
Investigating the Role of Maternal Age in the Occurrence of Non-Chromosomal Congenital Anomalies

Ph.D. Thesis

Boglárka Pethő M.D.

Translational Medicine Program Health Sciences Division SEMMELWEIS UNIVERSITY

Supervisor:

Official reviewers:

Nándor Ács M.D., Ph.D., D.Sc.

Demetra-Gabriela Socolov M.D., Ph.D., D.Sc. Nikoletta Nagy M.D., Ph.D., D.Sc.

Head of the Complex Examination Committee:

Members of the Complex Examination Committee: Ferenc Bánhidy M.D., Ph.D.

Ádám László M.D., Ph.D. Zsolt Melczer M.D., Ph.D.

Budapest 2024

"Research is to see what everybody else has seen, and to think what nobody else has thought"

Albert Szent-Györgyi

TABLE OF CONTENT

1 LIST OF ABBREVATIONS4
2 STUDENT PROFILE
2.1 Vision and mission statement, specific goals
2.2 Scientometrics
2.3 Future plans
3SUMMARY OF THE THESIS7
4GRAPHICAL ABSTRACT8
5INTRODUCTION
5.1 Overview of the topic
5.1.1 What is the topic?
5.1.2 What is the problem to solve?9
5.1.3 What is the importance of the topic?
5.1.4 What would be the impact of our research results?
5.2 Maternal age – a critical factor in pregnancy outcome 10
5.3 Congenital anomalies – the leading cause of neonatal mortality and
morbidity11
5.4 Potential association between NCAs and maternal age 12
6OBJECTIVES14
6.1 Study I. – Investigating the Impact of Maternal Age on the Development
of Non-Chromosomal Congenital Anomalies in the Hungarian Population
between 1980 and 2009 14
6.2 Study II. – Investigating the Impact of Maternal Age on the Development
of Non-Chromosomal Congenital Anomalies Worldwide14
7METHODS15
7.1 Study I 15
7.1.1 Study design 15
7.1.2 Setting

DOI:10.14753/SE.2024.3114

7.1.3	Ethics and patient consent16
7.1.4	Participants 16
7.1.5	Variables and data sources17
7.1.6	Bias and evidence synthesis17
7.1.7	Statistical methods 18
7.2 Stu	udy II 19
7.2.1	Literature search and eligibility criteria19
7.2.2	Study selection and data extraction 20
7.2.3	Quality assessment 21
7.2.4	Data synthesis and analysis21
8RESULTS	
8.1 Stu	udy I: Population-based registry analysis
8.1.1	Participants 23
8.1.2	Characteristics of the study population
8.1.3	Risk of NCAs by maternal age category25
8.1.4	Level of evidence
8.2 Stu	udy II: Meta-analysis
8.2.1	Study selection
8.2.2	Study characteristics
8.2.3	Risk of bias assessment 32
8.2.4	Heterogeneity and publication bias
8.2.5	Risk of NCAs by maternal age category46
9DISCUSSI	ON
	mmary of findings, international comparisons (including all studies) 59
9.2 Str	rengths (including all studies)67
9.3 Li	mitations (including all studies)68

DOI:10.14753/SE.2024.3114

10	CO	DNCLUSIONS	
11	IN	IPLEMENTATIONS FOR PRACTICE	71
12	IN	IPLEMENTATION FOR RESEARCH	72
13	IN	IPLEMENTATION FOR POLICYMAKERS	73
14	FU	JTURE PERSPECTIVES	74
15	RI	EFERENCES	75
16	BI	BLIOGRAPHY	94
	16.1	Publications related to the thesis	
	16.2	Publications not related to the thesis	
17	A	CKNOWLEDGEMENTS	96

1 LIST OF ABBREVATIONS

AMA	advanced maternal age
-----	-----------------------

- CA chromosomal anomaly
- CHD congenital heart defect

CI confidence interval

EUROCAT European Concerted Action on Congenital Anomalies and Twins (a network of population-based congenital anomaly registries across Europe)

GDM gestational diabetes mellitus

GRADE Grading of Recommendations Assessment, Development and Evaluation (a tool for grading the quality of evidence)

HCCSCA Hungarian Case-Control Surveillance of Congenital Abnormalities

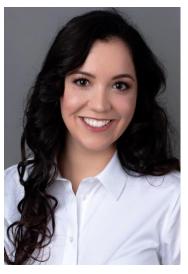
- HCAR Hungarian Congenital Abnormality Registry
- ICD International Classification of Diseases

IVF *in vitro* fertilization

- KSH Központi Statisztikai Hivatal (Hungarian Central Statistical Office)
- **MEDLINE** Medical Literature Analysis and Retrieval System Online (the bibliographic database of the National Library of Medicine)
- NCA non-chromosomal anomaly
- **NTD** neural tube defects
- **OR** odds ratio
- **PECO** population, exposure, comparator, outcome (a framework for formulating scientific questions)

PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses

PROSPERO International prospective register of systematic reviews


- QUIPS Quality in Prognostic Studies (a tool to assess the study quality and risk of bias)
- **ROBVIS** a risk of bias visualization tool for systematic reviews
- **RR** risk ratio
- **SD** standard deviation

- **STROBE** strengthening the reporting of observational studies in epidemiology (a checklist of items that should be included in observational research articles)
- **WHO** World Health Organization

2 STUDENT PROFILE

2.1 Vision and mission statement, specific goals

My vision is a world where women receive state-of-the-art prenatal care, ensuring the best possible outcomes for the next generation. My mission is to promote the adoption of innovative screening and monitoring techniques in prenatal care. My specific goal is to elevate screening methods for nonchromosomal birth defects to the highest possible standard, enhancing early detection and intervention worldwide.

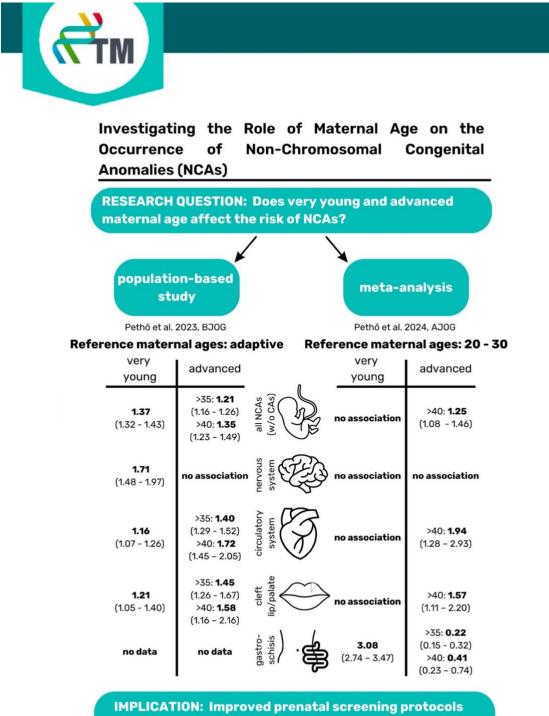
2.2 Scientometrics

Number of all publications:	5
Cumulative IF:	21.391
Av IF/publication:	4.278
Ranking (SCImago):	D1:2, Q1:2, Q3:1
Number of publications related to the subject of the thesis:	2
Cumulative IF:	13.4
Av IF/publication:	6.7
Ranking (Sci Mago):	D1:2, Q1:, Q2: -
Number of citations on Google Scholar:	31
Number of citations on MTMT (independent):	11
H-index:	3

The detailed bibliography of the student can be found on pages 94-95.

2.3 Future plans

I plan to expand my research in prenatal care by utilizing my extensive knowledge in this area. A thorough understanding of healthcare necessitates combining practical experience with academic knowledge. I am committed to actively engaging in prenatal patient care to improve my skills and expand my perspective. Through daily contact with pregnant women, my aim is to gain a deep knowledge of their distinct demands, challenges, and worries.


With the cohesion of my research and clinical experiences in the field of prenatal medicine, my goal is to build a professional path that raises prenatal care to the highest possible level, thereby improving the well-being of mothers and their babies.

3 SUMMARY OF THE THESIS

There is a well known association between maternal age at birth and non-chromosomal congenital anomalies (NCAs), but the exact details are still under active research. Our aim was to identify maternal age groups with elevated risk of NCAs and to analyze the age-dependent risk variation of different anomalies. To improve our comprehension and practical use, we conducted a thorough investigation utilizing a database that encompasses the entire population of Hungary over almost three decades, as well as a meta-analysis of existing population-based studies worldwide. We found strong evidence that the risk of occurrence of NCAs - excluding cases with concomitant chromosomal anomalies (CAs) – is higher for mothers over 40: RR = 1.25 (CI: 1.08–1.46) in the metaanalysis and 1.35 (CI: 1.23–1.49) in the population based study. The elevated risk in case of very young mothers was also evidenced in the population based study, however, the risk increase for the same age group in the meta-analysis did not turn out to be significant. The year-by-year data available in the population based data enabled a more precise delineation of the lowest risk maternal age range: mothers between 23 and 32 years age had the lowest chance for NCAs. When investigating specific NCA categories, concordance between the two studies was strongest for the circulatory system and cleft lip and palate, with both showing elevated risk in the 40+ age group.

The findings underscore the importance of revising current prenatal screening protocols to ensure they also account for maternal age. The results suggest that it may be beneficial to use maternal age as a screening criterion for both fetal echocardiography and neurosonography. In addition, public health policy should incorporate educational campaigns targeting high-risk age groups to emphasize the significance of prenatal care and screening. Customized counseling taking into account risks specific to different age groups can improve the effectiveness of prenatal care and assist pregnant women in making well-informed decisions.

4 GRAPHICAL ABSTRACT

based on maternal age

CENTRE FOR TRANSLATIONAL MEDICINE

5 INTRODUCTION

5.1 Overview of the topic

5.1.1 What is the topic?

The focus of my research is to investigate the impact of maternal age on the occurrence of non-chromosomal congenital anomalies (NCAs) in order to identify specific agerelated risk categories and improve prenatal screening protocols.

5.1.2 What is the problem to solve?

The issue lies in the limited evidence regarding the exact relationship between maternal age and the occurrence of NCAs. This lack of clarity makes it difficult to develop accurate prenatal screening protocols and public health strategies.

5.1.3 What is the importance of the topic?

The importance of this topic cannot be overstated, as congenital anomalies are frequent with 3-5% worldwide(1, 2) and play a significant role in infant mortality (6% of infant death worldwide)(3) and morbidity rates (approximately 20%)(4, 5) as well as result in substantial healthcare expenses(6). By understanding the influence of maternal age on NCAs, we can improve prenatal screening protocols and public health strategies, consequently reducing the occurrence and impact of these anomalies on families and the healthcare system.

5.1.4 What would be the impact of our research results?

The outcomes of our research will have significant impact by enhancing prenatal screening protocols and public health strategies. Healthcare providers can enhance the effectiveness of prenatal care by identifying maternal age groups that are at a higher risk for NCAs. Public health campaigns can be customized to provide education and assistance to age groups that are at a higher risk, ultimately decreasing the occurrence and effect of NCAs. Furthermore, our findings will provide direction for future investigations and policy choices focused on improving maternal and child health outcomes.

DOI:10.14753/SE.2024.3114

5.2 Maternal age – a critical factor in pregnancy outcome

Over the previous few decades, women's typical delivery age has increased in developed countries.(7) Postponing childbearing is a complex phenomenon caused by social and cultural changes.(8, 9) A growing number of couples are conceiving their first child while the mother is between the ages of 30 and 35.(10) According to the literature, advanced maternal age (AMA) begins at age 35 (\geq 35 years old) but this is by far not a universal definition, and a distinct age limit could be established for each adverse perinatal outcome. The proportion of births to mothers over the age of 35 has doubled since 1990, accounting for approximately 20% of births in 2021; birth rates among mothers in their forties have also steadily increased during this time.(11) In addition to social trends, innovations in assisted reproduction techniques are increasingly allowing women to have children after the age of 35 or even 40.(12)

Many studies have linked postponement of childbearing to a variety of pregnancy and fetal complications (13-15) as well as recommendations for managing these high-risk pregnancies.(16) AMA has been linked to an increased risk of gestational diabetes mellitus(17-19), hypertensive disorders of pregnancy(20, 21), preterm delivery(22, 23), fetal growth restriction(24, 25), stillbirth(26, 27), and cesarean delivery(28, 29), among other complications. The results of the large epidemiological studies were also confirmed by studies with animal models, which make it possible to explore the mechanisms behind poor pregnancy outcomes and to develop therapeutic methods.(30) AMA, even in older pregnant women without additional health conditions like gestational hypertension or diabetes, is still associated with poorer obstetric and perinatal outcomes. This suggests that advanced maternal age alone is a significant and independent risk factor.(31) In addition to high-risk pregnancies and perinatal outcomes, AMA plays an important role in congenital anomalies. This association is strong and well known in relation to chromosomal anomalies, however, in case of NCAs, it is less coherently reported in the literature.

Very young maternal age (< 20 year old) is also a major risk factor for adverse pregnancy outcomes (higher rates of eclampsia, low birth weight and preterm delivery to mention the most important).(32, 33) The global adolescent birth rate has decreased by more than 30 percent between 2000 and 2022, going from 65 to 42 births per 1,000 adolescent girls aged 15-19.(34) This trend is the result of education, better access to contraception and

social changes.(35) Very young maternal age does not seem to be an independent risk factor for most outcomes. Rather, the increased risk appears to be an consequence of the circumstances associated with becoming pregnant without planning as an adolescent.(36) Substance abuse, higher rates of sexually transmitted infections, poorer nutritional conditions and low socioeconomic status may explain poorer pregnancy outcomes.(37-39)

5.3 Congenital anomalies – the leading cause of neonatal mortality and morbidity

Congenital anomalies are structural or functional abnormalities that develop during intrauterine life and can be detected intrauterinely, at birth, or, occasionally, during infancy.(40) Congenital anomalies affect three to five percent of all births worldwide (1, 2), which is a main cause of infant mortality(41) and morbidity, responsible for the loss of 25.3–38.8 million disability-adjusted life years globally.(42) According to the EUROCAT survey, the average relative frequency of birth defects in Europe was 23.9 per thousand births in 2010.(43) The 2010 Global Burden of Disease study estimates that congenital anomalies account for 6% of infant deaths worldwide(3), while other studies show that approximately 20% of neonatal and infant mortality is associated with congenital anomalies.(4, 44)

The overall occurrence of significant birth defects has remained consistent over time. However, both increasing (e.g. atrioventricular septal defect, tetralogy of Fallot, omphalocele) and decreasing (e.g. anencephaly, common truncus, transposition of the great arteries, and cleft lip with and without cleft palate) trends were observed for certain conditions.(5)

Congenital anomalies impose a significant burden on society as a whole, particularly on affected families and the health and social care systems. Furthermore, congenital anomaly-related hospitalizations are extraordinarily costly, accounting for 4.1% of all hospitalizations and 7.7% of entire hospital expenses (among patients under 65 years), and with an estimated annual expense of \$22.2 billion in the United States in 2019.(6) These facts emphasize the global significance of congenital anomalies in research, prevention and screening. It is essential to prioritize appropriate intervention as a matter of public health. Several known maternal lifestyle risk factors and chronic illnesses are clearly associated with the occurrence of congenital anomalies. For example, a meta-

analysis found that maternal tobacco use during pregnancy increases the risk of congenital anomalies (OR = 1.18; CI: 1.03–1.34).(45) The risk-increasing effect of maternal diabetes is also considered in genetic screening. A comprehensive study found that pre-gestational diabetes has a significant effect (RR = 2.66; CI: 2.04–3.47).(46)

5.4 Potential association between NCAs and maternal age

Among congenital anomalies, chromosomal anomalies (CAs) are clearly associated with advanced maternal age (47-50), a long-standing fact that has resulted in the current professional screening protocols.(51, 52) However, there is no consensus with regard to the degree of association between NCAs and maternal age.

While the role of maternal age in the development of NCAs is generally accepted, the literature is inconsistent regarding the risk of NCAs in specific age groups. This is a major issue not only because of the trend towards delayed childbearing but also because of the risks of adolescent pregnancies. Some studies show a risk-increasing effect only for the very young(53) (generally defined as under 20 years old) or only for the advanced-aged(generally defined 35 years old or older) population(54), while others for both age categories.(55, 56)

When examining the effect of maternal age on NCAs, a comprehensive analysis is justified not only by the inconsistent data. Studies are very heterogeneous in terms of age categories and the classification of NCAs: On the one hand, there is no universally accepted reference age category, on the other hand, anomalies are classified in various ways that may or may not correspond to International Classification of Diseases (ICD) categories.

The underlying maternal age related factors contributing to the increased risk of NCAs are known, even though the precise biological links remain undetermined. The susceptibility of the very young age group can be largely attributed to the teratogenic effects resulting from the lifestyle and living conditions of mothers who became pregnant at a very young age, as well as their limited adoption of primary prevention measures. In detail, these factors may encompass smoking, drug and alcohol abuse (the combined prevalence of substance is 41.0%), low socioeconomic status, low level of education, and a lack of sufficient folic acid supplementation which is common in case of intentional childbearing.(57) Insufficient consumption of folic acid is unequivocally linked to an elevated susceptibility to neural tube defects.(58) To what extent AMA is responsible

DOI:10.14753/SE.2024.3114

directly and indirectly (i.e. via age-related chronic diseases) for the increased risk of NCAs is not yet established. The necessary basic research - e.g. that would clarify the role of age-related decline of oocyte quality and deteriorated repair processes in increased risk of NCAs - is still missing.

6 OBJECTIVES

6.1 Study I. – Investigating the Impact of Maternal Age on the Development of Non-Chromosomal Congenital Anomalies in the Hungarian Population between 1980 and 2009

The aim of this study was to use our distinct database to determine the specific 10-year period of maternal age in Hungary that has the lowest risk for NCAs. Additionally, we also wanted to compare other maternal ages to this specific period in order to offer an original perspective on the relationship between maternal age and NCAs. The reason for this approach was to enhance our comprehension of age-related vulnerabilities and provide insights for modifying prenatal screening protocols according to the maternal age.

6.2 Study II. – Investigating the Impact of Maternal Age on the

Development of Non-Chromosomal Congenital Anomalies Worldwide

The objective of this study was to perform a comprehensive meta-analysis investigating the occurrence of NCAs based on maternal age. Despite thorough investigation on this subject, the full scope and characteristics of the association between maternal age and NCAs are still uncertain. The existing literature lacks a unanimous agreement on the specific particulars of this relationship. The objective of this study was to elucidate these factors and offer valuable perspectives for formulating age-specific guidelines for prenatal screening and public health strategies.

7 METHODS

7.1 Study I.

7.1.1 Study design

We conducted a population-based study in Hungary over a span of nearly 30 years to examine the occurrence of NCAs in relation to the age of the mothers. This study collected cases from the Hungarian Case-Control Surveillance of Congenital Abnormalities (HCCSCA), and the total number of live births during the study period from the Hungarian Central Statistical Office (KSH). Instead of comparing arbitrary age categories, we used the restricted cubic spline model to identify high- and low-risk maternal age groups.(59) We present our population-based study in accordance with the guidelines outlined in the STROBE (Strengthening the Reporting of Observational studies in Epidemiology) guideline.(60)

7.1.2 Setting

Our study examines the HCCSCA, which was established in 1980 and ended in 2009.(61) The data collection process underwent modifications in 1997, specifically impacting the collection of matched controls that were not utilized in the present study. Consequently, this led to slight adjustments in the structure of the HCCSCA. The data collected from 1980 to 2009 through the HCCSCA was consolidated into a single, validated database.(62) In 2002, the legal basis of data privacy was called into question and data collection was halted until 2005 following the concerns raised by a mother.

Physicians in Hungary have been required to report patients as cases with congenital anomalies to the Hungarian Congenital Abnormality Registry (HCAR) since 1962. This reporting obligation applies from birth until the end of the first postnatal year. The HCAR, established in 1962, was the inaugural international registry of congenital anomalies with a national focus.(63) Starting from 1984, the prenatal diagnostic centers were required to inform the HCAR about any prenatally diagnosed fetuses with or without elective termination of pregnancy, if they were found to have malformations. The HCCSCA has registered cases from the HCAR since 1980.

7.1.3 Ethics and patient consent

The data analysis was conducted with the approval of the Scientific and Research Ethics Committee of the Medical Research Council, Hungary (BMEÜ/920-3/2022/EKU). Our study did not report any registry data that could be identified. There is no legal requirement for obtaining informed consent in order to register a baby with a congenital anomaly.

7.1.4 Participants

Cases with CAs in the HCAR were enrolled to the HCCSCA if they met all the following selection criteria: (1) reported to the HCAR within 3 months after birth or elective termination of pregnancy, (2) none of the three mild congenital anomalies (hip dislocation, congenital inguinal hernia, and large haemangioma) were present alone, and (3) did not have congenital anomaly-syndromes caused by gene mutations or chromosomal anomalies with preconceptional origin. In our analysis, we excluded cases with incomplete data or the co-presence of chromosomal anomalies (Figure 1). The main task of the HCCSCA has been the detection of teratogenic/fetotoxic agents and other environmental effects during pregnancy resulting in the development of birth defects. The case group contains live births, stillbirths, and elective terminations of pregnancies following prenatal malformation diagnosis. For the number of controls, the total number of live births by maternal age in Hungary during the study period was obtained from the KSH.

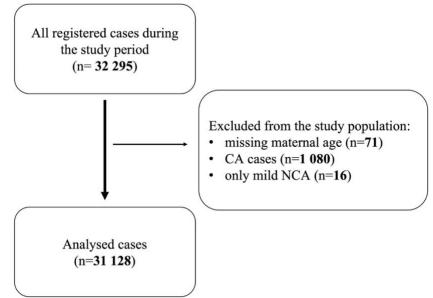


Figure 1. Study plan(64)

7.1.5 Variables and data sources

The data collection process recorded the following information for each patient: NCA(s), gender, maternal age, paternal age, birth date, birth weight, gestational age, place of mother's residence, birth order, mother's and father's level of education, employment status and type of employment, mother's marital status, outcome of previous pregnancies, maternal diseases during pregnancy (specified by month), medication during pregnancy (specified by month), and the mother's smoking habits and alcohol consumption patterns.(62)

The maternal age was documented at the moment of childbirth or termination of pregnancy as a result of fetal anomaly. Data regarding maternal diseases, lifestyle factors, and medication usage during pregnancy were gathered through various methods. Initially, mothers submitted their comprehensive medical records pertaining to their current pregnancy, which were then meticulously documented by professionals (prospective, medically recorded data). Subsequently, a questionnaire was sent via mail to the mothers, which included inquiries regarding maternal illnesses, drug treatments during pregnancy, and pregnancy supplements. The information collected was retrospective and based on self-reports from the mothers. Finally, nurses from different regions visited all the mothers. They assisted mothers in gathering and presenting their medical records and completing the supplementary data collection questionnaire.

7.1.6 Bias and evidence synthesis

The maternal ages were documented using birth certificates, guaranteeing a high degree of precision in the data. The distinct characteristics of data collection and verification additionally bolster the dependability of the data. Nevertheless, the categorization of results was not uniform throughout the extensive duration of the study. When converting various ICD categories, the groupings used may not always align perfectly.

We employed the GRADEpro tool to evaluate the degree of evidence underlying our findings.(65) The GRADE is a standardized methodology that allows for clear and consistent evaluation of evidence quality, and thus enables the judgement of the reliability of study results.

7.1.7 Statistical methods

Primary data extraction and organization were carried out in Microsoft Excel. Statistical analysis was carried out in R (version 4.1.3).(66)

The aim of our analysis was to determine high risk maternal age for each NCA category. We used a two-way approach.

First, we identified the best ten-year period of maternal age corresponding to the anomaly's lowest relative frequency. Risk was calculated as: number of cases among live births + stillbirths + elective terminations of pregnancies following prenatal diagnosis of malformation / total number of live births in the population. Risk ratios (RR) for each year were determined by taking the best ten-year period as a "reference risk". (Despite the case-control approach, RR could be used because data collection included the whole population.) Cases with maternal age less than 13 (1 case) and greater than 45 years (9 cases) were excluded because the very low number of cases in these maternal age ranges would have made the regression unreliable. The confidence interval (CI) of relative frequency was estimated according to Agresti and Coull.(67)

Second, we fitted a non-linear, non-parametric logistic regression model on the original data (namely, a restricted cubic splines model using 5 knots at the .05 .275 .5 .725 and .95 quantiles, as recommended in literature; explanatory variable: maternal age; response variable: presence or abscence of NCAs) using the "rms" R package (version 6.2.0).(68) The resulting relative frequency estimates of the regression were transformed to the RR scale in order to enable graphical representation in the figure showing the year-by-year risk estimates calculated above.

A grouping of NCA categories based on high risk maternal age was done by considering the confidence bands in addition to assessing the shape of the curves: a curve may appear U shaped at first glimpse but the risk increase is not necessarily statistically substantiated in both directions, i.e. the CI-band may contain the RR = 1 line corresponding to zero effect.

All CIs were calculated at a confidence level $(1-\alpha)$ of 95%.

7.2 Study II.

We documented our systematic review and meta-analysis based on the guidance of the PRISMA 2020 guideline (69), and we adhered to the Cochrane Handbook for Systematic Reviews of Interventions.(70) The protocol of the study was prospectively registered on PROSPERO (International Prospective Register of Systematic Reviews) (71) (registration number CRD42021283593), and we adhered to it, with some deviations: Title modification for the purpose of enhancing clarity and conciseness; Subgroup analyses were performed without prior specification; The searches involved examining reference lists of eligible articles for screening purposes. Only population-based studies that provided precise NCA counts were included in order to facilitate risk assessment. For the sake of simplicity in understanding, Risk Ratios were utilized instead of Odds Ratios. Publication bias was assessed only visually. However, these modifications primarily pertain to technical aspects and do not change the underlying conceptual framework of the study.

7.2.1 Literature search and eligibility criteria

Information sources

The search was systematically carried out in three extensive medical databases: MEDLINE (via PubMed), the Cochrane Library (CENTRAL), and Embase on October 19, 2021.

Search strategy

We conducted a systematic search using the following search term: ("maternal age" OR "maternal ages" OR "mother age" OR "mother ages") AND (((congenital OR birth) AND (anomaly OR anomalies OR disorder OR disorders OR malformation OR malformations OR defect OR defects)) OR congenital abnormalities. The search was conducted without any language restrictions or filters. In addition, we examined the bibliography of the eligible articles.

Eligibility criteria

The research question was formulated utilizing the PECO framework. We included population-based studies reporting on pregnant women (P). We did not have pre-defined exclusion criteria (e.g., age range, country, comorbidities) for our population. Eligible studies compared different maternal age groups (E and C) regarding NCAs. We examined every pre-defined age group reported by the eligible studies. Our primary outcome (O) was the rate of all NACs combined, while the secondary outcomes were the various specific structural defects. We did not have pre-defined diagnostic criteria for the NCAs. Studies not reporting the total number of patients and the number of NCAs by age group were not eligible. The following exclusion criteria were pre-defined: CAs as target outcomes; case-control or cohort studies; case series; and case reports.

7.2.2 Study selection and data extraction

Study selection

After removing duplicates, the selection was performed independently by three review authors, first by title, then by abstract, and finally based on full text according to the aforementioned criteria. Endnote v20 (Clarivate Analytics, Philadelphia, PA, USA) reference manager software was used for the selection. We calculated Cohen's kappa coefficient after each selection process to measure interrater reliability.(72) Disagreements were resolved through consensus. In cases where consensus could not be reached, a final decision was made with the participation of a fourth independent review author. The study selection process is shown using the PRISMA 2020 flowchart (**Figure 5**).

Data extraction

The author and two additional researchers independently gathered data from the eligible articles. In instances of disagreement, the decision was made by reaching a consensus. If a consensus could not be reached, a final decision was made by including a fourth researcher. The following data were extracted with a standardized collection method to an MS Excel sheet (Office 365, Microsoft, Redmond, WA, USA): first author, the year of publication, study population, study period, study site (region), study design, demographic data of the patients, total number of patients in the age groups, number of NCAs in the age groups, and further information necessary for assessing the risk of bias in the studies.

To investigate which maternal age increases the probability of particular NCAs, we utilized the age categories from the included studies or defined new ones by combining two or more age groups. The age group of 20- to 30-year-old mothers was used as a reference group. In defining the age groups, the ideal 10-year period was based on other studies, including our own work.(64) We aimed to look at very young mothers (under 20 years), advanced maternal age (35 years or older, as commonly defined); and mothers

over 40. In addition, we created additional groupings for the 30–35 and 35–40 maternal ages so that the potential association between maternal age and risk change of a given NCA may be more accurately determined. A study was included in the data analysis, if data was available for the reference age category and at least one additional age category for at least one NCA. To ensure consistency, we classified the endpoints according to ICD-10.

7.2.3 Quality assessment

The author and an additional researcher performed the risk of bias assessment independently with the help of the Quality in Prognostic Studies (QUIPS) tool.(73) Disagreements were resolved by a third researcher. A web-based Risk of Bias VISualization (ROBVIS) tool for systematic reviews was used to visualization of the results.(74)

7.2.4 Data synthesis and analysis

As a general rule, we carried out a mathematical synthesis if there were at least three matching articles regarding the age groups and NCAs. In a very few cases, when for non of the age groups were at least 3 studies available for the given anomaly, we carried out the meta-analysis of even only two studies to get at least a limited information.

All statistical analyses were made with R (66) using the 5.5.0 version of meta (75), and the 0.0.9000 version of the dmetar (76) packages.

We anticipated considerable between-study heterogeneity in the study population; therefore, a random-effects model was used to pool effect sizes. RRs with 95% CI was calculated as a random effects estimate with the metabin function of the meta R package. The Mantel-Haenszel method(77-79) was used to pool RRs. Since the exact Mantel-Haenszel method was used, we did not apply continuity correction to handle zero cell counts.(80)

For outcomes with at least five studies, a Hartung-Knapp adjustment was used.(81, 82) We applied the Paule-Mandel method (83) to estimate the between-study variance (tau squared).

Additionally, between-study heterogeneity was investigated by Cochrane's Q test. Significant heterogeneity was considered at p < 0.1. Higgins & Thompson's *P* statistics and 95% CI (82) were reported to illustrate the total variation across studies due to between-study heterogeneity.

Following the recommendations of IntHout et al.(84), where applicable, we also reported the prediction intervals (i.e., the expected range of effects of future studies) of the pooled estimates.

A Cochrane Q test was used between subgroups to assess the age group differences. The null hypothesis was rejected at a 5% significance level. We used forest plots to summarize the results graphically.

Publication bias (a.k.a. small study effect) was assessed visually using funnel plots (forest function of the meta R package), where asymmetry suggests potential bias. Formal assessment was not carried out if less than 10 studies were available, due to the increased risk of unreliable or misleading conclusions.

8 RESULTS

8.1 Study I: Population-based registry analysis

8.1.1 Participants

Over the study period, a total of 31,128 cases of NCAs were identified in Hungary, alongside 2,808,345 live births recorded during the same timeframe. **Table 1** presents the age distribution of the study population, showing that 7.66% of all births fell into the very young (under 20 years) and 6.62% into the advanced (35 years or more) maternal age categories. Additionally, mothers over 40 accounted for 1.11% of births. This means that 14.28% of births were in the maternal age groups expected to pose an increased risk. Mean maternal age was practically the same among cases (26.0 years; SD = 5.4) and in the total population (26.1 years; SD = 5.1).

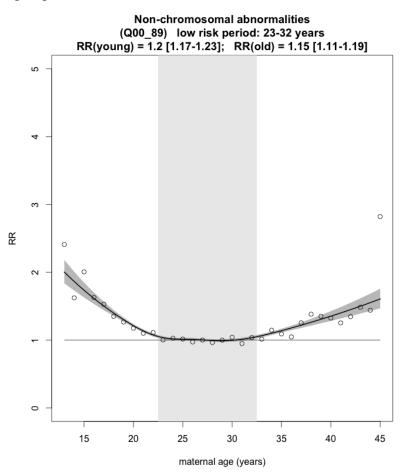
Maternal age	Number of live births in Hungary 1980 - 2009	Number of cases of NCA in Hungary 1980 – 2009
13 – 19	214 718	3 060
20 - 24	940 062	10 474
25 - 29	981 027	10 073
30 - 34	486 657	5 182
35 - 39	154 753	1 893
40 - 45	31 128	446

Table 1. Age distribution of cases and total population by age(64)

8.1.2 Characteristics of the study population

Thanks to the population-wide data collection, we had individual information about the cases. In the table below, we summarized some of this information. (**Table 2**) The most notable is the sex of the fetuses, which is around 65% male.

		maternal age: all					
		(13-45 years)					
		[count: 31,118]					
	count	mean	SD				
birth mass (g)	30,908	3,018	707				
gestation period (weeks)	30,995	38.5	3.2				
paternal age (years)	1,851	32.1	6.4				
	count	proportion					
gender							
male	20,046	65.64%					
female	10,492	34.36%					
NA	580						
birth order							
primiparous	16,309	55.76%					
multiparous	12,939	44.24%					
NA	1,870						
maternal smoking							
smoker	2,776	35.51%					
nonsmoker	5,041	64.49%					
NA	23,301						
maternal education							
managerial	1,377	15.26%					
professional	2,450	27.14%					
skilled worker	2,376	26.32%					
semiskilled	2,327	25.78%					
unskilled	496	5.50%					
NA	22,092						


 Table 2. Baseline characteristics table(64)

8.1.3 Risk of NCAs by maternal age category

The relative frequency of NCAs in the study period was 1.1% (excluding cases with only mild anomalies and cases with concomitant chromosomal anomalies, as described in the methodology earlier).

All NCAs (ICD-10 Q00-Q89):

In the first step, all NCAs were analyzed together (Figure 2). We found a risk-increasing effect for both the advanced and the very young maternal age. The lowest risk ten-year period turned out to fall between 23 and 32 years (light gray shading); both lower (RR = 1.2; CI: 1.17-1.23) and higher (RR = 1.15; CI: 1.11-1.19) maternal age pose an almost identically increased risk of anomalies. The year-by-year RRs (circle markers) imply an increasing trend in both directions. The fitted regression line (black, with a dark gray confidence band) stresses that both very young and advanced maternal age increase risk even more. Even though the confidence range becomes wider in the very young and old maternal age groups due to the low number of cases, the trend is still clear.

Figure 2. Analysis of all NCAs by maternal age(64) The figure shows the estimated risk ratios of NCAs as a function of maternal age with the best ten-year-period as "reference risk" (circle markers). The best ten-year-period is highlighted with light gray. The black curve shows the result of the restricted cubic splines regression, the dark gray area is its confidence range.

In the next step, NCAs were analyzed one-by-one by ICD categories (**Figure 3** and **Table 6**).

Congenital malformations of the nervous system (ICD-10: Q00-Q07)

The lowest risk ten-year-period in this category was detected between 26-35 years of maternal age. This is also the only NCA category where only the young maternal age is significantly associated with increased risk. Looking at the entire low-age group (< 26 years), the risk increase is 25%. For the very young age group (< 20), there is an even higher risk: RR = 1.71 (CI: 1.48–1.97).

