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Cancer patients with tumors of similar grading, staging and histo-
genesis can have markedly different treatment responses to differ-
ent chemotherapy agents. So far, individual markers have failed
to correctly predict resistance against anticancer agents. We
tested 30 cancer cell lines for sensitivity to 5-fluorouracil, cisplatin,
cyclophosphamide, doxorubicin, etoposide, methotrexate, mitomy-
cin C, mitoxantrone, paclitaxel, topotecan and vinblastine at drug
concentrations that can be systemically achieved in patients. The
resistance index was determined to designate the cell lines as sensi-
tive or resistant, and then, the subset of resistant vs. sensitive cell
lines for each drug was compared. Gene expression signatures for
all cell lines were obtained by interrogating Affymetrix U133A
arrays. Prediction Analysis of Microarrays was applied for fea-
ture selection. An individual prediction profile for the resistance
against each chemotherapy agent was constructed, containing 42–
297 genes. The overall accuracy of the predictions in a leave-one-
out cross validation was 86%. A list of the top 67 multidrug resist-
ance candidate genes that were associated with the resistance
against at least 4 anticancer agents was identified. Moreover, the
differential expressions of 46 selected genes were also measured
by quantitative RT-PCR using a TaqMan micro fluidic card sys-
tem. As a single gene can be correlated with resistance against sev-
eral agents, associations with resistance were detected all together
for 76 genes and resistance phenotypes, respectively. This study
focuses on the resistance at the in vivo concentrations, making
future clinical cancer response prediction feasible. The TaqMan-
validated gene expression patterns provide new gene candidates
for multidrug resistance. Supplementary material for this article
can be found on the International Journal of Cancer website at
http://www.interscience.wiley.com/jpages/0020-7136/suppmat.
' 2005 Wiley-Liss, Inc.
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The major cause of failure of successful cancer treatment is
resistance to currently available antineoplastic agents. Resistance
can occur to individual anticancer drugs or more broadly to multi-
ple drugs with different chemical structures and different mecha-
nisms of action. This latter form of drug resistance is commonly
designated as multidrug resistance (MDR). Many different mecha-
nisms of MDR have been identified. These mechanisms include
reduced cellular drug accumulation mediated by enhanced drug
extrusion activity by members of the family of adenosine triphos-
phate-binding cassette (ABC)-transporters, e.g. MDR1/P-glyco-
protein (P-gp), modulations of apoptotic pathways, alterations in
cell cycle checkpoints, repair of damaged cellular targets, and var-
ious more or less well-characterized mechanisms.1 In particular
cancers, these mechanisms may act simultaneously and may influ-
ence each other, so that clinical MDR is a complex multifactorial
problem.

From the clinician’s point of view, the aim of drug resistance
research is to improve treatment outcome by devising strategies
that are able to circumvent primary drug resistance or to prevent
the development of secondary antineoplastic drug resistance.
Moreover, the detailed knowledge about the drug resistance status
of a given patient with cancer can provide the basis for an individ-

ual patient-tailored chemotherapy regiment in the future. To
achieve this aim, an exact prediction of the resistance status of a
tumor patient is necessary.

Although different MDR mechanisms have been associated
with poor treatment outcome in particular cancers,2 the break-
through in prediction of drug resistance for cancer treatment is
missing. Neither the clinical use of drug resistance reversal agents,
e.g. ABC-transporter inhibitors, nor an individual treatment proto-
col led to significant benefits for the cancer patients. The reasons
for these failures are complex. So far, different clinical trials using
MDR reversing agents were performed without a pretherapeutic
detection of the drug resistance status.3 If a specific MDR factor is
not active in the drug-resistant tumor, a specific inhibitor targeting
this factor will not work. Another important problem arises from
the fact, that the diagnosis of the MDR status is not standardized.
For example, the immunohistochemical detection of MDR1/P-gp
depends on various parameters, such as different antibodies with
different specificity and cross-reactions, difficulties in using for-
malin-fixed tumor tissue and differences in fixation techniques,
problems in the quantitation of the MDR1/P-gp expression levels
and heterogeneous staining pattern throughout tumor sections.
Moreover, there is no diagnostic consensus on defining MDR1/P-
gp positivity in case of preferentially cytoplasmic rather than
membrane staining.4 Additionally, an approach that measures a
single feature to predict response is generally not suitable to iden-
tify alternative treatment options.

