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1. Introduction
1.1. Small Cell Lung Cancer
1.1.1. Epidemiology

While there has been remarkable progress in the treatment of many cancers, lung
cancer, especially of the small cell type (SCLC), remains a very present and widespread
problem, with over 2 million new cases worldwide expected yearly [1]. Even though a
decrease in the number of smokers resulted in a slight decrease in incidence (1.1%/yr in
men and 2.6%/yr in women) observable since 2006, in 2023, lung cancer is still estimated
to become the second most common type of cancer in the US (over 12% of all cases) [2].
It also has local importance: the 2018 GLOBOCAN survey has shown that Hungary has
one of the highest (age-standardized) incidence rates of lung cancer in both men and
women, exceeding the world average by a factor of 2.46 and 2.81, respectively [1]. The
most important risk factor is smoking, with over 80% of cases of lung cancer directly
attributed to smoking [2], and 97-98% of SCLC sufferers being smokers [3,4].

In addition to its high prevalence, the progress of therapeutic options is slow, and
the prognosis of patients remains disheartening. From the 80s, for three decades we saw
no major improvement in clinical practice and survival rates stagnated [5]. According to
the data collected in the US by the Surveillance, Epidemiology, and End Results Program
(SEER), the 5-year survival rate for SCLC patients showed no significant change between
2004 and 2018, except for cases where it was diagnosed in the localized stage (and only a
0.8 pp/yr average increase there), but these account for only 6% of cases [6]. An analysis
linking the SEER data with the registry of the National Death Index has concluded that
any drop in mortality due to SCLC that could be observed between 2001 and 2016 is only
a result of changes in incidence rates [7].

With classic chemotherapy (carboplatin + etoposide, see ch. 1.1.3.), median
overall survival (OS) is only 10.3 months, with median progression-free survival (PFS) at
4.3 months in extensive-stage SCLC [8]. The advent of immunotherapy has brought
considerable advancement in the case of many cancer types, but if it holds any
breakthroughs for SCLC, we have yet to uncover them. The addition of atezolizumab, an
immunotherapeutic that has just recently been made part of standard care (see ch. 1.2.3.),
improves the previous numbers statistically significantly, but to an extent that is only

slightly relevant clinically (to 12.3 and 5.2 months, respectively) [8].
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1.1.2. Biomarkers

The mutations most often found in SCLC are those resulting in a loss of function
of TP53 and RB1, two known tumor suppressor genes, directly or indirectly. These are
present to the extent that some consider them obligatory. In addition, mutations in EP300,
CREBBP, TP73, NOTCHI, -2 and -3 are nearly exclusive of each other and together
cover approximately 60% of SCLC cases. Copy number amplification of MYC family
genes is also frequent [9]. Unfortunately, loss of function mutations are hard to translate
into a druggable target. Overexpression of cMYC has been associated with the
effectiveness of CHK1 inhibition [10].

In addition to general markers, it was recognized as early as the 80s that there are
subtypes of SCLC that show differential expression of several genes [11], among which
the role of neuroendocrine (NE) genes has also been long since recognized [12]. However,
this observation was mostly shelved for about 30 years, with only sporadic mention or
usage in research, until with the advent of advanced sequencing techniques in the 2010s,
the idea was finally revisited. There are two major approaches to subtype classification
from this perspective. The first focuses on key transcription factors, mainly NEURODI,
ASCL1, POU2F3, and YAPI [13-15]. The second utilizes a wider portion of the
expression pattern and recognizes NE-high and NE-low clusters [16]. It has been shown
that the two classifications are not independent, with NEUROD1 and ASCL1 associating
with NE-high status [17]. We have followed a binary, NE-based classification in our
studies.

The lung immune prognostic index (LIPI), calculated from serum lactate
dehydrogenase (LDH) level and derived neutrophil-to-lymphocyte ratio (INLR) has also
been shown to have prognostic value regarding OS in all stages, and PFS in extensive
SCLC [18]. A low NLR on its own also associates with longer OS [19]. The amount of
necrosis in the tumor is associated with survival rate, with a high (10%+) ratio of necrosis
providing a hazard ratio of 2.87 [20]. Tumor mutational burden (TMB) is also considered,
mostly in relation to immunotherapies (see ch. 1.2.3.) but shows mixed results. A clinical
trial of atezolizumab reported no predictive power [21]. A retrospective analysis of the
KEYNOTE-158 study of pembrolizumab found an increase in objective response rate

(ORR, 29% vs. 6%) in high-TMB patients [22].
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1.1.3. Clinical practice

While there is progress in research, many new findings have yet to be translated
into the field of patient care: neither the official classification of lung carcinomas [23], nor
recognized treatment options [24] take into account the heterogeneity within SCLC.
Currently, the 8th version of the TNM system (Tumor, lymph Nodes, Metastasis) is used
for staging SCLC. In addition, the categories of limited or extensive stage are also used to
inform clinical decisions [24]. Limited stage (LS) SCLC is defined as lesions that can be
encompassed within a reasonable radiation field and overlaps with clinical stages [-IIA
(up to T2, NO, MO0), and possibly IIB-IIIC (N1-3, MO0), depending on the position of the
affected lymph nodes. Less than 5% of diagnoses are made in the limited stage. This is due
to the fact that LS-SCLC is most often asymptomatic and therefore detected late. SCLC
also progresses very rapidly, so that the patient has a LS malignancy for only a relatively
short time. Thus, systematic screening would be the main way to improve early detection
rates. At present, however, these do not show considerable benefits. Even after CT
screening of patients selected on the basis of risk factors, only 14% of patients with SCLC
were detected in the limited stage [25]. Extensive stage (ES) SCLC is defined as lesions
that extend beyond a reasonable radiation field, and thus can correspond to clinical stages
[IB-1V and is definitively the diagnosis if distant metastases are present (M1).

While in select cases of LS-SCLC, lobectomy is considered as a treatment option,
surgical resection is not supported as a general option [26,27]. For most patients, systemic
therapy with concurrent radiotherapy (chemoradiotherapy, or CRT) remains the
recommended care. For this a regimen of cisplatin and etoposide is the foremost option in
LS-SCLC and can be considered for ES-SCLC too, though carboplatin-etoposide with
atezolizumab or durvalumab is preferred in that case [24]. The clinical use of the
combination of cisplatin and etoposide dates back to 1985 [28]. Cisplatin and carboplatin
are platinum complexes with an antimitotic effect, due to their ability to create DNA
crosslinks, that differ mainly in their toxicity profile [29,30]. Etoposide is a topoisomerase
IT inhibitor that creates double-stranded DNA breaks [31,32]. Atezolizumab and
durvalumab are immune checkpoint blockers (ICB) targeting PD-L1 and have only been
part of standard care very recently (FDA approval came in 2019 and 2020, respectively
[33]), supplementing platinum and etoposide combination chemotherapy (see ch. 1.2.3.).

An early start of definitive thoracic radiotherapy (RT) is recommended, supported by

11
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diagnostic and imaging techniques to better target the tumor and minimize the irradiation
of other organs and thus the side effects. In inoperable cases a more focused and intense
irradiation regimen (stereotactic ablative RT, a.k.a. SABR) can be utilized, targeting the
primary tumor site or metastases [34]. Brain metastasis is a common complication and is
frequently already present at the time of diagnosis. If it is not, prophylactic cranial
irradiation (PCI) can be applied in LS-SCLC, with the aim of preventing brain metastases.
Meta-analysis of data from the late 20th century has shown improvement in 3yr OS [35],
but more recent studies have contested these conclusions [36], and alternatives are being
explored due to the negative cognitive effects of brain irradiation. Official guidelines also
call for caution in the application of PCI [24,37].

1.2. Tumor Immune Microenvironment

When cells undergo a cancerous transformation, its effects are not limited to those
cells themselves and results in a complex process that markedly changes their
surroundings. The change in phenotype, including cell surface and secreted molecules,
brings about the development of the so-called tumor microenvironment (TME) in the
adjoining tissue. The TME is divided into the tumor nest, directly between the neoplastic
cells, and the stroma around it, composed of non-cancerous cells (e.g., fibroblasts,
mesenchymal cells) and the extracellular matrix (ECM) maintained by them. As the
situation progresses, various immune cells might also infiltrate either or both areas. The
number and composition of these cells is crucial to the development of the tumor, and thus
this aspect of the TME is often referred to as the tumor immune microenvironment
(TIME).

The importance of the tumor (immune) microenvironment is becoming ever
clearer. Beyond (and in some sense before) therapeutic approaches, this also has
considerable impact on the experimental investigation of cancer. The adequacy of
laboratory cell lines used out of context is being questioned, with some studies showing
that the environment exerts more influence on the cells than their tissue of origin [38].
There are some attempts at preserving or recreating the TME, like patient-derived
organoids [39], but in vitro studies are still challenging.

In the following subchapters I will first give a brief overview of the humoral and
cellular components of the TIME to showcase both the individual elements and their

interconnectedness, then explore its translational relevance.
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1.2.1. Cytokines

Various small molecule transmitters are present in the TME, mediating the
interaction between the tumor and the immune system. As such, some are secreted by the
tumor cells themselves, others in reaction to those by surrounding cells, as the
microenvironment takes shape.

Cytokines produced by the tumor can cause major alterations to the function of
immune cells. Many tumors interfere with the maturation of monocytic cells, among
others by producing VEGF, IL-6 and M-CSF, leading to the creation of improperly
developed myeloid cells that lack proper MHCII expression and antigen presentation
function (myeloid-derived suppressor cells, MDSC) [40,41]. The high levels of adenosine
and hypoxic conditions can push macrophages toward an M2-like polarization
(see ch. 1.3.3.) [42], and lead DCs to expressing VEGF, IL-6, IL-8, IL-10, COX-2, TGFf
and IDO [43]. DCs co-cultured with NSCLC also exhibit lower levels of TNFo and IL-12,
which together with TGFf and IDO lead to a lower number of IFNy-producing Thl cells,
and an increase in immunosuppressive Treg cells in the TME [44,45].

In addition to the modulation of immune functions, cytokines can also affect
tumor progression. In breast carcinoma, production of M-CSF has been shown to be
necessary for metastasis, acting via the recruitment of macrophages [46]. In NSCLC,
TGFp is a major factor in triggering epithelial-mesenchymal transition (EMT), an early
step in metastasis, with IL-6 enhancing its effects [47].

It is important to recognize that cytokine function is not necessarily absolute and
can be heavily dependent on context [48]. CXCL10 has been shown to exhibit
anti-angiogenic properties in melanoma [49], and to in addition inhibit metastasis in
NSCLC [50], but has also been identified as a promoter of metastasis in colorectal cancer
[51]. The role of TNFa in the TME is also not straightforward. As the name suggests, it
was first described as a molecule capable of inducing tumor cell death [52], and it is still
being explored as a potent co-factor in combination immunotherapy [53]. On the other
hand, it can be secreted by tumor cells or induced by them in monocytes and has been
shown to cause elevated PD-L1 expression in myeloid cells, hindering innate antitumor
responses and immunotherapies [54]. It can also enhance TGFB-mediated EMT [55], and
TNFo’~ mice were shown to be more resistant to skin tumors [56]. Even more concrete

effects can be differentially modulated by the same cytokine. IL-10 has been shown to

13
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both enhance CD8" T cell function [57], and to hinder it with the involvement of myeloid
cells [58].

The above is only a fraction of all effects and connections established by cytokines
in the TME, but even from this we can get a glimpse of the complexity of the system.
Together with other clinical factors, like short half-life, narrow therapeutic window (i.e.,
timeframe in which application is effective), and adverse effects related to
immunosuppression, this leads us to the conclusion that cytokine monotherapies in
general are ineffective as a treatment option in (esp. advanced stage) cancer [59]. This is a
trend in therapeutic intervention that our findings presented herein also reinforce

(seech.4.3.2)).
1.2.2. Immune Cells

Proper characterization of the immune cell content of the TME is crucial. Indeed,
this information has been found to be better at predicting clinical outcomes than clinical
staging (TNM) in certain cases [60]. The overall level of immune infiltration is an
important factor and can be referenced in multiple ways. A TME with low infiltration is
sometimes called cold or immune-desert, with high infiltration referred to as hot or
immune-oasis. Additional categories are also described sometimes, like ones with
lymphoid-like structures attached to the tumor site [61]. These have a crucial impact on
the effectiveness of immunotherapies (see ch. 1.2.3.).