Congenital malformations of eye, ear, face and neck (ICD-10: Q10-Q18)

The best-ten-year period for this type of anomaly was between 30-39 years. The advanced maternal age above this period shows a risk-increasing effect while young age (< 30 years) does not. Looking at the figure, the results appear to be somewhat inconsistent, because the risk increase already becomes significant above 35 years, which is still in the best-ten-year period. The risk increase is especially high above 40 years: RR = 2.09 (CI: 1.25–3.49).

Congenital malformations of the circulatory system (ICD-10: Q20-Q28)

The lowest risk ten-year-period falls between 23–32 years. Outside this age range, there is an increase in risk at both very young (< 23 years; RR = 1.07; CI: 1.01–1.13) and advanced maternal ages (> 32 years; RR = 1.33; CI: 1.24–1.42), but it is more pronounced in vase of the advanced age group. From a clinical point of view, it is noteworthy that within the advanced maternal age group, the risk was particularly elevated in mothers over 40 years: RR = 1.72 (CI: 1.45–2.05).

Congenital malformations of the respiratory system (ICD-10: Q30-Q34)

According to our analysis, respiratory system anomalies could not be proven to be associated with maternal age. Though a lowest risk ten-year-period was determined here as well, this is unlikely to reflect reality due to the scarcity of cases and the associated increased role of random data variation.

Cleft lip and cleft palate (ICD-10: Q35-Q37)

The lowest risk ten-year-period was found to be between 25–34 years of maternal age for this group of NCAs. There is an increase in risk both below (RR = 1.07; CI: 1.01–1.13) and above (RR = 1.33; CI: 1.24–1.42) this maternal age range, but it is more pronounced at advanced ages. In this case, too, mothers aged 40 and above faced the highest risk: RR = 1.58 (CI: 1.16–2.16).

Congenital malformations of the digestive system (ICD-10: Q38-Q45)

The lowest risk was for maternal age between 24 and 33 years, with both lower (RR = 1.23; CI: 1.14–1.31) and older (RR = 1.15; CI: 1.02–1.29) maternal age as a significant risk-increasing factor. The most pronounced increase in risk was observed for mothers under the age of 20: RR = 1.46 (CI: 1.31; 1.64).

Congenital malformations of genital organs (ICD-10: Q50-Q56)

The lowest risk ten-year-period was found between 25-34 years. Both the younger (RR = 1.15; CI: 1.08–1.22) and the more advanced (RR = 1.16; CI: 1.04–1.29) maternal age increases the risk – to a similar extent – The risk is expected to increase by around 30% for mothers both under 20 and over 40 years.

Congenital malformations of the urinary system (ICD-10: Q60-Q64)

The lowest risk ten-year-period was detected between 15–24 years. Higher maternal age increases the risk (RR = 1.34; CI: 1.19–1.50), with an even higher risk above 40: RR = 2.27 (CI: 1.53–3.38). Thought the below 20 age category overlaps with the lowest risk age range, a risk increase could still be detected: RR = 1.29 (CI: 1.04–1.60).

Congenital malformations and deformations of the musculoskeletal system (ICD-10: Q65-Q79)

The optimal age range is between 27–36 years. Both the younger (RR = 1.17; CI: 1.12–1.23) and the older (RR = 1.29; CI: 1.14–1.44) maternal age increases the risk. The probability of these anomalies increases most in people under 20 years of age: RR = 1.57 (CI: 1.46–1.70).

DOI:10.14753/SE.2024.3114

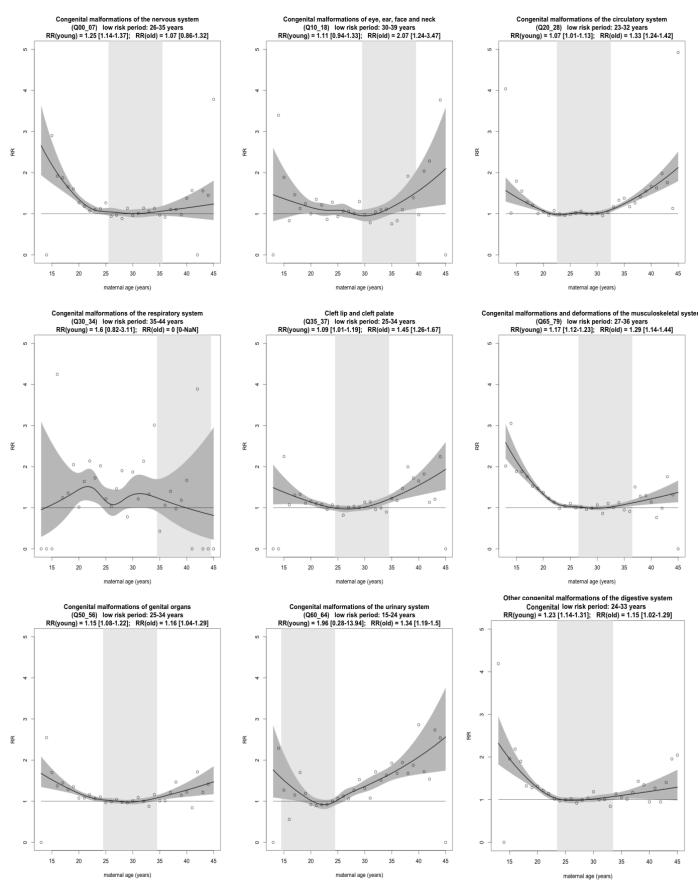


Figure 3. Summary results for the NCA categories(64)

8.1.4 Level of evidence

The level of evidence was only assessed in case of the overall outcome "all NCAs combined". Here, we found a "moderate" level (i.e. level 3 on a 4-level scale with levels "very low", "low", "moderate", and "high") of evidence certainty for both the very young (< 23 years) and the advanced (> 32 years) age groups. The main reason for this is the observational study design and the lack of inclusion of confounders in the analysis.

Certainty assessment No of patients(1) Effect												
№ of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	maternal ages	maternal ages	Relative (95% CI)	Absolute (95% CI)	Certainty	Importance
all non-chromo	somal congenita	l anomalies toge	ether - very youn	g maternal age								
1	observational studies	not serious	not serious	not serious	not serious	dose response gradient			RR 1.20 (1.17 to 1.23)	1 fewer per 100 (from 1 fewer to 1 fewer) ^a	⊕⊕⊕⊖ Moderate	CRITICAL
all non-chromo	somal congenita	anomalies toge	ether - advanced	maternal age								
1	observational studies	not serious	not serious	not serious	not serious	dose response gradient			RR 1.15 (1.11 to 1.19)		⊕⊕⊕⊖ Moderate	CRITICAL

Table 3. Grading of the primary outcomes(64)

8.2 Study II: Meta-analysis

8.2.1 Study selection

After duplicate removal, 15,547 studies were identified by our search in the three screened databases, from which 72 full-text articles were included in our synthesis following the selection process shown in **Figure 4** below.

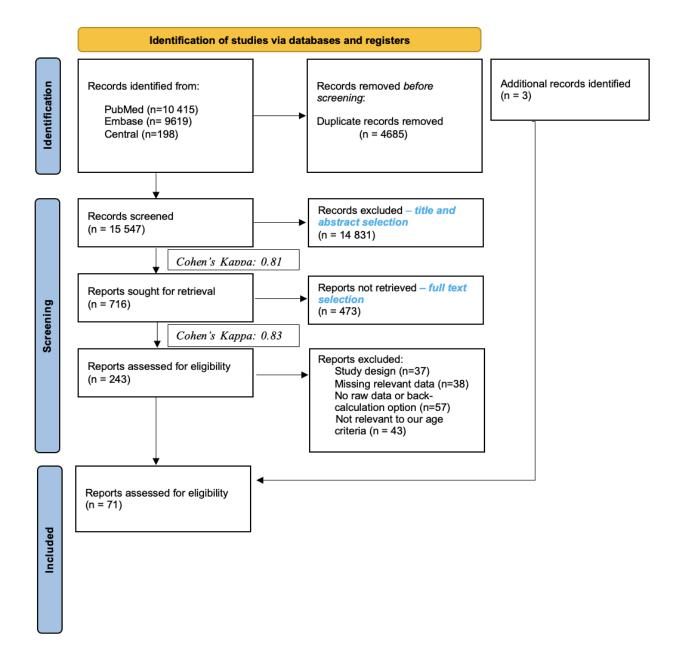


Figure 4. PRISMA 2020 flowchart representing the study selection process(85)

8.2.2 Study characteristics

The baseline characteristics of the included studies are detailed in **Table 4.** Our metaanalysis includes population-based studies from all over the world: 37 studies come from the Americas, 17 from Europe;, 14 from Asia, 3 from Australia, and 1 from Africa; the precise geographic location is indicated in the baseline table. In terms of the data collection period, the included studies encompass an overall timeframe between 1940 and 2018. All studies are population-based, with 36 studies carried out at the national level, 34 at the subnational level, and two at the multinational level, mostly based on the corresponding registries.

8.2.3 Risk of bias assessment

The results of the risk of bias assessment are presented in **Figure 5**. The overall risk of bias (possible levels are low, medium and high) is 88% low, 12% moderate, and 0% high. The two component bias aspects with the highest risk were the bias due to confounding (38% low, 62% moderate, 0% high) and bias due to participation (51% low, 49% moderate, 0% high). The main source of risk of bias in both cases is the limited reporting of population characteristics.

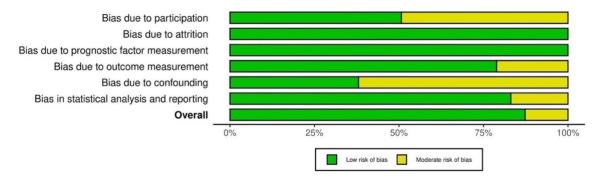


Figure 5. Risk of bias assessment using the ROBVIS tool(85)

8.2.4 Heterogeneity and publication bias

Most of our analyses showed a significant and high level (i.e., P > 75%) of heterogeneity. This is attributable to the diversity of geographical regions, population sizes, date and duration of the study periods represented by the included studies.

Upon visual inspection of the funnel plots no significant plot asymmetry was found that would suggest publication bias.

Author (year)	Ref	Country	Study period	Total	Cases	Age category	Congenital anomalies	
Agopian 2009	(86)	Texas (USA)	1999 - 2004	2208758	325	<20, 20-24, 25-29, 30- 34, 35-39, ≥40	Omhalocele	
Baer 2014	(87)	California (USA)	2005 - 2010	3070957	1279	<19, 20-24, 25-29, 30- 34, ≥35	Gastroschisis	
Beckman 1976	(88)	Sweden	1950 - 1973	61061	280	<24, 25-29, 30-34, ≥35	Cleft palate, Cleft lip with or without cleft palate, Polydayctyly, Syndactyly, Clubfoot	
Bergman 2015	(89)	Europe	2001 - 2010	5871855	10929	<20, 20-24, 25-29, 30- 34, 35-39, ≥40	Hypospadiasis	
Baird 1994	(90)	Canada	1966 - 1981	576815	702	<20, 20-24, 25-29, 30- 34, 35-39, ≥40	Isolated Cleft palate, Cleft lip and cleft palate	
Bodnár 1970	(91)	Hungary	1958 - 1967	115215	2100	<19, 20-24, 25-29, 30- 39, ≥40	all NCAs, Nervous system, Circulatory system, Urogenital anomalies, Musculoskeletal	

Table 4. Baseline charecteriscics of the included articles(85)

							system, Digestive system
Borman 1986	(92)	New Zeland	1978	52143	104	<20, 20-24, 25-29, ≥30	Anencephlaus, Spina bifida
Borque 2021	(93)	Canada	2012 - 2018	1001080	231	<20, 20-24, 25-29, 30- 34, 35-39, ≥40	Gastroschisis
Bugge 2017	(94)	Greenland (Denmark)	1989 - 2015	26666	33	<20, 20-24, 25-29, 30- 34, 35-39, 40-44, ≥45	Gastroschisis, Omphalocele
Byron 1998	(95)	Australia	1980 - 1990	358679	59; 104	<20, 20-24, 25-29, 30- 34, 35-39, ≥40	Gastroschisis, Omphalocele
Canfield 2009	(96)	Texas (USA)	1999 - 2003	1827317	514; 643	<20, 20-24, 25-29, 30- 34, 35-39, ≥40	Anencephlaus, Spina bifida
Canon 2012	(97)	Arkansas (USA)	1998 - 2007	196050	1455	<20, 20-24, 25-29, 30- 34, ≥35	Hypospadiasis
Croen 1995	(98)	California (USA)	1983 - 1988	1028255	29848	<20, 20-24, 25-29, 30- 34, 35-39, ≥40	all NCAs
DeRoo 2003	(99)	Washington (USA)	1987 - 1990	298138	608	<20, 20-24, 25-29, 30- 34, 35-39, ≥40	Cleft lip and cleft palate
Dott 2003	(100)	Metropolitan Atlanta (USA)	1968 - 1999	1029143	249	<20, 20-24, 25-34, ≥35	Diaphragmatic hernia

Dudin 1997	(101)	Palestina	1986 - 1993	26934	148	15-19, 20-24, 25-29, 30-39, ≥40	Neural tube defects
Fedrick 1976	(102)	Scotland (UK)	1961 - 1972	1162939	3246	<20, 20-24, 25-29, 30- 34, 35-39, 40-44, ≥45	Anencephlaus
Feldman 1982	(103)	New York, Brooklyn (USA)	1968 - 1976	173670	179	<20, 20-24, 25-29, 30- 34, ≥35	Neural tube defects
Forrester 2004	(104)	Hawaii (USA)) 1986 - 2000 281866 544		<19, 20-24, 25-29, 30- 34, 35-39, ≥40	Cleft lip and cleft palate	
Forrester 1999	(105)	Hawaii (USA)	1986 - 1997	1986 - 1997 229584 150		19≥, 20-24, 25-29, 30- 34, 35-39, ≥40	Omphalocele, Gastoschisis
Forrester 2000	(106)	Hawaii (USA)	1986 - 1997	246231	245	19≥, 20-24, 25-29, 30- 34, 35-39, ≥40	Anencephaly, Spina bifida, Encephalocele
Friedman 2016	(107)	USA	2005 - 2013	24836777	5985	<20, 20-24, 25-29, 30- 34, ≥35	Gastroschisis
Gupta 1967	(108)	Nigeria	1964	4220	15	15-1920-24,25-29,30-34,35-39,40-44	CHD
Hansen 2021	(109)	Australia	1990 - 2016	90 - 2016 765419 8173		<20, 20-24, 25-29, 30- 34, 35-39, ≥40	CHD
Hay 1972	(110)	USA	1961 - 1966	8475600	1063	<20, 20-24, 25-29, 30- 34, 35-39, ≥40	Anencephlay, Spina bifida, Hydrocephalus,

								Congenital he	eart
								defects, Cleft	lip
								without cleft pala	ite,
								Cleft lip and pala	ite,
								Cleft palate with	out
								cleft li	ift,
								Tracheoesophageal	
								fistula and oth	her
								esophageal defec	cts,
								Omhalocele,	
								Imperforate anus a	ind
								other anorec	tal
								defects, Hypospadia	asi,
								Position foot defec	cts,
								Polydactyly,	
								Syndactyly, Reducti	ion
								deformities	
Hollier 2000	(111)	Dallas	(Texas,	1988 - 1994	102728	3466	<20, 20-24, 25-29, 30-	all NCAs	
	(111)	USA)		1700 - 1794	102728	3400	34, 35-39, ≥40	all INCAS	

Jaikrishan 2012	(112)	India	1995 - 2011	141540	1370	15-19, 20-29, ≥30	Clubfood, CHD, Cleft palate/lip, NTD,
Janerich 1972	(113)	New York State (USA)	1945 - 1970	4555614	4450	15-19; 20-24; 25-29; 30-34; 35-39; 40-44	Hypospadiasis Spina bifida
Janerich 1972	(114)	New York State (USA)	1945 - 1967	4074079	3090	15-19; 20-24; 25-29; 30-34; 35-39; 40-44	Anencephaly
Jaruratanasirikul 2016	(115)	Southern Thailand	2009 - 2013	186393	269	<20; 20-<25; 25- <30;30-<35; ≥35	Oral clefts
Jones 2016	(116)	USA	1995 - 2012	21040437	8866	<20; 20-24; 25-29; 30- 34; 35<	Gastroschisis
Kazaura 2004	(117)	Norway	1967 - 1998	1869388	699	<20; 20-24; 25-29; $30-34; 35-39; \ge 40$	Gastroschisis, Omphalocele
Kirby 2013	(118)	USA	1995 - 2005	13233235	4713	<20; 20-24; 25-29; 30- 34; 35<	Gastroschisis
Liu 2013	(119)	Canada	2002 - 2010	2283223	26488	<19; 20-24; 25-29; 30- 34; 35-39; 40<	CHD
Liu 2019	(120)	Canada	2004 - 2015	3327762	1517	<19; 20-24; 25-29; 30- 34; 35-39; 40<	Spina bifida, Anencephaly/encephal ocele

Li 2019	(121)	Zhejiang Province (China, People's Republic of)	2010 - 2016	1748023	2790	<20; 20-25; 30-35; ≥ 35	Kidney and urinari tract defects
Loc-Uyen 2015	(122)	Texas (USA)	1999 - 2011	4970525	2549	<19; 20-24; 25-29; 30<	Gastroschisis
Luo 2019	(123)	Shenzhen (China, People's Republic of)	2003 - 2017	591024	777	<25; 25-;30-; 35<	Cleft lip and palate
Martinez-Frias 1984	(124)	Spain	1976	264502	52	<19; 20-24; 25-29; 30- 34; 35-39; 40<	Gastroschisis, Omphalocele
Materna-Kiryluk 2009	(125)	Poland	1998 - 2002	716089	8683	<19; 20-24; 25-29; 30- 34; 35-39; 40<	all NCAs (Excluded muskuloskeletal defects),Diaphragmati c hernia,Gastroschisis, Omphalocele, Neural tube defects, Microcephalus, Hydrocephalus, Congenital heart

							defects,
							Hypospadiasis, Renal
							agenesis or
							hypoplasia, Cystic
							kidney disease,
							Hydronephrosis, cleft
							palate, cleft lip with or
							without cleft palate,
							Oesophageal atresia,
							Small intestinal/large
							intestinal atresia or
							stenosis, Anal atresia
							or stenosis
McGivern 2015	(126)	Europe	1980 - 2009	11478586	3373	<20; 20-24; 25-29; 30- 34; 35<	Diaphragmatic hernia
Miller 2011	(127)	Atlanta (Georgia,	1968 - 2005	1301340	5289	<35; 35<	CHD
	(127)	USA)	1700 - 2003	1501540	5267	~~~~~	
						20-24; 25-29; 30-34;	all NCAs, Nervous
Mucat 2019	(128)	Malta	2000 - 2014	55943	2225	35-39; 40<	system, Eye,ear, face,
							neck, Circulatory

							system, Respira	ıtory
							system, Diges	stive
							system, Gei	nital
							organs, Urii	nary
							system,	
							Muskoloskeletal	
							system	
						<15; 15-19; 20-24; 25-		
Nazer 2007	(129)	Chile	1996 - 2005	21083	1767	29; 30-34; 35-39; 40-	all NCAs	
						44; 45<		
						<15; 15-19; 20-24; 25-		
Nazer 2013	(130)	Chile	2002 - 2011	15636	1174	29; 30-34; 35-39; 40-	all NCAs	
						44; 45<		
Parkes 2020	(131)	England,	2003 - 2010	219486	5154	<19; 20-29; 30-39; 40<	all NCAs	
raikes 2020	(131)	Scotland (UK)	2003 - 2010	219400	5154	<19, 20-29, 30-39, 40<	all INCAS	
							all NCAs, Nerv	vous
						<18; 20-24; 25-29; 30-	system, Circula	itory
Pasnicki 2013	(132)	Poland	1988 - 2007	192438	2769	<18, 20-24, 23-29, 30- 34; 35-39; 40<	system, Cleft lip	and
						54, 55-37, 40<	cleft palate, Diges	stive
							system, Ger	nital

							organs, Urinary
							system,
							Muskoloskeletal
							system, Other
Persson 2019	(133)	Sweden	1992 - 2012	2050491	28628	>24; 25-29; 30-34; 35<	CHD
Petrova 2009	(134)	Norway and Arkhangelskaja Oblast (Russia)	1995 - 2004	434567	615	<19; 20-24; 25-29; 30- 34; 35<	Neural tube defects: Anencephalus, Spina bifida
Pradat 1992	(135)	Sweden	1981 - 1986	573422	1605	<20; 20-24; 25-29; 30- 34; 35-39; 40-44; >44	CHD
Purkey 2019	(136)	California (USA)	2008 - 2012	2054516	6325	<19; 20-24; 25-29; 30- 34; 35<	CHD
Rankin 1999	(137)	Northern England (UK)	1986 - 1996	426694	296	11–19; 20–24; 25–29; 30–34; 35–39; >40	Gastroschisis, Omphalocele, Omphalocele
Rankin 2000	(138)	Northern England (UK)	1984 - 1996	507405	934	11–19; 20–24; 25–29; 30–34; 35–39; >40	Neural tube defects
Rider 2013	(139)	Utah (USA)	1999 - 2008	480125	8510	<24; 25-29; 30-34; 35- 39; 40-60	all NCAs

Roeper 1987	(140)	California (USA)	1968 - 1977	3297071	166	<19; 20-24; 25-29; 30-	Gastroschisis,
Salihu 2003	(141)	New York State (USA)	1992 - 1999	2153955; 2149340	595	34; 35-39; 40< <19; 20-24; 25-29; 30- 34; 35-39; 40<	Omphalocele Omphalocele, Gastroschisis
Salim 2019	(142)	Brazil	1996 - 2014	4270114	5062	<19; 20-29; 30-34; 35- 39; 40<	Circulatory system
Sarkar 2013	(143)	India	2011 - 2012	12896	286	<20; 20-30; 30<	all NCAs
Sever 1982	(144)	Los Angeles County (California, USA)	1966 - 1972	2945555	962	<14; 15-19; 20-24; 25- 29; 30-34; 35-39; 40- 44; 45<	Anencephalus, Spina bifida, Encephalocele, Neural tube defects, SUM
Shields 1981	(145)	Denmark	1940 - 1971	2406654	548	<19; 20-24; 25-29; 30- 34; 35-39; 40-44; 45<	Cleft palate
Short 2019	(146)	USA	2006 - 2015	17686317	3489	<19; 20-24; 25-29; 30<	Gastroschisis
StLouis 2017	(147)	USA	1999 - 2007	13105878	138999	<19; 20-24; 25-29; 30- 34; 35<	all NCAs, Anencephalus, Spina bifida,Encephalocele, Anotia/microtia, Common truncus CHD,Transposition of

		the great arteries
		,Tetralogy of
		Fallot,Atrioventricular
		septal defect without
		Down syndrome,
		Hypoplastic left heart
		syndrome, Coarctation
		of the aorta, Aortic
		valve stenosis, Cleft
		palate without cleft lip,
		Cleft lip with and
		without cleft palate,
		Esophageal
		atresia/tracheoesophag
		eal fistula, Pyloric
		stenosis, Rectal and
		large intestinal
		atresia/stenosis,
		Hypospadiasb, Upper
		limb deficiency,

							Lower limb
							deficiency, Any limb
							deficiency,Diaphragm
							atic hernia,
							Gastroschisis,
							Omphalocele
Tan 1996	(148)	England, Wales	1987 - 1993	4873547	1043	<20; 20-24; 25-29; 30-	Gastroschisis,
1411 1990	(140)	(UK)	1907 - 1995	40/334/	1043	34; 35-39; >40	Omphalocele
Tan 2005	(149)	Singanora	1994 - 2000	328077	7870	<20; 20-24; 25-29; 30-	all NCAs
1 all 2005	(149)	Singapore	1994 - 2000	526077	/8/0	34; 35-39; >40	all NCAS
Tan 2008	(150)	Singapore	1993 - 2002	460532	121	<20; 20-24; 25-29; 30-	Gastroschisis,
1 all 2008	(150)	Singapore	1995 - 2002	400332	121	34; 35-39; >40	Omphalocele
Williams 2005	(151)	Atlanta (USA)	1968 - 2000	877604	211	<20; 20–24; 24<	Gastroschisis
		Hunan Province				<20; 20-24; 25-29; 30-	
Xie 2016	(152)	(China, People's	2005 - 2014	925413	17753	34; 35<	all NCAs
		Republic of)				54, 55<	
Xie 2018	(153)	China (People's	2012 - 2016	673060	6289	<20, 20-24, 25-29, 30-	Congenital heart
AIC 2010	(155)	Republic of)	2012 - 2010	073000	0209	34, ≥35	defects
Xu 2011	(154)	China (People's	1996 - 2007	6308594	1601	<19; 20-24; 25-29; 30-	Gastroschisis
Au 2011	(134)	Republic of)	1990 - 2007	0306394	1001	34; 35<	Gasuoscilisis

Zhang 2012	(155)	China (People's Republic of)	2012	62526	976	<25; 25-30; 35<	all NCAs
Yang 2006	(156)	California (USA)	1989 - 1997	2506188	550	<20; 20-24; 25–29; 30–34; 35–39; 40–55	Diaphragmatic hernia
Zhou 2020	(157)	Southern Jiangsu (China, People's Republic of)	2014 - 2018	238712	1707	<19; 20-24; 25-29; 30- 34; 35<	all NCAs

8.2.5 Risk of NCAs by maternal age category

The role of maternal age in the occurrence of NCAs: **Table 5** summarizes our results. By default forest plots and summary statistics were prepared including all eligible studies regadless of concommittant CAs.

<u>All NCAs</u> (Figure 6, Figure 7)

Regarding our primary outcome, i.e. analyzing all NCAs combined, we found that age > 35 (RR = 1.31, CI: 1.07–1.61) and especially age > 40 (RR = 1.44; CI: 1.25–1.66) increase the risk of NCAs For this outcome we conducted two subgroup analyses to investigate the question more deeply. First, we examined the age risk of all NCAs excluding cases with co-occurrent chromosomal anomalies, we found significant results for the > 40 age category (RR = 1.25; CI: 1.08–1.46). Next, we carried out the analysis for studies where the presence of chromosomal anomalies was allowed: the risk of NCAs was found to increase with maternal age > 35 (RR = 1.26; CI: 1.12–1.42) and > 40 (RR = 1.63; CI: 1.26–2.09).

Congenital malformations of the nervous system (Q00-Q07)

Despite the analysis of up to 10 studies for each age group, we found no significant association between maternal age and congenital nervous system malformations (see **Supplementary Figure 3** of the article).

Congenital malformations of the circulatory system (Q20–Q28) (Figure 8)

We found a risk-increasing effect of maternal age > 40 (RR = 1.94; CI: 1.28–2.93). Among the diseases of the circulatory system, we also specifically analyzed the group of congenital heart defects (CHD) (Figure 9), where we also found risk-increasing effect for advanced maternal age: for the > 35 group: RR = 1.50; CI: 1.11–2.04; and for the > 40 group: RR = 1.75; CI: 1.32–2.32 was found. For the very young maternal age (< 20) group a preventive effect was observed (RR = 0.87; CI: 0.78–0.97).

Cleft lip and cleft palate (Q35–Q37) (Figure 10)

Maternal age > 40 elevated the risk of cleft lip and cleft palate (RR = 1.57; CI: 1.11–2.20). Regarding cleft palate separately (see **Supplementary Figure 10** of the article), we found an even higher risk with advanced maternal age, which appears as early as the 35th year (for age> 35: RR = 1.78; CI: 1.16–2.73; and for age > 40: RR = 1.77; CI: 1.48–2.11).

<u>Congenital malformations of the digestive system (Q38–Q45)</u> (Figure 11) We found a risk-increasing effect for maternal age > 40 (RR = 2.16; CI: 1.34-3.49).

Congenital malformations of the urinary system (Q60–Q64)

We could not detect an association between maternal age and congenital malformations of the urinary system after analyzing three eligible population-based studies with homogeneous age categories (see **Supplementary Figure 13** of the article).

Congenital malformations and deformations of the musculoskeletal system (Q65–Q79)

We did not find an association with maternal age. However, this can also be explained by the low number of studies and their heterogeneity, and also by the complex nature of the group (see **Supplementary Figure 14** of the article).

Other malformation categories

Regarding the congenital malformations of the eye, ear, face, and neck (Q10–Q18), congenital malformations of the respiratory system (Q30–Q34), and congenital malformations of genital organs (Q50–Q56), we did not find enough studies with homogenous age groups and NCAs to carry out a mathematical synthesis.

On the other hand, we found a clear association between maternal age and some individual malformations. The risk of omphalocele was higher in both very young (age < 20, RR = 1.44; CI: 1.08–1.92) and advanced maternal age (age > 40, RR = 2.57; CI: 1.77–3.73) group. Based on 22 eligible articles (age < 20, RR = 3.08; CI: 2.74–3.47), gastroschisis shows a strong association with very young maternal age (**Figure 12**).

Additionally, we also re-sorted our study level outcomes by year of publication to detect any apparent trend in case of outcomes where sufficient number of articles were available to have any chance to reliably assess any effect (see **Supplementary Figures 38-47** of the article) and we could not find any convincing trend upon visual inspection. As an alternate approach, we also analyzed the subset of studies published from 2005 onward (see **Supplementary Figures 48-57** of the article): no clear and convincing trend could be identified, only weak trends in a few cases (summarized in **Supplementary Table 6**).

Congenital anomaly	ICD-10 Category	Age < 20	N	Age 30-35	N	Age 35-40	N	Age > 35	N	Age > 40	N
All NCAs (with or without CAs)	Q00-Q89	1.08 (0.89; 1.32)	14	1.23 (0.85; 1.78)	13	1.47 (0.87; 2.49)	9	1.31 (1.06; 1.61)	13	1.44 (1.25; 1.66)	11
All NCAs (without CAs)	Q00-Q89	1.21 (0.59; 2.49)	5	1.54 (0.55; 4.32)	6	1.73 (0.45; 6.70)	5	1.37 (0.76; 2.45)	6	1.25 (1.08; 1.46)	6
All NCAs (with CAs)	Q00-Q89	1.15 (0.87; 1.52)	10	1.02 (0.99; 1.06)	7	1.20 (0.99; 1.44)	4	1.26 (1.12; 1.42)	7	1.63 (1.26; 2.09)	6
Nervous system	Q00-Q07	1.16 (0.74; 1.81)	10	1.64 (0.70; 3.81)	8	2.56 (0.64; 10.32)	5	1.53 (0.80; 2.94)	8	1.56 (0.67; 3.62)	7
Encephalocele	Q01	1.76 (0.44; 7.12)	3	1.51 (0.33; 6.83)	3	no data		1.43 (0.57; 3.60)	3	no data	
Congenital hydrocephalus	Q03	1.19 (1.02; 1.38)	2	no data		no data		no data		no data	
Spina bifida	Q05	1.30 (0.93; 1.82)	9	1.15 (0.65; 2.06)	8	1.79 (0.61; 5.31)	5	1.39 (0.75; 2.59)	8	1.96 (0.72; 5.31)	5
Anencephaly	Q00.0	1.40 (0.98; 1.99)	9	1.15 (0.72; 1.84)	8	1.20 (0.53; 2.72)	6	1.02 (0.60; 1.72)	8	1.30 (0.71; 2.38)	6
Circulatory System	Q20-Q28	0.87 (0.68; 1.11)	3	1.09 (1.00; 1.20)	3	1.18 (0.94; 1.49)	3	1.33 (0.97; 1.82)	3	1.94 (1.28; 2.93)	4
Congenital Heart Defects	Q20-Q26	0.87 (0.78; 0.97)	10	1.45 (0.83; 2.52)	10	1.91 (0.65; 5.62)	6	1.50 (1.11; 2.04)	10	1.75 (1.32; 2.32)	6
Cleft lip and palate	Q35-Q37	0.93 (0.76; 1.14)	6	1.58 (0.77; 3.22)	6	1.85 (0.59; 5.75)	4	1.47 (0.95; 2.28)	6	1.57 (1.11; 2.20)	4
Cleft palate	Q35	0.99 (0.56; 1.73)	6	1.42 (0.66; 3.06)	8	2.08 (0.54; 7.99)	5	1.78 (1.16; 2.73)	8	1.77 (1.48; 2.11)	5
Digestive System	Q38-Q45	0.98 (0.71; 1.37)	2	no data		no data		no data		2.16 (1.34; 3.49)	2
Urinary System	Q60-Q64	no data		0.97 (0.75; 1.26)	3	no data		0.86 (0.57; 1.29)	3	no data	
Hypospadiasis	Q54	0.99 (0.91; 1.07)	5	1.06 (0.96; 1.17)	4	no data		1.11 (0.88; 1.39)	4	no data	
Musculoskeletal System	Q65-Q79	0.88 (0.72; 1.08)	2	no data		0.93 (0.71; 1.22)	2	0.94 (0.65; 1.37)	2	0.90 (0.55; 1.46)	3
Congenital Diaphragmatic Hernia	Q79.0	0.96 (0.88; 1.06)	5	1.74 (0.52; 5.80)	4	no data		1.52 (0.79; 2.91)	5	no data	
Omphalocele	Q79.2	1.44 (1.08; 1.92)	14	1.13 (0.85; 1.50)	14	1.35 (0.98; 1.87)	13	1.47 (1.20; 1.79)	14	2.57 (1.77; 3.73)	13
Gastroschisis	Q79.3	3.08 (2.74; 3.47)	22	0.32 (0.23; 0.44)	17	0.27 (0.16; 0.47)	12	0.22 (0.15; 0.32)	17	0.41 (0.23; 0.74)	11

Table 5. Summary of our results based on ICD-10 categories (85)

