types of species are used as models for the study of hemorrhagic shock. When 
selecting the appropriate species, several factors should be considered, for instance avail-
ability, costs (food and housing requirements), ethical issues (government laws and restric-
tions) and similarities to human anatomy and physiology.

  Using hemorrhagic shock models for studies has two basic aims: (1) to investigate the 
underlying pathophysiological and pathological changes of disease and (2) to test potential 
preclinical approaches of therapies. Small animals are primarily used to examine the patho-
genetic mechanisms of hemorrhage, while large animals are more suitable for preclinical 
evaluation of treatment strategies  [6] .

  Small Animal Models
  Mice are commonly used to study hemorrhagic shock. The important advantages of these 

animals are their cheapness, easy accessibility, short breeding time and life span, as well as 
the easy possibility to perform genetic modifications (knock-outs and transgenic animals). 
Their main disadvantages are small size and low total blood volume, which significantly 
complicate surgical and sampling procedures  [7] .

  Rats are popular experimental animals as well. Because of their larger size, surgical 
maneuvers are technically easier to perform and more sophisticated shock models can be 
designed as compared to mice. Moreover, Hauser  [8]  reported that in rats, certain immune 
responses to hemorrhage may be parallel to those in humans.

  However, both mice and rats are genetically distant from humans, and their cardiovas-
cular responses to blood loss may differ as well; thus, studies carried out on small animals 
often require further investigations in larger animals before clinical testing.
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  Large Animal Models
  Dog preparations are among the oldest and best studied models in hemorrhagic shock 

research. Their larger size makes them ideal for investigations in the field of trauma and 
surgery (surgical maneuvers and sampling procedures are simpler); therefore, a number of 
relevant methods for creating hypovolemic shock have been described. Unfortunately, cardio-
vascular shock responses in dogs may not parallel those of humans. Dog spleen – as a blood 
reservoir – contracts during hemorrhage and increases circulating blood volume, left 
ventricular preload, cardiac output and hematocrit  [9] . For this reason many researchers 
perform splenectomy before induction of hemorrhagic shock to avoid the variable degrees of 
autotransfusion  [10, 11] .

  Pigs have also long been used in the study of hemorrhagic shock owing to their similar-
ities to humans with regard to blood clotting mechanisms and cardiovascular and hemody-
namic responses to hemorrhagic shock  [12] .

  However, the use of pig, dog and other large animal (e.g. sheep) models has some prac-
tical disadvantages. Animal handling is financially demanding, there are very few immuno-
logic markers available to follow the progress of the posttraumatic immune responses  [13]  
and ethical issues are involved as well. Furthermore, these animals are also genetically distant 
from humans.

  Primate Models
  Genetically, primates are the closest animals to humans  [14] . They possess similar phys-

iologic responses to stress and hypovolemic shock, and their drug metabolism is highly homo-
geneous to that of humans  [15, 16] . Despite these advantages, experiments with primates are 
almost unaffordable for most laboratories; moreover, the use of these animals raises a number 
of ethical problems as well. For this reason, they are used relatively rarely.

  Types of Models

  In the case of hemorrhagic shock, the major challenge in setting up an adequate model is to 
mimic accurately the clinical situation, while maximizing reproducibility and standardization.

  There are 3 basic models generally used in the study of hemorrhagic shock: (1) fixed-
volume hemorrhage; (2) fixed-pressure hemorrhage, and (3) uncontrolled hemorrhage.

  Fixed-Volume Hemorrhage
  In these animal models, a predetermined percentage of the total calculated blood volume 

is removed over a time period set by the observer. Another strictly defined interval is then 
allowed for natural compensation. Finally, the animals are returned to their cage or are resus-
citated usually with collected blood or lactated Ringer’s solution  [17] .

  The primary advantage of such models is that the physiological hemodynamic responses 
and the other natural compensatory mechanisms can be investigated following a specific 
volume of acute blood loss. On the other hand, the degree of hypotension is not properly 
defined; thereby, its effect cannot be adequately assessed and it is difficult to maximize exper-
imental standardization and reproducibility. Moreover, in rats, the blood volume/body 
weight ratio decreases linearly with animal weight between 100 and 400 g (larger animals 
have more fat and therefore relatively less blood), significantly affecting the results. It is 
therefore imperative to control weight during the trial  [18] .