In addition to the amount of immune cells, the presence of the various types and
subtypes of lymphocytes and myeloid cells modulates tumor progression. As a rough
outline, properly activated Tl cells, cytotoxic CD8" T cells (CTL), plasma cells and
MI1-like macrophages are able to target and eliminate tumor cells, while regulatory
lymphocytes (Treg, Bree), MDSC and M2-like macrophage cells are immunosuppressive
and thus can be tumorigenic. But as we will see in the following paragraphs, reality is
more nuanced.

The helper subgroup of T lymphocytes (Ts) are coordinators of the immune
response, mainly by modulating the cytokine milieu. Their various classes have markedly
different profiles. Th1 cells are induced by IFNy and IL-12, and produce IFNy, IL-2 and
TNF [62]. Tn2 cells develop as a response to IL-4, and express IL-4, IL-13, and IL-6 [63].
Twl7 cells are induced by TGFp and IL-6 [64], and secrete IL-17, GM-CSF, TNFa [65]
and IL-22 [66].

14
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CD8" T cells are often referred to as cytotoxic T lymphocytes (T., CTL), and
treated as effector cells capable of attacking tumor cells, associated with better prognosis
[67]. Generation of cytotoxic CD8" cells is induced by IL-12 and IL-2, and repressed by
IL-4 [68,69]. As they express and are repressed through CTLA-4 and PD-1, they are one
of the main targets of ICB therapies [70—72]. However, care must be taken when
evaluating this population in the TME. There are multiple subtypes of this group, and not
all of them are tumor suppressive [73]. In addition, even the presence of tumor antigen-spe
cific, IFNy-producing CD8" cells can be insufficient in preventing recurrence [74]. The
ratio of CTLs specific to tumor antigens can also be as low as 10% [75,76].

Another subset of T lymphocytes is what is known as regulatory T cells (Te).
These are CD4°'CD25FoxP3" cells, usually associated with immune tolerance and
suppression [77,78]. They are a part of the physiologic T cell repertoire but can also be
induced in specific environments (like the TME) and can acquire non-suppressive
functionality too (producing IFNy and IL-17) [79]. Induction involves TGFf and IL-10
[80,81]. Tr,-s execute their inhibitory function via multiple pathways. They are able to
suppress DC activity through surface expression of the MHCII receptor LAG-3 [82],
hinder CTL function by modulating IL-2 [83], show cytotoxic activity against effector
cells via granzyme and perforin [84], and express immunosuppressive molecules like
CTLA-4, TGFp and IL-10 [85,86].

Various types of B lymphocytes can also be found in the TME and associated
lymphoid tissues, with their presence having a differing impact on prognosis [87].
Specific antibodies can mark tumor cells and trigger attacks from other immune cells:
antibody-dependent cellular cytotoxicity (ADCC), mainly from NK cells [88-90], and
antibody-dependent cellular phagocytosis (ADCP), mainly by macrophages [91]. B-cells
also have antibody-independent functions. Certain subsets are able to produce IFNy and
IL-12, activating other immune cells, but also granzyme B and TRAIL, directly attacking
tumor cells [92]. B lymphocytes can also stimulate T cells by acquiring a level of APC
function [93], and via expression of the surface molecule CD27 [94]. On the other hand, a
subset often termed regulatory B cells is present in multiple types of cancer and shows
pro-tumorigenic functions, like promotion of T, formation [95], for which a direct
interaction with tumor cells (via CD40/CD154) may be responsible by induction of IL-10
and TGFp expression [96].
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Dendritic cells (DC) are myeloid cells with APC function that can derive from
both bone marrow precursors and circulating monocytes [97]. Mature DCs are often
found in the peritumoral or stroma areas and in interaction with lymphocytes. However, in
different cases this has both been reported as a factor associated with longer survival [98],
and impeding cytotoxic T cell function [99]. This discrepancy might be explained by the
existence of a CD103" subgroup induced by GM-CSF that is able to stimulate CTLs,
while other DCs cannot [100].

There is also a category of myeloid cells that seems to be activated but immature.
Myeloid derived suppressor cells (MDSC) are CD33" cells that can present with
polymorphonuclear or monocytic morphology [101], and have been shown to correlate
with tumor progression [102]. They are not a homogenous group, rather defined by their
lack of differentiation into another myeloid effector type and immunosuppressive effect
[103,104]. They hinder T lymphocytes via depletion of L-arginine [105-107], and
secretion of nitric oxide (NO) [108]. Through production of IL-10, they are able to push
TAMs towards an M2-like phenotype and lower their secretion of IL-12 [109]. MDSCs
are also angiogenic, producing MMP9, and even able to take on endothelial properties
[110].

Previous work in our group has investigated the immune infiltration of SCLC,
with a focus on T lymphocytes (CD3", CD8") [111]. Here, we aim to expand on those
findings by characterizing the myeloid cell population of the SCLC TME.

1.2.3. Immunotherapy

Historically, the treatment of cancers has largely focused on the direct targeting of
tumor cells, even though there were some early therapies that aimed at the activation of
the immune system. Like Coley’s toxins, developed at the end of the 19th century, based
on the observation of the effects of a Streptococcal infection on cancer patients [112]. In
1976, application of the BCG vaccine was reported to lower the recurrence of bladder
cancer [113]. However, these failed to gain traction in the medical community until the
1990s, when the development of the first immune checkpoint blockers (ICB) spearheaded
the current renaissance of tumor immunology, leading to the 2018 Nobel prize [114].

Most of ICB drugs to date are monoclonal antibodies (denoted with a -mab suffix
in their name) that focus on one of two receptors and their interactions with ligands:

programmed cell death protein 1 (PD-1 or CD279) with either programmed
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death-ligand 1 (PD-L1 or CD274) or PD-L2 (CD273) or cytotoxic T lymphocyte
associated protein 4 (CTLA4 or CD152) with either CD80 or CD86 (a.k.a. B7-1 and
B7-2, respectively). Both receptors are expressed prominently (but not exclusively) on T
lymphocytes [115].

The PD-1 pathway is critical for establishing immune tolerance, and defects lead
to the development of autoimmune diseases [116,117]. Upregulated expression of the
ligands on cancerous cells is able to trigger these defensive mechanisms and aid in
immune escape. High expression of PD-L1 is common in hot TIMEs, and ICB targeted at
the PD-1/PD-L1 interaction generally associates with better response [118]. Some of the
more promising drugs inhibiting this pathway are nivolumab and pembrolizumab,
targeting PD-1, and atezolizumab and durvalumab, targeting PD-L1. In the case of
non-small cell lung cancer (NSCLC) the phase 3 trial of nivolumab has shown a 50%
increase in progression-free survival [119], and there are studies reporting a remarkable
increase in OS in 50%+ PD-L1" tumors treated with pembrolizumab (14.2 to 30 months)
and atezolizumab (13.1 to 20.2 months) [120], and a 44% increase in PFS (15.6 to 22.4
months) in 1%+ PD-L1" tumors treated with durvalumab [121].

Interestingly, in contrast to NSCLC, in SCLC, PD-L1 expression as a predictive
biomarker of responsiveness to immune checkpoint blockade is questionable, with
conflicting and difficult to compare results. Joint analysis of two studies investigating
pembrolizumab as a third-line treatment indicated a positive connection between marker
expression and responsiveness [122]. But other clinical trials, of using atezolizumab [21],
durvalumab [123], and pembrolizumab [124] as first-line treatment in ES-SCLC, reported
no correlation between PD-L1 expression and benefit to patients. PD-L1 expression also
shows no correlation with molecular subtypes of SCLC [125].

Atezolizumab and durvalumab have recently been introduced to the standard care
of SCLC. While data from their use in a broader scope is yet unavailable, in clinical trials,
the two show effects of a similar magnitude on median OS (10.3 to 12.3 and 10.4 to 12.9
months, respectively) and PFS rate (6.4% to 14.9% and 5.3% to 17.9% at 12 months,
respectively) [8,126]. The indication of pembrolizumab and nivolumab for SCLC was
withdrawn in 2021 and 2020, respectively, by their manufacturers after failing to meet
primary endpoints of OS required to prolong their status after accelerated approval from

the FDA [127,128].
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The most likely mechanism of action for CTLA4 is by competing for ligands with
the stimulatory receptor CD28 [129]. Either in NSCLC or SCLC, clinical trials of the
CTLA-4 blockers tremelimumab and ipilimumab have not shown decisive results
(NSCLC: [130,131], SCLC: [126,132,133]).

1.3. Macrophages

1.3.1. Development

Immune cells that perform phagocytosis as their main purpose are widespread
throughout higher life forms: even in insects that have only three varieties of immune
cells, one is a phagocyte [134], and mononuclear phagocytes can be found in all
vertebrates [135]. In humans there are resident macrophages in nearly every type of tissue,
derived from embryonic precursors, and bone marrow derived monocytes can also
extravasate and differentiate into macrophages [136,137]. At first it was theorized that
these circulating monocytes are the source of the tissue resident populations, but it has
been shown that they are established prenatally and sustain themselves [138]. These local
populations show differential gene expression based on their tissue of residence, showing
the remarkable adaptive potential of macrophages [139].

1.3.2. Function

The main physiological functions of macrophages are:

Phagocytosis

Interfacing with the adaptive immune system, including antigen presentation

Modulation of inflammation

Aiding tissue remodeling, and wound healing

Phagocytosis itself can serve multiple purposes. This process aids in the cleanup
of unnecessary structures during development and the remains of dead cells, as well as the
removal of bacterial invaders. It also serves as the basis of the macrophages’ function as
antigen presenting cells (APCs). They are capable of expressing MHC class II molecules
on their surface and interact with various lymphocytes to direct the adaptive response
[140]. On the other hand, they are also capable of suppressing T cell proliferation, mostly
via cytokine production [141]. This inherent duality is also present in their relation to
inflammation. When presented with pathogen-associated molecular patterns (PAMP)
through surface molecules, like various toll-like receptors (TLR), they release

inflammatory cytokines (e.g., IL-1B) [142]. But they are also able to act in an
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anti-inflammatory capacity, e.g., by secreting TGFP [143]. During wound healing they
take up and degrade collagen [144], modulate the development of stem cells [145], and
induce the proliferation of epithelial cells via IL-10 [146].

This variety and variability makes them key components of the TME, and most of
these functions should be considered when evaluating their role in cancer. They might
work as effector cells as phagocytes, initiate adaptive responses via their APC function,
and influence inflammation and angiogenesis [147]. They can affect not only the growth
and status of primary tumors but can have a profound impact on the formation of
metastases, with some considering macrophage involvement obligatory [148].

1.3.3. Polarization

Differentiation into a macrophage is not the last step in the development of these
lines of mononuclear cells. As the cell senses its surroundings and adapts to its particular
needs, another series of changes takes place, termed polarization. More than a simple
response to a given stimulus, like cytotaxis, this reaction to the extracellular milieu
involves considerable changes to gene expression and the overall function of the cell
[149,150]. As it displays more plasticity, it is not classified as another step of
differentiation, but it is nevertheless crucial in defining the role and effects of the cell.

It has been known for some time that different cytokines are able to induce
monocyte to macrophage differentiation and that they have a differential effect. As far
back as 1988, te Velde describes the effects of IL-4 in contrast to [FNy [151]. That this
effect can go beyond modulation of a single activation program was expressed by Stein
and colleagues, who termed it “alternative activation” [152]. The idea started to mature in
the mind of the scientific community, and we encounter the nomenclature of M1 and M2
macrophages, based on the Ty1- or Ty2-biased environment that produced them, first in
2000 [153]. The former is characterized by producing nitric oxide (NO) via expression of
the inducible nitric oxide synthase (iNOS), and in general promotes an inflammatory
response. The latter secretes ornithine, and in general serves a tissue regenerative
function. Soon after, the concept was further refined with the identification of subtypes in
the M2 group, with Mantovani and colleagues proposing the terms M2a, M2b and M2c
[154]. With the rise of high-throughput techniques the process could be examined with

even greater resolution, breaking up the discrete subgroups. Based on transcriptomic
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analysis, Xue and colleagues have described the results of polarization as falling on a
spectrum [155].

