
Mol Imaging Biol (2018)
DOI: 10.1007/s11307-018-1201-3
* The Author(s), 2018

RESEARCH ARTICLE

Evaluation of Brain Nuclear Medicine Imaging
Tracers in a Murine Model of Sepsis-Associated
Encephalopathy
Dávid Szöllősi ,2 Nikolett Hegedűs,2 Dániel S. Veres,2 Ildikó Futó,2 Ildikó Horváth,2

Noémi Kovács,1 Bernadett Martinecz,3 Ádám Dénes,3 Daniel Seifert,5 Ralf Bergmann,4

Ondřej Lebeda,5 Zoltán Varga,2,6 Zoltán Kaleta,7 Krisztián Szigeti,2 Domokos Máthé1

1CROmed Translational Research Centers, Budapest, H-1047, Hungary
2Department of Biophysics and Radiation Biology, Semmelweis Univ, Budapest, H-1094, Hungary
3Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
4Helmholz-Zentrum Dresden-Rossendorf, Radiopharmazie Radiopharmaceutische Biologie, Dresden, Germany
5Nuclear Physics Institute of the CAS, CZ 250 68, Rez, Czech Republic
6Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences,
Hungarian Academy of Sciences, Budapest, Hungary
7Progressio Fine Chemical Engineering Ltd, Székesfehérvár, Hungary

Abstract
Purpose: The purpose of this study was to evaluate a set of widely used nuclear medicine
imaging agents as possible methods to study the early effects of systemic inflammation on the
living brain in a mouse model of sepsis-associated encephalopathy (SAE). The lipopolysaccha-
ride (LPS)-induced murine systemic inflammation model was selected as a model of SAE.
Procedures: C57BL/6 mice were used. A multimodal imaging protocol was carried out on each
animal 4 h following the intravenous administration of LPS using the following tracers:
[99mTc][2,2-dimethyl-3-[(3E)-3-oxidoiminobutan-2-yl]azanidylpropyl]-[(3E)-3-hydroxyiminobutan-
2-yl]azanide ([99mTc]HMPAO) and ethyl-7-[125I]iodo-5-methyl-6-oxo-4H-imidazo[1,5-a][1,4]ben-
zodiazepine-3-carboxylate ([125I]iomazenil) to measure brain perfusion and neuronal damage,
respectively; 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) to measure cerebral glucose uptake.
We assessed microglia activity on another group of mice using 2-[6-chloro-2-(4-[125I]iodo-
phenyl)-imidazo[1,2-a]pyridin-3-yl]-N-ethyl-N-methyl-acetamide ([125I]CLINME). Radiotracer
uptakes were measured in different brain regions and correlated. Microglia activity was also
assessed using immunohistochemistry. Brain glutathione levels were measured to investigate
oxidative stress.
Results: Significantly reduced perfusion values and significantly enhanced [18F]FDG and
[125I]CLINME uptake was measured in the LPS-treated group. Following perfusion compensa-
tion, enhanced [125I]iomazenil uptake was measured in the LPS-treated group’s hippocampus
and cerebellum. In this group, both [18F]FDG and [125I]iomazenil uptake showed highly negative
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correlation to perfusion measured with ([99mTc]HMPAO uptake in all brain regions. No significant
differences were detected in brain glutathione levels between the groups. The CD45 and P2Y12
double-labeling immunohistochemistry showed widespread microglia activation in the LPS-
treated group.
Conclusions: Our results suggest that [125I]CLINME and [99mTc]HMPAO SPECT can be used to
detect microglia activation and brain hypoperfusion, respectively, in the early phase (4 h post
injection) of systemic inflammation. We suspect that the enhancement of [18F]FDG and
[125I]iomazenil uptake in the LPS-treated group does not necessarily reflect neural hyperme-
tabolism and the lack of neuronal damage. They are most likely caused by processes emerging
during neuroinflammation, e.g., microglia activation and/or immune cell infiltration.

Key words: Systemic infection, Neuroinflammation, Microglia activation, LPS, [99mTc]HMPAO,
[18F]FDG, [125I]iomazenil, [125I]CLINME, SPECT/CT, PET/MRI

Introduction
Sepsis-associated encephalopathy (SAE) is a devastating
complication of severe acute systemic inflammation. It
causes both acute and long-lasting neurological dysfunction
and contributes to the mortality of patients with sepsis [1].
Current clinical approaches are mainly based on the earliest
possible diagnosis and treatment of the systemic inflamma-
tion, but our knowledge of the pathophysiological processes
overwhelming the brain at this early stage of sepsis is far
from complete. Understanding these processes could lead to
the development of disease-specific diagnostic and thera-
peutic approaches that could potentially protect the brain
from systemic inflammation and improve mortality.