	Events	omparator Total	Events	Total	Risk Ratio	RR	95%-CI	Weigh
<20 vs 20 - 30					I.			
Sarkar_2013	83	4409	174	7178		0.78	[0.60; 1.01]	6.99
Jaikrishan_2012	67	8833	1116	119314		0.81	[0.63; 1.04]	6.99
Pasnicki_2013	199	17670	1739	125353		0.81	[0.70; 0.94]	7.29
Bodnár_1970	206	13384	1342	71636	-	0.82	[0.71; 0.95]	7.29
Materna_2009	628	75121	5588	601520	-	0.90	[0.83; 0.98]	7.39
Hollier_2000	970	27521	2191	60575	101	0.97	[0.90; 1.05]	7.39
Xie_2016	256	13535	12677	677622	-	1.01	[0.89; 1.14]	7.29
Zhou_2020	39	5218	1108	157759	T	1.06	[0.77; 1.46]	6.69
					T.			
Hay_1972	8688	1240100	33981	5186500	10	1.07	[1.04; 1.09]	7.39
Croen_1995	3052	103735	16122	597390	100	1.09	[1.05; 1.13]	7.39
StLouis_2014	16174	1415846	69100	6615611	100	1.09	[1.08; 1.11]	7.39
Nazer_2007	115	1227	788	10481		1.25	[1.03; 1.50]	7.19
Tan_2005	149	5409	3176	150151		1.30	[1.11; 1.53]	7.19
	2753	18830	4557	109460	121			7.39
Parkes_2020					1.0	3.51	[3.36; 3.67]	
Random effects model	33379	2950838	153659	14490550	P	1.08		100.09
Prediction interval	•						[0.47; 2.52]	
leterogeneity: /2 = 99% [99			= 0					
Fest for effect in subgroup: 2	r = 0.79 (p)	= 0.427)						
-35 vs 20 - 30								
	295	8163	1201	30231	-	0.91	[0.80; 1.03]	7.79
Mucat_2019					1			
Croen_1995	2811	98815	16122	597390	1	1.05	[1.01; 1.10]	7.89
StLouis_2014	21341	1929379	69100	6615611	10	1.06	[1.04; 1.08]	7.89
Rider_2013	807	43061	2831	164711	100	1.09	[1.01; 1.18]	7.79
Hay_1972	6103	834900	33981	5186500	10	1.12	[1.09; 1.15]	7.89
Zhou_2020	189	22970	1108	157759	-	1.17	[1.00; 1.37]	7.69
	293	17498	1739	125353		1.21		7.79
Pasnicki_2013							[1.07; 1.36]	
Kie_2016	1568	68681	12677	677622	121	1.22	[1.16; 1.29]	7.89
Hollier_2000	187	4189	2191	60575		1.23	[1.07; 1.43]	7.69
Nazer_2007	389	3893	788	10481		1.33	[1.18; 1.49]	7.79
Zhang_2012	80	4009	306	21098		1.38	[1.08; 1.76]	7.49
Tan_2005	1935	54784	3176	150151	13	1.67	[1.58; 1.77]	7.89
Materna_2009	970	25225	5588	601520		4.14	[3.87; 4.43]	7.89
	36968	3115567		14399002	•			100.09
Random effects model	36968	3115567	150808	14399002	0	1.31	[1.07; 1.61]	100.03
Prediction interval	•						[0.56; 3.08]	
Heterogeneity: I ² = 99% [99 Fest for effect in subgroup: 2			0					
reactor enect in adagroup. 2	1 - 1.01 (p	- 0.010)						
40 vs 20 - 30								
Rider_2013	138	7220	2831	164711	her	1.11	[0.94; 1.32]	9.29
			1201	30231	15			
Mucat_2019	59	1325				1.12	[0.87; 1.45]	8.89
Croen_1995	426	13641	16122	597390	100	1.16	[1.05; 1.27]	9.39
Bodnár_1970	63	2656	1342	71636		1.27	[0.99; 1.63]	8.99
Hay_1972	1706	190200	33981	5186500	101	1.37	[1.30; 1.44]	9.49
Hollier_2000	34	674	2191	60575	- 100 -	1.39	[1.00; 1.94]	8.59
Materna_2009	248	18741	5588	601520	-	1.42	[1.26; 1.62]	9.39
Pasnicki_2013	73	3556	1739	125353		1.48	[1.17; 1.87]	8.99
Nazer_2007	103	834	788	10481		1.64		9.19
vazer_2007							[1.35; 1.99]	
Parkes_2020	454	6552	4557	109460		1.66	[1.52; 1.83]	9.39
Tan_2005	386	7195	3176	150151	121	2.54	[2.29; 2.81]	9.39
Random effects model	3690	252594	73516	7108008	\$	1.44		100.09
Prediction interval							[0.84; 2.46]	
leterogeneity: I ² = 94% [91			0.001					
Test for effect in subgroup: a	z = 4.99 (p	< 0.001)						
	629	17549	1201	30231	10	0.90	[0.82; 0.99]	
Mucat_2019	629 128	17549 9658	1201 306	30231 21098	-	0.90 0.91	[0.82; 0.99] [0.74; 1.12]	
Mucat_2019 Zhang_2012								7.49
Mucat_2019 Zhang_2012 StLouis_2014	128 31473	9658 3145042	306 69100	21098 6615611		0.91 0.96	[0.74; 1.12] [0.95; 0.97]	7.49
Mucat_2019 Thang_2012 StLouis_2014 Croen_1995	128 31473 6070	9658 3145042 228226	306 69100 16122	21098 6615611 597390		0.91 0.96 0.99	[0.74; 1.12] [0.95; 0.97] [0.96; 1.01]	7.49
Mucat_2019 Zhang_2012 StLouis_2014 Croen_1995 Hay_1972	128 31473 6070 7932	9658 3145042 228226 1214100	306 69100 16122 33981	21098 6615611 597390 5186500	나 수 있다.	0.91 0.96 0.99 1.00	[0.74; 1.12] [0.95; 0.97] [0.96; 1.01] [0.97; 1.02]	7.49 7.89 7.79 7.89
Mucat_2019 2hang_2012 StLouis_2014 Croen_1995 Hay_1972 2hou_2020	128 31473 6070 7932 371	9658 3145042 228226 1214100 52765	306 69100 16122 33981 1108	21098 6615611 597390 5186500 157759	나 망 카카카 카	0.91 0.96 0.99 1.00 1.00	[0.74; 1.12] [0.95; 0.97] [0.96; 1.01] [0.97; 1.02] [0.89; 1.13]	7.49 7.89 7.79 7.89 7.79
Mucat_2019 2hang_2012 StLouis_2014 Croen_1995 Hay_1972 2hou_2020 Rider_2013	128 31473 6070 7932 371 1682	9658 3145042 228226 1214100 52765 96088	306 69100 16122 33981 1108 2831	21098 6615611 597390 5186500 157759 164711		0.91 0.96 0.99 1.00 1.00 1.02	[0.74; 1.12] [0.95; 0.97] [0.96; 1.01] [0.97; 1.02] [0.89; 1.13] [0.96; 1.08]	7.49 7.89 7.79 7.89 7.79
Mucat_2019 2hang_2012 StLouis_2014 Croen_1995 Hay_1972 2hou_2020 Rider_2013	128 31473 6070 7932 371	9658 3145042 228226 1214100 52765 96088 117733	306 69100 16122 33981 1108	21098 6615611 597390 5186500 157759	0-0-4-0-0-4-0-	0.91 0.96 0.99 1.00 1.00	[0.74; 1.12] [0.95; 0.97] [0.96; 1.01] [0.97; 1.02] [0.89; 1.13]	7.49 7.89 7.79 7.89 7.79
Mucat_2019 Zhang_2012 StLouis_2014 Croen_1995 Hay_1972 Zhou_2020 Rider_2013 Tan_2005	128 31473 6070 7932 371 1682	9658 3145042 228226 1214100 52765 96088	306 69100 16122 33981 1108 2831	21098 6615611 597390 5186500 157759 164711	0.0000000000000000000000000000000000000	0.91 0.96 0.99 1.00 1.00 1.02	[0.74; 1.12] [0.95; 0.97] [0.96; 1.01] [0.97; 1.02] [0.89; 1.13] [0.96; 1.08]	7.49 7.89 7.79 7.89 7.79 7.79
Mucat_2019 Zhang_2012 StLouis_2014 Croen_1995 Hay_1972 Zhou_2020 Rider_2013 Fan_2005 Kie_2016	128 31473 6070 7932 371 1682 2610 3253	9658 3145042 228226 1214100 52765 96088 117733 165575	306 69100 16122 33981 1108 2831 3176 12677	21098 6615611 597390 5186500 157759 164711 150151 677622	3 중 다 다 다 한 다 다 다	0.91 0.96 0.99 1.00 1.00 1.02 1.05 1.05	[0.74; 1.12] [0.95; 0.97] [0.96; 1.01] [0.97; 1.02] [0.89; 1.13] [0.96; 1.08] [1.00; 1.10] [1.01; 1.09]	7.49 7.89 7.89 7.89 7.79 7.79 7.79 7.79
Mucat_2019 Zhang_2012 StLouis_2014 Croen_1995 Hay_1972 Zhou_2020 Rider_2013 Fan_2005 Kie_2016 Hollier_2000	128 31473 6070 7932 371 1682 2610 3253 409	9658 3145042 228226 1214100 52765 96088 117733 165575 10443	306 69100 16122 33981 1108 2831 3176 12677 2191	21098 6615611 597390 5186500 157759 164711 150151 677622 60575	10-0-0-4-4-0-4-1	0.91 0.96 0.99 1.00 1.00 1.02 1.05 1.05 1.05	[0.74; 1.12] [0.95; 0.97] [0.96; 1.01] [0.97; 1.02] [0.89; 1.13] [0.96; 1.08] [1.00; 1.10] [1.01; 1.09] [0.98; 1.20]	7.49 7.89 7.79 7.79 7.79 7.79 7.79 7.79
Vlucat_2019 Zhang_2012 StLouis_2014 Croen_1995 Adv_1972 Zhou_2020 Rider_2013 Fan_2005 Kie_2016 Hollier_2000 Nazer_2007	128 31473 6070 7932 371 1682 2610 3253 409 475	9658 3145042 228226 1214100 52765 96088 117733 165575 10443 5482	306 69100 16122 33981 1108 2831 3176 12677 2191 788	21098 6615611 597390 5186500 157759 164711 150151 677622 60575 10481	마★마무무무무무무무	0.91 0.96 0.99 1.00 1.02 1.05 1.05 1.05 1.08 1.15	[0.74; 1.12] [0.95; 0.97] [0.96; 1.01] [0.97; 1.02] [0.89; 1.13] [0.96; 1.08] [1.00; 1.10] [1.01; 1.09] [0.98; 1.20] [1.03; 1.29]	7.49 7.89 7.79 7.79 7.79 7.79 7.79 7.79 7.7
Vucat_2019 Chang_2012 StLouis_2014 Croen_1995 tay_1972 Chou_2020 Rider_2013 Fan_2005 Kie_2016 Hollier_2000 Nazer_2007 Pasnickl_2013	128 31473 6070 7932 371 1682 2610 3253 409 475 538	9658 3145042 228226 1214100 52765 96088 117733 165575 10443 5482 31917	306 69100 16122 33981 1108 2831 3176 12677 2191 788 1739	21098 6615611 597390 5186500 157759 164711 150151 677622 60575 10481 125353	10 10 10 10 10 10 10 10 10 10 10 10 10 1	0.91 0.96 0.99 1.00 1.02 1.05 1.05 1.05 1.08 1.15 1.22	[0.74; 1.12] [0.95; 0.97] [0.96; 1.01] [0.97; 1.02] [0.89; 1.13] [0.96; 1.08] [1.00; 1.10] [1.01; 1.09] [0.98; 1.20] [1.03; 1.29] [1.10; 1.34]	7.49 7.89 7.79 7.79 7.79 7.79 7.79 7.79 7.7
Vucat_2019 Zhang_2012 StLouis_2014 Croen_1995 Hay_1972 Zhou_2020 Rider_2013 Tan_2005 Kie_2016 Holier_2000 Nazer_2007 Pasnicki_2013 Vaterna_2009	128 31473 6070 7932 371 1682 2610 3253 409 475 538 1497	9658 3145042 228226 1214100 52765 96088 117733 165575 10443 5482 31917 14223	306 69100 16122 33981 1108 2831 3176 12677 2191 788 1739 5588	21098 6615611 597390 5186500 157759 164711 150151 677622 60575 10481 125353 601520	· · · · · · · · · · · · · · · · · · ·	0.91 0.96 0.99 1.00 1.02 1.05 1.05 1.05 1.08 1.15 1.22	[0.74; 1.12] [0.95; 0.97] [0.96; 1.01] [0.97; 1.02] [0.89; 1.13] [0.96; 1.08] [1.00; 1.10] [1.01; 1.09] [1.01; 1.20] [1.03; 1.29] [1.10; 1.34] [10.73; 11.97]	7.49 7.89 7.79 7.79 7.79 7.79 7.79 7.79 7.7
Vucat_2019 Zhang_2012 StLouis_2014 Croen_1995 Hay_1972 Zhou_2020 Rider_2013 Tan_2005 Kie_2016 Holier_2000 Nazer_2007 Pasnicki_2013 Vaterna_2009	128 31473 6070 7932 371 1682 2610 3253 409 475 538	9658 3145042 228226 1214100 52765 96088 117733 165575 10443 5482 31917	306 69100 16122 33981 1108 2831 3176 12677 2191 788 1739 5588	21098 6615611 597390 5186500 157759 164711 150151 677622 60575 10481 125353		0.91 0.96 0.99 1.00 1.02 1.05 1.05 1.05 1.08 1.15 1.22	[0.74; 1.12] [0.95; 0.97] [0.96; 1.01] [0.97; 1.02] [0.89; 1.13] [0.96; 1.08] [1.00; 1.10] [1.01; 1.09] [0.98; 1.20] [1.03; 1.29] [1.10; 1.34]	7.49 7.89 7.79 7.79 7.79 7.79 7.79 7.79 7.7
35 vs 20 - 30 vlucat_2019 chang_2012 StLouis_2014 Groen_1995 taw_1197 zhou, 2000 Rider_2013 ran_2005 Nazer_2007 Pasnick_2013 Waterma_2009 Random effects model Prediction interval	128 31473 6070 7932 371 1682 2610 3253 409 475 538 1497 57067	9658 3145042 228226 1214100 52765 96088 117733 165575 10443 5482 31917 14223 5108801	306 69100 16122 33981 1108 2831 3176 12677 2191 788 1739 5588 150808	21098 6615611 597390 5186500 157759 164711 150151 677622 60575 10481 125353 601520	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.91 0.96 0.99 1.00 1.02 1.05 1.05 1.05 1.08 1.15 1.22	[0.74; 1.12] [0.95; 0.97] [0.96; 1.01] [0.97; 1.02] [0.89; 1.13] [0.96; 1.08] [1.00; 1.10] [1.01; 1.09] [1.01; 1.20] [1.03; 1.29] [1.10; 1.34] [10.73; 11.97]	7.79 7.89 7.89 7.89 7.79 7.79 7.79 7.79
Wucat_2019 Zhang_2012 StLouis_2014 Groen_1995 Hay_1972 Zhou_2020 Rider_2013 Tan_2005 Kie_2016 Hollier_2000 Vazer_2007 Vaterra_2009 Random effects model Prediction interval Vietoroninterval	128 31473 6070 7932 371 1682 2810 3253 409 475 538 1497 57067	9658 3145042 228226 1214100 52765 96088 117733 165575 10443 5482 31917 14223 5108801	306 69100 16122 33981 1108 2831 3176 12677 2191 788 1739 5588 150808	21098 6615611 597390 5186500 157759 164711 150151 677622 60575 10481 125353 601520		0.91 0.96 0.99 1.00 1.02 1.05 1.05 1.05 1.08 1.15 1.22	[0.74; 1.12] [0.95; 0.97] [0.96; 1.01] [0.97; 1.02] [0.89; 1.13] [0.96; 1.08] [1.00; 1.10] [1.01; 1.09] [0.98; 1.20] [1.10; 1.34] [1.10; 1.34] [1.10; 1.34] [1.10; 1.34] [1.07; 11.97]	7.49 7.89 7.79 7.79 7.79 7.79 7.79 7.79 7.7
Wucat_2019 Zhang_2012 StLouis_2014 Groen_1995 Hay_1972 Zhou_2020 Rider_2013 Tan_2005 Kie_2016 Hollier_2000 Vazer_2007 Vaterra_2009 Random effects model Prediction interval Vietoroninterval	128 31473 6070 7932 371 1682 2810 3253 409 475 538 1497 57067	9658 3145042 228226 1214100 52765 96088 117733 165575 10443 5482 31917 14223 5108801	306 69100 16122 33981 1108 2831 3176 12677 2191 788 1739 5588 150808	21098 6615611 597390 5186500 157759 164711 150151 677622 60575 10481 125353 601520	0 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.91 0.96 0.99 1.00 1.02 1.05 1.05 1.05 1.08 1.15 1.22	[0.74; 1.12] [0.95; 0.97] [0.96; 1.01] [0.97; 1.02] [0.89; 1.13] [0.96; 1.08] [1.00; 1.10] [1.01; 1.09] [0.98; 1.20] [1.10; 1.34] [1.10; 1.34] [1.10; 1.34] [1.10; 1.34] [1.07; 11.97]	7.49 7.89 7.79 7.79 7.79 7.79 7.79 7.79 7.7
Wucat_2019 Zhang_2012 StLouis_2014 Groen_1995 Hay_1972 Zhou, 2020 Rider_2013 Tan_2005 Kie_2016 Hollier, 2000 Nazer_2007 Pasnicki, 2013 Vaterna_2009 Random effects model Prediction interval Heterogeneity; I ² = 100% [11 Feel to reflect in subgroup; z	128 31473 6070 7932 371 1682 2810 3253 409 475 538 1497 57067	9658 3145042 228226 1214100 52765 96088 117733 165575 10443 5482 31917 14223 5108801	306 69100 16122 33981 1108 2831 3176 12677 2191 788 1739 5588 150808	21098 6615611 597390 5186500 157759 164711 150151 677622 60575 10481 125353 601520	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.91 0.96 0.99 1.00 1.02 1.05 1.05 1.05 1.08 1.15 1.22	[0.74; 1.12] [0.95; 0.97] [0.96; 1.01] [0.97; 1.02] [0.89; 1.13] [0.96; 1.08] [1.00; 1.10] [1.01; 1.09] [0.98; 1.20] [1.10; 1.34] [1.10; 1.34] [1.10; 1.34] [1.10; 1.34] [1.07; 11.97]	7.49 7.89 7.79 7.79 7.79 7.79 7.79 7.79 7.7
	128 31473 6070 7932 2810 3253 409 475 538 1497 57067 	9658 3145042 228226 1214100 52765 96088 117733 165557 10443 5482 31917 14223 5108801 	306 69100 16122 33981 1108 2831 3176 12677 2191 788 1739 5588 150808 	21098 6615611 597390 5186500 157759 164711 150151 677622 60575 10481 125353 601520 14399002		0.91 0.96 0.99 1.00 1.05 1.05 1.05 1.05 1.22 11.33 1.23	[0.74; 1.12] [0.95; 0.97] [0.96; 1.01] [0.97; 1.02] [0.96; 1.08] [1.00; 1.10] [1.01; 1.09] [1.01; 1.09] [1.01; 1.32] [1.10; 1.34] [0.73; 11.97] [0.85; 1.78] [0.27; 6.71]	7.49 7.89 7.79 7.79 7.79 7.79 7.79 7.79 7.7
Watcat_2019 Zhang_2012 Zhang_2014 Croen_1995 Haw_11972 Zhou, 2000 Rider_2013 Tan_2005 Kie_2016 Follow, 2000 Nazer_2007 Pasnick(_2013) Materna_2009 Random effects model Prediction interval Heterogeneity: $t^2 = 100% [1]$ Fest for effect in subgroup: 2 35 - 40 vs 20 - 30 Watera_2019	128 31473 6070 7932 371 1682 2810 3253 409 475 538 1497 57067	9658 3145042 228226 1214100 52765 96008 117733 165575 10443 5482 31917 14223 5108801 ,], τ^2 = 0.46, = 0.263)	$\begin{array}{c} 306\\ 69100\\ 16122\\ 33981\\ 1108\\ 2831\\ 3176\\ 12677\\ 2191\\ 788\\ 1739\\ 5588\\ \textbf{150808}\\ \textbf{160808}\\ p=0 \end{array}$	21098 6615611 597390 5186500 157759 104711 150151 607622 60575 10481 125353 601520 14399002	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.91 0.96 0.99 1.00 1.02 1.05 1.05 1.08 1.15 1.22 ■ 11.33 1.23	[0.74; 1.12] [0.96; 0.07] [0.96; 1.01] [0.97; 1.02] [0.89; 1.13] [0.96; 1.00] [1.01; 1.09] [1.01; 1.09] [1.02; 1.20] [1.03; 1.20] [1.10; 1.34] [0.85; 1.78] [0.85; 1.78] [0.27; 6.71]	7.49 7.89 7.79 7.79 7.79 7.79 7.79 7.79 7.7
Wucat_2019 Zhang_2019 Zhang_2012 StLouis_2014 Croen_1995 Hay_1972 Zhou_2020 Rider_2013 Rader_2007 Vaser_2007 Vaser_2009 Random effects model Prediction interval Vaser_2009 Vaser_2009 <	128 31473 6070 7932 371 1682 2610 3253 409 475 538 1497 57067	9658 3145042 228226 1214100 52765 96088 117733 165575 10443 5482 31917 14223 5108801	306 69100 16122 33981 1108 2831 3176 12677 2191 788 1739 5588 150808 <i>p</i> = 0	21098 6615611 597390 5186500 157759 164711 150151 677622 60575 10481 125353 001520 14399002	10 10 10 10 10 10 10 10 10 10 10 10 10 1	0.91 0.96 0.99 1.00 1.02 1.05 1.05 1.05 1.22 ■ 11.33 1.23 0.87 1.04	[0.74; 1.12] [0.95; 0.97] [0.96; 0.97] [0.96; 1.01] [0.89; 1.13] [0.96; 1.08] [1.00; 1.10] [1.00; 1.10] [1.01; 1.09] [1.03; 1.29] [1.10; 1.34] [0.73; 11.97] [0.85; 1.78] [0.27; 6.71] [0.76; 1.00] [0.99; 1.08]	7.49 7.89 7.79 7.79 7.79 7.79 7.79 7.79 7.7
Wucat_2019 Zhang_2019 Zhang_2012 StLouis_2014 Croen_1995 Hay_1972 Zhou_2020 Rider_2013 Rader_2007 Vaser_2007 Vaser_2009 Random effects model Prediction interval Vaser_2009 Vaser_2009 <	128 31473 6070 7932 371 1682 2810 3253 409 475 538 1497 57067	9658 3145042 228226 1214100 52765 96008 117733 165575 10443 5482 31917 14223 5108801 ,], τ^2 = 0.46, = 0.263)	306 69100 16122 33981 1108 2831 3176 12677 2191 788 1739 5588 150808 <i>p</i> = 0	21098 6615611 597390 5186500 157759 164711 150151 677622 60575 10481 125353 601520 14399002	223 <u>1</u> 0 22222444444	0.91 0.96 0.99 1.00 1.02 1.05 1.05 1.08 1.15 1.22 ■ 11.33 1.23	[0.74; 1.12] [0.96; 0.07] [0.96; 1.01] [0.97; 1.02] [0.89; 1.13] [0.96; 1.00] [1.01; 1.09] [1.01; 1.09] [1.02; 1.20] [1.03; 1.20] [1.10; 1.34] [0.85; 1.78] [0.85; 1.78] [0.27; 6.71]	7.49 7.89 7.79 7.79 7.79 7.79 7.79 7.79 7.7
Wucat_2019 Zhang_2012 Zhang_2012 Zhang_2014 Creen_1995 Haw_1972 Zhou, 2020 Sider_2013 Fan_2005 Kier_2016 Pasnick_2017 Pasnick_2013 Waterna, 2009 Random effects model Prediction interval Heierogeneity: f ² = 100% [1] Eist for effect in subgroup: 35 = 40 vs 20 - 30 Vucat_2019 Creen_1995 Haw_1072	128 31473 6070 7932 371 1682 2610 3253 409 475 538 1497 57067	9658 3145042 228226 1214100 52765 96088 117733 165575 10443 5482 31917 14223 5108801	306 69100 16122 33981 1108 2831 3176 12677 2191 788 1739 5588 150808 <i>p</i> = 0	21098 6615611 597390 5186500 157759 164711 150151 677622 60575 10481 125353 001520 14399002		0.91 0.96 0.99 1.00 1.02 1.05 1.05 1.05 1.22 ■ 11.33 1.23 0.87 1.04	[0.74; 1.12] [0.95; 0.97] [0.96; 0.97] [0.96; 1.01] [0.89; 1.13] [0.96; 1.08] [1.00; 1.10] [1.00; 1.10] [1.01; 1.09] [1.03; 1.29] [1.10; 1.34] [0.73; 11.97] [0.85; 1.78] [0.27; 6.71] [0.76; 1.00] [0.99; 1.08]	7.49 7.89 7.79 7.79 7.79 7.79 7.79 7.79 7.7
Wucat_2019 Zhang_2012 StLouis_2014 Croen_1995 Hay_1972 Zhou, 2020 Rider_2013 Tan_2005 Kie_2016 Folior_2000 Nazer_2007 Paanicki, 2013 Waterna_2009 Random effects model Prediction interval Heterogeneity; I ² = 100% [11 Feel of ve go - 30 Wucat_2019 Croen_1995 Hay-1972 Rider_2013	$\begin{array}{c} 128\\ 31473\\ 6070\\ 7932\\ 371\\ 1682\\ 2810\\ 3253\\ 409\\ 475\\ 538\\ 1497\\ 57067\\ .\\ .\\ .\\ .\\ .\\ .\\ .\\ .\\ .\\ .\\ .\\ .\\ .\\$	9658 3145042 228226 1214100 52765 96008 117733 165575 10443 5482 31917 14223 5108801	306 69100 16122 33981 1108 2831 3176 12677 2191 788 1739 5588 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150	21098 6615611 597390 5186500 157759 164711 150151 677622 60575 10481 125353 601520 14399002 14399002 3 0231 597390 5186500 164711	1.050 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.91 0.96 0.99 1.00 1.02 1.05 1.08 1.15 1.22 11.33 1.23 0.87 1.04 1.04 1.04	[0.74; 1.12] [0.95; 0.97] [0.96; 0.97] [0.96; 1.01] [0.89; 1.03] [1.00; 1.00] [1.00; 1.10] [1.00; 1.10] [1.01; 1.09] [1.03; 1.29] [1.10; 1.34] [0.73; 11.97] [0.85; 1.78] [0.76; 1.00] [0.99; 1.00] [1.01; 1.07] [1.10; 1.18]	7.49 7.89 7.79 7.79 7.79 7.79 7.79 7.79 7.7
	128 31473 6070 7932 371 1682 2810 3253 409 475 538 475 538 475 57067	9658 3145042 228226 1214100 52765 96008 117733 165575 10443 5482 31917 14223 5108801 , 1, 7 ² = 0.45, = 0.263) 6838 85174 644700 35841 13942	306 69100 16122 33981 1108 2831 1108 2831 1108 2831 12677 2191 788 1739 5588 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 110808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808 150808	21098 8615611 597390 5186500 157759 164711 150151 677622 60575 10481 125353 14399002 30231 597390 5186500 164711 125353		0.91 0.96 0.99 1.00 1.02 1.05 1.05 1.05 1.05 1.22 11.33 1.23 0.87 1.04 1.04 1.04 1.04	[0.74; 1.12] [0.95; 0.97] [0.96; 1.01] [0.97; 1.02] [1.00; 1.13] [0.96; 1.08] [1.00; 1.10] [1.00; 1.10] [1.01; 1.09] [1.03; 1.29] [1.10; 1.34] [10.73; 11.97] [0.85; 1.76] [0.27; 6.71] [0.99; 1.08] [1.01; 1.07] [1.01; 1.07] [1.00; 1.18] [0.99; 1.31]	7.45 7.89 7.77 7.76 7.76 7.76 7.76 7.76 7.76 7.7
Watcat_2019 Zhang_2012 Zhang_2012 StLouis_2014 Crean_1995 Hay_1972 Zhou, 2020 Rider_2013 Tan_2005 Kie_2016 Foilior_2000 Nazer_2007 Pasnicki_2013 Materna_2009 Random effects model Prediction interval Heterogeneity: I ² = 100% [1] Test for effect in subgroup: 2 36: 40 vs 20: 30 Crean_1995 Hay_1972 Rider_2013 Pasnicki_2013 Toileir_2000	128 31473 6070 7932 371 1682 2610 3253 409 475 538 1497 57067 200%; 100% z = 1.12 (p 2366 2386 2386 2386 2389 4397 669 220	9658 3145042 228226 1214100 52765 96008 117733 165575 10443 5482 31917 14223 5108801 	$\begin{array}{c} 306\\ 69100\\ 16122\\ 33981\\ 1108\\ 2831\\ 3176\\ 12677\\ 2191\\ 788\\ 1739\\ 5588\\ 15080\\ p=0\\ \end{array}$	21098 6615611 597390 5186500 157759 164711 150151 677622 60575 10481 125353 601520 14399002 14399002 14399002 5186500 5186500 5186500	■ # # # # # # # # # # # # # # # # # # #	0.91 0.96 0.99 1.00 1.02 1.05 1.05 1.05 1.22 ■ 11.33 1.23 0.87 1.04 1.04 1.04 1.04 1.04 1.09 1.14	[0.74; 1.12] [0.95; 0.97] [0.96; 0.97] [0.96; 1.01] [0.77; 1.02] [1.00; 1.08] [1.00; 1.10] [1.00; 1.10] [1.03; 1.29] [1.10; 1.34] [0.73; 11.97] [0.85; 1.78] [0.76; 1.00] [0.97; 6.71] [0.76; 1.00] [1.01; 1.07] [1.02; 1.18] [1.02; 1.18] [1.02; 1.18] [1.03; 1.18]	7.49 7.89 7.79 7.79 7.79 7.79 7.79 7.79 7.7
	128 31473 6070 7932 371 16822 2610 3253 409 475 538 1497 57067	$\begin{array}{c} 9658\\ 3145042\\ 228226\\ 1224266\\ 1214100\\ 52765\\ 10443\\ 117733\\ 165575\\ 10443\\ 5482\\ 31917\\ 14223\\ 51080\\ 0, 1^2=0.46,\\ 0, 263)\\ 0, 1^2=0.46,\\ 0, 263)\\ 0, 1^2=0.46,\\ 1, 2^2=0.46,\\ 1, 2^2=0.46,\\ 1, 35841\\ 1, 3942\\ 35541\\ 13942\\ 3515\\ 3059\\ 0, 2515\\ 3059\\ 0, 2515\\ 0, 2$	306 69100 16122 33981 1108 2831 3176 12677 2191 788 1739 5586 150808 150808 150808 150808 150808 150808 1201 16122 33981 16122 33981 1739 2191 788	21098 6615611 597390 5186500 157759 164711 150151 677622 60575 10481 125353 001520 14399002	·····································	0.91 0.96 0.99 1.00 1.02 1.05 1.05 1.05 1.22 1.23 1.23 1.23 0.87 1.04 1.04 1.04 1.04 1.04 1.04 1.04	[0.74; 1.12] [0.95; 0.97] [0.96; 0.97] [0.96; 1.01] [0.89; 1.13] [0.96; 1.08] [1.00; 1.10] [1.00; 1.10] [1.01; 1.09] [1.03; 1.29] [1.10; 1.34] [0.73; 11.97] [0.85; 1.78] [0.27; 6.71] [0.99; 1.08] [1.01; 1.07] [1.00; 1.18] [0.99; 1.08] [1.00; 1.18] [0.99; 1.31] [1.09; 1.23]	7.49 7.89 7.79 7.79 7.79 7.79 7.79 7.79 7.7
	128 31473 6070 7932 371 1682 2610 3253 409 475 538 1497 57067 200%; 100% z = 1.12 (p 2366 2386 2386 2386 2389 4397 669 220	9658 3145042 228226 1214100 52765 96008 117733 165575 10443 5482 31917 14223 5108801 	$\begin{array}{c} 306\\ 69100\\ 16122\\ 33981\\ 1108\\ 2831\\ 3176\\ 12677\\ 2191\\ 788\\ 1739\\ 5588\\ 15080\\ p=0\\ \end{array}$	21098 6615611 597390 5186500 157759 164711 150151 677622 60575 10481 125353 601520 14399002 14399002 14399002 5186500 5186500 5186500		0.91 0.96 0.99 1.00 1.02 1.05 1.05 1.05 1.22 ■ 11.33 1.23 0.87 1.04 1.04 1.04 1.04 1.04 1.09 1.14	[0.74; 1.12] [0.95; 0.97] [0.96; 0.97] [0.96; 1.01] [0.77; 1.02] [1.00; 1.08] [1.00; 1.10] [1.00; 1.10] [1.03; 1.29] [1.10; 1.34] [0.73; 11.97] [0.85; 1.78] [0.76; 1.00] [0.97; 6.71] [0.76; 1.00] [1.01; 1.07] [1.02; 1.18] [1.02; 1.18] [1.02; 1.18] [1.03; 1.18]	7.49 7.89 7.79 7.79 7.79 7.79 7.79 7.79 7.7
Watcat_2019 Zhang_2012 Zhang_2014 Creen_1995 Haw_11972 Zhou, 2001 Xider_2013 Yang_2005 Kide_2016 Hollier_2000 Nazer_2007 Pasnicki_2013 Materna_2009 Random effects model Prediction interval Heterogeneity: I ² = 100% [1] Trent_1095 Haw_1072 Xider_2013 Motel_2013 Holler_2000 Nazer_2007	128 31473 6070 7932 371 16822 2610 3253 409 475 538 1497 57067	$\begin{array}{c} 9658\\ 3145042\\ 228226\\ 1224266\\ 1214100\\ 52765\\ 10443\\ 117733\\ 165575\\ 10443\\ 5482\\ 31917\\ 14223\\ 51080\\ 0, 1^2=0.46,\\ 0, 263)\\ 0, 1^2=0.46,\\ 0, 263)\\ 0, 1^2=0.46,\\ 1, 2^2=0.46,\\ 1, 2^2=0.46,\\ 1, 35841\\ 1, 3942\\ 35541\\ 13942\\ 3515\\ 3059\\ 0, 2515\\ 3059\\ 0, 2515\\ 0, 2$	306 69100 16122 33981 1108 2831 3176 12677 2191 788 1739 5586 150808 150808 150808 150808 150808 150808 1201 16122 33981 16122 33981 1739 2191 788	21098 6615611 597390 5186500 157759 164711 150151 677622 60575 10481 125353 001520 14399002		0.91 0.96 0.99 1.00 1.00 1.02 1.05 1.05 1.05 1.22 11.33 1.23 0.87 1.04 1.04 1.04 1.04 1.04 1.04 1.20 1.124 1.24	[0.74; 1.12] [0.95; 0.97] [0.96; 0.97] [0.96; 1.01] [0.89; 1.13] [0.89; 1.13] [1.00; 1.10] [1.00; 1.10] [1.01; 1.09] [1.03; 1.29] [1.03; 1.29] [1.03; 1.29] [0.73; 11.97] [0.85; 1.78] [0.76; 1.00] [0.99; 1.08] [1.01; 1.07] [1.00; 1.18] [0.99; 1.31] [1.03; 1.41] [1.03; 1.41] [1.9; 1.42]	7.49 7.89 7.79 7.79 7.79 7.79 7.79 7.79 7.7
Wucat_2019 Zhang_2012 StLouis_2014 Croen_1995 Hay_1972 Zhou, 2000 Rider_2013 Tan_2005 Kie_2016 Foliolint_2000 Nazer_2007 Pasnicki, 2013 Waterna_2009 Random effects model Prediction interval Heterogeneity: I ² = 100% [11 Fest for effect in subgroup: J J5 - 40 vs 20 - 30 Wucat_2019 Croen_1995 Hay_1972 Kider_2013 Pasnicki, 2013 Vasider_2013 Pasnicki, 2013 Vasider_2013 Vasider_2013 Pasnicki, 2013 Vasider_2003 Vaster_20005 Vaster_2005	128 31473 6070 7932 3711 1682 2810 3253 3409 475 538 1497 57067 57067 57067 57067 67067 67067 67067 6 2 2365 2365 2365 2365 2365 2365 2365 2365	9658 3145042 228226 1214100 52765 96088 117733 165575 10443 5482 31917 14223 5482 31917 14223 5482 0.2833 66388 85174 644700 35841 13942 3515 3059 47589	306 69100 16122 33981 1108 2831 3176 12677 2191 788 1739 5588 150808	21098 6615611 597390 5186500 157759 164711 150151 677622 60575 10481 125353 601520 14399002 14399002 14399002 14399002 14399002 14399002 14439 51886500 164711 125353 60575 10481 150151		0.91 0.96 0.99 1.00 1.00 1.02 1.05 1.05 1.05 1.22 11.33 1.23 0.87 1.04 1.04 1.04 1.04 1.04 1.04 1.20 1.124 1.24	[0.74; 1.12] [0.95; 0.97] [0.96; 0.97] [0.96; 1.01] [0.89; 1.13] [0.89; 1.13] [1.00; 1.10] [1.00; 1.10] [1.01; 1.09] [1.03; 1.29] [1.07; 11.97] [0.85; 1.78] [0.76; 1.00] [0.99; 1.08] [1.01; 1.07] [1.02; 6.71] [1.02; 1.41] [1.03; 1.41] [1.03; 1.41] [1.03; 1.42] [1.14; 12.90]	7.49 7.88 7.79 7.79 7.79 7.79 7.79 7.79 7.7
Wucat_2019 Zhang_2012 Zhang_2012 Zhang_2014 Creen_1995 Haw_1972 Zhou, 2020 Sider_2013 Fan_2005 Kider_2013 Mazer_2007 Pasnick_2013 Waterna, 2009 Random effects model Prediction Interval Heitro reflect in subgroup: 2 35 - 40 vs 20 - 30 Wucat_2019 Croen_1995 Hay_1072 Rider_2013 Vaser_2007 Fan_2005 Mazer_2007 Fan_2005 Materna_2009	128 31473 6070 7932 371 1882 2610 3253 409 475 538 1497 57067 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 5007 50	$\begin{array}{c} 9658\\ 3145042\\ 228226\\ 1214100\\ 52765\\ 90088\\ 117733\\ 165575\\ 10443\\ 5482\\ 31917\\ 14223\\ 510800\\ \\ , 1^2=0.45,\\ =0.263)\\ \end{array}$	306 69100 16122 33981 1108 2831 3176 12677 2191 788 1739 5588 150808	21098 6615611 597390 5186500 157759 164711 150151 60752 60575 10481 125353 601520 14399002 14399002 14399002 14399002 14399002 14399002		0.91 0.96 0.99 1.00 1.02 1.05 1.05 1.05 1.22 11.33 1.23 0.87 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04	[0.74; 1.12] [0.95; 0.97] [0.96; 1.01] [0.97; 1.02] [1.00; 1.13] [0.96; 1.08] [1.00; 1.10] [1.01; 1.09] [1.02; 1.00] [1.03; 1.29] [1.10; 1.34] [0.73; 11.97] [0.85; 1.76] [0.27; 6.71] [0.99; 1.08] [1.01; 1.07] [1.01; 1.07] [1.00; 1.48] [1.03; 1.41] [1.09; 1.42] [1.45; 1.63] [1.14; 12.90] [0.87; 2.49]	7,44 7,88 7,74 7,88 7,75 7,76 7,76 7,76 7,77 7,76 100.0 9 11 .00 11 .20 11 .20 11 .20 11 .00 11 .00 1
Watcat_2019 Zhang_2012 Zhang_2012 Zhang_2014 Croen_1995 Hay_1972 Zhou, 2000 Rider_2013 Rider_2013 Materna_2000 Nazer_2007 Pasnicki_2013 Materna_2000 Random effects model Prediction interval Heterogeneity: $f^2 = 100\% [1]$ Trent, 1905 Auxer_2013 Tollier_2003 Pasnicki_2013 Hollier_2000 Nazer_2007 Ran_2005 Materna_2009 Random effects model Proglottion interval	128 31473 6070 7932 3711 1682 2810 3253 409 475 538 1497 57087 57087 236 2365 2385 4397 669 220 1539 220 1539 722 10677 722 10677 722 10677 722 10677 722 10677 722 10677 722 723 724 725 725 725 725 725 725 725 725	9658 3145042 228226 1214100 52765 96008 117733 165575 10443 31917 14223 5108801	306 69100 16122 33981 1108 2831 3176 12677 2191 788 150808 p = 0 1201 16122 33981 16122 33981 16122 33981 16122 33981 1739 2831 1739 2831 1739 2831 1739 2831 1739 2831 1739 2831 1739 2831 1739 3588 67617 788 3176 5788 67617 788 3176 788 3176 5588 67617 788 788 3176 788 3176 788 3176 5588 67617 7888 7888 7888 7888 7888 7888 7888 7888	21098 6615611 597390 5186500 157759 164711 150151 60752 60575 10481 125353 601520 14399002 14399002 14399002 14399002 14399002 14399002		0.91 0.96 0.99 1.00 1.02 1.05 1.05 1.05 1.22 11.33 1.23 0.87 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04	[0.74; 1.12] [0.95; 0.97] [0.96; 0.97] [0.96; 1.01] [0.89; 1.13] [0.89; 1.13] [1.00; 1.10] [1.00; 1.10] [1.01; 1.09] [1.03; 1.29] [1.07; 11.97] [0.85; 1.78] [0.76; 1.00] [0.99; 1.08] [1.01; 1.07] [1.02; 6.71] [1.02; 1.41] [1.03; 1.41] [1.03; 1.41] [1.03; 1.42] [1.14; 12.90]	7,44 7,88 7,74 7,88 7,75 7,76 7,76 7,76 7,77 7,76 100.0 9 11 .00 11 .20 11 .20 11 .20 11 .00 11 .00 1
Wucat_2019 Zhang_2012 Zhang_2014 Zhong_2014 Crom_1995 Haw_1972 Zhou, 2020 Xider_2013 Fan_2005 Kiag_2016 Hollier_2000 Nazer_2007 Pasnick_2013 Waterna_2009 Random effects model Prediction interval Hest for effect in subgroup : Torown_1995 Hay_1972 Xider_2013 Vazer_2007 Fan_2005 Materna_2009 Random effects model Prediction interval Heatran_2003 Heatran_2004	128 31473 6070 7932 3711 1682 2610 3253 409 475 538 149 475 538 1497 57067 57067 57067 2 365 4397 669 220 153 226 153 226 153 226 1549 7222 10617 700 700 700 700 700 700 700 7	9658 3145042 228226 1214100 52765 96008 117733 165575 10443 5482 31917 14223 5108801	306 69100 16122 33981 1108 2831 3176 12677 2191 788 150808 p = 0 1201 16122 33981 16122 33981 16122 33981 16122 33981 1739 2831 1739 2831 1739 2831 1739 2831 1739 2831 1739 2831 1739 2831 1739 3588 67617 788 3176 5788 67617 788 3176 788 3176 5588 67617 788 788 3176 788 3176 788 3176 5588 67617 7888 7888 7888 7888 7888 7888 7888 7888	21098 6615611 597390 5186500 157759 164711 150151 60752 60575 10481 125353 601520 14399002 14399002 14399002 14399002 14399002 14399002		0.91 0.96 0.99 1.00 1.02 1.05 1.05 1.05 1.22 11.33 1.23 0.87 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04	[0.74; 1.12] [0.95; 0.97] [0.96; 1.01] [0.97; 1.02] [1.00; 1.13] [0.96; 1.08] [1.00; 1.10] [1.01; 1.09] [1.02; 1.00] [1.03; 1.29] [1.10; 1.34] [0.73; 11.97] [0.85; 1.76] [0.27; 6.71] [0.99; 1.08] [1.01; 1.07] [1.01; 1.07] [1.00; 1.48] [1.03; 1.41] [1.09; 1.42] [1.45; 1.63] [1.14; 12.90] [0.87; 2.49]	7,44 7,88 7,74 7,88 7,75 7,76 7,76 7,76 7,77 7,76 100.0 9 11 .00 11 .20 11 .20 11 .20 11 .00 11 .00 1
Watcat_2019 Zhang_2012 Zhang_2012 Zhang_2014 Croen_1995 Hay_1972 Zhou, 2000 Rider_2013 Rider_2013 Materna_2000 Nazer_2007 Pasnicki_2013 Materna_2000 Random effects model Prediction interval Heterogeneity: $f^2 = 100\% [1]$ Trent, 1905 Auxer_2013 Tollier_2003 Pasnicki_2013 Hollier_2000 Nazer_2007 Ran_2005 Materna_2009 Random effects model Proglottion interval	128 31473 6070 7932 3711 1682 2610 3253 409 475 538 149 475 538 1497 57067 57067 57067 2 365 4397 669 220 153 226 153 226 153 226 1549 7222 10617 700 700 700 700 700 700 700 7	9658 3145042 228226 1214100 52765 96008 117733 165575 10443 5482 31917 14223 5108801	306 69100 16122 33981 1108 2831 3176 12677 2191 788 150808 p = 0 1201 16122 33981 16122 33981 16122 33981 16122 33981 1739 2831 1739 2831 1739 2831 1739 2831 1739 2831 1739 2831 1739 2831 1739 3588 67617 788 3176 5788 67617 788 3176 788 3176 5588 67617 788 788 3176 788 3176 788 3176 5588 67617 7888 7888 7888 7888 7888 7888 7888 7888	21098 6615611 597390 5186500 157759 164711 150151 60752 60575 10481 125353 601520 14399002 14399002 14399002 14399002 14399002 14399002		0.91 0.96 0.99 1.00 1.02 1.05 1.05 1.05 1.22 11.33 1.23 0.87 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04	[0.74; 1.12] [0.95; 0.97] [0.96; 1.01] [0.97; 1.02] [1.00; 1.13] [0.96; 1.08] [1.00; 1.10] [1.01; 1.09] [1.02; 1.00] [1.03; 1.29] [1.10; 1.34] [0.73; 11.97] [0.85; 1.76] [0.27; 6.71] [0.99; 1.08] [1.01; 1.07] [1.01; 1.07] [1.00; 1.48] [1.03; 1.41] [1.09; 1.42] [1.45; 1.63] [1.14; 12.90] [0.87; 2.49]	7,44 7,88 7,74 7,88 7,75 7,76 7,76 7,76 7,77 7,76 100.0 9 11 .00 11 .20 11 .20 11 .20 11 .00 11 .00 1
Aucat_2019 Thang_2012 Thang_2012 Thang_2012 Stuois_2014 Orcen_1995 stuo_12020 Store_2013 Tan_2005 Sanick_2013 Aderna_2009 Sandom effects model Prediction interval telerogenety: / ² = 100% [11 Toren_1995 tay_1972 Sanick_2013 diazer_2009 Sanick_2013 telerogenety: 72 telerogenety: 73 telerogenety: 74 telerogenety: 74 telerogenety: 74 telerogenety: 74	128 31473 6070 7932 2610 371 1862 2620 3253 409 75767 5767 5767 5767 2385 2497 57067 200%; 100% 200 153 206 200 200 154 206 200 200 200 200 200 200 200	9658 3145042 228226 1214100 52765 96008 117733 165575 10443 5482 31917 14223 5108001	$3060 \\ 69100 \\ 16122 \\ 33981 \\ 1108 \\ 2831 \\ 3176 \\ 788 \\ 150808 \\ 15588 \\ 150808 \\ 150808 \\ 150808 \\ 2191 \\ 16122 \\ 233981 \\ 16122 \\ 233981 \\ 16122 \\ 233981 \\ 1739 \\ 2191 \\ 1739 \\ 2191 \\ 1739 \\ 2191 \\ 1739 \\ 2191 \\ 1758 \\ 87617 \\ 788 \\ 87617 \\ 876$	21098 6615611 597390 5186500 157759 164711 150151 677622 60575 10481 125353 601520 14399002 14399002 14399002 14399002 14399002 14399002 14399002 14399002 14399002 14399002 14399002 14399002 14399002 14399002 14399002 14399002 14399002 14399002 14399002 14399002 14399002 14399002 14399002 14399002 14399002 14399002 14399002 14399002 14399002 14399002 14399002 14399002 14399002 15775 10481 15775 10481 15775 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10481 15075 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 10575 1057		0.91 0.96 0.99 1.00 1.02 1.05 1.05 1.05 1.22 11.33 1.23 0.87 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04	[0.74; 1.12] [0.95; 0.97] [0.96; 1.01] [0.97; 1.02] [1.00; 1.13] [0.96; 1.08] [1.00; 1.10] [1.01; 1.09] [1.02; 1.00] [1.03; 1.29] [1.10; 1.34] [0.73; 11.97] [0.85; 1.76] [0.27; 6.71] [0.99; 1.08] [1.01; 1.07] [1.01; 1.07] [1.00; 1.48] [1.03; 1.41] [1.09; 1.42] [1.45; 1.63] [1.14; 12.90] [0.87; 2.49]	7,44 7,88 7,74 7,88 7,75 7,76 7,76 7,76 7,77 7,76 100.0 9 11 .00 11 .20 11 .20 11 .20 11 .00 11 .00 1