While it is not the most sophisticated level of description, even the distinction
between M1 and M2 is important in the context of oncology. Studies that do not specify
polarization status can associate macrophage infiltration with good or poor prognosis, but
if it is taken into account, we can see that the presence of M1-like cells correlates with

more positive outcomes, while M2-like cells are linked to poorer outcomes [156].
1.3.4. Therapeutic Repolarization

As research delved more into the different states of macrophages, it was also
discovered that polarization is not terminal, but that a change in the molecular
environment can result in adaptive alterations [157]. This also means that repolarization
by therapeutic intervention can be a valid option in disease conditions supported by
suboptimal macrophage populations, like chronic inflammation [158] or cancer [159].

However, this field of research is still young. Based on a search of available
articles (on pubmed.ncbi.nlm.nih.gov, keywords: macrophage repolarization tumor),
there are sporadic mentions before 2017 (5.4% of articles), but the intentional exploration
of this approach has only picked up after 2019 (78% of articles).

A recent review of the field highlights the importance of the Jak/STAT, PI3K/Akt
and NF-kB pathways, and reports some promising results concerning the CD47/SIRPa
pathway as targets of repolarization therapy [160].
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1.4. Computers in Medicine

1.4.1. Drug repositioning

The development of new drugs is costly, both in time and money. With the
advancement of computer technology various options became available to streamline the
process [161]. Based on chemical structure the ADMET (absorption, distribution,
metabolism, excretion and toxicity) parameters of large libraries of small molecules can
be estimated [162]. Indications and effect profiles can be predicted before a single
molecule is synthesized [163]. As our data storage capabilities also increased, collection
of experimental data into massive databases became available, for both small molecules
(like DrugBank [164] and PubChem [165]) and proteins (like UniProt [166] and HPRD
[167]), that can serve as the basis of high throughput in silico methods.

In addition to the discovery of novel molecular entities, in recent decades drug
repurposing, i.e., approval and usage of existing compounds for new indications, has
gained prominence. While this has also started with the employment of classical clinical
analysis, it was mostly reliant on serendipitous discoveries of side effects (e.g., using
aspirin in the treatment of cancer [168,169]). Our group has previously evaluated the
effectiveness of aspirin, statins and other drugs with purported repositioning potential in
cancer specifically for SCLC, based on clinical data [170]. High throughput in vitro
methods for screening were developed, but since in silico techniques aiming to predict
effect profiles work the same for approved molecules and novel ones, they require no
special adjustments and present a more easily applicable toolset for systematic screening
efforts [171].

1.4.2. Modeling biological systems

Approaching the drug-organism interaction from the other direction, modeling the
reaction of biological systems to outside intervention can highlight molecular targets, as
well as provide insight into the nature of the unperturbed system. Databases of potential or
extant drugs can then be scanned for agents capable of modulating the behavior of the
novel targets.

One fairly intuitive way of computationally representing complex systems is
through networks. This approach emerged from the mathematical field of graph theory
and has gained ground in the early 2000s [172,173]. Focusing on the interconnectedness

of components, rather than the mechanism of those interactions, provides a level of
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abstraction that bypasses hard to measure biochemical parameters, but nevertheless
reveals useful information about the system [174]. It also allows for the easy investigation
of the perturbation of multiple targets at once, which is crucial in the understanding of the
complete effect profile of a given drug and in the development of combinatorial therapies
[175].

In the specific case of macrophage polarization, we are investigating a process that
enables the cell to adapt to the needs of its surroundings. If we aim to study it, we have to
create a model of that environment. Doing so comprehensively in vitro would mean
coculturing multiple different cell types, adding numerous small molecules to the medium
and monitoring them [176]. That is why most researchers focus on the effect of a few
specific signals, outside the broader context present in vivo [177,178]. Using a
computational, in silico, model circumvents those problems, as it gives us full control of

the experimental conditions.
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2. Objectives

® Characterize the immune cell population (especially TAM and MDSC) of the
SCLC TME, according to neuroendocrine subtypes and localization in tumor

compartments to identify influential cell types suitable for modulation.

® Analyze the gene expression patterns of SCLC to identify molecular targets in
tumor subtypes according to immune cell infiltration and neuroendocrine (NE)

marker expression status (low vs high).

® Build an in silico model of tumor associated macrophage polarization in response
to cytokines and other small molecule transmitters in the tumor microenvironment

to facilitate cancer research and therapy development in the field.

® Identify elements of signal transduction in macrophages as potential drug targets
in order to modulate the polarization process, and counter or diminish the

immunosuppressive effect of macrophages in the TME.

® Evaluate, in silico, the potential of combination therapies versus the single-target

approach in macrophage repolarization.
® C(reate a user friendly and collaborative platform collating and presenting the

latest drug target information to enhance SCLC drug target validations and drug

repurposing.
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3. Methods
3.1. Exploring the Microenvironment of SCLC
3.1.1. Patient Population

In our retrospective study, we included surgically resected and histologically
diagnosed samples from 1978 to 2013, collected at the National Koranyi Institute of
Pulmonology (Budapest, Hungary). Of the 219 samples available, matched lymph node
metastases were included in 32 cases, and we focus our study on the analysis of these
paired samples. A board-certified pathologist has histologically confirmed the diagnosis
of SCLC. 27 patients had stage I or stage II SCLC, the remaining 5 had stage IIIA. An
exploration of the clinicopathological characteristics has been previously reported [179].
3.1.2. Sample Preparation

Formalin-fixed, paraffin-embedded (FFPE) tissue samples were prepared
immediately after the resection procedure. Fixation was performed in 4% formalin for 2
hours in room temperature, followed by an additional 48 hours in 4°C and then embedding
into paraffin blocks. These FFPE blocks were used in the construction of a tissue
microarray (TMA), according to previously described protocols [180]. The specifics in
our study were as follows. We created 5-micron sections with an HM-315 microtome
(Microm, Boise, ID, USA), which were then placed on charged glass slides (Colorfrost
Plus, #22-230-890, Fisher, Racine, WI, USA). A board-certified pathologist reviewed the
slides and identified tumor borders after staining with hematoxylin and eosin on an
automated platform (Tissue-Tek Prisma, Sakura, Osaka, Japan). 1-mm punches were then
taken from donor tissue blocks, 2 each from primary tumors and 1 each from lymph node
metastases (MP10 1.0 mm tissue punch on a manual TMA instrument, Beecher
Instruments, Sun Prairie, WI, USA). These were seated into a paraffin block in a

positionally-encoded array format.
3.1.3. Immunohistochemistry and - fluorescence

For the purpose of immunohistochemistry 5-micron slices were cut from the TMA
blocks and then processed using a Leica Bond RX autostainer. The following antibodies

were used:
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e against CD68: used as a pan-macrophage marker, mouse monoclonal (diluted

1:300, ab201340)

e against CD163: used as an M2 marker, rabbit polyclonal (diluted 1:400, ab87099)

e against CD33: used as an MDSC marker, mouse monoclonal (diluted 1:200,

ab11032)

All three were purchased from Abcam (Cambridge, UK). The Bond Polymer Refine
Detection kit (#DS9800) was used to stain the slides, according to Leica IHC Protocol F.
Epitope retrieval was performed by a 20 minute exposure to the epitope retrieval 1 (low
pH) solution. A Tissue-Tek Prisma automated platform was used to perform clearing and
dehydration of the slides, followed by cover slipping with a Tissue-Tek Film coverslipper.
In the case of double stainings, the InmPRESS® Duet Double Staining Polymer Kit
(MP-7724, VectorLabs, Burlingame, CA, USA) was utilized, with the HRP Anti-Mouse
IgG-brown, and AP Anti-Rabbit [gG-magenta secondary antibodies, counterstained with
hematoxylin.

Double immunofluorescence was performed with secondary fluorescently labeled
antibodies Alexa 488 anti-rabbit IgG and Alexa 546 anti-mouse IgG (Invitrogen,
Carlsbad, CA, USA), targeting epitopes of CD68 and CDI163, respectively.
Autofluorescence was eliminated with TrueBlack® Lipofuscin Autofluorescence
Quencher (Biotium, Fremont, CA, USA) from FFPE samples.

3.1.4. Cell Counting and Analysis

We used an Olympus BX53 upright microscope to capture images of TMA
sections. 20 MP resolution images were taken with a DP74 color CMOS camera, using
10x and 20x magnification objectives. The Olympus CellSens Dimensions Software
package was used for morphometric analysis. Area annotation was performed manually,
as described in, indicating the tumor nest and stroma [111]. To summarize, sections from
two separate punches were retrieved for primary tumors, and one for metastases to create
the TMA-s. Two different Sum slices, at least 100um apart, were quantified from all
TMA blocks. Readings from different slices of the same TMA punch were averaged.
CD45", CD3", CD68" and CD163" cells were manually counted by two independent
observers, using the cell counter plugin of ImageJ [181]. Due to the low cell density,
records of CD33 expression were binned (0 / 1-10/11-20 / 21+). MHCII expression was

described with an ordinal categorical scale, ranging from 0 to 4.
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We have defined high and low levels of immune infiltration, based on CD45" and
CD3" cell density measured previously by our group [111]. We implemented a threshold
taking into consideration the distribution of values observed in our samples and their
median absolute deviation (MAD). To be classified as an infiltration-low, a sample has to
be low-CD3 in both the tumor nest and stroma compartments and low-CD45 for at least
one component. To be classified as an infiltration-high, a sample has to be high-CD3 in
either compartment and also high-CD45 in either compartment.

For all density distributions the Kolmogorov-Smirnov test was used as a test of
normalcy, and none of them were determined to be normal. Accordingly, we used the
nonparametric Wilcoxon signed rank test to compare punches from the same patient (as
matched pairs). We found no significant differences, and thus used the mean of the two
cores in all analyses. Comparisons between density distributions of CD68*, CD163", and
CD33" cells from different circumstances (NE-high vs. NE-low, primary tumor vs.
metastasis, nest vs. stroma) were performed with the Wilcoxon rank sum test, using
two-sided p-values. Correlations between densities and expression levels were calculated

using Spearman’s Q. For both the significance threshold was set at p=0.05.
3.1.5. RNAseq Analysis
We have utilized the HTG EdgeSeq Targeted Oncology Biomarker Panel to

extract RNA expression data from our FFPE tissue samples [182]. The panel contains
2549 genes related to cancer. Samples were run as singletons, and results were validated
with positive and negative process controls. Expression levels of neuroendocrine genes
were used as a basis for the NE-high or NE-low classification of samples, as described

previously [16,179,183].
3.2. Modeling Macrophage Polarization

3.2.1. Model Design

Since we are interested in the effect of therapeutic intervention, we need a model
that can predict the effects of changes to given, specific elements of the system. Anything
that can be targeted has to be represented separately, i.e., it needs to be possible to
implement external changes to each without changing the rest of the model. That is why I
chose a network-based model.

In order to represent a process and not just the general relationships of elements,

data on interactions needs to include directionality and distinguish between activation and
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inhibition. In other words, edges need to be directed and signed. We also need to decide on
a level of complexity. Theoretically even biochemical reaction data can be directly
incorporated into a network framework, with differential equations governing changes.
However, experimental data is prohibitively sparse and not uniformly measured. Taking
into account the planned scale of the model, we have opted for a simpler representation, a
Boolean network with logical gates. This is a well-established method that allows for the
integration of diverse data sources [184], and for added complexity in the situations

simulated, like the systematic examination of multi-target therapies [175].

3.2.2. Network Elements
3.2.2.1. Nodes

Our aim is to model the response of the cell to outside signals. This defines a clear
input: extracellular signaling molecules. It is also practical to choose a well-defined
output: a set of entities that will represent the response (polarization) of the cell. While
there certainly are proteins that exhibit changes in activity, we know that such a critical
change to the cell’s functionality involves changes to gene expression. Protein activity
and gene function both influence each other, but modeling the complexity of that
feedback system is outside the scope of the current study. Using gene expression as output
provides a natural endpoint.