  Nevertheless, this method is widely used by researchers to study shock-induced physi-
ological and pathophysiological changes (carbohydrate metabolism, blood glucose and liver 
glycogen levels, anaerobic glycolysis and lactacidemia), histopathological abnormalities and 
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the efficacy of different therapeutic interventions ( table 1 ). According to Advanced Trauma 
Life Support, if the bleeding rate exceeds 40% of circulating blood volume (class IV), the 
mortality rate is more than 30% in the clinical scenario  [19] . Most investigators attempt to 
recreate this level of shock  [12, 20–49]  ( table 2 ).

  Fixed-Pressure Hemorrhage
  Penfield  [50]  was the first to create the basics of the fixed-pressure system. In his exper-

iment, the animals were bled until the arterial pressure reached a predetermined level, which 
was then maintained as best as possible by repeated hemorrhage or by fluid infusion if 
necessary. Later, Wiggers  [51]  created the classic model of fixed-pressure hemorrhage. In this 
experiment, animals were catheterized under anesthesia, enabling control of the volume of 

 Fixed-volume hemorrhage 
 Hemodynamic variables

  Mean arterial pressure 
  Heart rate
  Shock index
  Cardiac output
  Cardiac index
  Pulmonary capillary wedge pressure
  Blood/plasma volume

  Neuroendocrine compensatory mechanisms
  Plasma levels of catecholamine, vasopressin, aldosterone

  Metabolism and acid-base status during hemorrhagic shock
  Serum glucose
  Serum lactate
  Serum bicarbonate
  Plasma pH
  Base excess
  Oxygen delivery/consumption
  Blood gases 
  Electrolytes

  Cytokine levels and other markers of systemic inflammatory response 

 Fixed-pressure hemorrhage 
 Tissue microcirculation/direct imaging of tissue perfusion
  Organ injury/dysfunction

  Histopathology
  Specific laboratory markers of organ injury 
  Functional tests 

  Hemorheologic alterations 
  Hemodynamic variables (see above)
  Metabolism and acid-base status (see above)
  Cytokine levels and other markers of systemic inflammatory response 

 Uncontrolled hemorrhage 
 Mortality/mean survival time
  Amount of blood loss/evidence of rebleeding
  Amount of fluid/blood required for resuscitation
  Coagulation function/hemostatic potential
  Hemodynamic variables (see above)
  Cytokine levels and other markers of systemic inflammatory response 

  Table 1.   The most common 
parameters that are usually 
measured in different types of 
hemorrhagic shock models
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blood removed and of the desired intensity of hypotensive shock. Catheters also provided 
access to resuscitation and drug delivery.

  The primary advantage of this model is that the degree and duration of hypotension are 
accurately controllable by means of monitoring the blood pressure. Therefore, regarding 
experimental standardizations and reproducibility, the constant-pressure approaches are 
more reliable compared to fixed-volume models. Thus, this method can be used as a patho-
genesis model to evaluate physiological changes and organ/tissue injuries at specific central 
pressures after hemorrhagic shock ( table 1 ). However, isobaric models do not adequately 
reflect the clinical situation. The animals are under general anesthesia, and heparin is often 
used to suppress thrombosis and to protect the blood flow through the catheter; however, 
these drugs affect the results significantly (see below)  [52] .

  Modifications of the Wiggers hemorrhagic shock preparation are widely used to this day, 
although there is no agreement on the blood pressure level and shock length required to set 
up a reliable hemorrhagic shock model. The mean arterial pressure varies between 20 and 
55 mm Hg depending on the examiner and the species. This hypotensive shock state is main-
tained for 15 min, or in some studies for more than 3 h  [53–76]  ( table 3 ).