Figure 6. Forest plot representing the RR with 95% CI of all non-chromosomal anomalies (ICD-10: Q00-Q89) in different age groups compared to the 20-30 age group(85)

	Comparate						
Study	Events	Total	Events	Total	Risk Ratio	RR	95%-CI Weight
<20 vs 20 - 30							
Pasnicki_2013	199	17670	1739	125353		0.81 [0.70; 0.94] 19.9%
Materna_2009	628	75121	5588	601520		0.90 [0.83; 0.98] 20.0%
Hollier_2000	970	27521	2191	60575		0.97 [0.90; 1.05] 20.0%
StLouis_2014	16174	1415846	69100	6615611		1.09 [1.08; 1.11] 20.1%
Parkes_2020	1231	18830	2136	109460		3.35 [3.13; 3.59] 20.0%
Random effects	model9202	1554988	80754	7512519	~	1.21 [0.59; 2.49] 100.0%
Prediction interv	/al .					[0.16; 9.09] -
Heterogeneity: I ² = 10 Test for effect in subg			83, p < 0.00	01			
>35 vs 20 - 30							
Mucat 2019	295	8163	1201	30231		0.91 [0.80; 1.03] 16.6%
StLouis 2014	21341	1929379	69100	6615611	- b		1.04; 1.08] 16.8%
Rider_2013	807	43061	2831	164711		-	1.01; 1.18] 16.7%
Pasnicki_2013	293	17498	1739	125353			1.07; 1.36] 16.6%
Hollier 2000	187	4189	2191	60575			1.07; 1.43] 16.6%
Materna_2009	970	25225	5588	601520			3.87; 4.43] 16.7%
Random effects	model3893	2027515	82650	7598001	*		0.76; 2.45] 100.0%
Prediction interv	/al .						0.26; 7.18] -
Heterogeneity: I ² = 10		%], 7 ² = 0.5	81, p = 0				
Test for effect in subg							
>40 vs 20 - 30							
Parkes_2020	139	6552	2136	109460	<u> </u>		0.92; 1.29] 16.9%
Rider_2013	138	7220	2831	164711	1	-	0.94; 1.32] 16.9%
Mucat_2019	59	1325	1201	30231	7		0.87; 1.45] 16.5%
Hollier_2000	34	674	2191	60575	-	-	1.00; 1.94] 16.2%
Materna_2009	248	18741	5588	601520	-		1.26; 1.62] 17.0%
Pasnicki_2013	73	3556	1739	125353	+		1.17; 1.87] 16.6%
Random effects		38068	15686	1091850	•	-	1.08; 1.46] 100.0%
Prediction interv			•	•	<u>–</u>	[0.91; 1.73] –
Heterogeneity: $I^2 = 57$ Test for effect in subg			= 0.040				
30 - 35 vs 20 - 30)						
Mucat_2019	629	17549	1201	30231		0.90 [0.82; 0.99] 16.6%
StLouis_2014	31473	3145042	69100	6615611	<u>.</u>		0.95; 0.97] 16.7%
Rider 2013	1682	96088	2831	164711		-	0.96; 1.08] 16.7%
Hollier_2000	409	10443	2191	60575	in the second	1.08 [0.98; 1.20] 16.6%
Pasnicki_2013	538	31917	1739	125353	1	-	1.10; 1.34] 16.6%
Materna 2009	1497	14223	5588	601520			0.73; 11.97 16.7%
Random effects	mode86228	3315262	82650	7598001	-		0.55; 4.32] 100.0%
Prediction interv						-	.08; 29.38] -
Heterogeneity: /2 = 10		~ %], 7 ² = 0.9	7, p = 0				
Test for effect in subg			.,,				
35 - 40 vs 20 - 30							
Mucat_2019	236	6838	1201	30231	<u> </u>	-	0.76; 1.00] 20.0%
Rider_2013	669	35841	2831	164711			1.00; 1.18] 20.1%
Pasnicki_2013	220	13942	1739	125353			0.99; 1.31] 20.0%
Hollier_2000	153	3515	2191	60575	*		1.03; 1.41] 19.9%
Materna_2009	722	6484	5588	601520	•		1.14; 12.90] 20.1%
Random effects Prediction interv		66620	13550	982390			0.45; 6.70] 100.0% 0.04; 77.01] –
Heterogeneity: $I^2 = 10$			8, p = 0			-	-
Test for effect in subg			-		<u>_</u>		
Test for subgroup diff	erences: $?_4^2 = 0.$	82, df = 4 (j	p = 0.935)		0.1 0.51 2 10		

Lower with Comparator Higher with Comparator

Figure 7. Forest plot representing the RR with 95% CI of all NCAs combined (excluding studies where co-incidence of CAs was allowed) ICD-10 Q00-Q89 in different age groups compared to the 20-30 age group (85)

	Con	nparator		Reference			
Study Ev	ents		Events	Total	Risk Ratio	BB	95%-CI Weight
	ento	rotar	Liento	i otai	Thok Hado		oo oo oo mengine
<20 vs 20 - 30							
Pasnicki_2013	50	17670	496	125353	-	0.72	[0.53; 0.96] 32.8%
Bodnár_1970	27	13384	189	71636	-	0.76	[0.51; 1.14] 28.1%
Salim_2019	772	842523	1957	2231102		1.04	[0.96; 1.14] 39.1%
Random effects model	849	873577	2642	2428091	•	0.87	0.68; 1.11] 100.0%
Prediction interval						[0	0.06; 13.34]
Heterogeneity: / ² = 75% [16%;	; 92%],	$7^2 = 0.03, y$	p = 0.020				
Test for effect in subgroup: z =	-1.09	(p = 0.274)					
>35 vs 20 - 30							
Mucat_2019	24	8163	86	30231	一て		[0.66; 1.62] 26.2%
Pasnicki_2013	79	17498	496	125353	T		[0.90; 1.45] 34.8%
Salim_2019	696	460122		2231102			[1.58; 1.88] 39.0%
Random effects model	799	485783	2539	2386686	۰	-	0.97; 1.82] 100.0%
Prediction interval	•		•	•		_ [0	0.03; 53.19]
Heterogeneity: / ² = 86% [59%;	-		p < 0.001				
Test for effect in subgroup: z =	1.77 (p = 0.076)					
>40 vs 20 - 30							
Bodnár_1970	9	2656	189	71636		1 28	[0.66; 2.50] 19.1%
Mucat 2019	5	1325	86	30231			[0.54; 3.26] 13.3%
Pasnicki_2013	24	3556	496	125353			[1.13; 2.57] 28.6%
Salim_2019	254	95745	1957				[2.65; 3.45] 39.1%
Random effects model			2728	2458322	•		1.28; 2.93] 100.0%
Prediction interval	LUL	103202	2120	2430322		-	0.35; 10.62]
Heterogeneity: /2 = 80% [46%;	92%1	7 = 0.11.	- 0.002	•			
Test for effect in subgroup: z =							
30 - 35 vs 20 - 30							
Salim_2019	677	736367	1957	2231102	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	1.05	[0.96; 1.14] 36.6%
Mucat_2019	57	17549	86	30231	÷	1.14	[0.82; 1.59] 29.0%
Pasnicki_2013	155	31917	496	125353		1.23	[1.03; 1.47] 34.4%
Random effects model	889	785833	2539	2386686	•	1.09 [1.00; 1.20] 100.0%
Prediction interval					+	[0.52; 2.31]
Heterogeneity: / ² = 20% [0%;			p = 0.288				
Test for effect in subgroup: z =	1.90 (p = 0.057)					
35 - 40 vs 20 - 30							
Mucat 2019	19	6838	86	30231	+	0.98	[0.59; 1.60] 25.3%
Pasnicki_2013	55	13942	496	125353	T T		[0.76; 1.32] 34.5%
Salim 2019	442		1957	2231102			[1.25; 1.53] 40.2%
Random effects model		385157	2539	2386686	\$		0.94; 1.49] 100.0%
Prediction interval							0.10; 13.94]
Heterogeneity: /2 = 67% [0%;	91%].	? ² = 0.02, p	= 0.047				
Test for effect in subgroup: z =							
Test for subgroup differences:	$?_4^2 = 12$	2.36, df = 4	(p = 0.015)	0.1 0.51 2 10		

Lower with Comparator Higher with Comparator

Figure 8. Forest plot representing the RR with 95% CI of congenital anomalies of the circulatory system (ICD-10: Q20-Q28) in different age groups compared to the 20-30 age group. (85)

Study	Events	mparator Total	Events	Reference Total	Risk Ratio	RR	95%-CI	Weig
<20 vs 20 - 30					1			
Donghua 2018	75	12077	4291	482922	-	0.70	[0.56; 0.88]	10.6
Hansen 2021	226	31831	2649	267349	13	0.72	[0.63; 0.82]	10.8
Pradat_1992	41	20952	904	349375	-	0.76	[0.55; 1.03]	10.3
Materna_2009	280	75121	2764	601520		0.81	[0.72; 0.92]	10.9
	456		2887		7	0.89		
Purkey_2019		213632		1198936	1		[0.80; 0.98]	10.9
Hay_1972	677	1240100	3193	5186500	9	0.89	[0.82; 0.96]	10.9
Viller_2011	613	175645	2697	708470	4	0.92	[0.84; 1.00]	10.9
Gupta_1967	3	488	10	1707		1.05	[0.29; 3.80]	5.0
Liu_2013	1178	107091	10319	1036502	p.	1.10	[1.04; 1.17]	11.0
Jaikrishan_2012	12	8833	134	119314		1.21	[0.67; 2.18]	8.8
Random effects model	3561	1885770	29848	9952595	0	0.87	[0.78; 0.97]	100.0
Prediction interval					-		[0.64; 1.18]	
Heterogeneity: $l^2 = 85\%$ [75	· 91%]	$r^2 = 0.02 \text{ p}$	< 0.001				(,,	
Test for effect in subgroup: to			0.001					
>35 vs 20 - 30								
Gupta_1967	0	171	10	1707		0.47	[0.03; 8.06]	1.6
Persson_2019	5652	366073	9011	671819		1.15	[1.11; 1.19]	11.0
Liu_2013	4892	422788	10319	1036502		1.16	[1.12; 1.20]	11.0
Donghua_2018	579	52828	4291	482922	0	1.23	[1.13; 1.34]	10.9
Purkey_2019	1372	461119	2887	1198936	11	1.24	[1.16; 1.32]	11.0
Pradat_1992	215	62103	904	349375	-	1.34	[1.15; 1.55]	10.8
Viller_2011	739	134120	2697	708470	0	1.45	[1.33; 1.57]	10.9
	768	834900			1	1.49	2	
Hay_1972			3193	5186500			[1.38; 1.62]	10.9
Hansen_2021	1491	90587	2649	267349		1.66	[1.56; 1.77]	11.0
Materna_2009	506	25225	2764	601520		4.37	[3.97; 4.80]	10.9
Random effects model	16214	2449914	38725	10505100	\$	1.50	[1.11; 2.04]	100.0
Prediction interval					+		[0.57; 3.99]	
Heterogeneity: $l^2 = 99\%$ [99%	%; 99%].	$\tau^2 = 0.16, p$	< 0.001					
Test for effect in subgroup: t9	= 3.04 (p	= 0.014)						
30 - 35 vs 20 - 30								
Liu 2013	6810	716842	10319	1036502	4	0.95	[0.93; 0.98]	10.7
Persson_2019	9257	670616	9011	671819	4	1.03	[1.00; 1.06]	10.7
Purkey_2019	1608	641948	2887	1198936	I.	1.04	[0.98; 1.11]	10.7
					L			
Hay_1972	829	1214100	3193	5186500		1.11	[1.03; 1.20]	10.7
Miller_2011	1240	283105	2697	708470		1.15	[1.08; 1.23]	10.7
Pradat_1992	428	140992	904	349375		1.17	[1.05; 1.32]	10.6
Donghua_2018	1344	125233	4291	482922	0	1.21	[1.14; 1.28]	10.7
Hansen_2021	2041	168678	2649	267349	0	1.22	[1.15; 1.29]	10.7
Gupta_1967	2	221	10	1707		1.54	[0.34; 7.00]	4.0
Materna_2009	787	14223	2764	601520	10		[11.14; 13.01]	10.7
Random effects model		3975958	38725	10505100	-	1.45	[0.83; 2.52]	100.0
Prediction interval	24340	3912920	30/25	10505100		1.45	[0.23; 2.52]	100.0
Heterogeneity: I ² = 100% [10		1 -2 0.57					[0.23; 8.99]	
Test for effect in subgroup: t ₉			p = 0					
reactor encount adogroup, ig	- 1.01 (p	- 0.100/						
>40 vs 20 - 30								
Pradat_1992	26	8510	904	349375	-	1.18	[0.80; 1.74]	18.0
					Ē.			
Materna_2009	130	18741	2764	601520	22	1.51	[1.27; 1.80]	19.6
Liu_2013	1091	70844	10319	1036502		1.55	[1.45; 1.65]	19.9
Hay_1972	246	190200	3193	5186500	121	2.10	[1.85; 2.39]	19.7
Hansen_2021	323	13745	2649	267349	III	2.37	[2.12; 2.66]	19.8
Gupta_1967	0	19	10	1707		- 4.17	[0.25; 68.69]	3.0
Random effects model	1816	302059	19839	7442953	0		[1.32; 2.32]	
Prediction interval	.010	002000			-		[0.87; 3.52]	
		2 0.05	. 0.004				[0.07; 3.52]	
Heterogeneity: $l^2 = 91\%$ [84° Test for effect in subgroup: t			< 0.001					
Test for effect in subgroup: t_5	= 5.12 (p	= 0.004)						
A								
35 - 40 vs 20 - 30	-	150		4707		0.00	10.00: 0.001	
Gupta_1967	0	152	10	1707		0.53	[0.03; 9.05]	2.9
Liu_2013	3801	351944	10319	1036502		1.08	[1.05; 1.13]	19.6
Hay_1972	522	644700	3193	5186500	101	1.32	[1.20; 1.44]	19.4
Pradat_1992	189	53593	904	349375		1.36	[1.17; 1.59]	19.2
	1168	76842	2649	267349	10	1.53	[1.43; 1.64]	19.5
	376	6484	2764	601520				19.4
Hansen_2021		0484			B.I		[11.36; 14.02]	19.4
Hansen_2021 Materna_2009		4400740						
Hansen_2021 Materna_2009 Random effects model		1133715	19839	7442953		1.91	[0.65; 5.62]	100.0
Hansen_2021 Materna_2009 Random effects model Prediction interval	6056			7442953		1.91	[0.10; 35.68]	100.0
Hansen_2021 Materna_2009 Random effects model Prediction interval Heterogeneity: <i>I</i> ² = 100% [10	6056 0%; 100%	δ], τ ² = 0.94		7442953		1.91		100.0
Hansen_2021 Materna_2009 Random effects model Prediction interval	6056 0%; 100%	δ], τ ² = 0.94		7442953		1.91		100.0

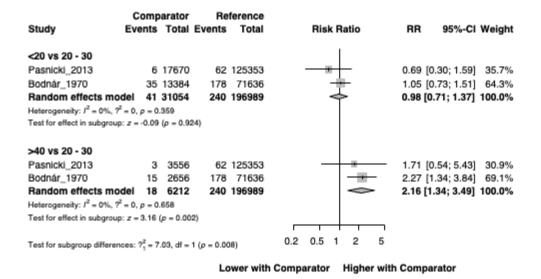

Lower with Comparator Higher with Comparator

Figure 9 Forest plot representing the RR with 95% CI of congenital heart defects (ICD-10: Q20-Q26) in different age groups compared to the 20-30 age group(85)

Study E		nparator		Reference Total	Diek Datie	RR	OFS/ CI Weish
Study E	vents	Total	Events	Total	Risk Ratio	RR	95%-CI Weight
<20 vs 20 - 30					1		
Materna_2009	42	75121	523	601520	-	0.64	[0.47; 0.88] 17.3%
Jaikrishan_2012	8	8833	126	119314	+	0.86	[0.42; 1.75] 14.1%
Hay_1972	556	1240100	2680	5186500		0.87	[0.79; 0.95] 18.2%
Pasnicki_2013	17	17670	133	125353	+	0.91	[0.55; 1.50] 15.9%
Jaruratanasirikul_2016	32	22265	126	95535	÷	1.09	[0.74; 1.61] 16.8%
DeRoo_2003	84	31617	357	173893		1.29	[1.02; 1.64] 17.7%
Random effects mode	739	1395606	3945	6302115	4	0.93	[0.76; 1.14] 100.0%
Prediction interval					+		[0.52; 1.68]
Heterogeneity: / ² = 67% [20%	6; 86%]	, ? ² = 0.03, j	p = 0.011				
Test for effect in subgroup: z	= -0.69	(p = 0.490)	1				
>35 vs 20 - 30		07007		170000	_		10.50 4.00 40.50
DeRoo_2003	43	27067		173893	ĩ		[0.56; 1.06] 16.5%
Jaruratanasirikul_2016	45	28891	126	95535	T.		[0.84; 1.66] 16.4%
Hay_1972	526			5186500	Ľ		[1.11; 1.34] 17.4%
Pasnicki_2013	26	17498	133	125353	Ĕ		[0.92; 2.13] 15.8%
Luo_2019	100	55368		235136			[1.24; 1.96] 16.9%
Materna_2009	87	25225		601520 6417937			[3.16; 4.98] 17.0%
Random effects model	02/	988949	4092	641/93/	•	1.47	[0.95; 2.28] 100.0%
Prediction interval		÷		•			[0.30; 7.24]
Heterogeneity: $l^2 = 95\%$ [92% Test for effect in subgroup: z	-		p < 0.001				
reactor energination and group. 2	= 1.71	(p = 0.007)					
30 - 35 vs 20 - 30							
DeRoo_2003	123	65218	357	173893	4	0.92	[0.75; 1.13] 16.8%
Hay_1972	617	1214100	2680	5186500	0	0.98	[0.90; 1.07] 17.1%
Luo_2019	175	142086	273	235136	b	1.06	[0.88; 1.28] 16.8%
Jaruratanasirikul_2016	66	39702	126	95535	÷	1.26	[0.94; 1.70] 16.3%
Pasnicki_2013	46	31917	133	125353	+	1.36	[0.97; 1.90] 16.1%
Materna_2009	117	14223	523	601520		9.46	[7.75; 11.55] 16.8%
Random effects mode	11144	1507246	4092	6417937	\$	1.58	[0.77; 3.22] 100.0%
Prediction interval							[0.11; 22.44]
Heterogeneity: / ² = 99% [98%			p < 0.001				
Test for effect in subgroup: z	= 1.26	(p = 0.209)					
>40 vs 20 - 30							
DeRoo_2003	5	3559	357	173893	-	0.68	[0.28; 1.65] 20.7%
Pasnicki_2013	6	3556		125353	<u> </u>		[0.70; 3.60] 21.7%
Hay_1972	169	190200		5186500			[1.47; 2.01] 29.7%
Materna_2009	30	18741	523	601520	+		[1.27; 2.66] 27.9%
Random effects mode			3693	6087266	\$		[1.11; 2.20] 100.0%
Prediction interval							[0.43; 5.75]
Heterogeneity: /2 = 30% [0%	: 75%].						
Test for effect in subgroup: z							
35 - 40 vs 20 - 30				470000	1		10 FO. 4 401 04 000
DeRoo_2003	38	23508		173893	크		[0.56; 1.10] 24.9%
Hay_1972	357			5186500	1. In 1997		[0.96; 1.20] 26.3%
Pasnicki_2013	20	13942		125353	Ξ		[0.85; 2.16] 23.5%
Materna_2009	57	6484		601520			[7.70; 13.27] 25.4%
Random effects mode Prediction interval	4/2	000034	3693	6087266			[0.59; 5.75] 100.0% [0.01; 465.66]
Heterogeneity: /2 = 99% [98%	- 004/1	+ + 20 ·		•		-	[0.01, 400.00]
Test for effect in subgroup: z			p ~ 0.001				
Test for subgroup differences	: ? <mark>2</mark> = 9	.94, df = 4 (p = 0.041)		0.01 0.1 1 10 100		

Lower with Comparator Higher with Comparator

Figure 10. Forest plot representing the RR with 95% CI of cleft lip and cleft palate (ICD-10: Q35-Q37) in different age groups compared to the 20-30 age group.(85)

Figure 11. Forest plot representing the RR with 95% CI of congenital anomalies of the digestive system (ICD-10: Q38-Q45) in different age groups compared to the 20-30 age group.(85)