Much of our current knowledge of SAE has been
gathered from animal studies [2]. One of the most important
animal models is the lipopolysaccharide (LPS)-induced
murine systemic inflammation model. Following the sys-
temic administration of LPS, the mouse brain exhibits a
variety of acute and long-lasting alterations including the
elevation of inflammatory cytokines [3–7], microglia acti-
vation [8, 9], neuron damage [3], altered neurotransmission
[10], oxidative stress [3, 11], blood-brain barrier changes [3,
12] vascular adhesion [13], or invasion of immune cells [14].
Similarities have been found between this mouse model and
human SAE [12, 15–18], making it also a model of murine
SAE. A favorable approach to investigating the brain during
systemic inflammation is multimodal nuclear medicine
imaging [19, 20]. This approach could provide a means to
investigate the little-known spatiotemporal distribution and
correlations of multiple parameters related to pathophysiol-
ogy. Brain region-specific connections between the patho-
physiologic processes also provide important implications
for neuroinflammation in general.

Even if a radiopharmaceutical is highly specific to a
certain target, its biodistribution may not be dependent on a
single biological process. In turn, many different pathophys-
iological factors can influence uptake by the specified target
(e.g., an increase in 2-deoxy-2-[18F]fluoro-D-glucose
([18F]FDG) uptake could be caused by a wide variety of

processes) [21]. Parameters measured in healthy brain or
during neuroinflammation could be determined by quite
different disease-specific processes.

The aim of this study was to assess whether quantitative
multimodal in vivo imaging with a set of widely used
radiotracers (Table 1) could be used to investigate a set of
brain alterations and their region-specific connections asso-
ciated to the early phase of neuroinflammation induced by
systemic LPS injection in mice.

We investigated the following: brain perfusion with
[99mTc]HMPAO single photon emission computed tomog-
raphy (SPECT), brain glucose metabolism with [18F]FDG
positron emission tomography (PET), neuron damage with
the central benzodiazepine receptor ligand [125I]iomazenil
SPECT, and microglia activation with the 18 kDa trans-
locator protein (TSPO, or, peripheral benzodiazepine recep-
tor, PBR) ligand [125I]CLINME SPECT. We described
microglia activation with immunohistochemistry (IHC) and
oxidation state by a fluorometric ex vivo glutathione assay.
These methods have been validated for the respective
alterations in multiple models (see references in Table 1).

Materials and Methods
Summary of the Experiments

The exper iments a re summar ized in Fig . 1a .
[99mTc]HMPAO and [125I]iomazenil dual SPECT, and
[18F]FDG PET were carried out on LPS-treated and control
animals and the correlations of the results were computed.
These animals were later used for the ex vivo glutathione
assay. [125I]CLINME SPECT and IHC measurements were
completed on different animals due to the methodical
incompatibility of these assays with previous ones. These
two measurements were used to study the variability of brain
region-specific microglial response. MR images were used
to segment the brain into 3D volumes of interest (cerebru-
m—indicating the whole brain without cerebellum, cerebel-
lum, cerebral cortex, and hippocampus) using a connected
threshold algorithm (Fig. 1b, c).
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Glutathione levels were determined ex vivo using a
colorimetric assay. Microscopically, resting (highly rami-
fied, P2Y12+ cells with low CD45 signal [29–32]) and
activated (P2Y12+, CD45low ramified cells with thickened
processes and enlarged body) microglia cells were counted.
Blood-derived leukocytes (CD45-positive, round shape cells
with predominantly perivascular location) [32, 33] were

excluded from analysis. The correlation coefficients of
measured nuclear medicine parameters per brain regions
in vivo were calculated with correlation analysis (Graph-
PadPrism6.0, GraphPad Software Inc., La Jolla, CA, USA).

Experimental details are further described in the Elec-
tronic Supplementary Material (ESM) under the BMaterials
and Methods^ section.