  Uncontrolled Hemorrhage
  The fixed-volume and fixed-pressure models detailed above are easily reproducible and 

the individual test results are closely comparable. In an uncontrolled hemorrhage model, 
which is induced by a standardized vascular trauma (crush/laceration of liver and spleen, 
artery injury, amputation of appendage), the aforementioned experimental control cannot be 
achieved precisely; nonetheless, this model is clinically the most relevant. Considering that 
only the normal hemostatic mechanisms of animals can influence the progression of hemor-
rhage, these models seem to be the best way to preclinically test the various therapies.

  According to earlier researches – performed in the 1950s and 1960s and based mostly 
on controlled (closed-vessel) hemorrhagic shock models – rapid fluid administration was the 
approved therapy for hypotension due to blood loss. In the 1990s, the use of uncontrolled 
(open artery) hemorrhage models led to a paradigm shift. These studies showed that 
aggressive fluid resuscitation before surgical control of hemorrhage increases bleeding and 
decreases survival due to inhibition of the formation of thrombus  [17] . It should be mentioned 
that Cannon et al.  [77]  had already suggested this possibility in the early 1900s: ‘Injection of 
a fluid that will increase blood pressure has dangers in itself. Hemorrhage in case of shock 
may not have occurred to a marked degree, because blood pressure has been too low and the 
flow too scant to overcome the obstacle offered by the clot. If the pressure raised before the 
surgeon is ready to check the bleeding that may take place, blood that is sorely needed may 
be lost.’

 Species  Estimated blood volume
  ml/kg 

 Shed blood volume
  % of EBV 

 Ref. No. 

 Mouse  63   –   80 [20]  35   –   67  21   –   26 
 Rat  58   –   70 [20]  30   –   60  27   –   34 
 Pig  58   –   74 [12]  30   –   65  35   –   43 
 Dog  79   –   90 [20]  30   –   50  44   –   49 

 EBV = Estimated blood volume. 

  Table 2.   Fixed-volume 
hemorrhage
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  In the last decade, more sophisticated uncontrolled hemorrhagic shock models evolved, 
especially with regard to studies on the efficiency of different fluid resuscitation strategies 
and other interventions such as hypothermia and hemostatic products  [78–93]  ( tables 1 ,  4 ).

  Recently, some authors have reported initial differences in the hemodynamic responses 
between controlled and uncontrolled hemorrhage. In cases of fixed-pressure and fixed-
volume hemorrhage, there is a predictable relationship between blood volume and blood 
pressure; in the event of uncontrolled hemorrhage there is inequality in the extent of hypo-
tension and the magnitude of blood loss. Based on this observation, certain other factors are 
suggested to influence blood pressure regulation in uncontrolled hemorrhagic shock. Son -
 deen et al.  [94]  hypothesized that the rate of blood loss may attenuate the baroreflex response 
in uncontrolled hemorrhage, perhaps by the Bezold-Jarisch reflex (depressor reflex), leading 
to a vagal nerve-mediated withdrawal of venous sympathetic tone and consequential 
reduction of cardiac output and mean arterial pressure. Other studies showed that the noci-
ceptive stimulation of somatic afferent nerves or tissue injury (caused by induction of uncon-
trolled hemorrhage) can also modify the hemodynamic response to hemorrhage  [95] . Never-
theless, further investigations are needed to understand this hemodynamic difference 
between controlled and uncontrolled hemorrhage.

 Species  Mean arterial pressure
  mm Hg 

 Duration of shock
  min 

 Ref. No. 

 Mouse  25   –   40  60   –   90  53   –   58 
 Rat  25   –   50  15   –   180  59   –   64 
 Pig  25   –   55  40   –   90  65   –   70 
 Dog  20   –   55  30   –   180  71   –   76 

 Method of uncontrolled hemorrhage  Species  First author 

 Vascular injury 
 Aortotomy  rat  Burris [78] 

 pig  Bickell [79] 
 Iliac artery dissection  pig  Alam [80] 

 dog  Bruscagin [81] 
 Femoral artery transection  rat  Heinius [82] 

 pig  Hirst [83] 

 Solid organ injury 
 Massive splenic injury  rat  Krausz [84] 

 rat  Krausz [85] 
 pig  Sondeen [86] 
 dog  Varicoda [87] 

 Standardized liver trauma  rat  Matsuoka [88] 
 pig  Todd [89] 
 pig  Kiraly [90] 