Study Events Total Risk Ratio RR 95%-Cl Weight 200 vs 20 - 30 Bugge_2017 6 3483 19 15027 1.36 [0.54; 3.41] 4.1% Jones_2016 3311 243934 3586 5527463 2.09 2.07; 2.19] 4.6% Forrester_1999 19 23022 4.6 12620 2.27; 1.33; 3.87] 4.5% Salinas_2018 4038 3076243 4209 7434289 2.26; [1.03; 2.42] 4.8% Friedman_2016 2336 229000 4675 12994463 2.86; [1.90; 4.266] 4.6% Rober_1187 68 55223 91 2143483 2.90 2.75; 2.137; 4.7% Borgue_2012 28 2172; 2.153 757014 4.85 1.30; (2.12; 3.87] 4.7% Sorgue_2012 182 219908 11243483 4 2.90; (2.7; 3.51] 4.8% Kitby_2013 1025 633716 1267 21656 3.39; (3.01; 3.48] 4.5% Sull.ouis_2014									
$\begin{array}{c} \textbf{C} \textbf{V} \textbf{x} \textbf{20} - \textbf{30} \\ \textbf{Bugge}_2017 & 6 & 3483 & 19 & 15027 \\ \textbf{Williams_2005 & 68 & 111475 & 67 & 216129 \\ \textbf{Williams_2005 & 68 & 111475 & 67 & 216129 \\ \textbf{Forrester_1999 & 19 & 23022 & 46 & 126290 \\ \textbf{Forrester_1999 & 19 & 23022 & 46 & 126290 \\ \textbf{Salinas_2018 & 4038 & 307624 & 4209 & 74342699 \\ \textbf{Tan_2008 & 1 & 8020 & 10 & 209595 \\ \textbf{Fridoman_2016 & 2336 & 229400 & 4675 & 1294463 \\ \textbf{Materna_2009 & 32 & 75121 & 90 & 601520 \\ \textbf{Fridoman_2016 & 2336 & 229400 & 4675 & 1294463 \\ \textbf{Materna_2009 & 32 & 75121 & 90 & 601520 \\ \textbf{Kazura_2004 & 63 & 122069 & 194 & 1205402 \\ \textbf{Wazura_2004 & 63 & 122069 & 194 & 1205402 \\ \textbf{Wazura_2014 & 63 & 122069 & 194 & 1205402 \\ \textbf{Wazura_2014 & 61 & 115846 & 2086 & 615611 \\ \textbf{Wazura_2014 & 1466 & 1415846 & 2086 & 615611 \\ \textbf{Watrine_1984 & 3 & 15940 & 9 & 158016 \\ \textbf{Sac_2014 & 459 & 290813 & 701 & 1503786 \\ \textbf{Salinu_2003 & 135 & 193569 & 145 & 1040323 \\ \textbf{Watrine_1984 & 3 & 15940 & 9 & 158016 \\ \textbf{Baer_2014 & 459 & 290813 & 701 & 1503786 \\ \textbf{Salinu_2003 & 135 & 193569 & 145 & 1040323 \\ \textbf{Fradomom effects model7412 14910067 & 26150 & 67069196 \\ \textbf{Prediction interval } & \textbf{A} & A$	Churche			E	Reference	Disk Datis			
	Study	Events	Iotai	Events	lotai	Risk Ratio	о нн	95%-CI weig	nt
	<20 vs 20 - 30					1			
Williams 2005 66 111475 67 216129 $+$ 1,77 [1,40] 2.76 4.78 Jones 2016 3311 2439944 3566 5527463 $=$ 2.09 2.00 3.00 2.00 3.		6	3483	19	15027		1.36	[0.54: 3.41] 4.1	%
Jones_2016 3311 2439934 3866 5527463 □ 2.09 [2.00; 2.19] 4.8% Forrestor_1999 19 23022 46 128290 □ 2.27 [1.33; 3.87] 4.5% Salinas_2018 10 209955 □ 2.30 [2.2; 2.42] 4.8% Friedman_2016 2356 22900 4675 12994463 □ 2.83 [2.69; 2.97] 4.8% Materna_2009 32 75121 90 601520 ++ 2.85 [1.90; 4.26 4.6% Shor_2019 2249 1499333 4612 8931429 □ 2.90 [2.76; 3.05] 4.8% Kirby_2013 1822 189819 2447 7002082 □ 3.28 [3.09; 3.49] 4.8% Sul_2014 1466 145840 91 158016 □ 3.20 (3.00; 3.28] (3.00; 3.42 4.7% Bark_2014 459 230813 701 1503796 □ 3.39 (3.01; 3.47% <						+			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		3311	2439934	3586	5527463	13			%
Salinas_2018 4038 3076243 4209 7434269 □ 2.32 2.22 2.24 4.8% Tan_2008 1 8020 10 209595 □ 2.61 0.33: 20.41 2.6% Friedman_2016 2336 2234000 4675 12994463 □ 2.83 12.6% 2.97 4.2% Materna_2009 32 75121 90 601520 +* 2.65 1.90; 4.26 4.8% Materna_2004 63 1290989 194 1205402 = 3.03 1.28; 4.03 4.7% Borgue_2021 28 2.81722 154 376014 + 3.16 12.296; 3.49 4.8% Kirby_2013 1822 1599319 2447 7002082 □ 3.28 13.09; 3.49 4.8% SiLouis_2014 1466 1415846 2086 6615611 □ 3.39 3.00; 3.181 4.8% SiLouis_2014 456 53000053 + 4.04 12.80; 5.83 4.7% Tan_1996 18 343435 315 3000053 <td< td=""><td></td><td>19</td><td>23022</td><td>46</td><td>126290</td><td></td><td></td><td></td><td>%</td></td<>		19	23022	46	126290				%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		4038	3076243	4209	7434269	13			%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1	8020	10	209595	-++			%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Friedman 2016	2336	2294000	4675	12994463	13			%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		32	75121	90	601520	+			%
Kazaura 2004 63 129089 144 1205402 # 3.03 [2.28; 4.03] 4.7% Borque_2021 28 21722 154 378014 # 3.16 [2.12; 4.73] 4.8% Loc_2015 1025 683716 1267 2716567 I 3.21 [2.56; 3.49] 4.8% Kitby_2013 1822 1589319 2447 7002082 I 3.28 [3.09; 3.49] 4.8% Martinez_1984 3 15940 9 158016 I 3.28 [3.07; 3.51] 4.8% Martinez_1984 3 15940 9 158016 I 3.39 [3.01; 3.81] 4.8% Xu_2011 36 30433 1322 475789 III 4.96 [3.92; 6.27] 4.7% Salihu_2003 135 195369 145 1040323 IIII IIII 4.96 [3.92; 6.27] 4.7% Borgon_1998 18 23622 34 228095 IIII IIIII 0.09 [0.03; 0.24] 6.2% Bar_2014 26 530265	Roeper 1987	68	552523	91	2143483	+	2.90	[2.12; 3.97] 4.7	%
Bargue_2021 28 21722 154 378014 # 3.16 [2.12; 4.73] 4.8% Loc_2015 1025 683716 1267 2716567 3.28 [3.09; 3.49] 4.8% SiLouis_2014 1466 1415846 2086 6615611 3.28 [3.09; 3.49] 4.8% SiLouis_2014 1466 1415846 2086 6615611 3.39 (3.01, 3.81] 4.8% Marinez_1984 3 15940 9 158016 3.39 (3.01, 3.81] 4.8% Marinez_1984 3 15940 9 158016 3.39 (3.01, 3.81] 4.8% Marinez_1984 3 15939 145 1040323 # 4.96 (3.92; 6.27] 4.7% Rankin_1999 48 4099 71 263580 # 4.96 (3.92; 6.27] 4.7% Salinu_2003 135 195369 14040323 # 4.96 (3.92; 6.27] 4.7% Baer_2014 26 530265 701 1503796 # 0.11 (0.07; 0.16] 7.2%	Shor_2019	2249	1499333	4612	8931429		2.90	[2.76; 3.05] 4.8	%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Kazaura_2004	63	129089	194	1205402	-	3.03	[2.28; 4.03] 4.7	%
Kirby_2013 1822 1588319 2447 7002082 3.28 3.09 3.49 4.8% StLouis_2014 1466 1415846 2086 6615611 3.28 3.07 3.51 4.8% Martinez_1984 3 15940 9 158016 3.39 3.39 3.01 3.81 4.8% Martinez_1984 3 15940 9 158016 3.39 3.39 3.01 3.81 4.8% Xu_2011 36 33043 1322 4757989 # 3.92 2.82 5.46 4.7% Rankin_1999 48 44099 71 263580 # 4.04 2.80 5.83 4.7% Byron_1998 18 23622 34 228095 # 5.11 2.8% 5.83 4.8% Salihu_2003 4 328283 145 1040323 # 0.11 0.07; 0.16 7.2% Bugge_2017 0 3052 19 15027 0.13 0.12 0.99 2.9% 4.5% Subgge_2017 0 30	Borque_2021	28	21722	154	378014	+	3.16	[2.12; 4.73] 4.6	%
StLouis_2014 1466 1415846 2086 6615611 ■ 3.26 [3.07] 3.13 Martinez_1984 3 15940 9 158016 ■ 3.30 [0.87] 1.815 Baer_2011 36 33043 1322 4757989 # 3.92 [2.82] 5.46 4.7% Rankin_1999 48 44099 71 253580 # 4.04 [2.80] 5.83 4.7% Salihu_2003 135 195369 145 1040323 # 4.96 [3.92] 6.27 4.7% Byron_1998 18 23622 34 228095 # 5.11 [2.89] 9.05 4.5% Baer_2014 26 530265 701 1503796 # 0.09 [0.03] 0.24 6.2% Baer_2014 26 530265 701 1503796 # 0.13 [0.01] 2.743 .471 10.00% 9 9.342/5 0.13 [0.01] 2.24 5.371 10.82 9.301 1.82499 91 2143433 11	Loc_2015	1025	683716	1267	2716567	E	3.21	[2.96; 3.49] 4.8	%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Kirby_2013	1822	1589319	2447	7002082	0	3.28	[3.09; 3.49] 4.8	%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	StLouis_2014	1466	1415846	2086	6615611		3.28	[3.07; 3.51] 4.8	%
Xu_2011 36 23043 1322 4757989 # 3.92 [2.82; 5.46] 4.7% Rankin_1999 48 44099 71 263580 # 4.04 [2.80; 5.83] 4.7% Tan_1996 181 384335 315 3000053 # 4.04 [2.80; 5.83] 4.7% Byron_1998 18 23622 34 228095 # 4.96 [3.92; 6.27] 4.7% Byron_1998 18 23622 34 228095 # 4.96 [3.92; 6.27] 4.7% Byron_1998 18 23622 34 228095 # 5.11 [2.89; 9.05] 4.5% Barc_2014 2.6 530265 701 1503796 # 0.11 [0.07; 0.16] 7.2% Bugge_2017 0 3052 19 15027 # 0.13 [0.01; 2.09] 2.9% StLouis_2014 81 1929379 2086 615611 # 0.13 [0.12; 0.18] 7.4% Friedman_2016 200 3603972 4675 12994463 0.15	Martinez_1984	3	15940	9	158016	-	- 3.30	0.89; 12.20] 3.6	%
Rankin_199948440971263580#4.04[2.80, 5.83]4.7%Tan_19961813843353153000053#4.96[3.92, 6.27]4.7%Sallhu_20031351953691451040323#4.96[3.92, 6.27]4.7%Byron_1998182362234228095#4.96[3.92, 6.27]4.7%Prediction intervalHeterogeneity: $\vec{r} = 494%$ [92%; 95%), $\vec{r} = 0.05$, $r = 0.001$ Sallhu_200343282831451040323#Sallhu_200343282831451040323#	Baer_2014	459	290813	701	1503796		3.39	[3.01; 3.81] 4.8	%
Tan_1996 181 384335 315 3000053 # 4.49 [3.74] 5.38] 4.8% Sallhu_2003 135 195369 145 1040323 # 4.96 [3.92] 6.27] 4.7% Byron_1998 18 23622 34 228095 # 4.96 [3.92] 6.27] 4.7% Prediction interval .	Xu_2011	36	33043	1322	4757989	-	+ 3.92	[2.82; 5.46] 4.7	%
Salihu_2003 135 195369 145 1040323 # 4.96 [3.92; 6.27] 4.7% Byron_1998 18 23622 34 228095 # 4.96 [3.92; 6.27] 4.7% Prediction interval .	Rankin_1999	48	44099	71	263580	-+	+ 4.04	[2.80; 5.83] 4.7	%
Byron_1998 18 23622 34 228095 Random effects model7412 14910067 26150 67069196 Prediction interval	Tan_1996	181	384335	315	3000053	-	■ 4.49	[3.74; 5.38] 4.8	%
Random effects model7412 14910067 26150 67069196 → 3.08 [2.74; 3.47] 100.0% Prediction interval → →	Salihu_2003	135	195369	145	1040323		± 4.96	[3.92; 6.27] 4.7	%
Prediction Interval .	Byron_1998	18	23622	34	228095	→	<u>⊷</u> 5.11	[2.89; 9.05] 4.5	%
Heterogeneity: $l^2 = 94\%$ (92%; 95%), $l^2 = 0.05, p < 0.001$ Test for effect in subgroup: $t_{21} = 19.68$ ($p < 0.001$) >35 vs 20 - 30 Salihu_2003 4 328283 145 1040323 \blacksquare 0.09 [0.03; 0.24] 6.2% Bage_2017 0 3052 19 15027 \blacksquare Not 182499 91 2143483 \blacksquare Not 13 [0.01; 2.09] 2.9% Roeper_1987 1 182499 91 2143483 \blacksquare Not 3 [0.01; 0.02; 0.93] 4.2% Stibuly_2013 86 1697974 2447 7002082 \blacksquare Not 4675 12994463 \blacksquare Not 16 [0.07; 0.38] 6.7% Borque_2021 14 202899 154 378014 \blacksquare Not 16 [0.07; 0.33] 6.7% Borque_2021 14 202899 154 378014 \blacksquare Not 16 [0.07; 0.33] 6.7% Borque_2021 14 202899 154 378014 \blacksquare Not 6 [0.04; 1.89] 4.1% Martinez_1984 0 28992 9 158016 \blacksquare Not 26 [0.04; 1.89] 4.1% Materna_2009 2 25225 90 601520 \blacksquare 0.39 [0.14; 1.09] 6.2% Naterna_2009 2 25225 90 601520 \blacksquare 0.81 [0.22; 2.94] 5.6% Random effects model 519 9637065 12409 4224339 \diamondsuit 0.22 [0.06; 0.74] $=$ <th>Random effects mo</th> <th>del7412</th> <th>14910067</th> <th>26150</th> <th>67069196</th> <th>•</th> <th>3.08</th> <th>[2.74; 3.47] 100.0</th> <th>%</th>	Random effects mo	del7412	14910067	26150	67069196	•	3.08	[2.74; 3.47] 100.0	%
Test for effect in subgroup: $t_{21} = 19.68 (p < 0.001)$ >35 vs 20 - 30 Sallihu_2003 4 328283 145 1040323 $=$ 0.09 [0.03; 0.24] 6.2% Baer_2014 26 530265 701 1503796 $=$ 0.11 [0.07; 0.16] 7.2% Bugg_2017 0 3052 19 15027 $=$ 0.13 [0.01; 2.09] 2.9% Roeper_1987 1 182499 91 2143483 $=$ 0.13 [0.01; 0.03] 4.2% StLouis_2014 81 1929379 2086 6615611 $=$ 0.13 [0.01; 0.17] 7.4% Kirby_2013 86 1697974 2447 7002082 $=$ 0.14 [0.12; 0.18] 7.4% Friedman_2016 200 3603972 4675 12994463 $=$ 0.17 [0.10; 0.29] 7.0% Rankin_1999 2 31529 71 263580 $=$ 0.26 [0.04; 1.89] 4.1% Martinez_1984 0 28992 9 158016 $=$ 0.29 [0.02; 4.93] 2.8% Forrester_1999 4 27951 46	Prediction interval					-	-	[1.92; 4.95]	
>35 vs 20 - 30 Salihu_2003 4 328283 145 1040323 Image: Constraint of the state of the									
Salihu_2003 4 328283 145 1040323	Test for effect in subgrou	p: t ₂₁ = 19.6	8 (p < 0.001)					
Salihu_2003 4 328283 145 1040323	> 2E via 20 20								
Baer_2014 26 530265 701 1503796 = 0.11 [0.07; 0.16] 7.2% Bugge_2017 0 3052 19 15027 = 0.13 [0.01; 2.09] 2.9% Roeper_1987 1 182499 91 2143483 = 0.13 [0.01; 2.09] 2.9% Kirby_2013 86 1697974 2447 7002082 = 0.14 [0.12; 0.18] 7.4% Friedman_2016 200 3603972 4675 1294463 = 0.15 [0.13; 0.18] 7.4% Borque_2021 14 202899 154 378014 = 0.16 [0.07; 0.33] 6.7% Byron_1998 1 25880 34 228095 = 0.26 [0.04; 1.89] 4.1% Martinez_1984 0 28992 9 158016 = 0.39 [0.14; 1.09] 6.2% Kazaura_2004 11 160929 194 1205402 = 0.42 [0.23; 0.78] 6.9% Mattinez_1984 0 2892 9 601520 = <td></td> <td></td> <td>000000</td> <td></td> <td>4040000</td> <td>-</td> <td>0.00</td> <td>0.00.000</td> <td>~</td>			000000		4040000	-	0.00	0.00.000	~
Bugge_2017 0 3052 19 15027 Image: Constraint of the system of t									
Roeper_1987 1 182499 91 2143483 ■ 0.13 [0.02; 0.93] 4.2% StLouis_2014 81 1929379 2086 6615611 ■ 0.13 [0.12; 0.18] 7.4% Kirby_2013 86 1697974 2447 7002082 ■ 0.14 [0.12; 0.18] 7.4% Friedman_2016 200 3603972 4675 12994463 ■ 0.15 [0.13] 0.18] 7.4% Borque_2021 14 20289 154 378014 = 0.17 [0.10; 0.29] 7.0% Rankin_1999 2 31529 71 263580 ■ 0.24 [0.06; 0.96] 5.3% Byron_1998 1 25880 34 228095 ■ 0.29 [0.02; 4.93] 2.8% Forrester_1999 4 27951 46 126290 ■ 0.39 0.29 [0.02; 4.93] 2.8% Materna_2009 2 25225 90 601520 ■ 0.42 [0.23; 0.78] 6.9% Materna_2009 2 25225 90<	_					-			
StLouis_2014 81 1929379 2086 6615611 ■ 0.13 [0.11; 0.17] 7.4% Kirby_2013 86 1697974 2447 7002082 ■ 0.14 [0.12; 0.18] 7.4% Friedman_2016 200 3603972 4675 12994463 ■ 0.15 [0.13; 0.18] 7.4% Tan_1996 7 425950 315 3000053 = 0.16 [0.07; 0.33] 6.7% Borque_2021 14 202899 154 378014 = 0.17 [0.06; 0.96] 5.3% Byron_1998 1 25880 34 228095 = 0.24 [0.06; 0.96] 5.3% Martinez_1984 0 28992 9 158016 = 0.29 [0.02; 4.93] 2.8% Forrester_1999 4 27951 46 126290 = 0.42 [0.23; 0.78] 6.9% Materna_2009 2 25225 90 601520 = 0.53 [0.13; 2.15] 5.3% <td>55 =</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	55 =	-							
Kirby_2013 86 1697974 2447 7002082 Image: Construction of the construction of th		-							
Friedman_2016 200 3603972 4675 12994463 □ 0.15 [0.13] 0.18] 7.4% Tan_1996 7 425950 315 3000053 0.16 [0.07] 0.33] 6.7% Borque_2021 14 202899 154 378014 0.16 [0.07] 0.33] 6.7% Byron_1998 1 25880 34 228095 0.24 [0.06] 0.96] 5.3% Byron_1998 1 25880 34 228095 0.26 [0.04] 1.89] 4.1% Martinez_1984 0 28992 9 158016 0.29 [0.02] 4.93] 2.8% Forrester_1999 4 27951 46 126290 0.42 [0.22] 0.9% 3.8% Kazaura_2004 11 160929 194 1205402 0.53 [0.13] 2.15] 5.3% Xu_2011 77 354511 1322 4757989 - 0.78 [0.62] 0.81 [0.22]<						_			
Tan_1996 7 425950 315 3000053 → 0.16 [0.07] 0.33 6.7% Borque_2021 14 202899 154 378014 → 0.17 [0.10] 0.29 7.0% Rankin_1999 2 31529 71 263580 → 0.24 [0.06] 0.96] 5.3% Byron_1998 1 25880 34 228095 → 0.26 [0.04] 1.89] 4.1% Martinez_1984 0 28992 9 158016 → 0.29 [0.02] 4.9% Kazaura_2004 11 160929 194 1205402 → 0.42 [0.23] 0.78] 6.9% Materna_2009 2 25225 90 601520 → 0.53 [0.13] 2.15] 5.3% Xu_2011 77 354511 1322 4757989 → 0.78 [0.62] 0.81 [0.22] 2.92 1.6% Random effects model 519 9637065 12409 4224339 0.22 [0.15] 0.32						_			
Borque_2021 14 202899 154 378014 0.17 [0.10; 0.29] 7.0% Rankin_1999 2 31529 71 263580 0.24 [0.06; 0.96] 5.3% Byron_1998 1 25880 34 228095 0.26 [0.04; 1.89] 4.1% Martinez_1984 0 28992 9 158016 0.29 [0.02; 4.93] 2.8% Forrester_1999 4 27951 46 126290 0.39 [0.14; 1.09] 6.2% Kazaura_2004 11 160929 194 1205402 0.42 [0.23; 0.78] 6.9% Materna_2009 2 25225 90 601520 0.53 [0.13; 2.15] 5.3% Xu_2011 77 354511 1322 4757989 0.78 [0.62; 0.98] 7.4% Tan_2008 3 77775 10 209595 0.81 [0.22; 2.94] 5.6% Random effects model 519 9637065 12409 4224333						_			
Rankin_1999 2 31529 71 263580 ■ 0.24 [0.06; 0.96] 5.3% Byron_1998 1 25880 34 228095 ■ 0.26 [0.04; 1.89] 4.1% Martinez_1984 0 28992 9 158016 ■ 0.29 [0.02; 4.93] 2.8% Forrester_1999 4 27951 46 126290 ■ 0.39 [0.14; 1.09] 6.2% Kazaura_2004 11 160929 194 1205402 ■ 0.42 [0.23; 0.78] 6.9% Materna_2009 2 25225 90 601520 ■ 0.78 [0.62; 0.98] 7.4% Xu_2011 77 354511 1322 4757989 ■ 0.78 [0.62; 0.98] 7.4% Tan_2008 3 77775 10 209595 ■ 0.81 [0.22; 2.94] 5.6% Random effects model 519 9637065 12409 42243339 0.22 [0.15; 0.32] 100.0%	-	-				_			
Byron_1998 1 25880 34 228095 → 0.26 [0.04; 1.89] 4.1% Martinez_1984 0 28992 9 158016 → 0.29 [0.02; 4.93] 2.8% Forrester_1999 4 27951 46 126290 → 0.39 [0.14; 1.09] 6.2% Kazaura_2004 11 160929 194 1205402 → 0.42 [0.23; 0.78] 6.9% Materna_2009 2 25255 90 601520 → 0.53 [0.13; 2.15] 5.3% Xu_2011 77 354511 1322 4757989 → 0.78 [0.62; 0.98] 7.4% Tan_2008 3 77775 10 209595 → 0.81 [0.22; 2.94] 5.6% Random effects model 519 9637065 12409 42243339 0.22 [0.15; 0.32] 100.0% Prediction interval 									
Martinez_1984 0 28992 9 158016 + 0.29 [0.02; 4.93 2.8% Forrester_1999 4 27951 46 126290 ± 0.39 [0.14; 1.09] 6.2% Kazaura_2004 11 160929 194 1205402 ± 0.42 [0.23; 0.78] 6.9% Materna_2009 2 25225 90 601520 ± 0.53 [0.13; 2.15] 5.3% Xu_2011 77 354511 1322 4757989 ± 0.78 [0.62; 0.98] 7.4% Tan_2008 3 77775 10 209595 ± 0.78 [0.22; 2.94] 5.6% Random effects model 519 9637065 12409 4224339 < 0.22 [0.105; 0.74] - Prediction interval 									
Forrester_1999 4 27951 46 126290 Image: Constraint of the state of									
Kazaura_2004 11 160929 194 1205402 ■ 0.42 [0.23; 0.78] 6.9% Materna_2009 2 25225 90 601520 ■ 0.53 [0.13; 2.15] 5.3% Xu_2011 77 354511 1322 4757989 ■ 0.78 [0.62; 0.98] 7.4% Tan_2008 3 77775 10 209595 ■ 0.81 [0.22; 2.94] 5.6% Random effects model 519 9637065 12409 42243339 0.22 [0.15; 0.32] 100.0% Prediction interval . </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Materna_2009 2 25225 90 601520 ■ 0.53 [0.13; 2.15] 5.3% Xu_2011 77 354511 1322 4757989 ■ 0.78 [0.62; 0.98] 7.4% Tan_2008 3 77775 10 209595 ■ 0.81 [0.22; 2.94] 5.6% Random effects model 519 9637065 12409 42243339 < 0.22 [0.15; 0.32] 100.0% Prediction interval .									
Xu_2011 77 354511 1322 4757989 ■ 0.78 [0.62; 0.98] 7.4% Tan_2008 3 77775 10 209595 ■ 0.81 [0.22; 2.94] 5.6% Random effects model 519 9637065 12409 42243339 <									
Tan_2008 3 77775 10 209595 0.81 [0.22; 2.94] 5.6% Random effects model 519 9637065 12409 42243339 <						-			
Random effects model 519 9637065 12409 42243339 0.22 [0.15; 0.32] 100.0% Prediction interval .									
Prediction interval						~ີ			
									_
Heterogeneity: 1 ² = 92% [89%; 94%], 7 ² = 0.30, p < 0.001		- [89%; 94%].	? ² = 0.30. p	< 0.001	-				

Heterogeneity: $t^2 = 92\%$ [89%; 94%], $\gamma^2 = 0.30$, p < 0.001Test for effect in subgroup: $t_{16} = -8.77$ (p < 0.001)

Figure 12. (continued below)

•

30 - 35 vs 20 - 30						
StLouis 2014	152	3145042	2086	6615611	E3	0.15 [0.13; 0.18] 6.6%
Martinez 1984	0	46592	9	158016		0.18 [0.01; 3.07] 2.5%
Borque_2021	32	372093	154	378014	-	0.21 [0.14; 0.31] 6.4%
Kirby_2013	218	2943860	2447	7002082		0.21 [0.18; 0.24] 6.6%
Friedman_2016	472	5944342	4675	12994463		0.22 [0.20; 0.24] 6.6%
Tan_1996	28	1063209	315	3000053	+	0.25 [0.17; 0.37] 6.4%
Rankin_1999	6	87486	71	263580		0.25 [0.11; 0.59] 5.8%
Forrester_1999	5	51863	46	126290		0.26 [0.11; 0.67] 5.6%
Baer_2014	93	745872	701	1503796	-	0.27 [0.22; 0.33] 6.5%
Salihu_2003	24	585366	145	1040323	-	0.29 [0.19; 0.45] 6.4%
Roeper 1987	6	418566	91	2143483		0.34 [0.15; 0.77] 5.8%
Kazaura 2004	23	373968	194	1205402	+	0.38 [0.25; 0.59] 6.3%
Bugge_2017	3	5104	19	15027		0.46 [0.14; 1.57] 5.1%
Byron_1998	6	81081	34	228095		0.50 [0.21; 1.18] 5.7%
Xu_2011	162	1163051	1322	4757989		0.50 [0.43; 0.59] 6.6%
Tan 2008	7	165142	10	209595		0.89 [0.34; 2.33] 5.5%
Materna 2009	5	14223	90	601520	- <u>-</u> -	2.35 [0.95; 5.78] 5.7%
Random effects model	1242	17206860	12409	42243339	\$	0.32 [0.23; 0.44] 100.0%
Prediction interval						[0.10; 1.02]
Heterogeneity: /2 = 90% [85%;	93%].	? = 0.27, p -	c 0.001			
Test for effect in subgroup: t18						
>40 vs 20 - 30						
Salihu_2003	1	55556	145	1040323		0.13 [0.02; 0.92] 10.7%
Materna_2009	0	18741	90	601520		0.18 [0.01; 2.86] 7.4%
Kazaura_2004	1	26791	194	1205402		0.23 [0.03; 1.65] 10.7%
Tan_1996	2	66822	315	3000053		0.29 [0.07; 1.14] 13.6%
Roeper_1987	0	36983	91	2143483		0.32 [0.02; 5.10] 7.4%
Rankin_1999	0	4410	71	263580		0.42 [0.03; 6.75] 7.4%
Forrester_1999	1	4411	46	126290		0.62 [0.09; 4.51] 10.6%
Bugge_2017	0	577	19	15027		0.67 [0.04; 11.04] 7.3%
Byron_1998	0	3153	34	228095		1.05 [0.06; 17.09] 7.4%
Martinez_1984	0	7060	9	158016	<u>k</u>	1.18 [0.07; 20.24] 7.2%
Tan_2008	1	10301	10	209595		2.03 [0.26; 15.89] 10.2%
Random effects model	6	234805	1024	8991384		0.41 [0.23; 0.74] 100.0%
Prediction interval					—	[0.23; 0.74]
Heterogeneity: /2 = 0% [0%; 6	0%], 7	$p^2 = 0, p = 0.83$	26			
Test for effect in subgroup: t10	= -3.4	1 (p = 0.007)				
35 - 40 vs 20 - 30						
Salihu_2003	3	272727	145	1040323		0.08 [0.03; 0.25] 9.5%
Tan_1996	5	359128	315	3000053		0.13 [0.05; 0.32] 10.4%
Bugge_2017	0	2475	19	15027		0.16 [0.01; 2.58] 4.7%
Roeper_1987	1	145516	91	2143483		0.16 [0.02; 1.16] 6.8%
Borque_2021	14	202899	154	378014	-	0.17 [0.10; 0.29] 11.3%
Rankin_1999	2	27119	71	263580		0.27 [0.07; 1.12] 8.6%
Byron_1998	1	22727	34	228095		0.30 [0.04; 2.16] 6.7%
Forrester_1999	3	23540	46	126290		0.35 [0.11; 1.12] 9.4%
Martinez_1984	0	21932	9	158016		0.38 [0.02; 6.51] 4.6%
Kazaura_2004	10	134138	194	1205402		0.46 [0.25; 0.87] 11.1%
Tan_2008	2	67474	10	209595		0.62 [0.14; 2.84] 8.2%
Materna_2009	2	6484	90	601520		2.06 [0.51; 8.37] 8.6%
Random effects model	43	1286159	1178	9369398	*	0.27 [0.16; 0.47] 100.0%
Prediction interval						[0.07; 1.05]
Heterogeneity: $l^2 = 51\%$ [4%;			0.022			
Test for effect in subgroup: t ₁₁	= -5.2	0 (p < 0.001)				_
	n ²				0.01 0.1 1 10	100
Test for subgroup differences:	$?_{4}^{*} = 4$	56.69, df = 4 (p < 0.001)			100

Lower with Comparator Higher with Comparator

Figure 12. Forest plot representing the RR with 95% CI of gastroschisis (ICD-10: Q79.3) in different age groups compared to the 20-30 age group.(85)

			meta-analysis		population-based analysis				
Congenital anomaly	ICD-10	ref	erence age range: 20)-35	reference age range: individual for each				
	Category	age < 20	age > 35	age > 40	age < 20	age > 35	age > 40		
All NCAs (with or without CAs)	Q00-Q89	1.08 (0.89; 1.32)	1.31 (1.06; 1.61)	1.44 (1.25; 1.66)	no data	no data	no data		
All NCAs (without CAs)	Q00-Q89	1.21 (0.59; 2.49)	1.37 (0.76; 2.45)	1.25 (1.08; 1.46)	1.37 (1.32; 1.43)	1.21 (1.16; 1.26)	1.35 (1.23; 1.49)		
All NCAs (with CAs)	Q00-Q89	1.15 (0.87; 1.52)	1.26 (1.12; 1.42)	1.63 (1.26; 2.09)	no data	no data	no data		
Nervous system	Q00-Q07	1.16 (0.74; 1.81)	1.53 (0.80; 2.94)	1.56 (0.67; 3.62)	1.71 (1.48; 1.97)	1.05 (0.87; 1.26)	1.25 (0.84; 1.86)		
Encephalocele	Q01	1.76 (0.44; 7.12)	1.43 (0.57; 3.60)	no data	no data	no data	no data		
Congenital hydrocephalus	Q03	1.19 (1.02; 1.38)	no data	no data	no data	no data	no data		
Spina bifida	Q05	1.30 (0.93; 1.82)	1.39 (0.75; 2.59)	1.96 (0.72; 5.31)	no data	no data	no data		
Anencephaly	Q00.0	1.40 (0.98; 1.99)	1.02 (0.60; 1.72)	1.30 (0.71; 2.38)	no data	no data	no data		
Eye, ear, face, and neck	Q10-Q18	no data	no data	no data	1.25 (0.94; 1.66)	1.24 (0.92; 1.69)	2.09 (1.25; 3.49)		
Circulatory system	Q20-Q28	0.87 (0.68; 1.11)	1.33 (0.97; 1.82)	1.94 (1.28; 2.93)	1.16 (1.07; 1.26)	1.40 (1.29; 1.52)	1.72 (1.45; 2.05)		
Congenital heart defects	Q20-Q26	0.87 (0.78; 0.97)	1.50 (1.11; 2.04)	1.75 (1.32; 2.32)	no data	no data	no data		
Respiratory system	Q30-Q34	no data	no data	no data	1.82 (0.83; 4.03)	1.00 (0.40; 2.51)	1.32 (0.29; 6.13)		
Cleft lip and palate	Q35-Q37	0.93 (0.76; 1.14)	1.47 (0.95; 2.28)	1.57 (1.11; 2.20)	1.21 (1.05; 1.40)	1.45 (1.26; 1.67)	1.58 (1.16; 2.16)		
Cleft palate	Q35	0.99 (0.56; 1.73)	1.78 (1.16; 2.73)	1.77 (1.48; 2.11)	no data	no data	no data		
Digestive system	Q38-Q45	0.98 (0.71; 1.37)	no data	2.16 (1.34; 3.49)	1.46 (1.31; 1.64)	1.16 (1.02; 1.32)	1.15 (0.85; 1.57)		
Genital organs	Q50-Q56	no data	no data	no data	1.36 (1.24; 1.50)	1.15 (1.03; 1.29)	1.30 (1.02; 1.66)		
Urinary system	Q60-Q64	no data	0.86 (0.57; 1.29)	no data	1.29 (1.04; 1.60)	1.90 (1.56; 2.32)	2.27 (1.53; 3.38)		
Hypospadiasis	Q54	0.99 (0.91; 1.07)	1.11 (0.88; 1.39)	no data	no data	no data	no data		
Musculoskeletal System	Q65-Q79	0.88 (0.72; 1.08)	0.94 (0.65; 1.37)	0.90 (0.55; 1.46)	1.57 (1.46; 1.70)	1.12 (1.02; 1.23)	1.07 (0.86; 1.34)		
Congenital Diaphragmatic Hernia	Q79.0	0.96 (0.88; 1.06)	1.52 (0.79; 2.91)	no data	no data	no data	no data		
Omphalocele	Q79.2	1.44 (1.08; 1.92)	1.47 (1.20; 1.79)	2.57 (1.77; 3.73)	no data	no data	no data		
Gastroschisis	Q79.3	3.08 (2.74; 3.47)	0.22 (0.15; 0.32)	0.41 (0.23; 0.74)	no data	no data	no data		
Other	Q80-Q89	no data	no data	no data	1.45 (1.25; 1.68)	1.35 (1.15; 1.59)	1.70 (1.23; 2.36)		

9 DISCUSSION

9.1 Summary of findings, international comparisons (including all studies) The main findings of our studies support our hypothesis. The relative frequency of all NCAs combined is strongly related to maternal age. The importance of our findings lies not only in their clinical relevance, but in their quality. The population based study encompasses a long time period for a whole country with almost 3 million births, maternal age data is available by year, all level 2 malformation categories of ICD-10 were assessed, aims for a high level of transparency, and a complex statistical analysis approach was used – this is particularly apparent if we compare it with other similar studies (e.g. those included in the meta-analysis). The meta-analysis provides a higher level of evidence for a worldwide audience than our registry analysis. It is the first of its kind (i.e. analyzing all NCAs combined and also separately by categories), and we made our best to avoid typical design flaws (c.f. Ahn et al 2022, (158)): we only pooled population-based studies with matching age groups and NCA categories.

All NCAs combined (ICD-10: Q00-Q89)

Our meta-analysis revealed risk increase above 35 and a more relevant increase above 40. It thus confirmed the risk-increasing effect of advanced maternal age. In contrast, our population-based study found that both very young and advanced maternal age increases the risk, when all NCAs are considered collectively.