Table 1. A summary of the radiotracers and modalities used in this study

Radiotracer Abbreviation Modality Putative alteration/process

[99m Tc][2,2-dimethyl-3-[(3E)-3-oxidoiminobutan-2-yl]azanidylpropyl]-[(3E)-3-
hydroxyiminobutan-2-yl]azanide

[99mTc]HMPAO SPECT Brain perfusion [22]

ethyl 7-[125I]iodo-5-methyl-6-oxo-4H-imidazol[1,5-a][1,4]benzodiazepine-3-carboxylate [125I]iomazenil SPECT Neuronal damage/apoptosis
[23–26]

2-[6-chloro-2-(4-[125I]iodophenyl)-imidazo[1,2-a]pyridin-3-yl]-N-ethyl-N-methyl-acetamide [125I]CLINME SPECT Microglia activation [27]
2-deoxy-2-[18F]fluoro-D-glucose [18F]FDG PET Cerebral glucose uptake [28]

SPECT: single photon emission computed tomography, PET: positron emission tomography.

Fig. 1 Illustration of the methods. a Experimental protocol for in vivo measurements. b Dorsal view of MRI coregistration with
CT showing the segmented 3D brain regions. c Ventral view of the same VOIs (volumes of interest). Representing the cerebrum
(green: this entity includes the whole brain without cerebellum), cerebellum (turquoise), cortex (red), and hippocampus (blue).
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Perfusion Compensation and Data Analysis

For perfusion compensation [125I]iomazenil uptake was
divided by the same animals’ simultaneously measured
[99mTc]HMPAO uptake in each region to eliminate the
inflammation-related relative blood flow changes. Normal-
ity of data sets was assessed with the Kolmogorov-Smirnov
test. Data from in vivo measurements (PET and SPECT
scans) were analyzed with the one-sided permutation test.
This test is a conditional statistical procedure where the
conditioning is with respect to the observed data set [34].
The correlation coefficients per brain regions were calcu-
lated with correlation analysis. Data from immunohisto-
chemical studies were analyzed with unpaired t tests
(GraphPadPrism6.0, GraphPad Software Inc., La Jolla,
CA, USA). In all cases, p value ≤ 0.05 was considered as
statistically significant.

Results
[99mTc]HMPAO SPECT Imaging

The results of [99mTc]HMPAO SPECT measurements are
illustrated in Fig. 2a, b. In every segmented brain region
(cerebrum, cerebellum, cerebral cortex, and hippocampus),
significantly reduced (p G 0.05) [99mTc]HMPAO uptake was
observed in the LPS-treated group compared to the control
(Fig. 2c).

[125I]iomazenil-SPECT Imaging

The results of [125I]iomazenil SPECT measurements are
illustrated in Fig. 3a, b. Perfusion compensation resulted in
significantly enhanced [125I]iomazenil uptake values in the
LPS-treated group’s cerebellum and hippocampus compared

Fig. 2 SPECT imaging reveal decreased perfusion after LPS injection. Cerebral blood perfusion was measured by
[99mTc]HMPAO. SPECT coregistration with computed tomography (CT) showing [99mTc]HMPAO uptake in a control and b
LPS-treated animals. Arrows indicate areas where the difference in radiotracer uptakes between the two groups is observable.
c [99mTc]HMPAO uptake is significantly reduced 5 h after the LPS injection in all examined brain regions (cerebrum: indicates
the whole brain without cerebellum, cerebellum, cortex, and hippocampus; *p ≤ 0.05; **p G 0.01; ***p G 0.001—one-sided
permutation test).
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to the control. Relevant changes were seen in the cortex and
the whole cerebrum but these differences were not signifi-
cant (Fig. 3c).

[18F]FDG PET Imaging

[18F]FDG measurements were able to visualize early
changes of metabolic activity following LPS injection
(Fig. 4a, b, Supplementary Fig. 1). In almost all segmented
brain regions (cerebrum, cerebellum, and cerebral cortex),
significantly enhanced (p G 0.05) [18F]FDG uptake was
measured in the treated group compared to the control
(Fig. 4c).

[125I]CLINME-SPECT Imaging

[125I]CLINME SPECT results are shown in Fig. 5a, b.
Significantly enhanced (p = 0.05) uptake was observed in the

cerebrum and marked, but not significant elevation in all
other investigated brain areas (Fig. 5c).