 Amputation of appendage 
 Tail amputation  rat  Kentner [91] 

 rat  Capone [92] 
 rat  Krausz [93] 

  Table 3.   Fixed-pressure 
hemorrhage
 

  Table 4.   Most common types of 
uncontrolled hemorrhagic shock 
models
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  Hemorrhagic Shock Models Based on Oxygen Debt
  The last century brought significant developments regarding the definition of shock. In 

1941, Blalock  [96]  characterized shock as ‘a peripheral circulatory failure, resulting from a 
discrepancy in the size of the vascular bed and the volume of the intravascular fluid’. Nowadays, 
the attention of researchers is focused on inadequate tissue perfusion and oxygenation. This 
is reflected in the present definition of shock by the American College of Surgeons  [97] : ‘Shock 
is an abnormality of the circulatory system that results in inadequate organ perfusion and 
tissue oxygenation.’ Due to the critical decrease of tissue perfusion, disparity occurs between 
the oxygen consumption and oxygen delivery of cells, and oxygen debt develops  [98] . Crowell 
and Smith  [99]  were the first to describe the relationship between oxygen debt and shock 
severity. This study led to the development of the fourth general category of hemorrhagic 
shock models, based on shock-induced oxygen debt  [100] . Dunham et al.  [101]  were the first 
to create a dog model in which the primary endpoint was oxygen debt independent of blood 
pressure or hemorrhage volume. This and subsequent studies highlighted that oxygen debt 
and the metabolic consequences (lactic acidemia and base deficit) reflect the extent of tissue 
and organ damage better than the traditional variables such as bleeding volume and blood 
pressure.

  Confounding Variables
  Despite careful planning of experiments, complications may be caused by several vari-

ables; the most important ones are detailed below.
  Gender is a determining factor in these experiments. Several clinical and experimental 

studies show some differences between males and females in terms of susceptibility to shock, 
trauma and sepsis. Diodato et al.  [102]  showed that females have a survival advantage over 
males in a ‘two-hit’ model of hemorrhagic shock (first hit) and subsequent sepsis (second hit). 
It was previously demonstrated that the cell-mediated immune response is depressed in males, 
while it is maintained or increased in females after hemorrhage. It is assumed that female sex 
hormones are responsible for maintaining immune function following hemorrhage  [103] .

  Age is also an important factor in clinical and experimental models of hemorrhagic shock. 
Nickel et al.  [104]  showed that in mice, the immune response decreases with age following the 
presence of a harmful agent. Later, Matsutani et al.  [105]  demonstrated that hepatic damage 
after shock in combined multiple traumas and hemorrhage is dependent on age in mice.

  Hemorrhagic animal models, in particular when combined with other types of tissue 
trauma, require anesthetic and analgesic drugs to eliminate pain. However, anesthesia usual -
 ly depresses respiration, reduces metabolic demand  [106] , influences the central nervous 
system  [107]  and moderates cardiovascular compensatory mechanisms  [108] . Furthermore, 
certain anesthetics change the immune function (production of cytokines and activity of 
natural killer cells)  [109]  and may facilitate bacterial translocation  [110] .

  As a result, the use of conscious models is essential in order to estimate the cardiovas-
cular, neuroendocrine and immune responses to hemorrhage correctly. Accordingly, many 
researchers seek to minimize the length of anesthesia. Le Page  [111]  was the first to study 
fixed-volume hemorrhagic shock in the absence of anesthesia; rats were temporarily anes-
thetized with ether and restrained in the supine position, then after awakening bleeding was 
induced by cutting the tail until circulatory failure occurred. As an alternative to this, Collins 
and Stechenberg  [112]  used femoral arterial catheters to induce shock. Sayeed and Baue 
 [113]  transformed the latter procedure into a fixed-pressure model; rats were anesthetized 
with ether and restrained in a sling, and both femoral arteries were cannulated. One of the 
arteries was used to check blood pressure, the other for blood withdrawal until the mean 
arterial pressure decreased to 40 mm Hg. This pressure was then maintained as best as 
possible by means of repeated hemorrhage or saline in fusion when required  [113] .
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  An essential issue is the use of heparin, especially in the case of fixed-pressure models. In 
his experiment, Wiggers  [51]  already observed that blood clots increased after bleeding; he 
therefore used heparin to prevent catheter clotting. This approach differs significantly from 
the clinical situation. In addition, preheparinization significantly ameliorates the microvas-
culatory status. The underlying mechanism is still not fully understood. It is assumed that 
heparin influences the serum levels of catecholamines and cytokines, blood viscosity, endo-
thelial cell interactions and the coagulation cascade  [114] .