We have also started the definition of nodes with the two sides of inputs and
outputs, as they form the frame of our model. We searched the literature for primary
research articles on macrophage polarization that provide experimental evidence about
the effects of potential inputs (extracellular stimuli), and outputs (gene expression)
[159,177,185]. We prioritized components that are supported by multiple references to
raise the confidence level of the data and make verification feasible. The need for manual
curation also imposed a limit on model size, making this method more fruitful than paring
down an extensive list of potential components from a large database. Genes without
sufficient information on the transcription factors regulating them (at minimum a set of
TF-s that are necessary and sufficient for expression) were excluded. This included
VEGFA, which undergoes splicing events that markedly alter its function, but the proteins
responsible are not well described [186].

In order to connect the two sides of the model, we collected the elements of major

pathways from the KEGG Pathway database [187]. We limited our search to pathways
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that are researched in such detail that we could expect to extract an unbroken and
functional series of direct connections from the available literature and data. The
Jak/STAT, MAPK, PI3K/AKT, and TLR pathways were selected, as this group contains
all input and output points of our system and meaningfully connects them. To ensure that
any combinatorial effects and crosstalk between the pathways is present in the model, first
neighbors of these core nodes that interact with components from at least two pathways
were added, based on the databases listed in ch. 3.2.2.2.. The list of nodes was also
reviewed based on our verification criteria (see ch. 3.2.3.4.). We have found criteria that
could not be satisfied with only the nodes collected in the above, systematic manner. In
these cases, we have analyzed the literature about the expression of the genes in question,
and upstream signaling elements as necessary, to identify the source of the discrepancy. In
some cases, functional components were found to be missing from the model and were
then included as additional nodes (see ch. 4.2.2.).

We have also checked the relevance of each node and excluded proteins that do
not change in activity in macrophages. On one end are proteins that show no expression in
macrophages. This is according to the Gene Atlas database (accessed via biogps.org)
[188]. On the other are those that have constitutive activity in this cell type (e.g., PU.1, a
transcription factor). These were considered to be essential for either the survival of the
cell or upholding its identity as a macrophage, making them unfit to be targeted with
therapeutic intervention. Thus, they would have been nodes that are active in all cases and
states of the model and would hold no information whatsoever.

The accurate representation of certain proteins and their processes in our Boolean
system has necessitated the addition of a number of “technical” nodes. These denote
complexes and altered forms whose behavior could not be described with only the proper
choice of edge weights. Furthermore, we have grouped certain proteins into one node if
their functionality did not differ on a scale that could be represented in our system. For
example, we have included only a single “PI3K” node to account for the complex of
multiple separate protein subunits. Interactions of group members were included as
interactions of the whole group.

The entire list of nodes, their groupings and expression levels are presented in

Supplementary Table 1 of [189].
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3.2.2.2. Edges

To define our edges, we first collected and collated information from the STRING
[190] and SignaLink2 [191] databases. Since we are looking for direct interactions, we
have limited the data loaded from the STRING database to those tagged as “binding”.
Both databases contain data for which evidence is circumstantial or weak: STRING often
lists connections that are based on the interactors’ presence in the same pathway, and
Signalink2 contains edges that are supported only by in silico predictions. We did not
include these. During the later stages of model construction, we have also utilized the
HPRD database to check individual interactions [167]. We did not find a database of
transcription factor - gene interactions suitable for our needs, and thus those edges are
based on a systematic manual search of the literature. Since the databases do not contain
(unequivocal) information on the direction and sign of edges, this information was
collected separately as part of the manual curation of the system. Evidence was collected
with the aim of describing a human macrophage, with evidence in other cell types usually
rejected. Exceptions to this were made only if it served to fulfill verification criteria
(see chs. 3.2.3.4.and 4.2.2.).

With regards to the interactions represented by edges, it should be noted that
sub-protein elements of signal transduction (Ca*, PIP;) were not given separate nodes. In
addition, physical interactions within larger complexes were omitted, based on the
analysis of the information flow in the complex. E.g., while MyD88 and TRAF6 have a
physical bond in vivo, their relationship is already functionally described in the
MyD88 — IRAK1 — TRAF6 set of edges. These bonds and scaffold proteins serve an
important function in the kinetics of the formation of complexes, but unless a component
of the model is able to completely disrupt the binding, their effects are too subtle to
include in our Boolean system.

The edges are also weighted in order to encode how multiple incoming edges
affect the activity of their target, by effectively creating logic gates. Thus, they do not
represent parameters of the binding event or enzymatic action, but rather dependencies. If
a node has two incoming edges of weight 0.5, these interactions are assumed to be both
necessary for the activation of the node (rather than, e.g., both being able to create 50%

activity), forming an AND gate (see Eq.1. in ch. 3.2.3.1.). Inhibition is represented by
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negative weights, and such edges are otherwise evaluated in the same manner as
activating ones.

The complete list of edges, including references in support of them, is presented in
Supplementary Table S2 of [189].
3.2.3. Model Evaluation

Calculations were performed with MatLab (The MathWorks, Inc.). Scripts are
available as Supplementary File S5 of [189].
3.2.3.1. State progression

The model starts each run with all nodes inactive, except for those constitutively
active for technical reasons and any input nodes chosen for that particular instance. The
activation state of these nodes is kept constant. From this starting point the system
advances in discrete steps. The new activation state of each non-fixed node is calculated
from the previous network state and all of them are evaluated in each step; this is called a
synchronous update scheme. The nodes that have an impact on the state of a particular
node are the ones sending edges to it. Their concerted effect is represented by a logical
gate and is encoded in the weight of those edges.

These steps are continued until a stable cycle of network states is reached. This set
of states is called an attractor, more specifically a limit cycle if there is more than one
constituent state and a fixed point of there is only one. To recognize attractors, we have
used an implementation of Brent’s cycle detection algorithm [192]. The output of the
model is always evaluated after an attractor has been reached. We base the mathematical
representation of this ruleset on the one published in [193]. Subsequent system states are
calculated as:

S,.,=thr(W -S,—0| [Eq.1.]

where Sy is the state of the system at step x, represented as a binary column vector, W is a
square weight matrix containing all edge weights (with nonexistent edges having a weight
of 0), O is a vector of threshold values for each node and thr is a threshold function defined
as: [if x>0: thr(x)=1, otherwise thr(x)=0]. Constitutive node states are implemented by
changing the threshold value for them (in ®) to 100, making them independent of

incoming edges or their lack thereof.
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3.2.3.2. Polarization index

The output of a particular run is a gene expression pattern, encoded as the
activation state of the output nodes. We chose to process this into a continuous index value
representing polarization state, in accordance with the spectrum model of macrophage

polarization [155]. We refer to this as the polarization index, or pl, and calculate it as:

pl(i):Al_“)_Az_(")

T, T, [Eq.2.]
where A.(1) is the number of active outputs of type x given input i1 for fixed point
attractors, and the sum of the ratio of states in which each output of type x is active for all
such outputs given input i for limit cycles. Ty is the total number of outputs of type x. Type
1 genes push polarization in an inflammatory direction (towards an M1-like state), and
type 2 genes promote a tissue-protective polarization (towards an M2-like state). In our
model the outputs designated type 1 are: CD64, CD68, CIITA, CXCL10, IFN, IL-12A,
IL-12B, IL-1B, IL-6, iNOS, and TNFa. The outputs considered to be type 2 are: CCL17,
CCL22, CCL24, CD209, MERTK, MRCI1, and TGFp.
3.2.3.3. Synergy index

In the simulations where we inhibit two nodes simultaneously, we define a
measure of synergy, i.e., how different is the result of these inhibitions from what we
would expect based on their individual effects. We term this the synergy index, or synl,
and calculate it as:

|ApI (AB, i|

max(|ApI(A,i)‘+|ApI(B,i)

synl(A,B,i]= T) [Eq.3.]

where Apl(X,i) is the change in polarization index due to the inhibition of node(s) X
compared to no inhibition under the same input conditions, i. 7 is an adjustment parameter
included to avoid extreme index values in cases where Apl values are low for single
inhibitions, as these would be misleading. In our work we use 1=0.1, but this choice is

arbitrary.
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3.2.3.4. Verification

The aim of this model is to link external stimuli to changes in gene expression.
Thus, the most direct way to verify that it reflects the real-world workings of the system it
represents is via comparison to experiments measuring the same. There is not enough data
in literature about changes to protein activity levels during these studies to include such in
our evaluation, and so we have to restrict the verification to inputs and outputs only. There
are some cases where multiple of our outputs were measured in response to one of the
inputs, but keeping this linkage would mean we would have to evaluate them on a
per-study basis, which could introduce a bias we would have to control for. Thus, we
verify the model with individual input-output pairs supported by in vitro experiments. We
only take into account results that are clearly stimulatory or inhibitory, the former
satisfied by the gene node being active in response to the given input alone, the latter by
the gene node being inactive. Articles that report no significant change in expression
levels were not included. We have collected evidence for 55 input-output pairs. The pairs
and the PMIDs of the articles in support of them are presented in Supplemental Table S3
of [189].
3.3. Online data collation tool

Our data retrieval and integration utility is built with the R language and produces
an HTML output viewable in any browser. A target list can be provided as a local TSV file
or online as a Google Sheet document. Targets should be specified with their HUGO
(Human Genome Organization) name and UniProt ID. The first R script (clue.R) loads
this list, then accesses the REST API of clue.io and for each listed element looks for
components in its database, i.e., any information about repurposing attempts. Entries
without a clue.io record are excluded from further searches. This data is passed to the next
script as an RDS file (a format specific to the R language). In the next step dataPatch.R
collects additional data from various sources. It automatically searches the FDALabel
service and the website of the European Medicines Agency (EMA) and filters the results
to provide direct links to relevant drug labels. Using the UniProt ID, data about the target
is collected through the UniProt REST API, including Gene Ontology (GO) terms from
the molecular function and cellular component categories, and references to STRING and
Reactome. Using the compound name found in clue.io, a search request is sent to the

PubMed database. Results are filtered for randomized controlled trials, clinical trials,
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reviews, systematic reviews and meta-analyses and the top 3 according to the best match
algorithm of PubMed are recorded. A third R script (renderWebPage.R) is responsible for
creating a human-readable output. It collects related information from different sources
into one group (like multiple mechanism of action (MoA) items or outgoing links to
similar resources like DrugBank and PubChem) and converts the data table structure into
a hierarchical presentation format. A more in-depth explanation of underlying functions is
available at https://cycle20.github.io/EZCancerTarget/index.html, and all scripts, version
descriptions and the runtime environment can be downloaded for free at

https://github.com/cycle20/EZCancerTarget.
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4. Results

Primary tumors and metastases were classified into NE-high and NE-low
categories. The NE-high subtype was more prevalent in the cohort, with 20 primary and
24 metastatic tumors falling into this group. There were 11 primary and 8 metastatic
samples in the NE-low group. Next, we characterized the samples in regard to immune
infiltration level. In our analysis, 56% of infiltration-high tumors were classified NE-low,

and 87.5% of infiltration-low tumors as NE-high.
4.1. Myeloid cells in the TME of SCLC

4.1.1. Distribution

The distribution of CD33", CD68" and CD163" cells shows a particular pattern
across our axes of interest: tumor nest/stroma, primary/metastatic and NE-high/NE-low
[fig. 1., fig. 2.]. By comparing pairs of data that differ in one attribute (e.g., CD86 in the
stroma of primary tumors in NE-high vs NE-low samples), we have observed the
following. First, the stroma has two properties in contrast to the tumor nest: overall
immune infiltration is significantly higher (p<0.008 in all cases, for all myeloid cell
types), and it has CD33" cells (though fewer in number than other immune cells
[fig. 1. (I)]). Second, in primary NE-low tumors, we can detect a higher density of
myeloid cells, when compared to their NE-high counterparts [fig. 1. (J, K)]. Specifically:
a significantly higher density of CD68" and CD33" cells in the stroma (p=0.048 and 0.019,
respectively), and a significantly higher density of CD68" and CD163" cells in the tumor
nest (p=0.032 and 0.003, respectively) [fig. 2.].
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CD1632 expression CDBB exprassion

CD33 expression
HAE morphology

Figure 1. Immunohistochemical analysis of myeloid markers in SCLC tissue samples.