Correlation Studies

The results of the correlation studies are listed in Table 2
and illustrated in Supplementary Fig. 2. In the LPS-
treated group, highly positive correlation was found
between the uptake values of [18F]FDG and [125I]ioma-
zenil while these values had a strong negative correla-
tion with [99mTc]HMPAO uptake in all investigated
regions. In the control group, strong negative correlation
coefficients were found between the uptake of [18F]FDG
and [125I]iomazenil in the cerebrum, cortex, and hippo-
campus, while small positive correlation coefficients
were detected in the cerebellum. This brain region
showed highly negative correlation between the uptake
values of [125I]iomazenil and [99mTc]HMPAO. Moderate

Fig. 3 SPECT imaging of [125I]iomazenil following LPS injection. SPECT coregistration with CT showing iomazenil uptake in a
control and b LPS-treated animals. c [125I]iomazenil uptake is significantly increased 5 h after the LPS injection in cerebellum
and hippocampus (*p ≤ 0.05—one-sided permutation test). Relevant changes were also observed and measured in the area of
cerebrum and cortex but these differences were not significant (p = 0.095, p = 0.138, respectively).
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negative correlations were found between [18F]FDG and
[99mTc]HMPAO uptake values in the cortex and
cerebellum.

Ex vivo glutathione level measurements showed no
significant changes (for details see Supplementary
Results).

Immunohistochemistry

The CD45 and P2Y12 double-labeling immunohistochem-
istry revealed microglial activation in response to systemic
inflammation within 4 h after LPS administration (Fig. 6
a–d). Both the percentage of activated/all microglia
(Fig. 6e) and the number of activated microglia/area
(Fig. 6f) were significantly (p G 0.01) higher in the LPS-
treated group compared to the control group in all
investigated regions.

Discussion
Tissue hypoperfusion is one of the hallmarks of sepsis
syndrome and the brain is not an exception. In humans,
decreased perfusion and impaired vascular autoregulation
have been reported by multiple authors [17, 35–37];
however, this mechanism seems to be controversial [1].
Our dual SPECT measurement showed reduced
[99mTc]HMPAO uptake in the brain of LPS-treated animals.
Similar distributions were observed both in the control group
and the LPS-treated group but the measured uptake
quantities were significantly reduced in the latter (Fig. 2a–
c). The decreased perfusion might lead to metabolic
imbalance and subsequent early and late phase adaptation
of glucose transport and utilization by the brain’s most
metabolically active cells, astroglia and neurons.

Cerebral metabolic alterations have been previously
suggested in SAE [38]. A decrease in cerebral glucose
metabolism measured with [18F]FDG-PET after 24 h

Fig. 4 PET imaging after LPS injection. Cerebral glucose transport and metabolism was measured by [18F]FDG. Summarized
PET signal during a 3 min time frame starting at 7 min post injection and ending at 10 min post injection of [18F]FDG is co-
registered with CT showing [18F]FDG uptake in a control and b LPS-treated animals. Arrows indicate example areas where the
difference in radiotracer uptakes between the two groups is visually discernable. c [18F]FDG uptake is significantly increased
6 h after the LPS injection in cerebrum—defined as the whole brain without the cerebellum, cerebellum, and cortex. Relevant
but not significant changes were registered in hippocampus (p = 0.057) (***p G 0.001—one-sided permutation test).
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following LPS injection in rats has previously been reported
[39]. In contrast, we have observed an early increase in
[18F]FDG uptake 5 h following the induction of systemic
inflammation in mice (Fig. 4a–c). Significantly enhanced
[18F]FDG uptake values were observed in the cerebrum,
cortex, and cerebellum (p G 0.05). Our measurements were

carried out on anesthetized mice to avoid introducing
additional variability resulting from an awake uptake phase
[40]. The opposite alterations in perfusion and [18F]FDG
uptake could be explained by two mechanisms: neuro-
vascular decoupling or the metabolic activity of microglia
and infiltrating immune cells. Decoupling during inflamma-
tion has been reported in both human [41] and animal
studies [42] but it would not fully explain the rise in
[18F]FDG uptake we measured. Both SAE and the LPS
model leads to an increased microglial activity and the
infiltration of peripheral immune cells in the brain. These
cells also express glucose transporters and can contribute to
[18F]FDG PET signal during neuroinflammation [43] mak-
ing them the most likely cause of the increased [18F]FDG
uptake we observed.