Since different studies demonstrated that gene expression pro-
files of cancer cell lines5,6 as well as primary neoplasms7,8 could
predict the response to a defined anticancer drug treatment regime,
DNA array technology for mRNA expression profiling offers new
approaches for solving the diagnostic problem. However, up to
date, the majority of studies investigating cancer specimens by
DNA microarrays have concentrated on the classification of tumor
subtypes and patient prognosis rather than on drug response.9–11

Clinical specimens were investigated on drug resistance in esopha-
geal tumor.12 Another study13 performed in colon cell lines inves-
tigated the correlation of response to 5-fluorouracil and campto-
thecin and their expression patterns. As these studies focused on a
single cancer entity combined with a limited set of treatment, their
prediction profile is not applicable for other cancer entities. A dif-
ferent approach has been applied in a study investigating the
resistance pattern of human cancer xenografts implanted into nude
mice.14
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To obtain predictors for a variety of commonly used drugs for
cancer treatment, we have analyzed expression profiles of 30
human cancer cell lines. Since it is generally accepted that most
drug resistance mechanisms evolve similarly in tumor cells of dif-
ferent histogenesis, e.g., P-gp overexpression in colon cancer,
renal cancer and lung cancer and even in sarcomas, we examined
cell lines of different origin. This helps to determine the most sig-
nificant genetic alterations. Molecular signatures of the cell lines
were correlated with the resistance status to 11 anticancer agents
at clinically relevant concentrations.

Material and methods

Cell lines and cell culture

In our study, we used 30 human cancer cell lines (see Fig. 2).
The cells were cultured in Leibovitz L-15 medium (Bio Whittaker,
Walkersville, MD, USA) supplemented by 10% fetal calf serum
(Gibco BRL, Grand Island NY, USA), 1 mM L-glutamine, 80 IE/l
insulin, 2.5 mg/l transferrin, 1 g/l glucose, 1.1 g/l NaHCO3, 1%
minimal essential vitamins and 20,000 kIE/l trasylol in a humified
atmosphere in 5% CO2 at 37�C. Prior to resistance testing, Myco-
plasma tests were performed using the Venor Mp kit, according to
the manufacturer’s instructions (Minerva Biolabs GmbH, Berlin,
Germany).

Resistance tests

Drugs were used in their commercially available form (except
cyclophosphamide, which was used in its activated form). Each
drug was applied to the cells in 3 concentrations (C1, C2, C3).
C1 5 1021 3 C2 and C3 5 10 3 C2. Concentration C2 was
deduced from levels assessed to be clinically achievable in tumor
tissue,15 as discussed previously16 (Table I).

In each experiment, 500 cells/microtiter dish were seeded onto
96-well plates. After 2 days, precontrol cells were fixed and
stained using sulforhodamine B (SRB).17 At the same time, tripli-
cate cultures were prepared with all 11 studied drugs at C1, C2
and C3 concentrations. After 4 days, incubation was terminated by
replacing the medium with 10% trichloroacetic acid, followed by
incubation at 4�C for 1 hr. Subsequently, the plates were washed
5 times with water and stained by adding 100 ll 0.4% SRB
(Sigma, St. Louis, MO, USA) in 1% acetic acid for 10 min at room
temperature. Washing the plates 5 times with 1% acetic acid elim-
inated unbound dye. After air-drying and resolubilization of the
protein-bound dye in 10 mM Tris-HCl (pH 8.0), absorbance was
read at 562 nm in an Elisa-Reader (EL 340 Microplate Bio
Kinetics Reader, BIO-TEK Instruments, Winooski, VT, USA).
The measurements were performed in triplicates in 3 independent
experiments. For the calculation of the RI values, the averages of
all 9 measurements were used.

The resistance index (RI) was estimated by the formula

RI ¼ ðnpost=npreÞ3½ðn2 � npreÞ=ðnpost � npreÞ3100�
where npre is the medium absorbance value of precontrol at the C2
concentration, npost is the medium absorbance value of control and
n2 is the medium absorbance value of stained cells tested with
chosen concentration of studied drug (see Fig. 3). At the C2 con-
centration of topotecan and mitoxantrone, we didn’t have enough
resistant and sensitive cell lines to be able to perform a robust stat-
istical calculation; therefore, we have used the C3 concentration
for topotecan and the C1 concentration for mitoxantrone. Only cell
lines that fulfilled the following quality criteria of npost > npre and
deviation in cell growth within repetitions <15% were included in
the evaluation. Cells exhibiting the lowest third RI results were
designated as sensitive, the top third as resistant and the remaining
cells were intermediate.

RNA isolation

RNA was isolated from 1 3 107 cells in logarithmic growth
phase, using the Qiagen Rneasy Mini Kit, following the manufac-
turer’s protocol (Qiagen GmbH, Hilden, Germany). The total iso-
lated RNA was quantified by UV-spectroscopy and its quality was
checked by analysis on a LabChip (BioAnalyzer, AGILENT
Technologies, Santa Clara, CA). Samples were stored at 280�C
until RNA hybridization.

RNA preparation

cDNA was synthesized from 5 lg total RNA, starting with the
annealing to 5 pmol/ll T7-(dT)24 primer (HPLC purified, MWG-
Biotech, Ebersberg, Germany) at 70�C for 10 min. Reverse tran-
scription, second-strand synthesis and cleanup of double-stranded
cDNA were performed according to the Affymetrix protocols.
Synthesis of biotin-labeled cRNA was performed using the BioAr-
ray High Yield RNA Transcription kit (Enzo Diagnostics, Farm-
ingdale, NY). cRNA concentration was determined by UV-spec-
troscopy and the distribution of cRNA fragment sizes was checked
by analyzing the samples on a LabChip (BioAnalyzer).