Samples are formalin-fixed and paraffin-embedded (FFPE). Myeloid cells show multiple
morphologies. Both amoeboid and ramified cells express CD68 (A-D), while CD163"
cells are mostly ramified and exhibit long processes (G). Both markers show preferential
expression in the stroma compartment (ROI-s marked on C, F, and G). CD163 expression
is particularly sparse in the tumor nest (arrowheads on H). In cases of high immune
infiltration, CD68 can be found in the nest compartment (ROI on A). Both macrophage
markers also appear in necrotic areas (ROI-s marked on D and E). CD33" cells are
present exclusively in the stroma, and only in low numbers (arrowheads on I). On images
J and K hematoxylin and eosin staining shows the histologic characteristics of
neuroendocrine (NE) high and low tumors, respectively. (Source: [194], used according

to the Creative Commons Attribution (CC BY) license.)

35



>

cell density (celllmmz}

O

W
o
o
=]

1500 1

500 r

cell density (celllmmz}
o
o
o

cell density (categorized) ™M

o

DOI:10.14753/SE.2024.3032

CD68(s)

5000

2000 |

1500 1

1000 ¢

500 r

+ [ ne-high

] ME-low

J

)

ha

—
T

£
primary lymph node
CD163(s)
+ 1 MEe-high
] ME-low 1
+
[ R —
| l::| |
L 4]
primary lymph node
CD33(s)
T T + ]
I |
I
I
I
- T
|
| —
|
| |
L |
|
L €1
primary lymph node

B CD68(t)
+ [ Ne-high
Ecl--. 800 ] ME-low ]
£
£ 400 | -
ﬁ
L 300
_E',‘\ *
2 200 ¢ n -
S ot
z 100 Q T
- - D
ol =2 T & &
primary lymph node
D CD163(t)
500\]; + [ nE-high |
T ] ME-low
= I = ]
..E_, 150 -
E -
“; 100 +
7 * +
o
2 50
8 | dpE
o
op - + — =
primary lymph node

1 [ nE-high

] ME-low

36



DOI:10.14753/SE.2024.3032

< Figure 2. Comparison of cell density data of myeloid cells in different SCLC subtypes
and split between the stroma and tumor nest compartments. CD68" cell numbers are
significantly increased in primary NE-low tumors, compared to NE-high (A, B). While
CD163" cell density does not show significant differences in the stroma across subtypes
and compartments (C), it is significantly elevated in the nest of primary tumor sites of
NE-low cases (D). CD33 did not appear in the tumor nest. In the stroma, its levels are
increased in primary NE-low tumors (vs. primary NE-high) (E). There were no
significant differences in CD68, CD163, and CD33 expression patterns of NE-high and
NE-low cases in lymph node metastases (A-E). Data was obtained with
immunohistochemistry from formalin-fixed, paraffin-embedded (FFPE) samples,
organized into a tissue microarray. Values for a given sample are the average of two
slices from the same punch. Values measured in the stroma are indicated with (s) in the
title (A, C, E), while those from the tumor nest are labeled (t) (B, D). Grouping based on
neuroendocrine marker expression is shown with the box color: clear for NE-high and
gray for NE-low. For CD68 and CD163 (A-D), cell density is measured in cell/mm’. In
the case of CD33 (E), density was measured as distinct categories labeled from 0 to 3. In
all figures the red line represents the median of values, the box ranges from the 25th to the
75th percentile and whiskers stretch to the minimum and maximum values (ignoring
outliers). Red (+) marks indicate outliers, defined here as values further from the closest
edge of the box (25th or 75th percentile) than 1.5 times the height of the box. Vertical axes
in A-D have a break point (marked with \\) in order to accommodate all outliers without
compromising the presentation of the bulk of the data. (*) marks p<0.05 and (**) p<0.01,

according to the Wilcoxon rank sum test. (Candidate’s own figure, unpublished)

37



DOI:10.14753/SE.2024.3032

4.1.2. Associations with other immune markers

Previously, our group has also measured CD45 (as a pan-leukocyte marker), CD3
(as a T-cell marker) and the major histocompatibility complex II (MHCII) expression of
tumor cells [111]. Here, we have analyzed the correlations between these factors and
myeloid cell markers [fig. 3.].

We observe that all significant correlations are positive. CD68 shows negative
association to all other markers in NE-low metastases, in the stroma and nest separately
(0=-0.314 to -0.872), but these are not significant (p>0.05), possibly affected by the low
number of observations (n=5 or 6). CD45 and CD3 show consistently high correlation in
all cases (min 0=0.821). In primary tumors, evaluating the stroma and the nest together,
all 4 cell types have fairly high correlation, with values slightly higher in NE-low cases. In
lymph node metastases this is limited to NE-low tumors and excludes CD68. If we stay
focused on primary tumors, but look at the tumor nest separately, all markers show
consistently high correlation, including tumor MHCII expression (CD45/CD3 0=0.928,
for all others 0=0.703 to 0.812). In the stroma of primary tumors CD3, CD45 and CD163
are strongly correlated (min ¢=0.811), with CD68 and MHCII showing lower levels of
association to other markers.

Heatmap of the correlation of immunological markers in various SCLC subcategories
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Figure 3. Heatmap of the correlation of immunological markers in various subsets of
SCLC samples. The markers being compared are CD68, CD163, CD45, and CD3 on
immune cells and MHCII on tumor cells. The pair of markers being compared is indicated
on the vertical axis (one group for each marker), and the subsets on the horizontal axis. If

a category is left blank, both options for that category (subtype, compartment or
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localization) were taken into account. “high” and “low” refer to neuroendocrine (NE)
marker levels. “lymph n.” refers to lymph node metastasis, in contrast to the “primary”
tumor site. Color corresponds to the value of Spearman’s @, with the scale indicated on
the bar on the right. No value is presented (marked in gray) for cases where the
correlation is non-significant (p>0.05). There are a number of “hot spots" with high
correlation values. CD3 and CD45 correlate strongly over all categories. Without
categorization with regards to nest/stroma and primary/lymph node, all immune cell
markers correlate moderately or better with each other. The situation is similar if we look
at only primary tumors, with a few exceptions, including cases where MHCII also
correlates with the other markers (notably primary/nest/-). CD163 correlates strongly
with CD3 and CD45 in the lymph node/-/NE-low case. (Candidate’s own figure,
unpublished)

4.2. Boolean Network Model of Macrophage Polarization

4.2.1. Characteristics

We have built a network that includes 106 nodes and 217 edges between them. Of
the nodes, there are 9 input and 22 output, with 75 inner nodes connecting them [fig. 4.].
One of the fundamental characteristics of a network is its degree distribution. (The degree
of a node is the number of edges connected to it.) Protein-protein interaction networks
have been observed to fall into a specific category regarding this in most cases. They
exhibit a so-called scale-free architecture, where the degree distribution follows a power
law [195]. We have examined our system to check whether it also follows this trend
[fig. 5. (A)]. The disparity in the case of degree = 1 can be explained by the fact that this is
a control network. A degree of one is restricted to input and output nodes only, as all
others are required to have at least one incoming and one outgoing edge. The only
exception to this are the JAK-s that have no inputs, as their nodes are constitutionally
active for technical reasons, and out of them only JAK3 has only 1 edge. This limitation is
responsible for the lower-than-expected frequency. The other difference is the
overrepresentation of nodes of degree = 4. While a direct cause is hard to ascertain, we
observe that most technical nodes (8 out of 11) have this trait. Excluding technical nodes
from calculations fails to bring the number in line with expectations. If we declare
degree = 1 and degree = 4 outliers and exclude them, the network fits a scale-free

distribution (R* = 0.80).
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< Figure 4. Visual representation of the macrophage polarization network. Certain
categories of nodes are colored (teal: input, green: output, yellow: transcription factors,
gray: technical nodes). Red edges indicate an inhibitory effect. Signaling pathways are
highlighted with colored boxes. The image was created with the aid of Cytoscape.
(Candidate’s own figure, published in [189], used according to the Creative Commons
Attribution (CC BY) license)

To rule out that our selection of nodes created any major distortions in the
pathways examined, we checked the betweenness centrality of nodes [fig. 5. (B)] and
confirmed that we cannot find any component with an anomalously heightened value.
Looking at the attractors reached, in the case of the unperturbed model and single
inhibitions, all of them are steady state. This is to be expected, based on our decision to not
include major feedback loops. This changes and a few limit cycles appear (2894, 0.26%)
with the simultaneous inhibition of two nodes, showing that the model is not completely
bereft of cyclical substructures. In order to double-check that all interactions in the model
can happen in an actual cellular environment, we have pulled localization data for all
components from the Gene Ontology database [196,197] [fig. 5. (C)]. All interactions are

theoretically possible in the cytosol, nucleus or the plasma membrane.
4.2.2. Verification

When the verification criteria were first applied to the model during development,
the output had an approximately 65% match with it. Differences between the two were
used to spot incorrect or incomplete parts of the model. There were three major points of
difference that involved the addition of new nodes. The protein node HCK was introduced
to reconcile the model with the IL13—CD209" criterion [178]. There was support for an
IL13— Akt connection, but not in macrophages [198]. Investigating this link led us to
HCK, and it was then included based on the support for the overall input-output link
established in macrophages. The GM-CSF—CIITA", iNOS" criteria [199,200] could not
be satisfied within the framework at the time, and this prompted the search for a “missing”
node and later addition of the transcription factor NFATS. The node of STK4 was added
and removed multiple times during the fine-tuning of the system, due to insufficient data
about its direct connections and was kept in the published version of the model based on
its effects on verified input-output connections. The final model shows a 94.55% match

with the verification criteria (52 of 55).
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< Figure 5. General statistics of the in silico protein-protein interaction network,

representing overall structural properties (degree distribution (a), betweenness
centrality of nodes (b)) and co-localization of components (c). a) Degree distribution. A
power law curve was fitted (R’ = 0.80) to the data with degrees 1 and 4 ignored as outliers
(red line). This supports that our network has a “small world” property, a characteristic
feature of most biological networks. b) Betweenness centrality against degree per node.

Nodes of possible interest are labeled. All nodes emerging this way are known to be of
central importance, meaning that our network does not overrepresent minor actors and
pathways. ¢) Cellular localization of model components. For each protein data from the
Gene Ontology database was extracted. Here the terms were extended to include all
sub-terms (those connected with one or more “is_a’ relations). In the cases marked with
an asterisk, certain terms connected by a “part of” relation were also merged:
"nucleoplasm" and "nuclear body" were merged into "nucleus”, "external side of plasma
membrane" was merged into "cell surface", and "extrinsic component of cytoplasmic side
of plasma membrane" was merged into "cytoplasmic side of plasma membrane". The

components of the network co-localize into major subcellular compartments, supporting
that direct interaction between them is feasible in vivo. (Candidate’s own figure,

published in [189], used according to the Creative Commons Attribution (CC BY)
license)

We have also examined how internally consistent the assignment of inputs and
outputs to polarization directions is. We calculated a polarization index for the input
nodes too, analogous to what we defined for the outputs (see ch. 3.2.3.2.), for all input
combinations, based just on their assignment. Then we compared the two indices [fig. 6.].
While the correlation between them is moderate, with a Pearson r of 0.58, the tendency we
expected from their relation is apparent. In addition, a slight clustering of the output pl
values can be observed. This is not an inherent attribute of how the index is constructed, as
the value set is close to continuous. There are three subsets, one each that shows
polarization towards an MI1-like and an M2-like state, and one that is transitory or
uncommitted. There is only a relatively narrow band of input-pl where both committed
subgroups are present, at input-pl = 0 and slightly below that. The subgroups also separate
on the output-pl axis, with transition points at approximately +0.2. We use these values in

the definition of repolarization (see ch. 4.3.2.).
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Figure 6. Relating input and output polarization of a macrophage in the BCN model.
Each instance of a unique input combination is represented by a circle. A significant
moderate correlation between the two indices can be clearly observed (Spearman’s
0=0.555, p=1.09x10"*). This supports that the model does not deviate severely from our
current knowledge of the high-level functions (i.e., promotion of M1-like or M2-like
behavior) of these components. (Candidate’s own figure, published in [189], used
according to the Creative Commons Attribution (CC BY) license)
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4.3. Molecular Targets
4.3.1. Targeted RNA seq of SCLC tissue samples

After identifying four tumor subsets (see ch.4.), we looked for potential
molecular targets by comparing gene expression values between them. To visualize
particularly enhanced or repressed genes, we created volcano plots [fig. 7.]. The
comparison of primary and metastatic samples shows only few points of significant
difference [fig. 7. (F)], and thus for the other plots we pooled their data. To establish the
differences between the major subgroups, we plotted all NE-high versus all NE-low and
all infiltration-high versus all infiltration-low samples [fig. 7. (A, B)]. As an
infiltration-high TME is expected to be more susceptible to immunotherapy, we were also
interested if we could focus such efforts based on NE status [fig. 7. (C)]. Since the NE
subtypes are already gene expression based, we also wanted to explore any more subtle
differences within these groups, in relation to immune infiltration status [fig. 7. (D, E)].