In order to be able to image two isotopes with SPECT in
the same animal at the same time, we used [125I]iodine.
Mouse imaging with [125I]iodine is a well-established
quantitative possibility even with minuscule injected activ-
ities such as 0.2 MBq per animal [44–47]. For [125I]iodine
containing radiopharmaceuticals, we used potassium

Fig. 5 Microglia activation was indirectly measured by [125I]CLINME uptake. SPECT coregistration with CT showing
[125I]CLINME uptake changes after a LPS-induced neuroinflammation compared to b the control group. Arrows indicate
example areas where the difference in radiotracer uptakes between the two groups is visually discernable. c [125I]CLINME
uptake is significantly increased 5 h after the LPS injection in the cerebrum (*p ≤ 0.05—one-sided permutation test).

Table 2. The average correlation coefficients in LPS treated and control
groups.

Brain region Correlated tracer uptake values Control LPS treated

Cerebrum [18F]FDG/[125I]iomazenil − 0.7023 0.9419
[18F]FDG /[99mTc]HMPAO − 0.2578 − 0.9859
[125I]iomazenil/[99mTc]HMPAO − 0.1907 − 0.9847

Cortex [18F]FDG/[125I]iomazenil − 0.9341 0.9985
[18F]FDG /[99mTc]HMPAO − 0.5212 − 0.9976
[125I]iomazenil/[99mTc]HMPAO 0.2411 − 0.9925

Hippocampus [18F]FDG/[125I]iomazenil − 0.8004 0.8544
[18F]FDG /[99mTc]HMPAO − 0.3207 − 0.9621
[125I]iomazenil/[99mTc]HMPAO − 0.2260 − 0.9636

Cerebellum [18F]FDG/[125I]iomazenil 0.2849 0.9775
[18F]FDG /[99mTc]HMPAO − 0.8212 − 0.8723
[125I]iomazenil/[99mTc]HMPAO − 0.8212 − 0.7495
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perchlorate to competitively inhibit iodine uptake of differ-
ent peripheral tissues via the sodium iodine symporter (NIS)
[48, 49].

Neuronal damage and cell death has been previously
described both in human SAE and animal models of sepsis
[2]. Neuron loss could be the mechanism leading to long-
term cognitive impairment observed in critically ill patients
[50]. Radiolabeled iomazenil and flumazenil are widely
regarded as nuclear medicine tracers indicating neuronal
integrity and neuron loss [51–53]. Surprisingly, our meas-
urements showed that [125I]iomazenil, a partial inverse
agonist of the central benzodiazepine receptor, has an
increased uptake in the brains of LPS-treated mice.
(Fig. 3a–c). In a previous study, Parente A. et al.

investigated the possibility of experimental neuroinflam-
mation influencing the cerebral pharmacokinetics of
[11C]flumazenil [54]. They observed no significant differ-
ences in radiotracer uptake between control and herpes
simplex encephalitis rats. Contrarily, our results suggest
that brain [125I]iomazenil uptake (a SPECT analogue of
[11C]flumazenil) can be directly influenced by neuroin-
flammation during the early phase of systemic inflamma-
tion. Several putative mechanisms could contribute to the
increased uptake. GABAA receptors are present on micro-
glia [55], astrocytes [56–58], and infiltrating immune cells
[59, 60]. Furthermore [125I]iomazenil can also bind to the
peripheral benzodiazepine receptor (TSPO) with micromo-
lar affinity which has an increased glial expression during

Fig. 6 P2Y12 and CD45 double-labeling immunohistochemistry before and after LPS treatment. Representative photomicro-
graphs from the hippocampus. All scale bars correspond to 50 μm. a P2Y12 brain immunostaining of control animals reveals
ramified, P2Y12+ microglia in all brain regions (parietal cortex, hippocampus, and cerebellum). b The CD45 immunostaining of
the same area reveals very low CD45 immunoreactivity. c P2Y12 staining reveals activated microglia cells with enlarged cell
bodies and thickened processes in LPS-treated animals (arrowheads). d Double labeling with CD45 shows the CD45low

expression of the corresponding cells (arrowheads). e The percentage of activated/all microglia based on morphology and
CD45 expression. f The number of activated microglia per brain area.
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neuroinflammation [61]. [125I]iomazenil as an ester type
molecule can be easily degraded by tissue esterase [62]. The
additionally injected neostigmine (cholinesterase enzyme
blocker in order to enhance plasma stability of [125I]ioma-
zenil) could have increased the availability of [125I]ioma-
zenil in the brain making low affinity TSPO binding more
likely. Since all of these non-neuronal mechanisms that
arise during neuroinflammation can play a role in the
measured signal, [125I]iomazenil is an unreliable marker of
neuronal damage in the LPS model and also possibly other
models of sepsis. On the other hand, these results raise
important questions regarding the GABAA system
during neuroinflammation and a potential role for
[125I]iomazenil as an immune system-related radiotracer of
neuroinflammation.