Hybridization protocol

The fragmented cRNA was hybridized to the HGU133 array
(Affymetrix, Santa Clara, CA) at 45�C in a hybridization oven for
16 hr. Subsequent washing and staining of the arrays were per-
formed using the GeneChip fluidics station protocol EukGE-WS2.
Finally, probe arrays were scanned using the GeneChip System
confocal scanner (Hewlett-Packard, Santa Clara, CA).

TaqMan quantitative gene expression measurement

To validate the results obtained by the Affymetrix HGU133
chips, we have performed TaqMan verification for expression of
46 selected genes in all 30 cell lines, using an Applied Biosystems
7900HT Micro Fluidic Card System. The measurements were per-

TABLE I – DRUGS USED TO ESTABLISH RESISTANCE PATTERNS OF CELL LINES AND THE CLINICALLY
AVAILABLE DRUG CONCENTRATIONS IN THE TUMOURS (C2)

Drug Mechanism of action C2
(lg/ml)

C2
(lM)

Supplying
company

5-Fluorouracil Pirimidin-antimetabolite 0.5 3.843 1024 Gry-Pharma
Cisplatin DNA cross-linker 0.5 1.663 1024 Gry-Pharma
Cyclophosphamide
(hydroxylated)

Alkylating agent 1.4 5.023 1024 Asta Werke

Doxorubicin Anthracycline antibiotics 0.05 0.863 1025 Cell-Pharma
Etoposide Topoisomerase-inhibitor 0.14 2.373 1025 Gry-Pharma
Methotrexate Antimetabolite: folic-acid-

antagonist
0.014 0.33 1025 Wyeth-Lederle

Mitomycin C Antibiotic alkylating agent 0.05 1.493 1025 Hexal
Mitoxantrone Anthracycline antibiotic 0.002 0.383 1026 Wyeth-Lederle
Paclitaxel Taxane, target: tubulin 0.025 0.293 1025 Bristol
Topotecan Topoisomerase-inhibitor 0.01 2.183 1023 Glaxo Smith Kline
Vinblastin Vinca alkaloid, target: tubulin 0.01 0.1 3 1025 Gry-Pharma
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formed using an ABI PRISM1 7900HT Sequence Detection Sys-
tem as described in the products User Guide (http://www.applied-
biosystems.com, CA, USA). For data analysis, the SDS 2.2 soft-
ware was used. The extracted delta Ct values (which represent the
expression normalized to the ribosomal 18S expression) were
grouped according to the resistance pattern of the cell lines. Then,
the Student’s t-test was performed to compare the expression val-
ues in the resistant cell lines to the sensitive cell lines.

Statistical analysis of microarray data

Quality control analyses were performed according to the sug-
gestions of The Tumor Analysis Best Practices Working Group.18

Scanned images with artifacts were excluded, and only arrays
showing a percentage of present calls >25% and ratio of the 30–50
glyceraldehyde 3-phosphate dehydrogenease (GAPDH 30/50) <3
were considered. According to the above-mentioned recommenda-
tions, we have applied following normalization methods: variance
stabilization normalization (VSN),19 MAS 5.0 [www.affymetrix.-
com], and RMA.20 Further data analysis and interpretation has
been carried out with all of these pre-processing methods to yield
the best comparison and normalization properties across all meas-
urements.

We have arranged the complete dataset consisting of 30 expres-
sion profile measurements into 2 classes, according to the resist-
ance properties of the cell lines. Intermediate cell lines were
excluded. This selection procedure resulted in 11 datasets, which
were treated as autonomous classification tasks. To obtain charac-
teristic gene signatures with high predictive power, we have
applied the following feature selection methods: multivariate sta-
tistics, shrunken centroids (PAM)21 and local shrinkage (SAM).22

Notably, the best and most robust predictive gene list was
extracted with the use of PAM by reiterating the procedure on the
training-dataset up to 100 times and by selecting the optimal
threshold with the smallest cross-validation error.

The dataset was randomly divided into training- and test data-
sets before the feature selection process was performed (Fig. 1a).
The predictive marker sets were optimized during the reiterative
process only on the basis of the training-datasets and were applied
to the test set classes thereafter. Since the test datasets are not

included in the derivation of the markers, the true error rates can
be estimated.23 The splitting algorithm has been used not only to
create a new subset of features (genes) for every training-dataset,
but also to investigate the frequency of occurrence of the genes,
which were selected in most tests by each single feature selection
process. The emerging gene ranking allows the estimation of the
heterogeneity and reliability of the class prediction. The statistical
significance of every gene-set is tested by randomizing the class
assignment in the training dataset and the test data class prediction
based on this assignment subsequently.24 The best feature set, i.e.,
the amount of features with the most minimal error and sufficient
high significance, can be obtained using this method.