  Trauma and surgery patients usually suffer from other tissue or organ injuries besides 
hemorrhagic shock. It is known that tissue damage can alter hemodynamic and inflammatory 
responses to acute blood loss. Cytokines released from injured tissue significantly alter organ 
dysfunction related to bleeding  [115] . Thus, a clinically relevant model must take into account 
these conditions as well. In the following, hemorrhagic shock models combined with other 
injuries are detailed.

  Hemorrhagic Shock Combined with Traumatic Injury
  Trauma (caused by accidents, especially car crashes) is one of the leading causes of hypo-

volemic shock and death. Trauma patients suffer from soft tissue injuries and fractures as 
well as internal organ damage. Many models combined with hemorrhagic shock and other 
injuries were developed for the more accurate understanding of such life-threatening clinical 
conditions.

  Mostly fixed-pressure hemorrhagic models are used to examine the aggravating effect of 
soft tissue injury on blood loss. In this instance, after the state of shock, tissue damage is 
usually caused by abdominal incision. Chaudry et al.  [116]  observed that mortality after lapa-
rotomy and hemorrhagic shock was significantly higher than after shock alone. The studies 
of Lu et al.  [117]  showed that ischemic damage of the small intestine was increased consid-
erably after laparotomy.

  Bone fractures, especially long bone fractures, may result in severe tissue injuries and 
significant blood loss. Most often, models combined with hemorrhagic shock and femur/tibia 
fracture are used for examination of this condition. Redl et al.  [72]  created hind limb fracture 
in a fixed-pressure hemorrhagic dog model. They were able to draw useful conclusions related 
to a trauma-induced increase in lung water content. Gill et al.  [118]  assessed systemic inflam-
mation and subsequent organ damage caused by bilateral femur fracture connected to hypo-
volemic shock.

  A number of models combined with internal organ injuries and hemorrhage were also 
developed. Significant abdominal bleeding and a subsequent state of shock are often caused by 
liver and spleen laceration. During such experiments, the rate of bleeding is not controlled, 
which complicates standardization of these operations. Krausz et al.  [119]  provoked circulatory 
failure by spleen injury in rats, while Brundage et al.  [120]  induced the same in pigs by grade V 
liver injury (parenchymal damage involving more than 75% of liver mass accompanied by 
juxtahepatic venous injuries) to examine the changes in serum cytokine levels after trauma.

  The clinically most relevant experimental settings are the multiple trauma models 
combined with hemorrhagic shock. However, during these experiments the animals suffer 
from excessive stress, causing their death in an early phase of the studies. Moreover, because 
of the complexity of the operations, repetition of measurements is complicated. Howes et al. 
 [121]  investigated the effect of recombinant factor VIIa in a polytraumatic (femur fracture, 
liver laceration and soft tissue crush injury) pig model. Alam et al.  [122]  examined the efficacy 
of treatment with valproic acid in pigs using a highly lethal polytrauma and hemorrhagic 
shock model [femur fracture, 60% hemorrhage (mean arterial pressure 25–30 mm Hg) and 
grade V liver injury].
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  Lower Limb Ischemia-Reperfusion Injury and Hemorrhagic Shock
  An extremity wound with macrovascular injury and bleeding quickly leads to a state of 