The volcano plot analysis highlighted certain gene sets. In the case of NE
subgroups, the following show a heightened expression compared to the other subgroup.
In NE-low: ANXA1, CD44, CD70, CXCR2, FCGR1A, HLA-B, IF127, ITGAM, ITGB6,
ITGB4, KRT5, MYC, MMP7, YBX3. In NE-high: CDH2, CHGA, FGF5, GRP, ISLI,
NCAMI1, NKX2, SOX3, SYP. Genes in the NE-high group are mainly neural or
neuroendocrine differentiation factors. The immune-infiltration based subgroups exhibit
higher levels of the following genes. In infiltration-high: CD70, CXCL9, CXCR2,
FCGRI1A, GZMA, HLA-B, MMP7, ITGAM, IF127, YBX3. In infiltration-low: CDH2,
CHGA, FGF5, GRP, IL9, INS, ISL1, NCAM1, SYP. The NE-high and infiltration-low
lists show considerable overlap. These cross-subtype similarities are further explored on
the Venn diagrams of [fig. 8.]. We have collected emerging potential molecular targets
that already have drugs available for them (in clinical trials or launched) in Supplementary

Table S6 of [194].
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< Figure 7. Comparing the RNA expression patterns of different SCLC subtypes with
volcano plots. Between the patterns in primary sites and metastases (F) there are very few
genes showing a considerable difference. Based on the level of infiltration (B) a handful
of genes get highlighted but based on NE status (4) we can see a higher number of genes,
many with higher fold change and significance. Contrasting subtypes based on both
(C-E) yields different sets of genes. Dots represent individual genes. On the horizontal
axis is the base 2 logarithm of the fold change (FC). On the vertical axis is the base 10
logarithm of the p value from a Mann-Whitney U test, multiplied by -1. Points with
p < 0.05 are colored based on their FC and some are also labeled. Those with log:FC > 1
are light blue, >1.5 are blue, and >2 are red. A plot title of “A vs B” means that FC was
calculated from B/A, putting the genes overexpressed in category A on the left side of the
plot. (Candidate’s own figure, modified after [194], used according to the Creative
Commons Attribution (CC BY) license.)
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Figure 8. Genes with differential expression in SCLC subtypes by neuroendocrine type
and level of immune infiltration. Genes listed in a given set are upregulated in the noted
subtype, in comparison to its respective counterpart (infiltration- high vs low, NE- high vs

low). (Candidate’s own figure, modified after [194], used according to the Creative

Commons Attribution (CC BY) license)
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4.3.2. in silico simulations

To highlight potential targets in macrophages for drugs aimed at repolarization,
we have simulated therapeutic intervention by blocking proteins in the network (making
the node constitutively inactive). We evaluate the effect of these perturbations by looking
at the change in the polarization index. We have simulated single inhibitions [fig. 9.] and
combinations of two [fig. 10.], with all possible input combinations. In the latter case we
improve the characterization of the effect with the synergy index (for a description of

these indices, see chs. 3.2.3.2. and 3.2.3.3.).
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Figure 9. Effects of single-target inhibition on the polarization index. On the horizontal
axis we see the 67 potential target nodes. Input and output nodes were not included, with
the exception of the TLR receptors. On the vertical axis are listed all 511 input
combinations. The order of entities on both axes has been chosen for presentation
purposes of this heatmap, and are based on the first principal component of the data
shown here. Two regions of interest (ROI) are highlighted. ROI#1 contains instances
predominantly shifted toward an M2- like state, while ROI#2 contains ones shifted toward
an M1I-like state by the perturbation. However, both contain a considerable amount of
essentially unperturbed instances, and cover a rather small portion of targets (approx.
30% and 7%, respectively). (Candidate’s own figure, published in [189], used according
to the Creative Commons Attribution (CC BY) license)
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We also need a numerical definition of repolarization. We have seen in [fig. 6.]
that +0.2 is a pl threshold that roughly separates groupings of more extremely polarized
states from those with no clear direction of polarization. Thus, we consider a perturbation
to have caused repolarization if both the unperturbed and perturbed states reach an
attractor that has a pl with an absolute value >0.2 and they have opposite signs. This
necessitates a change in the polarization index (Apl) of over 0.4, but most of the
perturbations showing such a great shift fail to affect repolarization.

In the case of single target inhibition, we have examined a total of 34 237 cases (67
targets over 511 input combinations). There are quite a few that show abs(Apl)>0.4; we
see 790 cases with a shift towards an inflammatory state and 2210 in the opposite
direction. These constitute 2.31% and 6.46% of all cases, respectively. However, of these
perturbations with considerable effect, only a total of 4 repolarize the cell, all of them
towards an M1-like state and none in the other direction.

We see a different outcome with the simultaneous inhibition of two targets.
Among the 1,129,821 possible cases (2211 target combinations over 511 input
combinations) we have checked, we have found a total of 528 that result in repolarization.
Of these 326 are towards an M1-like state and 202 towards an M2-like one. Given the
sheer number of possibilities, this is still limited, comprising 0.79% and 0.16% of cases
with an abs(pl)>0.4, respectively, but is a useful amount from a translational standpoint.

To further characterize these combinations, we calculate their synergy index
(defined with Eq. 3. in ch. 3.2.3.3.) [fig. 10.]. The value of synl is indicative of the
relationship between the pathways affected by the perturbations. Two completely
independent pathways would result in a synl of 1. This is the result in 23.14% of the cases.
If the index drops below 1, the targets are likely to be a part of the same pathway(s),
serially connected, making blocking both of them at least partially redundant. This is the
most common relationship, and we see this in 75.10% of cases. A synergy index over 1
indicates convergent pathways, creating effects that neither single inhibition could
achieve alone. Only 1.76% exhibit such a true synergistic relationship.

Combinations with a repolarizing effect toward an M2-like state show a majorly
different distribution of these categories. 200 of the 202 cases have a synl over 1. Most of
these involve blocking NFATS, even though that in itself has negligible impact, with a

Apl just above -0.1. Even the targets that comprise the other half of these combinations
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only shift the system to around pI=0. In the case of repolarizing toward an M 1-like state,
true synergistic combinations are rarer. The only node that can cause repolarization as a
single target, STAT®6, is part of 75.5% of all combinations that can achieve the same. But
even in this case we see an increase in effectiveness. STAT6 alone can cause
repolarization for only 4 input combinations (18% of inputs that lead to an M2-like end
state), but combinations widen this range. Simultaneous inhibition of STK4 is effective
for 10 inputs (45%) and blocking Spl leads to repolarization for 14 inputs (64%).
Considering all dual inhibitions, 18 (82%) of inputs can be shifted into an M1-like
polarization. We also have to note that in the few combinations that show synergy, there
are some striking cases. Like JAK1 and JAK3 (or their complexes with IL4R), that alone
have next to no impact on polarization (with a Apl of +0.05 and 0, respectively), but
together can lead to a total Apl of +0.57 for certain inputs (either IL-10 or IL-1 combined
with IL-4). The above also results in a distribution of synl different from both that of all
combinations and those repolarizing in the other direction. The dominant category is
synl=1, covering 77.9% of combinations (254). The ratio of syn[>1 combinations is still
higher than without filtering, but only reaches 11.7% (38) of repolarizing combinations.

All repolarizing combinations are listed in Supplementary Table S4 of [189].
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< Figure 10. Perturbation of the system by simultaneous inhibition of two nodes. a) Shift
in the polarization index. On the horizontal axis we see the 2211 potential target node
combinations. Input and output nodes were not included, with the exception of the TLR
receptors. On the vertical axis are listed all 511 input combinations. The order of entities
on both axes has been chosen for presentation purposes of this heatmap, and are based on
the first principal component of the data shown here. ROI-s are chosen as they were for
fig. 9., showing combinations that push the model mainly in one direction. They are
somewhat wider (37% and 11%, respectively), than in the case of single inhibitions, but
not considerably. b) Heatmap of the synergy index. Axes and their sorting is the same as
in a). The previously observable ROI-s are unclear here, high synergy instances do not
necessarily overlap with those of high Apl. We can only distinguish an inert zone
(highlighted), with no changes based on both Apl and synl. ¢) Plotting synl versus pl. The
apparent upper limit (most observable below -0.2 pl) is an artifact of the t adjustment
parameter (see Eq.3. in 3.2.3.3.) not permitting synl to rise above Apl/t. (Candidate’s
own figure, published in [189], used according to the Creative Commons Attribution

(CC BY) license)

4.3.3. Drug repositioning data collation tool: EZCancerTarget

Our drug repositioning data collation tool is online and available to researchers. It
aids in the acquisition and structuring of data stored in disparate large databases, greatly
reducing the time and effort necessary to perform a thorough search. It also helps in
avoiding errors that manual data entry can bring about. As it collects information during
runtime, the results will always be up to date. Our novel approach of presenting data on
both compounds and their biological targets side by side in the same data structure
shortens the gap between these two sides of drug repurposing, usually detailed in separate

databases.
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The  workflow is started on the project’s  Github  page
(https://github.com/cycle20/EZCancerTarget). To avoid problems stemming from
multiple simultaneous users, those wishing to use the utility remotely (via the Google
spreadsheet for input) have to receive authorization from the project administrator. It can
also be installed locally, for which detailed guidance can be found at the link above. The
spreadsheet includes links, with which users can start the script, follow progress and view
the resulting web page [fig. 11.]. Information collecting and rendering the results takes

approximately 30 minutes.

D ru g Ta rg ets _ H as C LU E-l O E ntri es Created st 2023-01-02 21:31:22 UTC
- =
Low] GeneCards DrugBank Target Search
[SCLC NE-
E‘;\F,’]SAS MYC :: Compounds ~
FCGRIA BCLC fe d MoA' Clinical Status R i DrugBank/PubChem, ChEMBL
NE-LOW] ompoun o inical Status Resources rugBank/PubChem/
[SCLC NE- AZD5153 bromodomain inhibitor Phase 1 From PubMed: CHEMBL4078100
12:‘]2 PubMed 33574760 PubChem: 118693659
ITGR6 [SCLC NE- ClinicalTrials
Low] L
mivebresib  bromodomain inhibitor Phase 1 From PubMed: CHEMBL3987016
MMP7 [5CLC NE- PubMed 33934351 PubChem??mivebresib??
LOW] PubMed 31420359
PubMed 34591474

MYC [SCLC NE-
Low] ClinicalTrials
ROS1 [SCLCNE- TWS-119  glycogen synthase kinase inhibitor  Preclinical From PubMed: CHEMBL405758
Low PubMed 33582150 PubChem??TWS-119??
AR [THEC]
ATR [TNEC]

MYC :: STRING N
CHEK? [TNEC]
CxCLz [TNECI MYC :: Molecular Functions / Subcellular Locations / Biological Processes ~
CXCR4 [TNEC] . MYC :: Pathways v

Figure 11. Example results page of EZCancerTarget. On the left side, targets used as
input are listed, along with a user-defined label in brackets (optional). Clicking on one
will bring up search results on the right. At the top outgoing links are given to other
resources on the target. Compounds related to the target are listed along with mode of
action (MoA) and clinical status. These can be explored further through the links in the
last two columns. Additional data can be accessed by clicking the options below.