The predictive accuracy of the gene sets was tested by k-fold-
cross-validation-procedures and bootstrapping algorithm with sup-
port vector machines (SVM).25 The specificity and sensitivity of
the classification based on given features was computed as
described previously.26

Results

RI assays

Prior to microarray analysis, we measured drug resistance of 30
cancer cell lines, as described in Material and Methods (Fig. 2).
We have included the representation of drugs for the major anti-
cancer agent classes: alkylating agents (cyclophosphamide, mito-
mycin C), antimetabolite (5-fluorouracil, methotrexate), antibiot-
ics (doxorubicin, mitoxantrone), topoismorase inhibitors (etopo-
side, topotecan), vinca alkaloid (vinblastine), taxane (paclitaxel)
and the platinum derivative cisplatin. We have summarized the
results of the resistance tests in Figure 2. As a representative
example, the RI values of the MDA231 mammary carcinoma can-
cer cell line at 3 different drug concentrations are depicted in
detail (Fig. 3).

Identification of discriminatory genes

To identify discriminatory genes, we divided the gene expres-
sion profiles obtained for all cell lines into 2 sets associated with
the resistance or sensitivity towards each drug as defined by RI.
The complete microarray dataset is shown as supplementary infor-

FIGURE 1 – Overview of the approach for establishing feature lists for drug sensitivity prediction (a) and the correlation between significance
of prediction and number of features used for the prediction for Mitoxantron (b). The upper line represents the relative error obtained by random
feature selection.
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FIGURE 2 – Resistance patterns of studied
cell lines. Drugs clinically applied to the spe-
cific type of cancer are boxed. ATCC names
are shown, with the exceptions marked with
reference. ca, cancer; HCC, hepatocellular car-
cinoma; R, resistant; S, sensitive; M, inter-
mediate;*, kindly provided by Prof. I. Petersen,
Inst. Pathology, Charit�e, Berlin.

FIGURE 3 – Results of the resist-
ance tests for the cell line MDA-
231. Each drug was applied in 3
concentrations (C1, C2, C3),
where C1 5 1021 3 C2 and C3 5
10 3 C2. Concentration C2 is
equivalent to drug levels achiev-
able systemically in patients. The
RI was estimated by the formula:
RI 5 (npost/npre) 3 [(n22npre)/
(npost2npre) 3 100], where npre is
the medium absorbance value of
precontrol, npost is the medium
absorbance value of control, n2 is
the medium absorbance value of
stained cells tested with the chosen
concentration.
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mation (raw Affymetrix.CEL files and normalized gene expression
values in Supplemental Table 1. Supplementary material for this
article can be found on the International Journal of Cancer website
at http://www.interscience.wiley.com/jpages/0020-7136/suppmat.).
Genes that were associated with the resistance after at least one
normalization procedure were included in the list. Resistance to 5-
fluorouracil was correlated with 237 genes, to cisplatin with 230
genes, to cyclophosphamide with 42 genes, to doxorubicin with
253 genes, to etoposide with 202 genes, to methotrexate with 198
genes, to mitomycin C with 190 genes, to mitoxantrone with 197
genes, to paclitaxel with 139 genes, to topotecan with 297 genes
and to vinblastine with 217 genes, respectively. The complete list
of genes and its relation to each agent is presented in the Supple-
mental Table 2. The list of the common genes associated with the
resistance toward at least 4 different agents is presented on Table
II. Important multidrug-resistance-associated functional groups
could be the TGF beta pathway (SERPINE1, LTBP2) and various
zinc-ion binding proteins (BIRC2, TRIM2 and MMP1). Interest-
ingly, 10 of the top genes were present with several probes (SER-
PINE1, NMT2, TFPI2, CTH, FDFT1, FYN, MAC30, PRG1 twice
and the ADD3 three times); this also proves the robustness of the

performed analysis. One of the top candidate genes is TFPI (tissue
factor pathway inhibitor), which is present all together by 5 clones.
An example for the correlation between significance and the num-
ber of features used for the prediction, including the relative error
obtained by random feature selection, is presented in Figure 1b.

We have validated the prediction accuracy for the investigated
cell lines, using a leave-one-out cross validation, the results are
depicted in Figure 4. We had correct prediction in 220 cases (86%
of the classifiable RI tests) and false predictions in 36 cases (14%).

Hierarchical clustering

We have clustered the expression profiles of all cell lines, using
the complete dataset to detect similarities across the cell lines. The
clustering dendrogram shows that the cell lines derived from ova-
ries and melanomas were categorized into close branches. How-
ever, the cell lines derived from carcinomas of the breast, lung,
colon and prostate as well as hepatocellular carcinomas were not
clustered into single branches; thus, indicating that those tumors
had heterogeneous expression profiles that reflected wider differ-
ences in their histological and biological characteristics (Fig. 5a).