shock and, without intervention, to death. Recently, tourniquets have been used for hemor-
rhage control, especially in military trauma care. After an extended period of time, the use of 
a tourniquet can result in ischemia-reperfusion injury of the skeletal muscle once the tour-
niquet is released. Kauvar et al.  [123]  compared the effect of Ringer’s lactate solution and 
Hextend in these conditions in rats. They used carotid arterial catheters to remove 67% of the 
total blood volume and to induce shock. At the time of development of shock, they placed a 
pneumatic digital tourniquet around a randomly selected hind limb on which they induced a 
3-hour-long limb ischemia  [123] . In a very similar model, Labruto et al.  [124]  examined the 
effect of lazaroid against ischemia-reperfusion injury. After the lazaroid pretreatment, they 
produced a 2-hour-long shock state, then performed fluid resuscitation with blood and 
Ringer’s lactate solution. From the beginning of shock to the end of resuscitation, they used a 
tourniquet around one of the lower limbs. After removal of the tourniquet, the animals were 
observed for a further 3.5 h  [124] .

  Ruptured Abdominal Aortic Aneurysm and Hemorrhagic Shock
  Critical levels of blood loss may develop during the most serious complication of abdominal 

aortic aneurysm, the rupture of the aneurysm sac. Prehospital survival is only possible if the 
bleeding does not break into the peritoneum and is tamponed by the surrounding tissues. The 
principal therapy of the disease is surgical, but appropriate pre- and intraoperative fluid 
administration is just as crucial. The mortality rate of the disease is still around 40–50%, so a 
great number of preclinical studies have been and are still currently being conducted  [125] .

  The simulation of the clinical setting is usually achieved by abdominal aortic tear or 
aortotomy. Owens et al.  [126]  compared standard (to 100% of baseline) and limited (to 60% 
of baseline) prehospital resuscitation after abdominal aortic tear in pigs while examining the 
volume of intraperitoneal bleeding and hemoglobin loss. Later, numerous similar studies were 
conducted with a very low mortality rate in untreated control groups. Apparently, the resulting 
damage is incapable of causing life-threatening blood loss. Therefore, Kowalenko et al.  [127]  
modified the procedure as follows: prior to creating an aortotomy, animals were exsangui-
nated from a femoral artery catheter to achieve a mean arterial pressure of 30 mm Hg. Animals 
were then bled with aortic tear until reaching an arterial pressure of 5 mm Hg  [127] .

  Harkin et al.  [128]  set up a rat model to examine ruptured abdominal aortic aneurysm, 
including the vascular occlusion used during the surgical procedure. In this event, a ‘two-hit’ 
lower limb ischemia-reperfusion injury and a subsequent systemic inflammatory response 
syndrome are assumed, caused by hemorrhagic shock and aortic clamping. Anesthetized rats 
underwent 1 h of hemorrhagic shock (mean arterial blood pressure <50 mm Hg), followed by 
45 min of supramesenteric aortic clamping, then 2 h of resuscitated (with shed blood and 
Ringer’s lactate solution) reperfusion  [128] .

  Conclusions

  Animal experiments still have an essential role in the field of medical research. A major 
challenge for investigators is to generate a system which is simple, easily reproducible and 
standardized, at the same time being an accurate replica of the clinical circumstances of 
patients with life-threatening hemorrhage.

  Due to their unique characteristics, it is difficult to decide which of the hemorrhagic shock 
models is the most suitable. Considering controllability and reproducibility, the pressure- 
and volume-controlled models are preferred to uncontrolled hemorrhage models, since they 
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are more appropriate for studies on the pathophysiology of shock and exploratory assessment 
of therapies. On the other hand, uncontrolled hemorrhage models, especially combined with 
other traumas, are more clinically relevant and more suitable for preclinical testing of various 
treatment strategies.

  However, it is important to recognize the conflict between the aims of researchers and the 
clinical reality. In order to reduce confounding variables, research scientists usually use healthy 
animals of the same sex and age and reduce the reality to a specific part of the whole complex 
clinical situation (bleeding, hypothermia, hypotension, hypoxia, acidosis, coagulopathy and 
commonly accompanying tissue or organ injury). Furthermore, the fact that differences exist 
between human and animal physiology makes it significantly difficult to draw conclusions 
regarding clinical reality. Despite these considerations, carefully planned, complex preclinical 
trials are necessary for more accurate analysis of the conditions of hemorrhagic shock.
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