Though the meta-analysis also shows an increase in risk in very young mothers, but here statistical significance does not support a clinical association. The main reason for this is the high heterogeneity (temporal and geographical differences), which suggests that the risk-increasing effect of young maternal age may be prevalent in certain regions (6/14 of the included articles also found a risk-increasing effect of extremely young maternal age). Despite the topic being extensively researched, the age distributions of different NCAs show inconsistencies in the literature. The risk increasing effect of advanced maternal age is consistent with previous research(54, 159, 160), highlighting the importance of considering advanced maternal age as a risk factor in prenatal care and genetic counseling. The 2022 meta-analysis on the subject (158) addressed advanced maternal age as a risk factor. The increased risk observed in older mothers can be attributed to a

variety of factors, including increased rate of IVF (in vitro fertilization) (161-164), increased prevalence of comorbidities particularly pregestational diabetes mellitus (165-167), and a higher likelihood of long-term exposure to environmental factors.(168, 169) In contrast to our findings, certain studies have questioned the risk-increasing effect of advanced maternal age.(53, 170) This may be explained by the fact that the increase in maternal age in Europe is especially associated with women of higher social status, which may have led to a decrease in the risk of NCA in this age group compared to previous trends.(53, 171)

Several studies indicate that advanced maternal age is linked to a decreased risk of NCAs. To explain this, researchers hypothesize that the embryonic development is more strongly influenced by the "all-or-nothing" phenomenon than the aging of the egg – this results in a higher chance surviving fetuses are anatomically normal.(172)

In line with our population-based study, Reefhuis et al.(55) demonstrated that women under 20 years and women over 35 years are at increased risk of having a fetus with an NCA. Croen et al.(173) also observed this association in their data analysis from the California Birth Defects Monitoring Program, except for the Afro-American population. Analyzing data from the EUROCAT database, Loane et al. argue (53) that greater attention should be given to the screening of adolescent mothers, as they are more prone to having multiple risk factors. Possible factors contributing to this increased risk among younger mothers encompass insufficient prenatal care, a greater prevalence of socioeconomic disadvantages, and an elevated vulnerability to nutritional deficiencies during pregnancy.(57)

The effect of advanced maternal age on the risk of chromosomal anomalies is well known. In addition to chromosomal anomalies, the prevalence of NCAs is also higher, so as a significant confounder, we excluded the co-occurrence of chromosomal anomalies from our population-based study and in the case of meta-analysis, we also performed an analysis that tests the hypothesis without the co-occurrence of chromosomal anomalies. In this case, we found a 25% increase in risk for mothers over 40. This further supports the idea that a mother's age can be an independent risk factor, since having chromosomal anomalies at the same time is one of the most significant variables that can influence the occurrence.

Congenital malformations of the nervous system (ICD-10: Q00-Q07)

In the case of neural tube defects (NTD), there is already a well-known and high level of evidence that folic acid supplementation is effective in preventing these disorders.(174) In addition to this well known preventive option, there are further possibilities for secondary prevention of this group of anomalies through neurosonography or fetal MR scans. Hence, it is crucial in clinical practice to identify risk factors in order to improve the criteria for diagnostic approaches.

Our population-based analysis reveals a significant and large increase in risk in very young mothers, but the meta-analysis shows no significant effect on the risk. The latter could be explained by the high level of heterogeneity caused by population differences. As a result, we cannot draw broad conclusions, but we do see an increase in risk locally both in advanced and very young age categories. The studies included in the meta-analysis demonstrate either no significant effect or a significant risk increase.

The literature is not consistent on the age effect in this case either. Most studies have found a 'U-shaped' relationship between maternal age and the relative frequency of NTDs.(103, 175) Other researchers suggest that a higher risk of NTD is probably associated with increased maternal age.(176) The heterogeneous results could be attributed to an inappropriate NTD definition, as grouping was not applied uniformly across studies. Some anomalies were explicitly associated with young maternal age (e.g. anencephaly)(102, 177), while other isolated anomalies were more common in older mothers(e.g. spina bifida, encephalocele).(177)

Encephalocele (ICD-10: Q01): No significant effect was found for any age category in our meta-analysis. Wen et al. discovered that younger maternal ages are specifically associated with encephaloceles. This association was not explained by maternal education level or the timing of prenatal care initiation in their study.(178) A 2024 meta-analysis found that the age of the mother was a factor in the occurrence of encephaloceles. Two publications showed a link between encephaloceles and very young maternal age, while another publication documented a connection with advanced maternal age.(179)

Congenital hydrocephalus (ICD-10: Q03): In our meta-analysis, we were only able to examine the effect of very young maternal age, and even in this category, only 2 studies could be mathematically synthesised. As a result, an increase in risk is observed

in the very young age group, which, despite combining the findings of only two papers, is a mathematically significant result. Reefhuis and Honein also discovered that teenage mothers had a significantly higher risk of having hydrocephalus offsprings than mothers aged 25-29 years (OR = 1.56; CI: 1.23-1.96). The increased risk could be attributed to confounding lifestyle factors like insufficient prenatal care and exposure to harmful substances.(55) A 2023 case-control analysis also confirms this link.(180) Another study also identified a risk increasing effect of maternal age, but for very young and advanced age (U-shaped distribution).(181) In contrast, in another study maternal age was not associated with any subtype of hydrocephalus.(182) In this case, a variety of causal factors may explain the inconsistency of the literature.

Spina bifida (ICD-10: Q05): Most of the studies included in the meta-analysis found an increase in risk among mothers in the examined age groups. However, due to the large confidence intervals, the pooled values cannot statistically prove or disprove the risk-increasing effect. Consistent with our findings, the literature reviews on this subject do not acknowledge the potential for maternal age to increase the risk of spina bifida.(183, 184)

Anancephaly (ICD-10: Q00.0): Most of the articles included in the meta-analysis do not show a significant effect and the pooled value does not show evidence for the presence or absence of a risk factor. The literature does not mention maternal age as a relevant risk factor for an encephaly either.(185, 186)

Congenital malformations of eye, ear, face and neck (ICD-10: Q10-Q18)

There was insufficient data for mathematical synthesis in the meta-analysis. Our population-based study showed a clinically and statistically significant increase in risk over the age of 40 years. Congenital anomalies of the face and neck are one of the most difficult to diagnose prenatally (187), and there is no clear reference in the literature to the risk factor we have studied. A 2024 study in the same setting as ours (i.e. using ICD-10 categories) found no association with maternal age.(188) Given the paucity of data on this topic, further studies are needed to assess the link.

62

Congenital Malformations of the Circulatory System (ICD-10: Q20-Q28)

There is a clinically and statistically significant increase in risk above the age of 40 years in both the meta-analysis and the population-based study. In the case of the meta-analysis, despite the large heterogeneity, this is strong evidence. The effect of very young maternal age is not detected in the meta-analysis, and although it is significant in the population-based analysis, the effect is minimal.

The risk-increasing effect of advanced maternal age can be found in the literature(189), but most research specifically focuses on cardiac malformations within other anomalies of the circulatory system.

Congenital Heart Defects(CHD) (ICD-10:Q20-Q26): Due to the differences in ICD classifications and for conceptual reasons, this group was not included in the population-based study (only ICD main groups were analysed). In the meta-analysis, there is a statistically and clinically significant increase in risk in advanced maternal age (both 35 and over 40). There is a slight protective effect in the very young maternal age category, but this is barely clinically relevant.

The study of this subgroup of anomalies is particularly important, both in terms of their frequency and severity, as well as due to the potential for specific screening methods. Currently, fetal echocardiography is not recommended based on the mother's age.(190, 191)

Similar to our results, several studies – including a 2024 meta-analysis on the subject – report an increase in risk in advanced maternal age.(55, 188, 192, 193) Mamasoula et al. identify both very young and advanced maternal age as a risk factor and specifically highlight the association of very severe CHDs in the very young group.(194) Our study and the scientific literature are consistent on the risk-adjusting effect of advanced maternal age, but further publications are not consistent for very young mothers. This finding necessitates additional investigation to validate and explore the influence of behavioral or genetic factors.

Congenital malformations of the respiratory system (ICD-10: Q30-Q34)

The meta-analysis lacked sufficient data for mathematical synthesis. The populationbased analysis yielded estimates with a wide confidence interval due to the limited sample size, so the presence or absence of risk could not be determined in this study either. Most of the studies in the literature failed to confirm or refute the existence of a link with maternal age.(170)

Varela et al. described an association between lower social status and congenital respiratory disorders(195), which may increase the need to examine the very young age of the mother.

Cleft lip and cleft palate (ICD-10: Q35-Q37)

In this anomaly group, there is a significant increase in risk above 40 according to both our population-based analysis and the meta-analysis. In our population-based study, we found an increased risk in both the under-20 and the over-35 age groups, but the meta-analysis could not confirm this. There is no consensus in the literature on the association with maternal age either: neither its existence nor its exact nature is agreed upon. A study carried out in California showed that women older than 39 years had twice the risk of having a child with left lip and cleft palate when compared to mothers between 25 and 29 years.(196) In contrast, a 2002 meta-analysis found no association with maternal age (197), which is also confirmed by a 2010 study.(198)

Cleft palate (Q35): When analysed independently, there is a clinically and statistically significant increase in risk for cleft lip above 35, not just above 40, but smaller confidence intervals above 40 provide stronger evidence. According to a 2012 meta-analysis mothers aged 35 to 39 years had a 20% higher risk of having a child with a cleft palate, and mothers aged 40 or more had a 28% higher risk.(199)

Congenital malformations of the digestive system (ICD-10:Q38-Q45):

Our results are very contradictory, because the meta-analysis shows that there is a significant increase in risk above 40, while the population-based study shows an increase in risk already

above 35 and below 20. A severe limitation is that only two articles were included in the meta-analysis. The available evidence concerning maternal age is contradictory. Loane et al. found that young maternal age is a risk factor(53), while a meta-analysis in 2022 could not confirm the effect of maternal age in either the very young or the advanced maternal age group.(158)

Congenital malformations of genital organs (ICD-10: Q50-Q56)

In the meta-analysis, there were insufficient data to examine the maternal age groups in question. In our population-based study, we observed an increase in risk of around 15% in both the very young and advanced age categories. There is limited data available in the literature that has examined these differences as a group. The risk-increasing effect of advanced maternal age is confirmed by Reefhuis et al for male genital defects, moreover, they also found that very young maternal age is a risk-increasing effect in case of female genital defects.(55) A meta-analysis has demonstrated a risk-increasing effect of advanced maternal age when genital organ defects were merged with urinary anomalies. In this setting, the risk increase for mothers over 35 was 46%.(158)

Hypospadiasis (ICD-10:Q54): Based on the meta-analysis, we can conclude that there is no effect in the younger population while the evidence to determine the presence or absence of risk in the elderly population is insufficient. The literature supports the risk-increasing effect of advanced maternal age. According to Fisch et al. and Porter et al., advanced maternal age is associated with a marked increase in risk.(200, 201)

Congenital malformations of the urinary system (ICD-10: Q60-Q64)

The 3 studies included in this meta-analysis did not show a significant effect of advanced maternal age (study count for the rest of the age groups was insufficient). However, in our population-based study, we found a risk-increasing effect for both the very young and the advanced maternal age, with a 2-fold increase in risk above 40. Another population-based study in Washington state confirmed the risk-increasing effect of advanced maternal age, but they found only a 20% increase in risk.(202)

Congenital malformations and deformations of the musculoskeletal system (ICD-10: Q65-Q79)

Based on our population-based study, both very young and advanced maternal age have a risk-increasing effect. Based on a meta-analysis, however, we were unable to confirm the presence or absence of risk. Considering the diseases in this group, very limited data are available in the literature.

Congenital diaphragma hernia (ICD-10: Q79.0): The meta-analysis could not prove either a risk or a protective effect in any of the examined age groups. A population-

based study written in 2019 did not find an association between maternal age and congenital diaphragma hernia either.(203) In contrast, a registry analysis in 2022 found that both very young and advanced maternal age pose increased risk.(204)

Omphalocele (ICD-10: Q79.2): The meta-analysis suggests that both very young and advanced maternal age increase the risk, with this risk-increasing effect being particularly pronounced over 40. Marshall et al. came to the same conclusion (205) and an earlier review article described this link as well.(206)

Gastroschisis (ICD-10: Q79.3): In our meta-analysis, we found a 3-fold increase in risk in the young and a protective effect in the older age groups. The relevant scientific literature confirms the finding for the young age group. A review in 2000 found a clear and strong risk-increasing effect of young maternal age.(207) A 2020 meta-analysis of 29 studies looking into the possible factors underlying the risk-influencing effect of young maternal age discovered that maternal smoking (RR = 1.56; CI 1.40–1.74), illicit drug use (RR = 2.14; CI 1.48–3.07), and alcohol consumption (RR = 1.40; CI 1.13–1.70) were all associated with an increased risk of gastroschisis.(208) A 2024 study discovered that the prevalence of gastroschisis increased by 61% between 1980 and 2017 in the surveillance programmes studied. The increase was observed across all age groups, with mothers under the age of 20 having the highest incidence.(209)

9.2 Strengths (including all studies)

The strengths of our research greatly enhance the dependability and application of our findings. A meta-analysis combined with a population-based study offers a thorough and strong investigation into the influence of maternal age on NCAs.

The population-based study provided several distinct advantages to our research. The extensive number of cases and controls yielded a sizeable dataset, which is crucial for rigorous statistical analysis. We employed a distinctive database and rigorous data collection techniques to guarantee the precise recording of information. The meticulous gathering of this data minimized potential biases and improved the dependability of our results. In addition, the innovative statistical methodology we utilized enabled us to depict reality with greater precision, so circumventing the constraints linked to arbitrary grouping by age.

Throughout our meta-analysis, we followed our pre-registered protocol rigorously, guaranteeing transparency and consistency in our methods. Through the implementation of a meticulous approach, we guaranteed the incorporation of a wide range of populationbased publications from different geographical areas across the globe. This method enabled us to acquire a thorough and inclusive viewpoint on NCAs. Through the analysis of data from a substantial number of cases, we have improved the applicability of our conclusions, ensuring that our findings are pertinent to a wide range of people. The inclusion of studies with an international scope enhances the generalizability and application of our conclusions, offering insights that are useful on a worldwide scale.

9.3 Limitations (including all studies)

Although our research offers valuable insights into the association between maternal age and NCAs, it is crucial to recognize the inherent limitations in our study designs.

The population-based study revealed comparable constraints. Throughout the extended duration of the study, minor modifications in the screening techniques and rates of detection may have had an impact on our findings. Furthermore, the definitions of certain individual anomalies exhibited variations over time or were completely absent in certain cases, resulting in inconsistencies. Although the documents were organized based on ICD-10 categories, there were instances where it was challenging to precisely identify anomalies, which had a negative effect on the accuracy of our data. An other limitation of this study was the lack of a multivariate model, which was due to the insufficient information available on the general population compared to the detailed data on pathological cases.

A notable constraint in the meta-analysis stems from the fact that all the studies included in it have a retrospective design. The retrospective nature of this study hinders our ability to determine causality and restricts the evaluation of certain confounding variables. Publication bias is a common concern in meta-analyses, referring to the tendency of studies with non-significant results to be less likely to be published. Though we could not detect significant publication bias in our analysis, it is important to note that failing to prove the presence of bias does not prove its absence. Another source of concern may be the presence of high level of heterogeneity. However, this should only partly be considered a limitation, because heterogeneity is often a natural characteristic of the studied variable resulting from the effect of various confounders. The potential sources of heterogeneity in our study may be the following: high variability of sample sizes (smaller studies have a higher chance of random variation); the prolonged duration of the period from which studies were collected (resulting in variation of screening methods, lifestyle factors specific for age categories, the ICD categorization), geographical variations (potential variation in the detection quality screening methods, and probably even in the probability of malformations e.g. due to nutritional or socio-economic causes), categorization (not all studies used explicit ICD categories, and different editions of ICD

were in use for different studies), the definition of "total number of births" (are stillbirths as well as elective abortions – carried out either due to or not due to fetal anomalies – included).

Recognizing these constraints emphasizes the necessity for careful appreciation of our discoveries and emphasizes the significance of future investigations to tackle these concerns. In order to obtain more conclusive findings and deepen our understanding of the effects of maternal age on NCAs, it is crucial to conduct prospective studies that employ consistent definitions, improved data collection methods, and incorporate multivariate analyses.

10 CONCLUSIONS

- Both very young (< 20 years) and advanced maternal ages (> 35 years) are associated with an increased risk of non-chromosomal congenital anomalies (NCAs) in Hungarian population. The evidence pertaining to the advanced age category is more robust and valid worldwide.
- 2.) In the Hungarian population, mothers between the ages of 23 and 32 have the lowest risk of NCAs.
- Very young maternal age increases the risk of nervous system anomalies in the Hungarian population.
- 4.) Eye, ear, face, and neck anomalies are associated to advanced maternal age in the Hungarian population.
- 5.) Anomalies in the circulatory system exhibit a higher risk in advanced maternal age. This relationship remains valid even in the absence of concurrent chromosomal anomalies.
- 6.) Congenital heart defects demonstrate higher risk at advanced (40+) maternal age and there is a suspected mild prophylactic effect in very young mothers.
- 7.) In the case of cleft lip and palate, both very young and advanced maternal age pose an increased risk in the Hungarian population, with this association being evident worldwide above the age of 40.
- 8.) Very young and advanced maternal age increase the risk of digestive system anomalies in the Hungarian population, while this risk is also evident worldwide above the age of 40.
- 9.) Genital organ anomalies exhibit a heightened risk in both very young and advanced maternal age groups in the Hungarian population.
- 10.) For urinary system anomalies, both very young and advanced maternal age increase the risk in the Hungarian population. This effect is greater in advanced maternal age group.
- 11.) Anomalies of the musculoskeletal system are more likely to occur in both advanced and very young mothers in the Hungarian population, but the risk is higher in younger mothers.
- 12.) Gastroschisis is associated with a threefold risk in very young mothers.

11 IMPLEMENTATIONS FOR PRACTICE

Early translation of research findings into clinical practice is crucial.(210, 211) It is worth considering to treat maternal age as an independent risk factor when developing prenatal screening protocols – and not only because of co-morbidities or because of the higher risk of chromosomal anomalies. Considering this factor is crucial for optimizing prenatal care and enhancing the identification of NCAs among various age groups of mothers.

Indications for fetal echocardiography and neurosonography do not currently include maternal age-based screening.(190, 191, 212, 213) Based on our results, when developing recommendations for fetal echocardiography and neurosonography, it is advisable to include advanced maternal age as an indication for fetal echocardiography and very young maternal age as an indication for fetal neurosonography. Screening protocols that take maternal age into account can improve the child's prospects by enabling timely identification for proactive medical planning, enabling parents to make informed decisions about their pregnancy. This approach recognizes the differences that women struggle with at different stages of life and contributes to personalized, effective care.

12 IMPLEMENTATION FOR RESEARCH

Methodology issues

In the analysis of the articles used for the meta-analysis, difficulties were encountered with the uniform maternal age categorisation (at least the broadly consistent use in the literature of the advanced maternal age categories /above 35/ and very young /under 20/), the lack of a standard reference age (we mark this as 20-30 based on our two analyses) and the lack of consistency with ICD categories. For future studies on this topic - in addition to eliminating the above problems - we recommend providing complete raw data (i.e. total and diseased birth count for each maternal age) for a more precise and complete synthesis of the data.

Study design

It is advisable to prioritize the analysis of the impact of maternal age by using prospective data collection in a multivariate model. Since the potential confounders are largely known (e.g. financial status, healthcare access, lifestyle choices, genetics), future research should further analyze them. This may affect the intrinsic risk increasing effect of maternal age on NCAs. Currently, detailed data are usually available in a case-matched control model for both cases and controls, but this is not suitable for estimating true prevalence, and for population studies we do not have more detailed information on the control population. A comprehensive pregnancy registry can generate a reliable dataset for multivariate analysis and generalisable results.

New aspects

We hope, our findings will facilitate further research of the biological background. It is essential to establish the biological model behind the statistical-clinical association we have found. Due to the nature of the topic, collaboration with co-disciplines (geneticists, pediatricians, epidemiologists) can provide additional insights and valuable new aspects and enhance the quality and complexity of research.

13 IMPLEMENTATION FOR POLICYMAKERS

We have little influence on the social and societal trends that lead to delayed childbearing, so it is primarily the task of decision-makers, but also of us as practitioners, to respond to these trends with the appropriate sensitivity and effectiveness. Although the risk-increasing effects of advanced maternal age are generally more discussed in the developed world, the increased risks associated with pregnancy in very young mothers are also important to prioritise.

Regarding NCAs, at-risk mother age groups should be given top priority at several layers of prevention. To implement *primary prevention* strategies effectively, policymakers should consider the development of accessible educational programs targeting both the general population and healthcare professionals. Women should be educated about both the risk for pregnancy at particular ages and the available diagnostic methods. As *second prevention*, prioritizing comprehensive surveillance helps to implement effective monitoring systems and encourages early detection and intervention practices in healthcare facilities. Integrating emerging evidence into policy decisions helps improve early detection, intervention strategies, and outcomes for affected fetuses. Based on our studies, one of the most game-changer changes could be the provision of maternal and human resources for maternal age-based screening protocols for fetal echocardiograpy and neurosonography. As for *tertiary prevention*, mobilising adequate attention and resources is also essential, as the substantially unchanged high prevalence of NCAs in developed countries indicates that the provision of treatment protocols, rehabilitation programmes and psychosocial support can improve the quality of life of those affected.

14 FUTURE PERSPECTIVES

Building on our previous findings, we intend to continue our research on this topic in our research group, with the goal of contributing to a higher level of perinatal screening.

We should relaunch the Hungarian database, because the uniqueness of the data collection methodology and the wide range of information collected can greatly contribute to the understanding of the topic.

We plan to reproduce the meta-analysis regularly, following the current concept, as this is an intensively researched area and a significant number of new publications are expected to be published each year. It is our expectation that our publications will lead to the development of a more uniform maternal reference age and a more standardized definition of NCAs. These changes could increase the proportion of publications that can be included and synthesised, while reducing the limitations due to the expected lower heterogeneity. We also plan to conduct a meta-analysis of publications using a multivariate model.

15 REFERENCES

1.Nutrition, physical activity, and obesity: Data, trends and maps.: Centers forDiseaseControlandPrevention;2023[Availablefrom:https://www.cdc.gov/nccdphp/dnpao/data-trends-maps/index.html.

2. Mai CT, Isenburg JL, Canfield MA, Meyer RE, Correa A, Alverson CJ, et al. National population-based estimates for major birth defects, 2010-2014. Birth Defects Res. 2019;111(18):1420-35.

3. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095-128.

4. Roncancio CP, Misnaza SP, Pena IC, Prieto FE, Cannon MJ, Valencia D. Trends and characteristics of fetal and neonatal mortality due to congenital anomalies, Colombia 1999-2008. J Matern Fetal Neonatal Med. 2018;31(13):1748-55.

5. Stallings EB, Isenburg JL, Rutkowski RE, Kirby RS, Nembhard WN, Sandidge T, et al. National population-based estimates for major birth defects, 2016-2020. Birth Defects Res. 2024;116(1):e2301.

 Swanson J, Ailes EC, Cragan JD, Grosse SD, Tanner JP, Kirby RS, et al. Inpatient Hospitalization Costs Associated with Birth Defects Among Persons Aged <65 Years -United States, 2019. MMWR Morb Mortal Wkly Rep. 2023;72(27):739-45.

7. Economic UNDo, Division SAP. World fertility patterns 2015–data booklet (ST/ESA/SER. A/370). United Nations New York; 2015.

8. Waldenstrom U. Postponing parenthood to advanced age. Ups J Med Sci. 2016;121(4):235-43.

9. Safdari-Dehcheshmeh F, Noroozi M, Taleghani F, Memar S. Factors Influencing the Delay in Childbearing: A Narrative Review. Iran J Nurs Midwifery Res. 2023;28(1):10-9.

10. Stone L. Declining fertility in America. American Enterprise Institute. 2018.

11. Osterman MJK, Hamilton BE, Martin JA, Driscoll AK, Valenzuela CP. Births: Final Data for 2021. Natl Vital Stat Rep. 2023;72(1):1-53.

12. Yurchuk T, Petrushko M, Fuller B. State of the art in assisted reproductive technologies for patients with advanced maternal age. Zygote. 2023;31(2):149-56.

13. Frick AP. Advanced maternal age and adverse pregnancy outcomes. Best Pract Res Clin Obstet Gynaecol. 2021;70:92-100.

14. Frederiksen LE, Ernst A, Brix N, Braskhoj Lauridsen LL, Roos L, Ramlau-Hansen CH, et al. Risk of Adverse Pregnancy Outcomes at Advanced Maternal Age. Obstet Gynecol. 2018;131(3):457-63.

15. Cao J, Xu W, Liu Y, Zhang B, Zhang Y, Yu T, et al. Trends in maternal age and the relationship between advanced age and adverse pregnancy outcomes: a population-based register study in Wuhan, China, 2010-2017. Public Health. 2022;206:8-14.

16. Glick I, Kadish E, Rottenstreich M. Management of Pregnancy in Women of Advanced Maternal Age: Improving Outcomes for Mother and Baby. Int J Womens Health. 2021;13:751-9.

17. Koenigbauer JT, Fangmann L, Rostin P, Balke S, Weid P, Henrich W, et al. Advanced maternal age (AMA) and 75 g oGTT glucose levels are pedictors for insulin therapy in women with gestational diabetes (GDM). J Perinat Med. 2023;51(9):1154-62.

18. Jiang C, Wen H, Hu T, Liu Y, Dai X, Chen Y. Perinatal characteristics and pregnancy outcomes of advanced maternal age women with gestational diabetes mellitus: A retrospective cohort study. Health Sci Rep. 2024;7(2):e1903.

19. Ustianowski L, Udzik J, Szostak J, Goracy A, Ustianowska K, Pawlik A. Genetic and Epigenetic Factors in Gestational Diabetes Mellitus Pathology. Int J Mol Sci. 2023;24(23).

20. Li H, Nawsherwan, Khan A, Haq IU, Mei SY. Do Hypertensive Disorders of Pregnancy and Abnormal Placentation Mediate the Association between Advanced Maternal Age and Adverse Perinatal Outcomes? Iran J Public Health. 2022;51(5):1057-66.

21. Liu X, Ruan Y, Liu Y, Zhang W. [Relationship between maternal age and hypertensive disorders in pregnancy]. Zhonghua Yi Xue Za Zhi. 2015;95(1):19-22.

22. Blencowe H, Cousens S, Chou D, Oestergaard M, Say L, Moller AB, et al. Born too soon: the global epidemiology of 15 million preterm births. Reprod Health. 2013;10 Suppl 1(Suppl 1):S2.

23. Waldenstrom U, Cnattingius S, Vixner L, Norman M. Advanced maternal age increases the risk of very preterm birth, irrespective of parity: a population-based register study. BJOG. 2017;124(8):1235-44.

24. Hirata Y, Katsukura Y, Henmi Y, Ozawa R, Shimazaki S, Kurosawa A, et al. Advanced maternal age induces fetal growth restriction through decreased placental inflammatory cytokine expression and immune cell accumulation in mice. J Reprod Dev. 2021;67(4):257-64.

25. Lubrano C, Taricco E, Coco C, Di Domenico F, Mando C, Cetin I. Perinatal and Neonatal Outcomes in Fetal Growth Restriction and Small for Gestational Age. J Clin Med. 2022;11(10).

26. Abate M, Arefaynie M, Muche A, Molla A, Wodajo S, Temesgen K, et al. The effect of maternal age on still birth in Africa: A systematic review and meta-analysis. Health Sci Rep. 2024;7(5):e2105.

27. Kortekaas JC, Kazemier BM, Keulen JKJ, Bruinsma A, Mol BW, Vandenbussche F, et al. Risk of adverse pregnancy outcomes of late- and postterm pregnancies in advanced maternal age: A national cohort study. Acta Obstet Gynecol Scand. 2020;99(8):1022-30.

28. Attali E, Doleeb Z, Hiersch L, Amikam U, Gamzu R, Yogev Y, et al. The risk of intrapartum cesarean delivery in advanced maternal age. J Matern Fetal Neonatal Med. 2022;35(25):8019-26.

29. Veenstra J, Cohen Z, Korteweg FJ, van der Ham DP, Kuppens SM, Kroese JA, et al. Unplanned cesarean sections in advanced maternal age: A predictive model. Acta Obstet Gynecol Scand. 2024;103(5):927-37.

30. Dalton-O'Reilly J, Heazell AEP, Desforges M, Greenwood S, Dilworth M. Murine models of advanced maternal age: a systematic review and meta-analysis. Reproduction. 2023;166(4):M1-M12.

31. Pinheiro RL, Areia AL, Mota Pinto A, Donato H. Advanced Maternal Age: Adverse Outcomes of Pregnancy, A Meta-Analysis. Acta Med Port. 2019;32(3):219-26.

32. Duran MN, Pek E, Demir SS, Karacaer KO, Demir B. Maternal and foetal risks associated with teenage pregnancy - a comparative retrospective study in Turkey. J Obstet Gynaecol. 2024;44(1):2364787.

33. Diabelkova J, Rimarova K, Dorko E, Urdzik P, Houzvickova A, Argalasova L. Adolescent Pregnancy Outcomes and Risk Factors. Int J Environ Res Public Health. 2023;20(5).

34. UNICEF. Adolescent health 21.07.2024. [Available from: https://data.unicef.org/topic/child-health/adolescent-health/.

35. Wado YD, Sully EA, Mumah JN. Pregnancy and early motherhood among adolescents in five East African countries: a multi-level analysis of risk and protective factors. BMC Pregnancy Childbirth. 2019;19(1):59.

36. Imamura M, Tucker J, Hannaford P, da Silva MO, Astin M, Wyness L, et al. Factors associated with teenage pregnancy in the European Union countries: a systematic review. Eur J Public Health. 2007;17(6):630-6.

37. Mann L, Bateson D, Black KI. Teenage pregnancy. Aust J Gen Pract. 2020;49(6):310-6.

38. Hacker M, Firk C, Konrad K, Paschke K, Neulen J, Herpertz-Dahlmann B, et al. Pregnancy complications, substance abuse, and prenatal care predict birthweight in adolescent mothers. Arch Public Health. 2021;79(1):137.

39. Fleming N, O'Driscoll T, Becker G, Spitzer RF, Canpago C. Adolescent Pregnancy Guidelines. J Obstet Gynaecol Can. 2015;37(8):740-56.

40. Birth defects not linked to maternal age. Nurs Stand. 1991;5(25):14.

41. Canfield MA, Honein MA, Yuskiv N, Xing J, Mai CT, Collins JS, et al. National estimates and race/ethnic-specific variation of selected birth defects in the United States, 1999-2001. Birth Defects Res A Clin Mol Teratol. 2006;76(11):747-56.

42. Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2197-223.

43. Dolk H, Loane M, Garne E. The prevalence of congenital anomalies in Europe. Adv Exp Med Biol. 2010;686:349-64.

44. Almli LM, Ely DM, Ailes EC, Abouk R, Grosse SD, Isenburg JL, et al. Infant Mortality Attributable to Birth Defects - United States, 2003-2017. MMWR Morb Mortal Wkly Rep. 2020;69(2):25-9.

45. Salmasi G, Grady R, Jones J, McDonald SD, Knowledge Synthesis G. Environmental tobacco smoke exposure and perinatal outcomes: a systematic review and meta-analyses. Acta Obstet Gynecol Scand. 2010;89(4):423-41.

46. Balsells M, Garcia-Patterson A, Gich I, Corcoy R. Major congenital malformations in women with gestational diabetes mellitus: a systematic review and meta-analysis. Diabetes Metab Res Rev. 2012;28(3):252-7.

47. Polani PE, Alberman E, Berry AC, Blunt S, Singer JD. Chromosome abnormalities and maternal age. Lancet. 1976;1(7984):516-7.

48. Ferguson-Smith MA. Maternal age and Down syndrome. Lancet. 1978;2(8082):213.

49. Cuckle H. Maternal age-standardisation of prevalence of Down's syndrome. Lancet. 1999;354(9178):529-30.

50. Ma JY, Li S, Chen LN, Schatten H, Ou XH, Sun QY. Why is oocyte aneuploidy increased with maternal aging? J Genet Genomics. 2020;47(11):659-71.

51. American College of O, Gynecologists' Committee on Practice B-O, Committee on G, Society for Maternal-Fetal M. Screening for Fetal Chromosomal Abnormalities: ACOG Practice Bulletin, Number 226. Obstet Gynecol. 2020;136(4):e48-e69.

52. Fiorentino DG, Hughes F. Fetal Screening for Chromosomal Abnormalities. Neoreviews. 2021;22(12):e805-e18.

53. Loane M, Dolk H, Morris JK, Group EW. Maternal age-specific risk of nonchromosomal anomalies. BJOG. 2009;116(8):1111-9.

54. Hollier LM, Leveno KJ, Kelly MA, DD MC, Cunningham FG. Maternal age and malformations in singleton births. Obstet Gynecol. 2000;96(5 Pt 1):701-6.

55. Reefhuis J, Honein MA. Maternal age and non-chromosomal birth defects, Atlanta--1968-2000: teenager or thirty-something, who is at risk? Birth Defects Res A Clin Mol Teratol. 2004;70(9):572-9.

56. Zhou Y, Yang D, Mao X, Zhou H, Wang L. Epidemiology of birth defects in a national hospital-based birth defect surveillance spot in Southern Jiangsu, China, 2014-2018. Front Med (Lausanne). 2023;10:1138946.

57. Miranda VIA, da Silva Dal Pizzol T, Silveira MPT, Mengue SS, da Silveira MF, Lutz BH, et al. The use of folic acid, iron salts and other vitamins by pregnant women in the 2015 Pelotas birth cohort: is there socioeconomic inequality? BMC Public Health. 2019;19(1):889.

58. van Gool JD, Hirche H, Lax H, De Schaepdrijver L. Folic acid and primary prevention of neural tube defects: A review. Reprod Toxicol. 2018;80:73-84.

59. Lusa L, Ahlin C. Restricted cubic splines for modelling periodic data. PLoS One. 2020;15(10):e0241364.

60. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies. Int J Surg. 2014;12(12):1495-9.

61. Czeizel AE, Rockenbauer M, Siffel C, Varga E. Description and mission evaluation of the Hungarian case-control surveillance of congenital abnormalities, 1980-1996. Teratology. 2001;63(5):176-85.

62. Ács N, Mátrai Á, Kaposi A. First data from the new, unified database of the Hungarian case-control surveillance of congenital abnormalities. Journal of Maternal-Fetal and Neonatal Medicine. 2021;34(17):2887-92.

63. Czeizel AE, Metneki J, Beres J. 50 years of the Hungarian Congenital Abnormality Registry. Congenit Anom (Kyoto). 2014;54(1):22-9.

64. Petho B, Matrai A, Agocs G, Veres DS, Harnos A, Vancsa S, et al. Maternal age is highly associated with non-chromosomal congenital anomalies: Analysis of a population-based case-control database. BJOG. 2023.

65. GRADEpro [Available from: <u>https://www.gradepro.org/</u>.

66. R Foundation for Statistical Computing V, Austria. R Core Team (2021) R: A language and environment for statistical computing.

67. Agresti A aBAC. Approximate Is Better Than "Exact" for Interval Estimation of Binomial Proportions. The American Statistician 52 (2): 119. 1998.