FIGURE 4 – Prediction of drug resistance
for the investigated cell lines. 100 represents
maximal resistance and 0 maximal sensitiv-
ity. Blue boxes represent correct prediction
(n 5 220). Grey represents the measure-
ments, where resistance/sensitivity could not
be determined during the cell culture experi-
ments (n 5 58). Red and green boxes repre-
sent false predictions (red, false sensitive;
green, false resistant; n5 36).
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To visualize and confirm discriminatory expression changes, we
have also clustered the selected gene lists for the resistant and sen-
sitive samples. As a representative example, the clustering results
of genes associated with cisplatin resistance are presented on Fig-
ure 5b.

Gene ontology of selected features

We have grouped the selected discriminative genes according
to the Kyoto Encyclopedia of Genes and Genomes (KEGG). The
analysis was restricted by the availability of annotated genes rep-
resented on the U133A GeneChip. The descriptions of the top
multidrug resistance candidate genes are included in Table II and
in the Supplemental Table 2. We have also mapped the selected
features to chromosomes, but we have not observed hotspots,
which could suggest chromosomal abnormalizations gained by the
cancer cells (data not shown).

TaqMan validation

TaqMan real-time RT-PCR was performed to confirm the pre-
dictive potential for a selected set of 46 genes. Selection criteria
for genes were involvement with the resistance against several
drugs and the availability of TaqMan probes. The complete results
of the TaqMan measurements are presented in Supplemental
Table 4. As several of the selected genes were involved in the
resistance against more than 1 anticancer agent, altogether 76 pre-

dictive gene-agent pairs could be verified at a significance of p <
0.05. In Table III, we have summarized the significant prediction
properties for the selected genes for the corresponding agents. The
expressions of proteoglycan 1, SOAT1, TFPI and CAT as well as
the involvement in correlation in the doxorubicin, 5-fluorouracil,
mitomycin C and topotecan resistance patterns are depicted as
examples in Figure 6.

Discussion

We have compared gene expression profiles of pre-character-
ized drug-sensitive and drug-resistant cancer cell lines of different
tumor entities. Accepting that the basic mechanisms of drug resist-
ance are independent of tumor cell histology, this approach con-
tributes to broadly mirror the spectrum of genetic alterations asso-
ciated with the ineffectiveness of cytostatic drugs. On this basis,
we have identified specific gene expression signatures associated
with the preexisting resistance at clinically relevant concentrations
of 5-fluorouracil, cisplatin, cyclophosphamide, doxorubicin, eto-
poside, methotrexate, mitomycin C, mitoxantrone, paclitaxel, top-
otecan and vinblastine.

Further, the use of a set of various cell lines for the construction
of our predictor profiles allows a tissue-independent application.
A similar approach has been used in a previous study investigating
�9,000 genes in 39 cell lines.27 In another study, gene expression

FIGURE 5 – Hierarchical clustering. (a) All cell lines using all genes. (b) Genes associated with Cisplatin resistance. Cell lines with R_ are
resistant. Upregulated genes are marked red, downregulated are marked with green. Cell lines with intermediate resistance are excluded.
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TABLE III – TAQMAN MEASUREMENT FOR 46 GENES

TaqMan ID Gene symbol Gene name Affymetrix ID Resistance p value

1 Hs00153462 TFPI Tissue factor pathway inhibitor 209676_at MitomycinC 0.0019
2 Hs00154079 AOX1 Aldehyde oxidase 1 205083_at Vinblastine 0.0001

Doxorubicin 0.0001
MitomycinC 0.0279

3 Hs00154826 DUSP4 Dual specificity phosphatase 4 204014_at Etoposide 0.0005
Mitoxantrone 0.0082
MitomycinC 0.0696
Methotrexate 0.0836

4 Hs00155308 GSTA4 Glutathione S-transferase A4 202967_at 5-Fluorouracil 0.0000
5 Hs00156145 KLF5 Kruppel-like factor 5 209211_at Doxorubicin 0.0530
6 Hs00156308 CAT Catalase 211922_s_at Topotecan 0.0041

Doxorubicin 0.0401
Vinblastine 0.0474

7 Hs00158980 TACSTD1 Tumor-associated calcium signal transducer 1 201839_s_at Topotecan 0.0034
8 Hs00160444 PRG1 Proteoglycan 1, secretory granule 201858_s_at Doxorubicin 0.0001

Vinblastin 0.0001
9 Hs00162077 SOAT1 Sterol O-acyltransferase 1 221561_at 5-Fluorouracil 0.0000
10 Hs00166123 ABCC2 ATP-binding cassette, sub-family C, member 2 206155_at 5-Fluorouracil 0.0568
11 Hs00167155 SERPINE1 Serine proteinase inhibitor, clade E, member 1 202627_s_at Vinblastin 0.0000