Various studies have confirmed the presumed role of
TSPO as a marker of neuroinflammation [63, 64] based on
its up-regulated expression on microglial cells, astrocytes,
and increased ligand binding after neural damage [65] but its
exact functional role is unknown [66]. In our experiments,
we applied [125I]CLINME for TSPO imaging. In the LPS-
treated group, significantly enhanced (p = 0.05)
[125I]CLINME uptake values were measured in the cere-
brum, and a marked, but statistically not significant
enhancement in the other brain regions of the treated group
(Fig. 5a–c). The lack of significant results is most likely due
to the low signal-to-noise ratio of our measurements
resulting from the combination of low injected activity and
small regions of interest. Due to the larger size of the
cerebrum VOI, the noise has a lesser impact on the activity
measured there. Elevated TSPO expression in LPS-induced
systemic inflammation has also been observed in non-human
primates [67] and human subjects [68].

The results of the correlation studies (Table 2) outline that
the brain region-specific pairwise correlation of [125I]ioma-
zenil, [99mTc]HMPAO, and [18F]FDG uptake values is
different between the control and LPS-treated group.
The brain region dependence of correlation coefficients is
much lower in the LPS-treated animals than the controls.
In healthy animals, [18F]FDG, [125I]iomazenil, and
[99mTc]HMPAO uptake mostly depends on cerebral glucose
metabolism, GABAA receptor density, and cerebral perfu-
sion, respectively. In the LPS-treated animals, the highly
positive correlation between [18F]FDG and [125I]iomazenil
uptake in all investigated brain regions suggest that
inflammatory processes could indeed influence both of these
values as discussed earlier. Further supporting this hypoth-
esis, microglia activation was also significantly elevated
regardless of brain region (based on IHC and [125I]CLINME
SPECT results). The highly negative correlations between
[99mTc]HMPAO and [18F]FDG or [125I]iomazenil also fit
into this idea if we assume that cerebral hypoperfusion could
indicate the severity of inflammation and thus correlate with
the metabolic activity and activation state of microglia and
infiltrating immune cells that positively contribute to
[18F]FDG and [125I]iomazenil signal.

As there were no differences in ex vivo glutathione state,
we presume time course of GSH-GSSG transformation
seems to be too quick to separately measure GSH and
GSSG levels by the applied Glutathione Detection Kit.

P2Y12 and CD45 double-labeling immunohistochemical
(IHC) studies proved the activation of microglia in all the
examined brain regions of the LPS-treated animals (Fig. 6).
The metabotropic purinergic receptor P2Y12 is expressed by
resting and activated microglia which can be used to
distinguish them from other CNS cells or myeloid lineage
cells (e.g., recruited leukocytes) [69, 70]. Although its
expression levels were shown to highly depend on the
activation and polarization states of microglia [49, 71], here
it was used only to identify them and assess their
morphology. CD45 is a cell surface glycoprotein expressed
in all nucleated hematopoietic cells [72]. It has been shown
that CD45 expression is up-regulated in activated microglia
in different diseases and models [73–76]. By assessing the
morphology and CD45 immunoreactivity of microglia, we
were able to distinguish between activated and resting cells
with a high degree of certainty.

Conclusion
In conclusion, we have described the brain region-specific
uptake of a set of widely used radiotracers ([99mTc]HMPAO,
[125I]iomazenil, [18F]FDG) during the early phase of LPS-
induced murine systemic inflammation. Our results suggest
that inflammatory processes can directly contribute to the
uptake of [125I]iomazenil and [18F]FDG masking the
neuroinflammation-induced neuron damage and hypometab-
olism of neural tissue, respectively. Furthermore, we have
showed that [99mTc]HMPAO and [125I]CLINME can be
used to detect cerebral hypoperfusion and microglia activa-
tion, respectively, as early as 4 h following the i.v. injection
of LPS. Further investigation of the metabolic activity of
different brain cells and the status of the GABA receptor
system of infiltrating immune cells would be necessary to
determine the exact source of the measured signal differ-
ences during the early phase of systemic inflammation.
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