68. Harrell J FE. Rms: Regression Modeling Strategies2021.

69. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Rev Esp Cardiol (Engl Ed). 2021;74(9):790-9.

70. Cumpston M, Li T, Page MJ, Chandler J, Welch VA, Higgins JP, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. 2019;10(10.1002):14651858.

71. PROSPERO [Available from: https://www.crd.york.ac.uk/prospero/.

72. McHugh ML. Interrater reliability: the kappa statistic. Biochemia medica. 2012;22(3):276-82.

73. Sterne JA, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB2: a revised tool for assessing risk of bias in randomised trials. bmj. 2019;366.

74. McGuinness LA, Higgins JP. Risk-of-bias VISualization (robvis): an R package and Shiny web app for visualizing risk-of-bias assessments. Research synthesis methods. 2021;12(1):55-61.

75. Balduzzi S, Rucker G, Schwarzer G. How to perform a meta-analysis with R: a practical tutorial. Evid Based Ment Health. 2019;22(4):153-60.

76. Ebert MHaPCaTFaDD. dmetar: Companion R Package For The Guide 'Doing Meta-Analysis in R' 2019 [Available from: <u>http://dmetar.protectlab.org/</u>.

77. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22(4):719-48.

78. Robins J, Greenland S, Breslow NE. A general estimator for the variance of the Mantel-Haenszel odds ratio. Am J Epidemiol. 1986;124(5):719-23.

79. Thompson SG, Turner RM, Warn DE. Multilevel models for meta-analysis, and their application to absolute risk differences. Stat Methods Med Res. 2001;10(6):375-92.

80. Sweeting MJ, Sutton AJ, Lambert PC. What to add to nothing? Use and avoidance of continuity corrections in meta-analysis of sparse data. Stat Med. 2004;23(9):1351-75.

81. Knapp G, Hartung J. Improved tests for a random effects meta-regression with a single covariate. Stat Med. 2003;22(17):2693-710.

82. IntHout J, Ioannidis JP, Borm GF. The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method. BMC Med Res Methodol. 2014;14:25.

83. Veroniki AA, Jackson D, Viechtbauer W, Bender R, Bowden J, Knapp G, et al. Methods to estimate the between-study variance and its uncertainty in meta-analysis. Res Synth Methods. 2016;7(1):55-79.

84. IntHout J, Ioannidis JP, Rovers MM, Goeman JJ. Plea for routinely presenting prediction intervals in meta-analysis. BMJ Open. 2016;6(7):e010247.

85. Petho B, Vancsa S, Varadi A, Agocs G, Matrai A, Zaszkaliczky-Iker F, et al. Very young and advanced maternal age strongly elevates the occurrence of nonchromosomal

congenital anomalies: a systematic review and meta-analysis of population-based studies. Am J Obstet Gynecol. 2024.

86. Agopian A, Marengo L, Mitchell LE. Descriptive epidemiology of nonsyndromic omphalocele in Texas, 1999-2004. American Journal of Medical Genetics, Part A. 2009;149(10):2129-33.

87. Baer RJ, Chambers CD, Jones KL, Shew SB, MacKenzie TC, Shaw GM, et al. Maternal factors associated with the occurrence of gastroschisis. Am J Med Genet A. 2015;167(7):1534-41.

88. Beckman L, Nordstrom M. Population studies in northern Sweden. VIII. Frequencies of congenital malformations by region, time, sex and maternal age. Hereditas. 1976;84(1):35-40.

89. Bergman JE, Loane M, Vrijheid M, Pierini A, Nijman RJ, Addor MC, et al. Epidemiology of hypospadias in Europe: a registry-based study. World journal of urology. 2015;33(12):2159-67.

90. Baird PA, Sadovnick AD, Yee IM. Maternal age and oral cleft malformations: data from a population-based series of 576,815 consecutive livebirths. Teratology. 1994;49(6):448-51.

91. Bodnár L. The effect of maternal age and birth order on the incidence of congenital abnormalities. Orvosi hetilap. 1970;111(11):625-8.

92. Borman GB, Smith AH, Howard JK. Risk factors in the prevalence of anencephalus and spina bifida in New Zealand. Teratology. 1986;33(2):221-30.

93. Bourque DK, Meng L, Dougan S, Momoli F, Riddell C, Walker M, et al. Gastroschisis in Ontario, Canada: 2012–2018. Birth Defects Research. 2021;113(14):1044-51.

94. Bugge M, Drachmann G, Kern P, Budtz-Jørgensen E, Eiberg H, Olsen B, et al.
Abdominal Wall Defects in Greenland 1989-2015. Birth Defects Res. 2017;109(11):83642.

95. Byron-Scott R, Haan E, Chan A, Bower C, Scott H, Clark K. A population-based study of abdominal wall defects in South Australia and Western Australia. Paediatric and Perinatal Epidemiology. 1998;12(2):136-51.

96. Canfield MA, Marengo L, Ramadhani TA, Suarez L, Brender JD, Scheuerle A. The prevalence and predictors of anencephaly and spina bifida in Texas. Paediatric and Perinatal Epidemiology. 2009;23(1):41-50.

97. Canon S, Mosley B, Chipollini J, Purifoy JA, Hobbs C. Epidemiological assessment of hypospadias by degree of severity. Journal of Urology. 2012;188(6):2362-6.

98. Croen LA, Shaw GM. Young maternal age and congenital malformations: A population-based study. American Journal of Public Health. 1995;85(5):710-3.

99. DeRoo LA, Gaudino JA, Edmonds LD. Orofacial cleft malformations: associations with maternal and infant characteristics in Washington State. Birth Defects Res A Clin Mol Teratol. 2003;67(9):637-42.

100. Dott MM, Wong LY, Rasmussen SA. Population-based study of congenital diaphragmatic hernia: risk factors and survival in Metropolitan Atlanta, 1968-1999. Birth Defects Res A Clin Mol Teratol. 2003;67(4):261-7.

101. Dudin A. Neural tube defect among Palestinians: A hospital-based study. Annals of Tropical Paediatrics. 1997;17(3):217-22.

102. Fedrick J. Anencephalus in Scotland 1961-72. Br J Prev Soc Med. 1976;30(2):132-7.

103. Feldman JG, Stein SC, Klein RJ, Kohl S, Casey G. The prevalence of neural tube defects among ethnic groups in Brooklyn, New York. J Chronic Dis. 1982;35(1):53-60.

104. Forrester MB, Merz RD. Descriptive epidemiology of oral clefts in a multiethnic population, Hawaii, 1986-2000. Cleft Palate-Craniofacial Journal. 2004;41(6):622-8.

105. Forrester MB, Merz RD. Epidemiology of abdominal wall defects, Hawaii, 1986-1997. Teratology. 1999;60(3):117-23.

106. Forrester MB, Merz RD. Epidemiology of neural tube defects, Hawaii, 1986-1997. Hawaii medical journal. 2000;59(8):323-7, 41.

107. Friedman AM, Ananth CV, Siddiq Z, D'Alton ME, Wright JD. Gastroschisis: epidemiology and mode of delivery, 2005–2013. American Journal of Obstetrics and Gynecology. 2016;215(3):348.e1-.e9.

108. Gupta B, Antia AU. Incidence of congenital heart disease in Nigerian children. British heart journal. 1967;29(6):906-9.

109. Hansen M, Greenop K, Yim D, Ramsay J, Thomas Y, Baynam GS. Birth prevalence of congenital heart defects in Western Australia, 1990-2016. J Paediatr Child Health. 2021;57(10):1672-80.

110. Hay S. Incidence of selected congenital malformations in Iowa. American journal of epidemiology. 1971;94(6):572-84.

111. Hollier LM, Leveno KJ, Kelly MA, McIntire DD, Cunningham FG. Maternal age and malformations in singleton births. Obstetrics and Gynecology. 2000;96(5):701-6.

112. Jaikrishan G, Sudheer KR, Andrews VJ, Koya PK, Madhusoodhanan M, Jagadeesan CK, et al. Study of stillbirth and major congenital anomaly among newborns in the high-level natural radiation areas of Kerala, India. J Community Genet. 2013;4(1):21-31.

113. Janerich DT. Maternal age and spina bifida: longitudinal versus cross-sectional analysis. Am J Epidemiol. 1972;96(6):389-95.

114. Janerich DT. Anencephaly and maternal age. Am J Epidemiol. 1972;95(4):319-26.

115. Jaruratanasirikul S, Chicharoen V, Chakranon M, Sriplung H, Limpitikul W, Dissaneevate P, et al. Population-based study of prevalence of cleft lip/palate in southern Thailand. Cleft Palate-Craniofacial Journal. 2016;53(3):351-6.

116. Jones AM, Isenburg J, Salemi JL, Arnold KE, Mai CT, Aggarwal D, et al. Increasing Prevalence of Gastroschisis--14 States, 1995-2012. MMWR Morbidity and mortality weekly report. 2016;65(2):23-6.

117. Kazaura M, Lie RT, Skjærven R. Paternal age and the risk of birth defects in Norway. Annals of Epidemiology. 2004;14(8):566-70.

118. Kirby RS, Marshall J, Tanner JP, Salemi JL, Feldkamp ML, Marengo L, et al. Prevalence and correlates of gastroschisis in 15 states, 1995 to 2005. Obstet Gynecol. 2013;122(2 Pt 1):275-81.

119. Liu S, Joseph KS, Lisonkova S, Rouleau J, Van den Hof M, Sauve R, et al. Association between maternal chronic conditions and congenital heart defects: a population-based cohort study. Circulation. 2013;128(6):583-9.

120. Liu S, Evans J, MacFarlane AJ, Ananth CV, Little J, Kramer MS, et al. Association of maternal risk factors with the recent rise of neural tube defects in Canada. Paediatr Perinat Epidemiol. 2019;33(2):145-53.

121. Li ZY, Chen YM, Qiu LQ, Chen DQ, Hu CG, Xu JY, et al. Prevalence, types, and malformations in congenital anomalies of the kidney and urinary tract in newborns: a retrospective hospital-based study. Ital J Pediatr. 2019;45(1):50.

122. Vo LU, Langlois PH. Time trends in prevalence of gastroschisis in Texas, 1999 to 2011: Subgroup analyses by maternal and infant characteristics. Birth Defects Res A Clin Mol Teratol. 2015;103(11):928-40.

123. Luo YL, Wang W, Gao XH, Huang YH, Xu Q, Cheng YL. Birth prevalence of orofacial clefts among perinatal infants: A register-based study in Bao'an district, Shenzhen, China. Birth Defects Res. 2019;111(7):353-9.

124. Martínez Frías ML, Salvador J, Prieto L, Zaplana J. Incidence of gastroschisis and omphalocele in Spain. Revista de sanidad e higiene pública. 1982;56(1-2):107-18.

125. Materna-Kiryluk A, Wisniewska K, Badura-Stronka M, Mejnartowicz J, Wieckowska B, Balcar-Boron A, et al. Parental age as a risk factor for isolated congenital malformations in a Polish population. Paediatr Perinat Epidemiol. 2009;23(1):29-40.

126. McGivern MR, Best KE, Rankin J, Wellesley D, Greenlees R, Addor MC, et al. Epidemiology of congenital diaphragmatic hernia in Europe: A register-based study. Archives of Disease in Childhood: Fetal and Neonatal Edition. 2015;100(2):F137-F44.

127. Miller A, Riehle-Colarusso T, Siffel C, Frías JL, Correa A. Maternal age and prevalence of isolated congenital heart defects in an urban area of the United States. American Journal of Medical Genetics, Part A. 2011;155(9):2137-45.

128. Mucat Baron Y, Gatt M, Calleja N, Collict M. Advanced maternal age and neonatal outcomes in Malta. Clinical and Experimental Obstetrics and Gynecology. 2019;46(2):265-9.

129. Nazer J, Aravena T, Cifuentes L. Congenital malformations in Chile. An emerging problem (period 1995-1999). Revista médica de Chile. 2001;129(8):895-904.

130. Nazer H J, Cifuentes O L. [Congenital malformations among newborns of teenage mothers]. Revista médica de Chile. 2013;141(10):1300-6.

131. Parkes B, Hansell AL, Ghosh RE, Douglas P, Fecht D, Wellesley D, et al. Risk of congenital anomalies near municipal waste incinerators in England and Scotland: Retrospective population-based cohort study. Environ Int. 2020;134:104845.

132. Paśnicki M, Wiśniewska K, Materna-Kiryluk A, Latos-Bieleńska A, KrawczyńskiM. The congenital malformations in children aged 0-2 in Zielona Góra province (1988-

1997) and Lubuskie province (1998-2007) according to the Polish Registry of Congenital Malformations. Part 3. Age of mother and frequency of congenital malformations in children. Pediatria Polska. 2013;88(1):48-56.

133. Persson M, Razaz N, Edstedt Bonamy AK, Villamor E, Cnattingius S. Maternal Overweight and Obesity and Risk of Congenital Heart Defects. J Am Coll Cardiol. 2019;73(1):44-53.

134. Petrova JG, Vaktskjold A. The incidence of neural tube defects in Norway and the Arkhangelskaja Oblast in Russia and the association with maternal age. Acta Obstetricia et Gynecologica Scandinavica. 2009;88(6):667-72.

135. Pradat P. Epidemiology of major congenital heart defects in Sweden, 1981-1986.Journal of Epidemiology and Community Health. 1992;46(3):211-5.

136. Purkey NJ, Axelrod DM, McElhinney DB, Rigdon J, Qin F, Desai M, et al. Birth Location of Infants with Critical Congenital Heart Disease in California. Pediatr Cardiol. 2019;40(2):310-8.

137. Rankin J, Dillon E, Wright C. Congenital anterior abdominal wall defects in the North of England, 1986-1996: Occurrence and outcome. Prenatal Diagnosis. 1999;19(7):662-8.

138. Rankin J, Glinianaia S, Brown R, Renwick M. The changing prevalence of neural tube defects: a population-based study in the north of England, 1984-96. Northern Congenital Abnormality Survey Steering Group. Paediatr Perinat Epidemiol. 2000;14(2):104-10.

139. Rider RA, Stevenson DA, Rinsky JE, Feldkamp ML. Association of twinning and maternal age with major structural birth defects in Utah, 1999 to 2008. Birth Defects Res A Clin Mol Teratol. 2013;97(8):554-63.

140. Roeper PJ, Harris J, Lee G, Neutra R. Secular rates and correlates for gastroschisis in California (1968-1977). Teratology. 1987;35(2):203-10.

141. Salihu HM, Pierre-Louis BJ, Druschel CM, Kirby RS. Omphalocele and gastroschisis in the State of New York, 1992-1999. Birth Defects Research Part A - Clinical and Molecular Teratology. 2003;67(9):630-6.

142. Salim TR, Soares GP, Klein CH, Oliveira GMM. Fetal and maternal factors are associated with mortality due to circulatory system disorders in children. Rev Saude Publica. 2019;53:31.

143. Sarkar S, Patra C, Dasgupta MK, Nayek K, Karmakar PR. Prevalence of congenital anomalies in neonates and associated risk factors in a tertiary care hospital in eastern India. Journal of Clinical Neonatology. 2013;2(3):131-4.

144. Sever LE. An epidemiologic study of neural tube defects in Los Angeles CountyII. Etiologic factors in an area with low prevalence at birth. Teratology. 1982;25(3):323-34.

145. Shields ED, Bixler D, Fogh-Andersen P. Cleft palate: A genetic and epidemiologic investigation. Clinical Genetics. 1981;20(1):13-24.

146. Short TD, Stallings EB, Isenburg J, O'Leary LA, Yazdy MM, Bohm MK, et al. Gastroschisis Trends and Ecologic Link to Opioid Prescription Rates - United States, 2006-2015. MMWR Morb Mortal Wkly Rep. 2019;68(2):31-6.

147. St Louis AM, Kim K, Browne ML, Liu G, Liberman RF, Nembhard WN, et al. Prevalence trends of selected major birth defects: A multi-state population-based retrospective study, United States, 1999 to 2007. Birth Defects Res. 2017;109(18):1442-50.

148. Tan KH, Kilby MD, Whittle MJ, Beattie BR, Booth IW, Botting BJ. Congenital anterior abdominal wall defects in England and Wales 1987-93: Retrospective analysis of OPCS data. British Medical Journal. 1996;313(7062):903-6.

149. Pregnancy outcomes in women of very advanced maternal age: Editorial comment. Obstetrical and Gynecological Survey. 2005;60(9):562-3.

150. Tan KB, Tan KH, Chew SK, Yeo GS. Gastroschisis and omphalocele in Singapore: a ten-year series from 1993 to 2002. Singapore Med J. 2008;49(1):31-6.

151. Williams LJ, Kucik JE, Alverson CJ, Olney RS, Correa A. Epidemiology of gastroschisis in metropolitan Atlanta, 1968 through 2000. Birth Defects Res A Clin Mol Teratol. 2005;73(3):177-83.

152. Xie D, Yang T, Liu Z, Wang H. Epidemiology of birth defects based on a birth defect surveillance system from 2005 to 2014 in Hunan Province, China. PLoS ONE. 2016;11(1).

153. Xie D, Fang J, Liu Z, Wang H, Yang T, Sun Z, et al. Epidemiology and major subtypes of congenital heart defects in Hunan Province, China. Medicine (Baltimore). 2018;97(31):e11770.

154. Xu LL, Yuan XQ, Zhu J, Li XH, Wang YP, Zhou GX, et al. [Incidence and its trends on gastroschisis in some parts of China, 1996 - 2007]. Zhonghua liu xing bing xue za zhi = Zhonghua liuxingbingxue zazhi. 2011;32(3):268-70.

155. Zhang X, Li S, Wu S, Hao X, Guo S, Suzuki K, et al. Prevalence of birth defects and risk-factor analysis from a population-based survey in Inner Mongolia, China. BMC Pediatr. 2012;12:125.

156. Yang W, Carmichael SL, Harris JA, Shaw GM. Epidemiologic characteristics of congenital diaphragmatic hernia among 2.5 million California births, 1989-1997. Birth Defects Research Part A - Clinical and Molecular Teratology. 2006;76(3):170-4.

157. Zhou Y, Mao X, Zhou H, Qin Z, Wang L, Cai Z, et al. Epidemiology of birth defects based on a birth defect surveillance system in Southern Jiangsu, China, 2014-2018. J Matern Fetal Neonatal Med. 2020:1-7.

158. Ahn D, Kim J, Kang J, Kim YH, Kim K. Congenital anomalies and maternal age: A systematic review and meta-analysis of observational studies. Acta Obstet Gynecol Scand. 2022;101(5):484-98.

159. Moges N, Anley DT, Zemene MA, Adella GA, Solomon Y, Bantie B, et al. Congenital anomalies and risk factors in Africa: a systematic review and meta-analysis. BMJ Paediatr Open. 2023;7(1).

160. Cleary-Goldman J, Malone FD, Vidaver J, Ball RH, Nyberg DA, Comstock CH, et al. Impact of maternal age on obstetric outcome. Obstet Gynecol. 2005;105(5 Pt 1):983-90.

161. Hwang SS, Dukhovny D, Gopal D, Cabral H, Missmer S, Diop H, et al. Health of Infants After ART-Treated, Subfertile, and Fertile Deliveries. Pediatrics. 2018;142(2).

162. Yu HT, Yang Q, Sun XX, Chen GW, Qian NS, Cai RZ, et al. Association of birth defects with the mode of assisted reproductive technology in a Chinese data-linkage cohort. Fertil Steril. 2018;109(5):849-56.

163. Hoorsan H, Mirmiran P, Chaichian S, Moradi Y, Hoorsan R, Jesmi F. Congenital Malformations in Infants of Mothers Undergoing Assisted Reproductive Technologies: A Systematic Review and Meta-analysis Study. J Prev Med Public Health. 2017;50(6):347-60.

164. Chen M, Heilbronn LK. The health outcomes of human offspring conceived by assisted reproductive technologies (ART). J Dev Orig Health Dis. 2017;8(4):388-402.

165. Riskin A, Itzchaki O, Bader D, Iofe A, Toropine A, Riskin-Mashiah S. Perinatal Outcomes in Infants of Mothers with Diabetes in Pregnancy. Isr Med Assoc J. 2020;22(9):569-75.

166. Lemaitre M, Bourdon G, Bruandet A, Lenne X, Subtil D, Rakza T, et al. Pregestational diabetes and the risk of congenital heart defects in the offspring: A French nationwide study. Diabetes Metab. 2023;49(4):101446.

167. Chen LJ, Chiu CH, Huang JY, Chen PJ, Su PH, Yang SF, et al. Maternal diabetes mellitus and birth defects in Taiwan: A 5-year nationwide population-based cohort study.J Chin Med Assoc. 2023;86(6):589-95.

168. Ravindra K, Chanana N, Mor S. Exposure to air pollutants and risk of congenital anomalies: A systematic review and metaanalysis. Sci Total Environ. 2021;765:142772.

169. Peyvandi S, Baer RJ, Chambers CD, Norton ME, Rajagopal S, Ryckman KK, et al. Environmental and Socioeconomic Factors Influence the Live-Born Incidence of Congenital Heart Disease: A Population-Based Study in California. J Am Heart Assoc. 2020;9(8):e015255.

170. Okmen Ozkan B, Koroglu N, Turkgeldi LS, Cetin BA, Aslan H. Advanced maternal age and risk of non-chromosomal anomalies: data from a tertiary referral hospital in Turkey. J Matern Fetal Neonatal Med. 2019;32(5):749-52.

171. Yang J, Carmichael SL, Canfield M, Song J, Shaw GM, National Birth Defects Prevention S. Socioeconomic status in relation to selected birth defects in a large multicentered US case-control study. Am J Epidemiol. 2008;167(2):145-54.

172. Goetzinger K, Shanks A, Odibo A, Macones G, Cahill A. Advanced maternal age and the risk of major congenital anomalies: Survival of the fittest? American Journal of Obstetrics and Gynecology. 2014;210(1):S23.

173. Croen LA, Shaw GM. Young maternal age and congenital malformations: a population-based study. Am J Public Health. 1995;85(5):710-3.

174. De-Regil LM, Pena-Rosas JP, Fernandez-Gaxiola AC, Rayco-Solon P. Effects and safety of periconceptional oral folate supplementation for preventing birth defects. Cochrane Database Syst Rev. 2015;2015(12):CD007950.

175. Borman GB, Smith AH, Howard JK. Risk factors in the prevalence of anencephalus and spina bifida in New Zealand. Teratology. 1986;33(2):221-30.

176. Dudin A. Neural tube defect among Palestinians: a hospital-based study. Ann Trop Paediatr. 1997;17(3):217-22.

177. Forrester MB, Merz RD. Epidemiology of neural tube defects, Hawaii, 1986-1997. Hawaii Med J. 2000;59(8):323-7, 41.

178. Wen S, Ethen M, Langlois PH, Mitchell LE. Prevalence of encephalocele in Texas, 1999-2002. Am J Med Genet A. 2007;143A(18):2150-5.

179. Escobar VAP, Wyant WA, Debs LH, Jamshidi A, Kiehna EN, McCrea HJ.
Evaluating the potential role of determinants of health on encephalocele patient outcomes
a combined retrospective study and systematic review. Childs Nerv Syst.
2024;40(6):1751-63.

180. Ali TM, Elwy R, Abdelrazik B, Soliman MAR, Alsawy MF, Abdullah A, et al. Risk factors of congenital hydrocephalus: a case-control study in a lower-middle-income country (Egypt). J Neurosurg Pediatr. 2023;31(5):397-405.

181. Yi L, Wan C, Deng C, Li X, Deng K, Mu Y, et al. Changes in prevalence and perinatal outcomes of congenital hydrocephalus among Chinese newborns: a retrospective analysis based on the hospital-based birth defects surveillance system. BMC Pregnancy Childbirth. 2017;17(1):406.

182. Tully HM, Capote RT, Saltzman BS. Maternal and infant factors associated with infancy-onset hydrocephalus in Washington State. Pediatr Neurol. 2015;52(3):320-5.

183. Copp AJ, Adzick NS, Chitty LS, Fletcher JM, Holmbeck GN, Shaw GM. Spina bifida. Nat Rev Dis Primers. 2015;1:15007.

184. Mitchell LE, Adzick NS, Melchionne J, Pasquariello PS, Sutton LN, Whitehead AS. Spina bifida. Lancet. 2004;364(9448):1885-95.

185. Salari N, Fatahi B, Fatahian R, Mohammadi P, Rahmani A, Darvishi N, et al. Global prevalence of congenital anencephaly: a comprehensive systematic review and meta-analysis. Reprod Health. 2022;19(1):201.

186. Agopian AJ, Tinker SC, Lupo PJ, Canfield MA, Mitchell LE, National Birth Defects Prevention S. Proportion of neural tube defects attributable to known risk factors. Birth Defects Res A Clin Mol Teratol. 2013;97(1):42-6.

187. Eros FR, Beke A. [Effectiveness of prenatal ultrasound in fetal and neonatal malformations and examination of difficulty and uncertainty factors]. Orv Hetil. 2017;158(45):1794-801.

188. You SJ, Kang D, Sung JH, Park H, Cho J, Choi SJ, et al. The influence of advanced maternal age on congenital malformations, short- and long-term outcomes in offspring of nulligravida: a Korean National Cohort Study over 15 years. Obstet Gynecol Sci. 2024;67(4):380-92.

189. Ooki S. Maternal age and birth defects after the use of assisted reproductive technology in Japan, 2004-2010. International Journal of Women's Health. 2013;5(1):65-77.

190. Donofrio MT, Moon-Grady AJ, Hornberger LK, Copel JA, Sklansky MS, Abuhamad A, et al. Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association. Circulation. 2014;129(21):2183-242.

191. AIUM Practice Parameter for the Performance of Fetal Echocardiography. J Ultrasound Med. 2020;39(1):E5-E16.

192. Khalilipalandi S, Lemieux A, Lauzon-Schnitka J, Perreault L, Dubois M, Tousignant A, et al. Systematic review and meta-analysis of prenatal risk factors for congenital heart disease: maternal chronic diseases and parental exposures. Can J Cardiol. 2024.

193. Robinson R, Stavsky M, Yitshak Sade M, Krymko H, Slanovic L, Novack V, et al. Risk factors for congenital heart defects in two populations residing in the same geographic area: A long-term population-based study, Southern Israel. Cardiology in the Young. 2019;29(8):1040-4.

194. Mamasoula C, Bigirumurame T, Chadwick T, Addor MC, Cavero-Carbonell C, Dias CM, et al. Maternal age and the prevalence of congenital heart defects in Europe, 1995-2015: A register-based study. Birth Defects Res. 2023;115(6):583-94.

195. Varela MM, Nohr EA, Llopis-Gonzalez A, Andersen AM, Olsen J. Sociooccupational status and congenital anomalies. Eur J Public Health. 2009;19(2):161-7.

196. Shaw GM, Croen LA, Curry CJ. Isolated oral cleft malformations: associations with maternal and infant characteristics in a California population. Teratology. 1991;43(3):225-8.

197. Vieira AR, Orioli IM, Murray JC. Maternal age and oral clefts: a reappraisal. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;94(5):530-5.

198. Martelli DR, Cruz KW, Barros LM, Silveira MF, Swerts MS, Martelli Júnior H. Maternal and paternal age, birth order and interpregnancy interval evaluation for cleft lippalate. Brazilian journal of otorhinolaryngology. 2010;76(1):107-12.

199. Herkrath AP, Herkrath FJ, Rebelo MA, Vettore MV. Parental age as a risk factor for non-syndromic oral clefts: a meta-analysis. J Dent. 2012;40(1):3-14.

200. Fisch H, Golden RJ, Libersen GL, Hyun GS, Madsen P, New MI, et al. Maternal age as a risk factor for hypospadias. Journal of Urology. 2001;165(3):934-6.

201. Porter MP, Faizan MK, Grady RW, Mueller BA. Hypospadias in Washington State: maternal risk factors and prevalence trends. Pediatrics. 2005;115(4):e495-9.

202. Shnorhavorian M, Bittner R, Wright JL, Schwartz SM. Maternal risk factors for congenital urinary anomalies: results of a population-based case-control study. Urology. 2011;78(5):1156-61.

203. Mesas Burgos C, Ehrén H, Conner P, Frenckner B. Maternal Risk Factors and Perinatal Characteristics in Congenital Diaphragmatic Hernia: A Nationwide Population-Based Study. Fetal Diagn Ther. 2019;46(6):385-91.

204. Peppa M, De Stavola BL, Loukogeorgakis S, Zylbersztejn A, Gilbert R, De Coppi P. Congenital diaphragmatic hernia subtypes: Comparing birth prevalence, occurrence by maternal age, and mortality in a national birth cohort. Paediatr Perinat Epidemiol. 2023;37(2):143-53.

205. Marshall J, Salemi JL, Tanner JP, Ramakrishnan R, Feldkamp ML, Marengo LK, et al. Prevalence, Correlates, and Outcomes of Omphalocele in the United States, 1995-2005. Obstet Gynecol. 2015;126(2):284-93.

206. Frolov P, Alali J, Klein MD. Clinical risk factors for gastroschisis and omphalocele in humans: a review of the literature. Pediatr Surg Int. 2010;26(12):1135-48.

207. Curry JI, McKinney P, Thornton JG, Stringer MD. The aetiology of gastroschisis. BJOG. 2000;107(11):1339-46.

208. Baldacci S, Santoro M, Coi A, Mezzasalma L, Bianchi F, Pierini A. Lifestyle and sociodemographic risk factors for gastroschisis: a systematic review and meta-analysis. Arch Dis Child. 2020;105(8):756-64.

209. Feldkamp ML, Canfield MA, Krikov S, Prieto-Merino D, Sipek A, Jr., LeLong N, et al. Gastroschisis prevalence patterns in 27 surveillance programs from 24 countries,

International Clearinghouse for Birth Defects Surveillance and Research, 1980-2017. Birth Defects Res. 2024;116(2):e2306.

210. Hegyi P, Eross B, Izbeki F, Parniczky A, Szentesi A. Accelerating the translational medicine cycle: the Academia Europaea pilot. Nat Med. 2021;27(8):1317-9.

211. Hegyi P, Petersen OH, Holgate S, Eross B, Garami A, Szakacs Z, et al. Academia Europaea Position Paper on Translational Medicine: The Cycle Model for Translating Scientific Results into Community Benefits. J Clin Med. 2020;9(5).

212. D'Antonio F, Di Mascio D, Rizzo G. Should we expand indications for targeted fetal neurosonography? Ultrasound Obstet Gynecol. 2022;59(2):274-6.

213. Malinger G, Paladini D, Haratz KK, Monteagudo A, Pilu GL, Timor-Tritsch IE. ISUOG Practice Guidelines (updated): sonographic examination of the fetal central nervous system. Part 1: performance of screening examination and indications for targeted neurosonography. Ultrasound Obstet Gynecol. 2020;56(3):476-84.

16 BIBLIOGRAPHY

16.1 Publications related to the thesis

1. <u>Pethő B</u>, Mátrai Á, Agócs G, Veres DS, Harnos A, Váncsa S, Bánhidy F, Hegyi P, Ács N

Maternal age is highly associated with non-chromosomal congenital anomalies: Analysis of a population-based case-control database

BJOG: AN INTERNATIONAL JOURNAL OF OBSTETRICS AND GYNAECOLOGY

2023; 130: 10 pp. 1217-1225. DOI: doi.org/10.1111/1471-0528.17461

D1, IF: 4,7

2. <u>Pethő B</u>, Váncsa Sz, Váradi A, Agócs G, Mátrai Á, Zászkaliczky-Iker F, Balogh Z, Bánhidy F, Hegyi P, Ács N

Very Young and Advanced Maternal Age Strongly Elevates the Occurrence of Non-

Chromosomal Congenital Anomalies: A Systematic Review and Meta-Analysis of Population-Based Studies

AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY

2024; 17:S0002-9378(24)00592

DOI:10.1016/j.ajog.2024.05.010

D1, IF: 8,71

16.2 Publications not related to the thesis

1.Galamb Á, <u>Pethő B</u>, Fekete D, Petrányi G, Pajor A.
Uterine anomalies in women with recurrent pregnancy loss
ORVOSI HETILAP 2015 Jul;156(27):1081-1084.
DOI: 10.1556/650.2015.30136. PMID: 26122902.

Q3, IF: 0,291

2. Mátrai Á, Teutsch B, Váradi A, Hegyi P, <u>Pethő B</u>, Fujisawa A, Váncsa S, Lintner B, Melczer Z, Ács N.

First-Trimester Influenza Infection Increases the Odds of Non-Chromosomal Birth Defects: A Systematic Review and Meta-Analysis. **VIRUSES** 2022; 14(12):2708. DOI: doi.org/10.3390/v14122708 **Q2, IF: 4.7**

3.Mátrai Á, Teutsch B, <u>Pethő B</u>, Kaposi A, Hegyi P, Ács N

Reducing the Risk of Birth Defects Associated with Maternal Influenza: Insights from a Hungarian Case-Control Study

JOURNAL OF CLINICAL MEDICINE

2023; 12: 21 Paper: 6934, 10 p.

DOI: 10.3390/jcm12216934

Q1, IF: 3,0

17 ACKNOWLEDGEMENTS

First and foremost, I would like to express my heartfelt gratitude to all those whose support made this scientific work possible.

I extend my deepest thanks to my supervisor, Nándor Ács, M.D., Ph.D., D.Sc. Without his invaluable guidance, this research and dissertation would not have been possible. His unwavering professional and personal support from the very beginning encouraged me throughout this journey. His dedication to both research and high-quality patient care has been a continuous source of motivation and inspiration. I am particularly grateful for his flexibility and commitment during the time of my baby's birth, which enabled me to continue my scientific work both during pregnancy and afterward.

I am deeply grateful to Péter Hegyi, M.D., Ph.D., D.Sc., MAE, director of the Centre for Translational Medicine Ph.D. Program, for his irreplaceable support and guidance. He provided me with the opportunity to join a dynamic and cohesive research community, where I not only gained a deep understanding of experiential learning but also found continuous inspiration in the collaborative environment. The methodological support from the Institute was instrumental in producing high-quality research and manuscripts that meet rigorous publication standards. I am especially thankful to him not only for the support in my own work but also for imparting practical knowledge that has guided me through the scientific landscape.

I am truly grateful to my methodological supervisor, Szilárd Váncsa, M.D., Ph.D. His exceptional professionalism, sharp insights, and thoughtful guidance were instrumental in shaping my academic journey and the successful completion of this dissertation. His personal example has been a constant source of inspiration.

I am profoundly grateful to Gergely Agócs, Pharm.D., Ph.D., whose analytical thinking, excellent insights and innovative ideas have supported me from the very beginning. His constructive criticism has significantly influenced the direction of my research and enhanced the quality of my work. These contributions were invaluable not only in his role as a statistician but also in providing constant support throughout my research.

A special thanks is extended to my co-investigators Ferenc Bánhidy, M.D., Ph.D., Ákos Mátrai, M.D., Alex Váradi, Andrea Harnos, Ph.D., Dániel Veres, Ph.D., Franciska Zászkaliczy-Iker, and Zita Balogh, without whose collaboration this research would not have been possible.

Finally, I express my heartfelt thanks to my adaptable and supportive family, friends, and especially my little one, who have been my steadfast foundation throughout this Ph.D. journey. Their encouragement and flexibility have been invaluable.