Doxorubicin 0.0000
12 Hs00167445 ALDH1A1 Aldehyde dehydrogenase 1 family, member A1 212224_at 5-Fluorouracil 0.0000
13 Hs00168547 NQO1 NAD(P)H dehydrogenase, quinone 1 201468_s_at Etoposide 0.0029

MitomycinC 0.0110
14 Hs00171569 HMGA2 High mobility group AT-hook 2 208025_s_at MitomycinC 0.0212

Etoposide 0.0633
15 Hs00171642 CSPG2 Chondroitin sulfate proteoglycan 2 221731_x_at Etoposide 0.0215

Topotecan 0.0314
Mitoxantron 0.0407

16 Hs00173091 HMG20B High-mobility group 20B 210719_s_at Etoposide 0.0032
MitomycinC 0.0116
Mitoxantron 0.0148

17 Hs00173566 GPX3 Glutathione peroxidase 3 201348_at Methotrexate 0.0007
Mitoxantron 0.0013

18 Hs00173615 PTX3 Pentaxin-related gene, rapidly induced
by IL-1 beta

206157_at Vinblastin 0.0153
Doxorubicin 0.0162

19 Hs00174097 FDFT1 Farnesyl-diphosphate farnesyltransferase 1 208647_at MitomycinC 0.0334
20 Hs00174164 CSF1 Colony stimulating factor 1 209716_at 5-Fluorouracil 0.0000
21 Hs00176628 FYN FYN oncogene related to SRC, FGR, YES 210105_s_at Etoposide 0.0036

0.0037
MitomycinC 0.0040
5-Fluorouracil 0.0203

22 Hs00179504 RAGE Renal tumor antigen 205130_at Doxorubicin 0.0799
Vinblastin 0.0953
MitomycinC 0.0972
Topotecan 0.0984

23 Hs00180634 SKP2 S-phase kinase-associated protein 2 (p45) 203625_x_at Doxorubicin 0.0405
Topotecan 0.0433
Vinblastin 0.0532

24 Hs00185826 SLC7A5 Solute carrier family 7, member 5 201195_s_at Mitoxantron 0.0052
Etoposide 0.0604

25 Hs00186374 PIR Pirin 207469_s_at MitomycinC 0.0020
Vinblastin 0.0708
Doxorubicin 0.0850

26 Hs00188930 FAD104 FAD104 218618_s_at 5-Fluorouracil 0.0186
27 Hs00189506 IL1B Interleukin 1, beta 205067_at MitomycinC 0.0051
28 Hs00191312 NMT2 N-Myristoyltransferase 2 205005_s_at Etoposide 0.0053

Topotecan 0.0147
MitomycinC 0.0492
Doxorubicin 0.0823

29 Hs00195584 S100P S100 calcium binding protein P 204351_at Etoposide 0.0000
Mitoxantron 0.0001
Methotrexate 0.0859

30 Hs00196125 PTOV1 Prostate tumor overexpressed gene 1 212032_s_at Methotrexate 0.0581
31 Hs00196699 RRAS Related RAS viral (r-ras) oncogene homolog 212647_at 5-Fluorouracil 0.0125
32 Hs00196731 LMNA Lamin A/C 203411_s_at MitomycinC 0.0230
33 Hs00197918 TFPI2 Tissue factor pathway inhibitor 2 209278_s_at Vinblastin 0.0003

Doxorubicin 0.0020
Etoposide 0.0227
Topotecan 0.0429

34 Hs00200082 UBL3 Ubiquitin-like 3 201535_at MitomycinC 0.0004
Etoposide 0.0035
Mitoxantron 0.0122

35 Hs00209620 PLEKHC1 Pleckstrin homology domain containing,
family C, 1

209210_s_at 5-Fluorouracil 0.0005
Topotecan 0.0233
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profiling has been used for identifying factors related to the resist-
ance toward selected cytotoxic drugs in 60 cell lines.5,28 The
major difference and improvement from the oncologist’s point of
view in our study compared to those investigations is the applica-
tion of anticancer drugs at concentrations clinically relevant in
tumor tissues. In other studies, the actual drug concentration for
defining a therapeutic response as opposed to the resistance was
chosen to represent the GI50 value, which is equivalent to drug
levels achieving 50% growth inhibition. As in clinical practice, a
very low level of drug resistance, i.e. 2-fold, can prevent a suc-
cessful chemotherapeutic treatment of cancer patients, the GI50
drug concentration is usually artificial and less relevant. To
include the effects of pharmacokinetics (e.g., bioavailability, dilu-
tion volume, clearance, mean residence time etc.), we decided to
measure the resistance at a pre-defined concentration, which is
equivalent to the clinically achievable concentration as discussed
previously.16 Furthermore, additionally to the selection of clini-
cally achievable concentrations, chemotherapeutic antineoplastic
agents that are commonly included in clinical therapy protocols as
a stand-alone agent or in at least one combination protocol were
chosen (Table I).