(Candidate’s own figure.)
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5. Discussion

Small cell lung cancer (SCLC) is a highly progressive type of malignancy and
advancements in its therapy have been unfortunately lacking. We believe that bridging the
gap between knowledge gained from biological research and applied techniques in
clinical practice is paramount.

As our understanding of tumor biology grows, the importance of the interplay
between the immune system and tumor cells in the tumor microenvironment (TME)
becomes ever more apparent. Cells of both lymphocytic and myeloid lineage appear in the
TME, and their presence can be a boon as much as a bane [201-203]. However, the
immune contexture (types, amount and localization of immune cells) of the TME is not
fixed, as evidenced by its modulation by the cancer itself. This is accomplished through
secretion of small molecules (like cytokines and chemokines) and other bioactive
chemicals (e.g., reactive oxygen species (ROS)) and taking advantage of environmental
factors (like hypoxic conditions). These can enable the tumor to not only neutralize
particular immune cells, but to hinder immune clearance as a whole [204,205]. This also
presents a potential new angle of attack for intervention that in recent years has garnered
considerable attention in translational medicine and shows promising results [206,207].

Continuing previously published work from our group [111], we have further
characterized the immune cell content of limited-stage (LS) SCLC using resected tissue
samples [194]. Compared to immune cell densities reported in other types of lung cancer
[208], we found that immune infiltration in SCLC is low not only for lymphocytes [111],
but also myeloid cells, regardless of tumor compartment. We have also explored the
association of neuroendocrine (NE) marker expression and overall immune infiltration
(CD45" level). In the earlier results of the group from 2020, we saw that both overall
infiltration, and specifically T lymphocytes (CD3", CD8"), are significantly elevated in
NE-low tumors, and in the stroma compartment [111]. Here we show that while there is
some level of association between NE status and level of infiltration (most cases being
either NE-low/infiltration-high or NE-high/infiltration-low), a considerable number of
cases are either NE-low/infiltration-low or NE-high/infiltration-high. This could provide
an explanation to the observation that subtype status alone is not a significant predictor of
OS, in patients who underwent resection followed by adjuvant chemotherapy with or

without thoracic irradiation [125]. Thus, genetic markers and immune contexture both
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need to be taken into account separately for an accurate description of SCLC subtype for
clinical purposes.

Here, we have shown that CD68" TAM-s are the most numerous leukocytes of the
SCLC TME. Even compared to CD3" T-cells, their density is approximately two times
higher [111]. Following the trends of overall infiltration [111], their numbers are
significantly higher in the stroma (vs. the tumor nest), and in primary NE-low tumors
(vs. primary NE-high). Another major group of myeloid cells, CD33" MDSC, are present
only in the stroma, and in very small numbers, with a slight increase in NE-low tumors.
This is in direct contrast with results from NSCLC, where high levels of MDSC-s were
reported [209]. We have also observed that while the density of T-cells correlates highly
with the level of overall immune infiltration in all compartments and subtypes, in the case
of TAM-s, this linkage is restricted to primary tumor nests, hinting at additional
mechanisms affecting their population.

Others have attempted to quantify immune cell populations in SCLC with single
cell RNA sequencing [210-212]. While these studies report a higher T cell to myeloid cell
ratio than our IHC results, this is likely due to the fact that nearly all of their samples show
an NE-high phenotype (positive for ASCL1 and/or NEURODI1). We have seen that cells
of monocytic origin (CD68" and CD163") are more numerous in NE-low tumors. Single
cell analysis reveals the important fact that there is intratumoral heterogeneity in the
expression of subtype markers, with one study linking tumor cells with an NE-low
phenotype in otherwise mostly NE-high samples with stemness characteristics [211].
Further exploration of NE-low tumors with single cell resolution would be necessary to
gain a comprehensive understanding of SCLC features.

In addition to their numerically superior presence in SCLC, macrophages exhibit
an outstanding plasticity of function, accessed via a process called polarization. The result
of this is nuanced, but two main directions can be recognized: an M1-like direction that
promotes inflammation and an aggressive immune response, and an M2-like direction
that coordinates tissue repair and angiogenesis. This ability to adopt either tumoricidal or
immunosuppressive functionality might explain why overall TAM infiltration level does
not associate with OS [15]. In relation to SCLC subtypes, we observed that in primary
NE-low tumors the amount of TAM-s showing an M2-like polarization (CD163") is
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significantly higher. This might counteract the effects of the overall higher infiltration in
this subtype.

These results highlight macrophages as key players in the SCLC TME and
promising targets for immunotherapy. While therapies attempting to lower the number of
M2-like, negatively modulated cells, either by impeding their recruitment or directly
affecting depletion [213], have merit, repolarizing immunosuppressive TAM-s would
have a much more potent effect by also introducing additional tumoricidal immune cells
to the TME [214].

To better understand macrophage function and to find ways to affect their
polarization status, we have established a computational network model of intracellular
events in the early stages of polarization [189]. Interactions were assembled based on PPI
databases, and then were curated and expanded with a systematic search of available
literature. It is validated against published primary research results that measured the
connections between our inputs and outputs and displays the properties that can be
expected of such a network. We have used this network to investigate the system both
unperturbed and with modifications simulating small inhibitory molecules used as drugs.
With these we have observed that monotherapies are not well suited to achieving
repolarization, but the combined inhibition of two targets presents multiple effective
options that in most cases are based on a synergistic effect, i.e., the combination being
more potent than the sum of their components. This observation is in keeping with the
previous results of Fumia and Martens, who found in their model of tumor cells that
single-target interventions are ineffective at changing the state of the cell [193]. We have
also investigated the level of synergy between targets in our dual inhibition scenarios, as it
is indicative of their relative position in the network. We observe that the pathways
responsible for different polarizations differ not only in the identity of their members but
follow a different logic and network architecture. Pathways promoting an M1-like state
show a convergent structure, while those promoting an M2-like state rely more on parallel
lines of signal transduction.

In order to functionally model signal transduction events, our model includes
directed and signed edges. We had to collect the necessary data for this manually from the
literature, as the available extensive databases like STRING [190] or HPRD [167] do not

contain this kind of information, as they rely on high-throughput techniques that do not
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provide these parameters. Indeed, most PPI-based network models are undirected and
unsigned. There have been recent attempts at developing an automated method to predict
these attributes, and they have shown that including edge direction and sign information
enhances the performance of drug target and cancer driver mutation predictions
[215,216].

We have aimed to create our output such that it can work with various methods of
interpretation and is not limited to what we present in conjunction with the model. This is
a break from the norm of hardwiring the states of interest into the model structure as a few
nodes, usually with a relatively low degree [193,217,218]. Our 27-node gene expression
pattern is able to represent a large variety of subpopulations, in accordance with the
spectrum model of macrophage polarization [155]. Its flexibility also makes it easier to
expand or modify to incorporate new data, or to integrate it into a larger scale model.

Others have also published in silico models of intracellular processes inside
macrophages. Palma and colleagues presented a simple model with 14 inner nodes [219],
which was then extended later to 21 nodes by another team [218]. As they span a similar
functional space as our model, this also means that they often include indirect interactions
as edges and exclude components based on their perceived importance. In order to include
all possible targets and to create a more detailed model, we have incorporated 92
intracellular proteins, grouped into 64 inner nodes in our system and allow indirect
interactions very sparingly. There are two more recent models that have a high level of
detail [220,221], but both limit their analysis to single-node inhibition. As we have shown,
targets that are effective as part of a combination would often be overlooked by screening
for individual targets. Single-target inhibition also differs more from real world situations,
both because of treatment practices, and because perfectly single-target small molecule
inhibitors are practically nonexistent.

In our search for molecular targets, we first focused on the SCLC cells themselves.
We have categorized our samples on the NE-high/low and infiltration-high/low axes and
compared the expression profiles of the resulting subgroups. The expression of
Annexin A1 (ANXA1) is heavily upregulated in NE-low tumors but shows no association
with immune infiltration status. ANXA1 contributes to immunosuppression, with an
effect that resembles glucocorticoids, positively affecting TGFp signaling and wound

healing, and suppressing inflammation [222]. Its upregulation, and its correlation with a
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poor prognosis has been shown in other types of cancer too: in gastric cancer [223], in
hepatocellular carcinoma [224], in melanoma [225], and in adenocarcinoma of the lung
[226]. In breast [227] and colorectal [228] cancer high ANXAT1 expression has been
linked to an increased resistance to chemoradiotherapy. In addition, there is evidence of
its involvement in tumor invasion and metastasis, through the role it plays in macrophage
polarization and epithelial-mesenchymal transition [229,230]. On the molecular level,
this involves an enhancement of CXCR4 and matrix metalloproteinase (MMP)
expression, via an increase in IkB kinase (IKK) and thus NF«kB activity [231]. Our own
findings also support this: we have observed a higher expression of ANXAT1 in tumors
with a high density of CD163" (M2 TAM) cells [194].

Our analysis of gene expression patterns has also highlighted the receptor-ligand
pair of CD27 and CD70, both showing upregulation in the NE-low and infiltration-high
categories. CD27 is a member of the TNF receptor superfamily that promotes T-cell
proliferation by activating the NFxB pathway [232]. The expression of its natural ligand,
CD70, is a main factor in the regulation of CD27 activity, and is therefore controlled and
transient, appearing mostly on subpopulations of activated lymphocytes in physiological
conditions [233-235]. Expression of CD70 has been observed in glioblastoma [236],
non-Hodgkin lymphoma [237], renal cell carcinoma [238], and NSCLC [239]. It was also
shown that the presence of CD70 on tumor cells increases the presence of regulatory
T-cells (Treg), and thus supports tumor growth, by supporting their survival [240], and by
inducing regulatory function in CD25" T-cells through activation of FoxP3 [237].

There are a number of other genes that our search has highlighted as being
differentially expressed in NE-low tumors and there is evidence in the literature
corroborating their involvement in the TME and tumor progression. CXCR2 has been
linked to poor prognosis in NSCLC [241,242]. Also in NSCLC, MMP7 level has been
reported to be associated with proliferation of tumor, resistance to chemotherapy and
unfavorable prognosis [243]. Our data shows that MMP7 is more prevalent in NE-low
tumors, but is not linked to the level of immune infiltration. ITGB6 associates with
ITGAYV to form a receptor recognizing, among others, fibronectin and latency associated
peptide (LAP), able to promote tumor cell invasion [244] and immunosuppression

through the release of TGFf [245]. We also have to mention TP63, a protein associated
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with the cell cycle, that has shown high expression in our study, but has been reported as a
tumor suppressor in NSCLC [246].

We have also identified proteins differentially expressed in NE-low tumors that
have not yet been connected to cancer, but based on their known functions their
involvement is likely, making them promising targets of future research. The
nucleotide-binding protein YBX3 is described in relation to cold shock, but also binds to
and represses the promoter of GM-CSF [247], and can thus potentially influence TAM
behavior. High-affinity 1gG Fc receptor 1A (FCGR1A) levels have not been reported
before in cancer, and here we show high relative expression in both NE-low and
infiltration-high tumors. The receptor is involved in antigen presentation and is reported
to be of import in monoclonal antibody therapies [248].

Using our computational model, we have investigated the possibility of targeting
proteins in macrophages to counteract the immunosuppressive effects of the TME that
push their polarization in an M2-like direction. We have observed that inhibition of
multiple targets simultaneously outperforms single-target approaches, often in a
synergistic manner, i.e., proving more effective than the sum of individual effects. As part
of combinatorial target-pairs, STAT6, JAK1 and JAK3 emerged as primary candidates,
with Tyk2, STK4 and Sp1 also showing potential to a lesser extent.