To overcome the risk of overfitting the prediction model to a
limited data set, we splitted the available expression profiles of
cell lines into a test set and a training set. We rotated the data sets
and recalculated the list of significant genes for each compound
100 times, and selected genes with high repeated (reproducible)
prevalence. The gene list in a leave-one-out cross validation
allowed to predict resistance in more than 80% of the tests cor-
rectly.

We have found a total of 1,481 genes associated with drug
resistance. Out of these genes, 1,033 genes were associated with
merely a single anticancer agent, 271 genes with 2 and 110 with
3 anticancer agents. This small overlap among the established
gene lists supports the current concept that anticancer drug
resistance is a highly complex phenomenon resulting of various
interacting molecular mechanisms that can be switched on and
off and temporarily being simultaneously active. We also identi-
fied 67 multidrug resistance candidate genes associated with
resistance toward 4 or more anticancer agents, suggesting that
these are correlated with common mechanisms involved in drug
response (Fig. 4). Particularly interesting candidate genes were
probes present in at least 6 resistance patterns. The list includes
the genes encoding tripartite motif-containing 2 (TRIM2), apoli-

poprotein B mRNA editing enzyme (APOBEC3B), baculoviral
IAP repeat-containing 2 (BIRC2), tissue factor pathway inhibitor
2 (TFPI2) and chromosome 10 open reading frame 38
(C10orf38). Of these, only BIRC2 has already been associated
with tumor resistance: it is upregulated in radioresistant oesopha-
geal cancer cell lines.29 TFPI is not only the major physiologic
inhibitor of the extrinsic coagulation pathway, but its apoptotic,
anitangiogenic and antitumor activity has been also described,30

TFPI2 is a suggested new target for the treatment of osteoarthri-
tis.31 APOBEC3B is a potent inhibitor of simian immunodefi-
ciency virus replication.32 However, for a potential prediction of
a drug-resistant phenotype in tumor cells by mRNA expression
profiling, it is not important whether the alterations in the
expression levels of the identified genes are an effect of func-
tional involvement in drug resistance or merely the result of co-
regulations or other cellular events.

The Affymetrix HGU133 chips contain the well-known resist-
ance associated MDR1 (209993_at, 209994_at) and MRP1
(202804_at, 202805_at) genes. Interestingly, the average MDR1
expression levels were more than 4-fold increased when compared
to the MRP1 expression levels (normalized; log 2 scale: MDR1,
6.36 6 0.71; MRP1, 8.47 6 0.46). We have measured the highest
MDR1 expression in the hepatocellular carcinoma SNU449 cell
line, which was found to be resistant against each tested drug. We
have measured high MDR1 expression in CX-2, OAW42, Hep3B,
A375 and Colo699—these cell lines are resistant against cyclo-
phosphamide and methothrexate. High MRP1 expression was
detected in SNU475, OVCAR3, SKOV-3 and SKBR cell lines,
but its overexpression was not linked to the resistance against any
cytotoxic drug. These data supports the role of the ABC transport-
ers in drug resistance, but also emphasize the role of additional
mechanisms involved in drug resistance.

Since no gene was associated with drug resistance against all
of the investigated drugs, the study suggests that a set of univer-
sal resistance genes cannot be identified. This finding is in line
with results in a previous study investigating gene patterns asso-
ciated with resistance against 4 anticancer drugs in acute lym-
phoblastic leukemia.8 Previously, attempts using single genes for
assessing drug sensitivity have seldomly produced conclusive
results.33,34 Our results support the concept that different mecha-
nisms are associated with resistance against different drugs,35

and therefore support the use of combination chemotherapy for
cancer treatment.

TABLE III – TAQMAN MEASUREMENT FOR 46 GENES (CONTINUED)

TaqMan ID Gene symbol Gene name Affymetrix ID Resistance p value

36 Hs00209889 DKFZP564B167 DKFZP564B167 protein 202427_s_at 5-Fluorouracil 0.0000
Mitoxantron 0.0102

37 Hs00224289 FAD104 FAD104 218618_s_at 5-Fluorouracil 0.0186
38 Hs00232392 DRAP1 DR1-associated protein 1 203258_at Cisplatin 0.0012

Methotrexate 0.0526
Topotecan 0.0591
MitomycinC 0.0834

39 Hs00234032 SERPINB2 Serine proteinase inhibitor, clade B, member 2 204614_at Topotecan 0.0715
40 Hs00235033 TRIM2 Tripartite motif-containing 2 215945_s_at 5-Fluorouracil 0.0037

Topotecan 0.0174
Etoposide 0.0231
Mitoxantron 0.0870

41 Hs00240792 FGFR2 Fibroblast growth factor receptor 2 208228_s_at Cisplatin 0.0440
42 Hs00249890 ADD3 Adducin 3 (gamma) 205882_x_at Paclitaxel 0.0097

Topotecan 0.0274
Doxorubicin 0.0459
Vinblastin 0.0582

43 Hs00366532 SLC29A1 Solute carrier family 29, member 1 201801_s_at 5-Fluorouracil 0.0576
44 Hs00609286 IQGAP1 IQ motif containing GTPase activating protein 1 210840_s_at Mitoxantron 0.0252
45 Hs00697086 MYL9 Myosin, light polypeptide 9, regulatory 201058_s_at 5-Fluorouracil 0.0001
46 Hs00705810_s1 PHLDA1 Pleckstrin homology-like domain, family A,

member 1
218000_s_at Cisplatin 0.0609

For those genes, which are correlated with several resistances, each significant association is presented. Significant resistant vs. sensitive
p values (p < 0.05, n5 76) are marked italic.
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FIGURE 6 – TaqMan expression of proteoglycan 1 (a), SOAT1 (b), TFPI (c) and CAT (d) validates the involvement in the doxorubicin, 5-fluorouracil,
mitomycin C and topotecan resistance patterns, respectively. R, resistant; S, sensitive cell lines; cell lines with intermediate resistance are excluded.



In a similar study, recently performed on the same microarray
platform, Kang et al36 identified gene expression patterns related to
resistance against 5-fluorouracil, cisplatin and doxorubicin resist-
ance, respectively, in 14 human gastric cancer cells. We have com-
pared the published set of 250 differentially regulated genes with
our prediction profiles. We found only 1 common gene associated
with 5-fluorouracil (212614_at), and 2 common genes associated
with cisplatin resistance (C6orf37 and DJ971N18.2). We have
found a much higher overlap of up-regulated genes in the doxorubi-
cin resistance associated genes (ANKT, BUB1B, CENPA, HCAP-
G, HMGB2, HMMR, KIAA0101, KIF4A, LMNB1, MAD2L1,
MGC5528, OIP5, PRC1, TOP2A and ZWINT). These results are in
line with the findings of a recent study demonstrating that different
gene signatures can achieve similar prediction success for the same
classification problem.37

Interestingly, only 2 of the top 67 multidrug-resistance associ-
ated genes were previously identified to be associated with resist-
ance in drug resistant cell lines in vitro. Elevated expression of the
Matrix Metalloproteinase 1 (MMP1) was found in breast carci-
noma cells with intrinsic and acquired doxorubicin resistance.38 In
5 breast cancer cell lines, the coexpression of EGFR or ErbB3
with ErbB2 was found to induce high phosphorylation of ErbB2
and render the cells more resistant to various anticancer drugs,
including 5-fluorouracil and doxorubicin.39 Additional evaluation
of the selected genes in multidrug resistant cell lines will be
needed to verify the casual involvement of these genes in drug
resistance.

A key concern with the use of cDNA microarray analysis in
relation to cancer therapy is that the evaluation of a larger number
of genes may identify such a sizeable number of potential target
genes that it would be unfeasible to try to confirm the involvement
of each of these genes in the resistance. To reduce the experimen-
tal variation, we have performed 3 different normalization meth-
ods (VSN, MAS and RMA). Thus, the main remaining issue is the
variation of the Affymetrix results for 1 sample—in other words
the reproducibility of the measurement. In this study, 46 of the
drug-resistance related genes were also measured by TaqMan real
time RT-PCR. We have decided to measure a relative high num-
ber of features compared to earlier studies to achieve robust vali-
dation for the microarray data. During the selection, we have
focused on genes that were preferentially present in more than 1

resistance pattern. However, because of the lack of established
TaqMan probes, we were not able to select all of the relevant
genes with highest predictive power. The differential expression
on the TaqMan correlated strongly with the results obtained by the
Affymetrix arrays even in correlation with different drugs for most
analyzed genes (e.g. TFPI2 and mitomycin C resistance, p < 0.01;
NMT2 and topotecan resistance, p < 0.05; ADD3 and doxorubicin
resistance, p < 0.05). However, the correlation for some genes
was not significant (e.g. SERPINB2 and vinblastine resistance,
RAGE and paclitaxel resistance, PHLDA1 and cisplatin resist-
ance). Overall, the differences in RNA expression and their
involvements in the predictive gene sets were confirmed by the
TaqMan array analysis for most of the selected genes (Table III).

In summary, we have identified predictive sets of marker genes
for simultaneous assessment of the sensitivity to eleven selected
chemotherapeutical agents at clinically relevant concentrations.
Our results suggest that DNA microarray technology can help to
classify cancer cell lines for drug resistance and sensitivity effec-
tively. Since the study focused on the resistance at clinically rele-
vant anticancer drug concentrations, cancer response prediction
may be applicable in the future. The expression patterns validated
by quantitative RT-TCR provide new gene candidates associated
with multidrug resistance. To verify the predictors identified in
well-established in vitro models, they have to be scrutinized with
heterogeneous clinical specimens from large cohorts of cancer
patients. However, for identification of potential new factors func-
tionally involved in drug resistance, the expression analyses are
not directly useful. For identification of such factors, additional
hypothesis-driven studies are necessary.
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