STATSG is a major transcription factor, and the only target whose inhibition could
create repolarization in our model as a single target. There are molecules already in use in
oncotherapy, imatinib [249] and gefitinib [250], that have been shown to influence
STAT6 phosphorylation and polarization in TAM. There is also one study using STAT6
inhibition as part of combinatorial therapy [251]. Their secondary target is IKKf, and they
show that simultaneous inhibition is more effective in creating repolarization, though the
effect is not necessarily synergistic, which is in line with the prediction of our model (see
Supplementary Table S4 of [189]).

We have seen in our simulations that the inhibition of JAK family members by
themselves can have a limited effect on polarization, affecting repolarization only when
paired with another target. One explanation would be that their function is
context-dependent and can simultaneously affect pathways acting cross-purposes. This is
supported by the results of previous efforts at targeting the family with therapeutics.
Tofacitinib targets JAK1 and JAK3 (with a minor effect on JAK?2), has been tested for use
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in rheumatoid arthritis and other inflammatory diseases [252], and shows
anti-inflammatory effects, via a modulation of immune cells. In the case of macrophages,
it is most likely that these are achieved by interfering with the JAK1-STAT! interaction,
without much contribution via JAK3 [253]. In contrast to this, in other scenarios the same
drug has shown an ability to block STAT6 function [254], and anti-angiogenic effects
[255], both indicating a shift towards M1-like functions from a macrophage perspective.

Less is known about the other two targets in this context. Modulation of STK4
function has shown contradicting results. Both inhibition by malibatol A [256], and
activation with adapalene [257] was reported to create a shift toward anti-inflammatory
functions in macrophages. Spl was explored as a target in multiple forms of cancer
[258-260], but its connection with or effect on TAM-s was not investigated.

As it might be of importance in inflammatory diseases, we have also searched for
targets that would push the system in the other direction, toward an M2-like state, and
NFATS has emerged as a protein of interest. Arctigenin has been shown to inhibit NFATS
and have an anti-inflammatory effect through the modulation of cardiac macrophage
function [261]. In our model, individual inhibition of NFATS was insufficient to affect
repolarization. This discrepancy might be due to our exclusion of feedback routes. As a
secondary effect, dependent on the inhibition of NFATS, a decrease in the
phosphorylation of STAT1 and JAK2 has also been reported [261], which might
strengthen the overall impact of the drug. Based on the localization and function of these
proteins, the most likely path of effect between them and NFATS5 would be via the
modulation of the gene expression of a third element, creating a (possibly autocrine)
loop.

According to the Essential Genes database of the International Mouse
Phenotyping Consortium [262,263], KO of the targets we have identified in both studies is
not cytotoxic or lethal, thus their inhibition via drugs should be viable. They had no data
available for CD70, but double knockout mice have been created [264] and no systemic
defects were reported.

We also have to consider the limitations of our work. The in vitro studies were
retrospective, and we do not have access to sufficient data on outcomes. Thus, we are
unable to link our findings with prognoses. In addition, our data comes exclusively from

limited-stage SCLC, and thus our results are not necessarily descriptive of advanced-stage
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malignancies. However, surgical resection is not recommended in extended stage disease,
lowering sample availability. Tissue samples acquired by bronchoscopy are prohibitively
small. Post mortem sample collection brings in biases and cohort homogeneity is low
(e.g., in terms of treatments received). The cohort size and the individual sample sizes are
also not extensive. The genes ASCL1, NEURODI, POU2F3 and YAPI were not yet
known as subtype markers during the data collection phase of our study and thus were not
included in the genetic panel used. However, they show substantial overlap with NE status
[17], and the low cohort size would preclude us from drawing statistically significant
conclusions from the 4 genetic [183] or 7 histologic subtypes [15] defined by them. To
provide a thorough characterization of the SCLC subsets we identified, especially on the
genetic level, further studies with higher case numbers will be necessary. Targets
identified on the transcriptomic level will need to be confirmed on a proteomic level with
in situ experiments before use in pharmacological studies.

In the case of the in silico model, its design constricts what aspects of polarization
it can handle. The BCN presented ignores questions of time altogether. The speed of
interactions is presumed the same by omission of a parameter to account for it, due to this
information being inaccessible on the scale of our model. Beyond not being able to predict
the speed of reaching a polarized state, this also makes it impossible to represent certain
signaling circuits that depend on signal duration, like the interaction of IL-10 and IL-6
[265]. We assume that gene expression is slower than signal transduction by orders of
magnitude and limit our system to the early response by excluding events requiring
protein synthesis. Some of these are known to create feedback loops and affect
subsystems not exhaustively represented in our network. One such is the metabolic state
of the macrophage, known to be involved in polarization [266] and interactions with other
parts of the TME [267]. Using binary values to represent node activity means that
encoding intensity levels would be problematic, and the current model ignores them
entirely. We also did not consider the possibility of activating proteins with an
intervention [268]. Due to the low intensity resolution and the lack of a time scale, we
cannot draw conclusions about the in vivo stability of the resulting state, and we also do
not gain insight into mechanisms that adjust the longevity of it. In addition, verification is
limited by the available data. The majority of experiments we utilize connect one input

with one output, an approach taken by others facing similar issues too [269]. To be more
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thorough, combinations of both inputs and outputs would have to be considered, but such
data is not available at the time of writing and performing a series of systematically
chosen high-throughput in vitro experiments to provide them is out of the scope of this

project.
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6. Conclusions

CD33" MDSC in the stroma, and CD163" M2-like TAM cells in the tumor nest
are significantly more prevalent in NE-low SCLC, compared to NE-high,
establishing an immunosuppressive TME with potential future therapeutic
applications.

In primary tumors, leukocyte numbers correlate with both macrophage markers
(CD68 and CD163) in the nest, but in the stroma only with CD163, i.e., M2-like
cells, implying distinct mechanisms of colonization in different tumor
compartments.

Interventions aimed at tipping the balance of immune infiltration and suppression
are expected to be particularly effective in CD68- and CD163-high subsets of
NE-low tumors. We identified CD70, ANXA1, FCGR1A, ITGB6, MMP7, YBX3
and CXCR?2 as potential targets for this purpose.

NE-low and infiltration-high tumors showed highly similar expression profiles at
both primary sites and lymph node metastases. Smaller subgroups of NE-high, but
phenotypically infiltration-high and NE-low, but phenotypically infiltration-low
tumors exist, with distinct expression profiles.

Our in silico model can replicate experimentally observed cell behavior in its
scope and shows the expected characteristics of a complete network
encompassing the selected pathways involved in macrophage polarization.

When aiming to affect repolarization, interventions designed against a single
target are suboptimal compared to treatments simultaneously targeting two
intracellular actors. Individual targets in combination therapies might not show a
significant effect on cellular state on their own.

When attempting to repolarize cells into an M1-like state, our model highlights
STAT6, JAK1 and JAK3, and to a lesser extent Tyk2, STK4 and Sp1 as potential
targets. When trying to push the system toward an M2-like state, NFATS emerges
as a point of interest.

We created a platform for drug repurposing in oncopharmacology that is
accessible and expandable by the international research community, intended to ai

d research into SCLC and other highly aggressive malignancies.
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7. Summary

Translational research of the tumor microenvironment (TME) is an emerging field
of study that has resulted in therapeutic developments in multiple types of cancers
recently. Our understanding of the TME of small cell lung cancer (SCLC) is incomplete,
severely limiting therapeutic prospects and the application of the newest advances in the
field. We aimed to gain new insights about the immune cells in the SCLC TME, with
special attention to tumor-associated macrophages (TAMs) and their polarization state, to
reveal molecular targets for therapeutic intervention.

First, we characterized the cellular environment regulating anti-tumor immunity
in limited-stage neuroendocrine (NE)-high and NE-low SCLC subsets, including lymph
node metastases. Immunohistochemical labeling and cell counting on TMAs (tissue
microarrays) showed that overall immune-infiltration is low, and that TAMs are the most
abundant cell type in the tumor nest TME, exceeding CD3" T-cells. Also, the amount of
CD163" M2-polarized TAMs is significantly higher in NE-low (vs. NE-high) tumor nests.
TAM density shows a strong positive correlation with CD45 and CD3 in primary tumor
nests, but not in the stroma. We identified potential molecular targets based on our
expression data in NE-low and infiltration-high tumor subsets.

Next, we propose an in silico approach aimed at understanding the intracellular
systems driving polarization and their dependence on extracellular cues. We create and
verify a Boolean Control Network model, connecting extracellular signals with the gene
transcription to model the early response in macrophages. We observe that inflammatory
and regenerative pathways show a difference in architecture. Based on simulations of
therapeutic intervention, we conclude that inhibition of single targets is insufficient to
change an established polarization in most cases. Inhibition of multiple targets (often with
an individually weak effect) is necessary, with STAT6, JAK1 and JAK3 emerging as
important targets to push toward M1 and NFATS toward M2.

To facilitate the use of large databases we present a novel, open access platform
aimed at drug repurposing that we call EZCancerTarget, aggregating data from databases
such as PubChem, DrugBank, PubMed, and EMA, complete with biological background
information and literature citations for every target from UniProt, String, GeneCards and
more. The content of the platform can be expanded or replaced by users to suit their

purposes.
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7.1. Osszefoglalas (Summary in Hungarian)

A tumor mikrokornyezetre (TME) fokuszalod transzlacios kutatasok ujszerti
megkozelitést jelentenek €s tobb raktipusban is terapias lehetdségeket tartak fel. A
kissejtes tiidéordk (SCLC) mikrokdrnyezetének megismerése segithet 0j terapids
célpontok azonositasdban. Kutatdsunk az SCLC TME megértését célozta, kiillonds
tekintettel altipusaira, az infiltral6 makrofagokra (TAM) és azok polarizacidjara.

Elészor a tumorellenes immunvalaszért felelds immunsejtek eléfordulésat
vizsgaltuk neuroendokrin markerekben (NE) magas és NE-alacsony, limitalt stadiumu
SCLC-ben ¢s nyirokcsom¢ attéteiben. Immunhisztokémidval jelolt szovetmintadkon
kimutattuk, hogy az SCLC egy alacsony immun infiltraltsaggal jellemzhet6 daganat.
Ebben a kontextusban fontos megallapitdsunk hogy mas daganatokkal szemben a
TAM-ok alkotjak a legnépesebb populaciot, megelézve a CD3" sejteket is. Az M2
polarizalt CD163" sejtek szama szignifikansan magasabb az NE-alacsony tumor
fészkekben. A TAM siirliség erds pozitiv korrelaciot mutat a CD45 és CD3 markerekkel
elsddleges tumor fészkekben, de a kornyezd stromaban nem taldltunk hasonlo
Osszefiiggést. Expresszids adatok alapjan lehetséges farmakoldgiai célpontokat
azonositottunk NE-alacsony és immun-oazis tumorokban.

A makrofagok polarizacids folyamatait és azok kiilsé jelekkel vald 6sszefiiggését
in silico megkozelitéssel vizsgaltuk. Létrehoztunk és verifikaltunk egy Boolean Control
Network modellt, mely dsszekoti a sejten kiviilrdl érkezd jeleket a korai valasz soran
jelentkezd génexpresszios valtozasokkal. Megfigyeltiik, hogy a proinflammatorikus és
regenerativ utvonalak felépitésiik jellegében is kiillonboznek. Terapids beavatkozasokat
szimulalva arra a kovetkeztetésre jutottunk, hogy egyetlen célpont gatlasa nem elégséges
a polarizacid6 megvaltoztatasahoz, két megfeleld (6nmagaban akér elenyészd hatast)
célpont egyidejli gatlasaval viszont elérhetd. M1 irdnyba torténd modulacional a STAT6,
JAKI és JAK2, M2 iranyba pedig az NFATS fehérjék szerepe emelkedett ki.

Uj célpontok azonositisara iranyalé kutatasok tamogatdsira és hatdanyag
indikacidk wjratervezésére (drug repurposing) felépitettiink egy nyiltan elérhetd online
eszkozt, az EZCancerTarget-et. Ez szdmos adatbazis, koztiik a PubChem, DrugBank,
PubMed és EMA adatait Osszesiti gyogyszer(jelolt)ekrol ¢és gazdagitja biologiai

hattérinformaciokkal célpontjaikrol a UniProt, String, GeneCards és méas forrasokbol.
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