DOI: 10.1111/1471-0528.17461

RESEARCH ARTICLE

Epidemiology

Maternal age is highly associated with non-chromosomal congenital anomalies: Analysis of a population-based case-control database

Boglárka Pethő ^{1,2}	Ákos Mátrai ^{1,2,3}	Gergely Agócs ^{2,4}	Dániel Sándor Veres ^{2,4}
Andrea Harnos ^{2,5}	Szilárd Váncsa ^{2,6,7}	Ferenc Bánhidy ^{1,2}	Péter Hegyi ^{2,6,7}
Nándor Ács ^{1,2}			

¹Department of Obstetrics and Gynaecology, Semmelweis University, Budapest, Hungary

²Centre for Translational Medicine, Semmelweis University, Budapest, Hungary ³Faculty of Health Sciences, University of

Pécs, Pécs, Hungary

⁴Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary

⁵Department of Biostatics, University of Veterinary Medicine Budapest, Budapest, Hungary

⁶Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary

⁷Institute for Pancreatic Diseases, Semmelweis University, Budapest, Hungary

Correspondence

N. Ács, Department of Obstetrics and Gynaecology, Semmelweis University, Budapest, Ulloi ut 78/a, Hungary. Email: acsnandor@hotmail.hu

Abstract

Objective: The role of maternal age in the development of non-chromosomal congenital anomalies (NCAs) is under debate. Therefore, the primary aim of this study was to identify the age groups at risk for NCAs. The secondary aim was to perform a detailed analysis of the relative frequency of various anomalies.

Design: National population-based study.

Setting: The Hungarian Case-Control Surveillance of Congenital Anomalies (CAs) between 1980 and 2009.

Population or Sample: A cohort of 31 128 cases with confirmed NCAs was compared with Hungary's total of 2 808 345 live births.

Methods: Clinicians prospectively reported cases after delivery. Data were analysed by non-linear logistic regression. Risk-increasing effect of young and advanced maternal age was determined by each NCA group.

Main outcome measures: These were the total number of NCAs: cleft lip and palate, circulatory, genital, musculoskeletal, digestive, urinary, eye, ear, face, and neck, nervous system, and respiratory system anomalies.

Results: The occurrence of NCAs in our database was lowest between 23 and 32 years of maternal age at childbirth. The relative risk (RR) of any NCA was 1.2 (95% CI 1.17–1.23) and 1.15 (95% CI 1.11–1.19) in the very young and advanced age groups, respectively. The respective results for the circulatory system were RR = 1.07 (95% CI 1.01–1.13) and RR = 1.33 (95% CI 1.24–1.42); for cleft lip and palate RR = 1.09 (95% CI 1.01–1.19) and RR = 1.45 (95% CI 1.26–1.67); for genital organs RR = 1.15 (95% CI 1.08–1.22) and RR = 1.16 (95% CI 1.04–1.29); for the musculoskeletal system RR = 1.17 (95% CI 1.12–1.23) and RR = 1.29 (95% CI 1.14–1.44); and for the digestive system RR = 1.23 (95% CI 1.14–1.31) and RR = 1.16 (95% CI 1.04–1.29).

Conclusion: Very young and advanced maternal ages are associated with different types of NCAs. Therefore, screening protocols should be adjusted for these risk groups.

K E Y W O R D S

ageing, congenital abnormalities, maternal age, non-chromosomal anomalies, pregnancy, screening

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2023 The Authors. BJOG: An International Journal of Obstetrics and Gynaecology published by John Wiley & Sons Ltd.

OG An International Journal of Obstetrics and Gynaecology

DOI:10.14753/SE.2024.3114

1 | INTRODUCTION

Worldwide, 3–5% of births are affected by a congenital anomaly (CA),¹ representing a leading cause of infant mortality.² Based on the EUROCAT survey, the average European relative frequency of birth defects is 23.9 per 1000 births.³ According to the 2010 Global Burden of Disease study, congenital anomalies (CAs) are responsible for 6% of infant deaths worldwide,⁴ whereas other studies suggest that around 20% of neonatal and infant mortality is caused by CAs.^{5,6}

CAs have a significant burden on society as a whole, namely, the affected families and both health and social care systems. In addition, CA-related hospitalisations are extremely costly, accounting for 3.0% of total hospitalisations and 5.2% of total hospital costs, with an estimated annual cost of \$22.9 billion in the USA in 2013.⁷ These facts highlight the importance of CAs globally for healthcare systems, research, prevention and screening. Appropriate intervention must be considered a public health priority.

For several known maternal lifestyle risk factors and chronic illnesses, there is a clear association with the occurrence of CAs. For example, according to a meta-analysis, maternal smoking during pregnancy increases the odds of CAs (odds ratio [OR] = 1.18, 95% CI 1.03–1.34).⁸ The riskincreasing effect of maternal diabetes is also considered in genetic screening. The effect of pre-gestational diabetes is indeed pronounced according to a meta-analysis (relative risk [RR] = 2.66, 95% CI 2.04–3.47).⁹

There is also a well-known correlation between maternal age and chromosomal anomalies, but we have much less information about maternal age as a risk factor in the case of non-chromosomal congenital anomalies (NCAs). The significant role of maternal age in their development is probably established, but the exact details are still the subject of active research. In addition, age distributions of NCAs in the literature are inconsistent. Some studies show a risk-increasing effect either only for the young¹⁰ (generally defined as under 20 years) or only for the advanced¹¹ (generally defined 35 years or more); others show an effect for both age groups.

We aimed to identify maternal age-related risk groups without arbitrary age categories and to focus on screening options based on maternal age – an approach which is currently missing in the protocols for NCAs. Our hypothesis was that very young (expected to be <20 years) and advanced maternal age (expected to be \geq 35 years) increase the risk of NCAs.

2 | METHODS

2.1 Study design

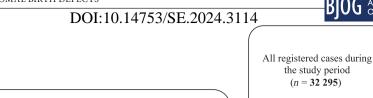
Our population-based study investigated the relative frequency of CAs in relation to maternal age over a period of almost 30 years in Hungary. This study obtained cases from the Hungarian Case-Control Surveillance of Congenital Abnormalities (HCCSCA) and the total number of live births during the study period from the Central Statistical Office (KSH).

We identified high- and low-risk maternal age groups using the restricted cubic spline model instead of comparing arbitrary age categories.¹²

We report our population-based study according to the recommendations of the STROBE guideline (Table S1).¹³

2.2 | Setting

Our study is an analysis of the HCCSCA (established in 1980, and terminated in 2009).¹⁴ Data collection was changed in 1997 (affecting only the collection of matched controls that were not used in the current study), slightly modifying the structure of the HCCSCA. Data collected through the HCCSCA between 1980 and 2009 were unified into one large validated database.¹⁵ In 2002, after one mother's objections, the legal background of data privacy was questioned, and data collection was suspended until 2005.


Since 1962, reporting patients as cases with CA to the Hungarian Congenital Abnormality Registry (HCAR) has been obligatory for physicians in Hungary, from birth until the end of the first postnatal year. The HCAR was founded in 1962 as the first national-based registry of CAs globally.¹⁶ Since 1984, the prenatal diagnostic centres have also been asked to report malformed fetuses diagnosed prenatally with or without elective termination of pregnancy to the HCAR. Cases have been enrolled in the HCCSCA from the HCAR since 1980.

2.3 Ethics and patient consent

Ethics approval for data analysis was obtained from the Scientific and Research Ethics Committee of the Medical Research Council, Hungary (BMEÜ/920-3/2022/EKU). There are no identifiable registry data reported in our study. National legislation does not require informed consent to register a baby with a congenital anomaly.¹⁷ Patients were not involved in the design and conduct of this research.

2.4 | Participants

Cases with CAs in the HCAR were enrolled to the HCCSCA if they met all the following selection criteria: (1) reported to the HCAR within 3 months after birth or elective termination of pregnancy, (2) none of the three mild CAs (hip dislocation, congenital inguinal hernia and large haemangioma) was present alone, and (3) CA syndromes were not caused by gene mutations or chromosomal anomalies with preconceptional origin. In our analysis, we excluded cases with incomplete data or the co-presence of chromosomal anomalies (Figure 1). The main task of the HCCSCA has been the detection of teratogenic/ (A)

	mal age $(n = 71)$ anomaly cases $(n = 1 080)$	Analysed cases (n = 31 128)
Maternal a	ge Number of live births in Hungary 1980 – 2009	Number of cases of NCA in Hungary 1980 – 2009
13 – 19	214 718	3060
20 - 24	940 062	10 474
25 - 29	981 027	10 073
30 - 34	486 657	5182
35 - 39	154 753	1893
40 - 45	31 128	446

FIGURE 1 (A) Study plan. (B) Age distribution of cases and total population by age.

fetotoxic agents and other environmental effects during pregnancy resulting in the development of birth defects.

The case group contains live births, stillbirths and elective terminations of pregnancies following prenatal malformation diagnosis. For the total number of cases and controls, the total number of live births by maternal age in Hungary during the study period was obtained from the hungarian Central Statistical Office (KSH).

2.5 Variables and data sources

The following information about every patient was recorded during data collection: NCA(s), gender, maternal age, paternal age, birth date, birthweight, gestational age, area of mother's residence, birth order, mother's and father's qualifications, employment status and type of employment, mother's marital status, outcome of previous pregnancies, maternal diseases during pregnancy (by month of pregnancy), medication during pregnancy (by month of pregnancy), and the mother's smoking habits and alcohol consumption patterns.¹⁵

Maternal age was recorded at the time of delivery or termination of pregnancy due to fetal anomaly.

Data on maternal diseases, lifestyle factors and medication during pregnancy were collected in multiple ways. Mothers provided all their medical documentation about their ongoing pregnancy, and professionals recorded it (prospective, medically recorded data). A questionnaire was then mailed to the mothers containing questions about maternal diseases, pregnancy-related drug treatments and pregnancy supplements (retrospective, maternal self-reported information). Lastly, regional nurses visited all mothers. The nurses helped mothers collect and present their medical records and answer the questionnaire (Table S1).

We performed our analysis by disease categories as defined by the International Classification of Diseases (ICD)-10, which ensures an accurate categorisation. Even though the definition of certain anomalies may have changed during the study period, their ICD categorisation at the level of our analysis remained consistent.

2.6 Bias and evidence synthesis

The maternal ages were recorded based on birth certificates, ensuring a very high level of data accuracy. The unique nature of data collection and verification further enhances the reliability of the data. However, the classification of outcomes was not consistent over the long study period. When converting different ICD categories to each other, the groupings used do not always match with complete accuracy.

We used the GRADEPRO tool to assess the level of evidence for our results.¹⁸

2.7 | Statistical methods

Primary data extraction and organisation were carried out in Microsoft EXCEL. Statistical analysis was carried out in R (v4.1.3).¹⁹

1219

OG An International Journal of Obstetrics and Gynaecology

14710528, 2023, 10, Downloaded from https://obgyn.onlinelibrary.wiley.com/doi/10.1111/1471-0528.17461 by Cochrane Hungary, Wiley Online Library on [11/07/2024]. See the Terms and Condit library. () on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

BOG An International Journal of Obstetrics and Gynaecology

1220

DOI:10.14753/SE.2024.3114

The aim of our analysis was to determine the high-risk maternal age for each non-chromosomal anomaly (NCA) category. We used a two-way approach.

First, we identified the best 10-year period of maternal age corresponding to the anomaly's lowest relative frequency. Risk was calculated as: number of cases among live births + stillbirths + elective terminations of pregnancies following prenatal diagnosis of malformation/total number of live births in the population. Risk ratios for each year were determined by taking the best 10-year period as a 'reference risk'. Note that, despite the case-control approach, RR could be used because data collection included the whole population). Cases with a maternal age <13 (one case) and >45 years (nine cases) were excluded because the very low number of cases in these maternal age ranges would have made the regression unreliable. The confidence interval of relative frequency was estimated according to Agresti & Coull.²⁰

Secondly, we fitted a non-linear, non-parametric logistic regression model on the original data (namely, a restricted cubic splines model using five knots at the 0.05, 0.275, 0.5, 0.725 and .95 quantiles, as recommended in the literature; explanatory variable: maternal age; response variable: presence or absence of NCAs) using the 'rms' R package (v6.2.0).²¹ The resulting relative frequency estimates of the regression were transformed to the RR scale to enable graphical representation in the figure showing the year-by-year risk estimates calculated above.

A grouping of NCA categories based on high-risk maternal age was done by considering the confidence bands in addition to assessing the shape of the curves: a curve may appear U-shaped at first glimpse but the risk increase is not necessarily statistically substantiated in both directions, i.e. the confidence band may contain the RR = 1 line corresponding to zero effect.

All confidence intervals were calculated at a confidence level $(1-\alpha)$ of 95%.

3 | RESULTS

3.1 Participants

A total of 31 128 cases with NCAs were identified in Hungary (Table S2); during the study period there were 2808 345 live births in the country (Figure 1). Figure 1 presents the age distribution of the study population, showing that 7.66% of births fell into the very young (\leq 19) and 6.62% into the advanced (\geq 35) maternal age categories. Within this group, 1.11% of births represented mothers over 40. This means that 14.28% of births were in the maternal age groups expected to pose an increased risk.

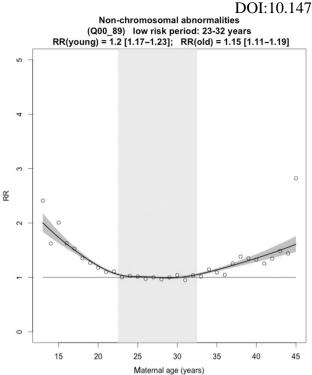
Mean maternal age was practically the same among cases (26.0 years; SD = 5.4) and in the reference population (26.1 years; SD = 5.1).

3.2 Descriptive data

Thanks to the population-wide data collection, we had individual information about the cases. In the table below, we have summarized some of this information (Table 1). The most notable is the sex of the fetuses, which is around 65% male.

3.3 | Outcome data

The relative frequency of NCAs in the study period was 1.1% after excluding cases with only mild anomalies and chromosomal anomalies.


3.4 | The risk-increasing effect of advanced and very young maternal age

In the first step, all NCAs were analysed together (Figure 2). The lowest risk 10-year period was between 23 and 32 years (light grey shading); lower (RR = 1.2; 95% CI 1.17–1.23) and higher (RR = 1.15; 95% CI 1.11–1.19) maternal age pose an almost identically increased risk of anomalies. The year-by-year RRs (circle markers) imply an increasing trend in both directions. The fitted regression line (black, with a dark grey confidence band) stresses that both very young and

TABLE 1 Baseline characteristics table.

	Maternal age: All (13–45 years; total 31 118)		
	Total	Mean	SD
Birth mass, g	30908	3018	707
Gestation period, weeks	30995	38.5	3.2
Paternal age, years	1851	32.1	6.4
	Count	Proportion	
Gender			
Male	20046	65.64%	
Female	10492	34.36%	
NA	580		
Birth order			
Primiparous	16309	55.76%	
Multiparous	12939	44.24%	
NA	1870		
Maternal smoking			
Smoker	2776	35.51%	
Nonsmoker	5041	64.49%	
NA	23 301		
Maternal education			
Managerial	1377	15.26%	
Professional	2450	27.14%	
Skilled worker	2376	26.32%	
Semiskilled	2327	25.78%	
Unskilled	496	5.50%	
NA	22 0 9 2		

NA, not available.

FIGURE 2 Analysis of all NCAs by maternal age. The figure shows the estimated risk ratios of NCAs as a function of maternal age with the best 10-year period as 'reference risk' (circle markers). The best 10-year-period is highlighted in light grey. The black curve shows the result of the restricted cubic splines regression; the dark grey area is its confidence range.

advanced maternal age increase risk even more. Even though the confidence range becomes wider in the very young and old maternal age groups due to the low number of cases, the trend is still clear.

In the next step, NCAs were analysed by ICD category (Figure 3). In the case of certain ICD categories, both lower and higher maternal ages exert a risk-increasing effect, namely: circulatory system (Q20–Q28), cleft lip and palate (Q35–Q37), genital organ system (Q50–Q56), musculoskeletal system (Q65–Q79) and digestive system (Q38–Q45). A U-shaped regression curve can describe the relation. Observing the regression line in the case of musculoskeletal and digestive system anomalies, there is an increased risk of birth defects in very young mothers. In cases of circulatory system anomalies and cleft lip/palate, the increased risk is more pronounced for advanced age mothers. There is no expressed difference in the risk-increasing effect when comparing the lower and higher maternal age ranges in the case of the genital organ system.

3.5 | The risk-increasing effect of advanced maternal age only

In the case of CAs of the urinary system (Q60–Q64) and malformations of the eye, ear, face and neck (Q10–Q18), advanced maternal age exerts a risk-increasing effect while

DOI:10.14753/SE.2024.3114

young age does not. However, looking at the figure regarding the malformations of the eye, ear, face and neck (Q10–Q18), the results are somewhat inconsistent, and the increase in risk becomes clearly significant only >40 years.

3.6 | The risk-increasing effect of very young maternal age only

The nervous system anomalies (Q00–Q07) category is the only one where only young maternal age is associated with increased risk. Looking at the entire low-age group, the risk increase is 25%. For the very young (<20), there is an apparent increase in risk that is even higher.

3.7 | Congenital anomalies not related to maternal age

According to our analysis, respiratory system anomalies (Q30–Q34) could not be proven to be associated with maternal age.

3.8 | Level of evidence

When all NCAs were analysed according to maternal age, the young and advanced age groups were found to have moderate certainty of NCAs (Figure S1).

4 | DISCUSSION

The main findings of this study confirm our hypothesis. The relative frequency of NCAs strongly depends on maternal age. Our data are of clinical importance because, based on these results, preventive and screening interventions can be applied according to maternal age groups. Furthermore, our research shows that very young and advanced maternal age increase risk when all NCAs are examined together. This finding is particularly important, considering that chromosomal anomalies (with a well-known correlation to maternal age) were excluded from the analysis.

Although the topic has been eagerly investigated, age distributions of various NCAs are inconsistent in the literature. In line with our findings, Reefhuis et al.²² showed that women <20 and \geq 35 years are at increased risk of having a fetus with an NCA. Croen et al.²³ also found this association in their data analysis from the California Birth Defects Monitoring Program, excluding the Afro-American population. Looking at all the NCA categories combined, other studies have shown a risk-increasing effect of older maternal age.¹¹ This may be due to the risk-increasing effect of chromosomal anomalies that occur more frequently with advanced maternal age. Hollier et al.¹¹ suggest that the accumulation of environmental exposures over time may also have a risk-increasing effect.

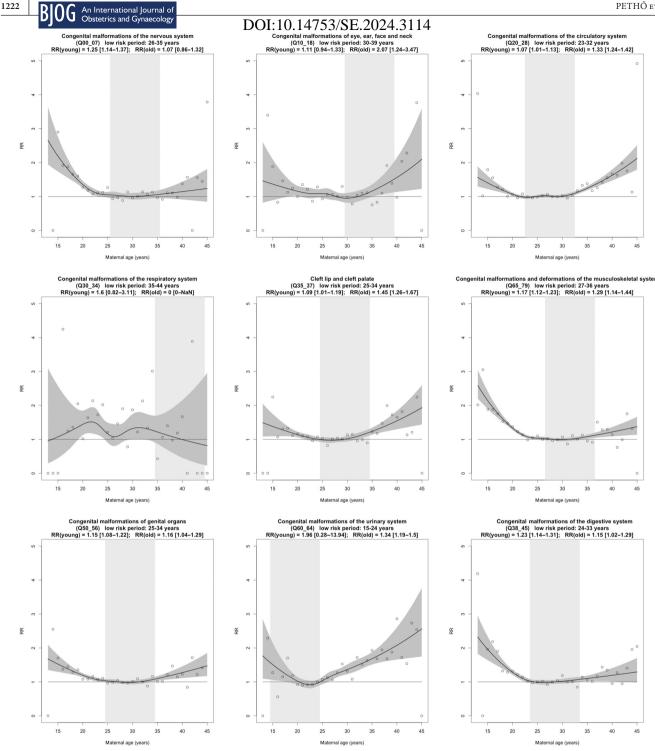


FIGURE 3 Summary results for the NCA categories. For the interpretation of the figure, see the caption to Figure 2.

Analysing data from the EUROCAT database, Loane et al.¹⁰ point out that more emphasis should be placed on screening very young mothers, who are more likely to have several risk factors. Zhang et al. found an increase in risk for extremely young mothers and mothers younger than 25 years. The authors emphasise that statistically significant differences in NCA relative frequency were found between different levels of maternal education.

Based on the current guidelines, there is no recommendation for screening NCAs with regard to maternal age.^{24–26} Maternal age has previously been shown to be a relevant risk factor for chromosomal anomalies, and this pressure for age-based screening has significantly increased the detection rate.

Neural tube defects (NTDs) and congenital heart defects (CHDs) should be discussed separately, as fetal

DOI:10.14753/SE.2024.3114

neurosonography and fetal echocardiography are complementary screening options.

4.1 | Strengths and limitations

Looking at the NTDs (ICD-10 Q00–Q07) together, we observed an increased risk in very young mothers. The literature is not consistent on the age effect. Most studies have suggested a 'U-shaped' association between maternal age and the relative frequency of NTDs.^{27,28} Other groups suggest that a higher risk of NTD is likely associated with increased maternal age.²⁹ The heterogeneous results may be the consequence of inappropriate NTD definition, as grouping was not uniformly applied across studies. Some anomalies were explicitly associated with young maternal age (e.g. anencephaly),^{30,31} whereas other isolated anomalies were more common with older maternal age (e.g. spina bifida, encephalocele).³¹

From a clinical point of view, finding a clear association between maternal age and the relative frequency of CHDs (ICD-10 Q20–Q28) is an important task. Currently, there is no maternal age-related indication for fetal echocardiography.^{32,33}

This finding is of particular significance because the effects of chromosomal anomalies did not modify the relative frequency found in our study. Various studies have been published about the risk-increasing effect of older maternal age, but it is important to note that the co-occurrence of chromosomal anomalies is most significant at this age.³⁴

As there is no additional screening opportunity for the other NCA groups, age-adjusted ultrasound examinations in these age groups must focus on these organ systems.

Particular attention should be paid to more frequent differences in the low or high maternal age categories. Examining what may be behind the risk-increasing effects of each age group can help identify the right prevention options. The teratogenic effects associated with the lifestyle of mothers becoming pregnant at a very young age and the lack of primary prevention options may largely explain the vulnerability of this age group, including smoking, drug and alcohol abuse (substance abuse together 41.0%), lower social status, lower educational attainment³⁵ and the lack of adequate folic acid supplementation typical of conscious childbearing.³⁶ This investigation of socioeconomic differences in the use of supplements found inequalities that benefit the wealthier and more highly educated white mothers. The lack of folic acid intake is clearly associated with a higher risk of NTDs.³⁷ In contrast, it is worth investigating the possible correlations between maternal chronic diseases and conditions relating to the risk-increasing effect of advanced maternal age. The agerelated decline in oocyte quality and deteriorating repair processes could be the subject of basic research regarding CAs of the urinary system and facial malformations.

Our results suggest that incorporating the age aspect into screening protocols can increase the possibility of early detection of NCAs. Although the present study is not sufficient to confirm an isolated evidence of age effects, and the influence of lifestyle factors typically associated with age categories may be significant, and age alone may represent a well-defined, clear risk factor. The strengths of our analysis are the large number of cases, the unique database and data collection methods, and that the collection of data on maternal age is highly accurate. In addition, the novel statistical approach employed may better reflect reality without using arbitrary groups.

Considering the limitations of this work, slight changes in screening methods and detection rates during the long study period could be mentioned. In addition, the definitions of some individual anomalies differed between the years or were even missing. These documents were also structured for the ICD-10 categories; however, it was impossible to identify them precisely in some cases. Finally, the main limitation is the lack of a multivariate model. However, this stemmed from the nature of the population-based study.

The generalisation of our result is substantiated, as the enrolled patients represent the entire selected geographical region.

4.2 | Implications for practice and research

Based on our results, we suggest maternal age-based screening for CHDs.

Further prospective data collection is needed to assess the problem more accurately and to consider confounders. For example, an international congenital anomaly registry that collects all pregnancy data prospectively and allows multivariate analysis or observational clinical research with longer follow-up periods might give additional insight into this topic. In addition, screening protocol modifications require further health-economic studies, but the risk-increasing effect of maternal age can already be considered for individual cases using our results.

5 | CONCLUSION

Our results show that certain NCAs are strongly associated with maternal age: a clear increase in risk can be observed for very young or advanced maternal age, or both – exact age limits varying by disease. Taking this into consideration, improved screening protocols should be implemented. Current protocols do not include maternal age-based recommendations for either fetal echocardiography or fetal neurosonography, which would be useful in detecting the respective NCAs. Moreover, in addition to mothers of advanced age, due attention should also be paid to very young groups.

AUTHOR CONTRIBUTIONS

BP: conceptualisation, project administration, writing – original draft. ÁM: conceptualisation, writing – review & editing. GA: conceptualisation, formal analysis; visualisation. DSV: conceptualisation, formal analysis, visualisation. AH: conceptualisation, formal analysis, visualisation. SV:

conceptualisation, methodology, writing – review & editing. FB: conceptualisation, writing – review & editing. PH: conceptualisation, writing – review & editing. NÁ: conceptualisation, supervision, writing – original draft. All authors certify that they have participated sufficiently in the work to take public responsibility for the content, including participation in the paper's concept, design, analysis, writing and revision.

G An International Journal o Obstetrics and Gynaecology

ACKNOWLEDGEMENTS

None to declare.

CONFLICT OF INTEREST STATEMENT

None declared. Completed disclosure of interest forms are available to view online as supporting information.

DATA AVAILABILITY STATEMENT

All data were included in the manuscript.

FUNDING STATEMENT

Sponsors had no role in the design, data collection, analysis, interpretation or article preparation.

ETHICAL APPROVAL

In our study, cases were obtained from the Hungarian Case-Control Surveillance of Congenital Anomalies (HCCSCA) and the control group comprised live births from the Central Statistical Office (KSH) during the study period. Ethics approval for data analysis was obtained from the Scientific and Research Ethics Committee of the Medical Research Council, Hungary (BMEÜ/920-3 /2022/EKU). The study was conducted in accordance with the Declaration of Helsinki. Patients were not involved in the design or conduct of this research.

REFERENCES

- Mai CT, Isenburg JL, Canfield MA, Meyer RE, Correa A, Alverson CJ, et al. National population-based estimates for major birth defects, 2010-2014. Birth Defects Res. 2019;111(18):1420–35.
- Canfield MA, Honein MA, Yuskiv N, Xing J, Mai CT, Collins JS, et al. National estimates and race/ethnic-specific variation of selected birth defects in the United States, 1999-2001. Birth Defects Res A Clin Mol Teratol. 2006;76(11):747–56.
- Dolk H, Loane M, Garne E. The prevalence of congenital anomalies in Europe. Adv Exp Med Biol. 2010;686:349–64.
- Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380(9859):2095–128.
- Almli LM, Ely DM, Ailes EC, Abouk R, Grosse SD, Isenburg JL, et al. Infant mortality attributable to birth defects - United States, 2003-2017. Morb Mortal Wkly Rep. 2020;69(2):25–9.
- Roncancio CP, Misnaza SP, Pena IC, Prieto FE, Cannon MJ, Valencia D. Trends and characteristics of fetal and neonatal mortality due to congenital anomalies, Colombia 1999-2008. J Matern Fetal Neonatal Med. 2018;31(13):1748–55.
- Arth AC, Tinker SC, Simeone RM, Ailes EC, Cragan JD, Grosse SD. Inpatient hospitalization costs associated with birth defects among persons of all ages - United States, 2013. Morb Mortal Wkly Rep. 2017;66(2):41–6.

- Salmasi G, Grady R, Jones J, McDonald SD, Knowledge Synthesis Group. Environmental tobacco smoke exposure and perinatal outcomes: a systematic review and meta-analyses. Acta Obstet Gynecol Scand. 2010;89(4):423–41.
- Balsells M, Garcia-Patterson A, Gich I, Corcoy R. Major congenital malformations in women with gestational diabetes mellitus: a systematic review and meta-analysis. Diabetes Metab Res Rev. 2012;28(3):252–7.
- Loane M, Dolk H, Morris JK, EUROCAT Working Group. Maternal age-specific risk of non-chromosomal anomalies. BJOG. 2009;116(8):1111-9.
- Hollier LM, Leveno KJ, Kelly MA, McIntire DD, Cunningham FG. Maternal age and malformations in singleton births. Obstet Gynecol. 2000;96(5):701–6.
- Lusa L, Ahlin C. Restricted cubic splines for modelling periodic data. PLoS One. 2020;15(10):e0241364.
- von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP, et al. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Ann Intern Med. 2007;147(8):573-7.
- Czeizel AE, Rockenbauer M, Siffel C, Varga E. Description and mission evaluation of the Hungarian case-control surveillance of congenital abnormalities, 1980-1996. Teratology. 2001;63(5):176-85.
- Acs N, Matrai A, Kaposi A. First data from the new, unified database of the Hungarian case-control surveillance of congenital abnormalities. J Matern Fetal Neonatal Med. 2021;34(17):2887–92.
- 16. Czeizel AE, Metneki J, Beres J. 50 years of the Hungarian congenital abnormality registry. Congenit Anom (Kyoto). 2014;54(1):22–9.
- 17. (Platform) EPoRDRER. Hungary. [cited 2022 June 16]. Available from: https://eu-rd-platform.jrc.ec.europa.eu/eurocat/eurocat-members/ registrieshungary_en#:~:text=The%20Hungarian%20Congenital%20 Abnormality%20Registry,Health%20Development%20under%20gov ernment%20financing
- 18. GRADEpro. Available from: https://www.gradepro.org/
- R Core Team. A language and environment for statistical computing. R Foundation for Statistical Computing; 2022. Available from: https://www.R-project.org/
- Agresti A, Coull BA. Approximate is better than "exact" for interval estimation of binomial proportions. The American Statistician. 1998;52(2):119–26.
- 21. Harrell J, Frank E. Rms: Regression Modeling Strategies. 2021 Available from: https://CRAN.R-project.org/package=rms
- Reefhuis J, Honein MA. Maternal age and non-chromosomal birth defects, Atlanta--1968-2000: teenager or thirty-something, who is at risk? Birth Defects Res A Clin Mol Teratol. 2004;70(9):572–9.
- Croen LA, Shaw GM. Young maternal age and congenital malformations: a population-based study. Am J Public Health. 1995;85(5): 710-3.
- 24. RCOG. Non-invasive Prenatal Testing for Chromosomal Abnormality using Maternal Plasma DNA. Available from: https://www.rcog.org. uk/media/gecpbqau/sip_15_04032014.pdf
- GUIDELINE JS-CCP. Prenatal Screening for Fetal Aneuploidy in Singleton Pregnancies. Available from: https://www.jogc.com/article/ S1701-2163(16)34961-1/pdf
- 26. Guidance A. NIPT Summary of Recommendations. Available from: https://www.acog.org/advocacy/policy-priorities/non-invasive-prena tal-testing/current-acog-guidance
- Borman GB, Smith AH, Howard JK. Risk factors in the prevalence of anencephalus and spina bifida in New Zealand. Teratology. 1986;33(2):221–30.
- Feldman JG, Stein SC, Klein RJ, Kohl S, Casey G. The prevalence of neural tube defects among ethnic groups in Brooklyn, New York. J Chronic Dis. 1982;35(1):53–60.
- Dudin A. Neural tube defect among Palestinians: a hospital-based study. Ann Trop Paediatr. 1997;17(3):217–22.

DOI:10.14753/SE.2024.3114

- Fedrick J. Anencephalus in Scotland 1961-72. Br J Prev Soc Med. 1976;30(2):132-7.
- 31. Forrester MB, Merz RD. Epidemiology of neural tube defects, Hawaii, 1986-1997. Hawaii Med J. 2000;59(8):323–7.
- 32. Donofrio MT, Moon-Grady AJ, Hornberger LK, Copel JA, Sklansky MS, Abuhamad A, et al. Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association. Circulation. 2014;129(21):2183–242.
- AIUM practice parameter for the performance of fetal echocardiography. J Ultrasound Med. 2020;39(1):E5–E16.
- Best KE, Rankin J. Is advanced maternal age a risk factor for congenital heart disease? Birth Defects Res A Clin Mol Teratol. 2016;106(6):461–7.
- 35. Wong SPW, Twynstra J, Gilliland JA, Cook JL, Seabrook JA. Risk factors and birth outcomes associated with teenage pregnancy: a Canadian sample. J Pediatr Adolesc Gynecol. 2020;33(2):153–9.
- 36. Miranda VIA, da Silva Dal Pizzol T, Silveira MPT, Mengue SS, da Silveira MF, Lutz BH, et al. The use of folic acid, iron salts and other vitamins by pregnant women in the 2015 Pelotas birth cohort: is there socioeconomic inequality? BMC Public Health. 2019;19(1):889.

 van Gool JD, Hirche H, Lax H, De Schaepdrijver L. Folic acid and primary prevention of neural tube defects: a review. Reprod Toxicol. 2018;80:73-84.

(J

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Pethő B, Mátrai Á, Agócs G, Veres DS, Harnos A, Váncsa S, et al. Maternal age is highly associated with non-chromosomal congenital anomalies: Analysis of a population-based case-control database. BJOG. 2023;130(10):1217–1225. <u>https://doi.</u> org/10.1111/1471-0528.17461

1225

An International Journal of

Obstetrics and Gynaecology

Systematic Review

Very young and advanced maternal age strongly elevates the occurrence of nonchromosomal congenital anomalies: a systematic review and meta-analysis of population-based studies

Boglárka Pethő, MD; Szilárd Váncsa, MD, PhD; Alex Váradi; Gergely Agócs, PharmD, PhD; Ákos Mátrai, MD; Franciska Zászkaliczky-Iker; Zita Balogh; Ferenc Bánhidy, MD, PhD; Péter Hegyi, MD, PhD; Nándor Ács, MD, PhD

Introduction

Congenital anomalies are structural or functional abnormalities that occur during intrauterine life and can be

From the Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary (Pethő, Mátrai, Zászkaliczky-lker, Balogh, Bánhidy, and Ács); Centre for Translational Medicine, Semmelweis University, Budapest, Hungary (Pethő, Váncsa, Váradi, Agócs, Mátrai, Zászkaliczky-lker, Balogh, Bánhidy, Hegyi, and Ács); Institute of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary (Agócs); Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary (Váncsa, Hegyi); Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary (Váncsa, Hegyi); Department of Metagenomics, University of Debrecen, Debrecen, Hungary (Váradi); Department of Laboratory Medicine, University of Pécs, Pécs, Hungary (Váradi).

Received Jan. 17, 2024; revised May 2, 2024; accepted May 11, 2024.

The authors report no conflict of interest.

Ethical approval: No ethical approval was required for this systematic review with metaanalysis, as all data were already published in peer-reviewed journals. No patients were involved in the design, conduct or interpretation of our study.

The datasets used in this study can be found in the full-text articles included in the systematic review and meta-analysis.

Corresponding author: Nándor Ács, MD, PhD. acsnandor@gmail.com

0002-9378

© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/). https://doi.org/10.1016/j.ajog.2024.05.010

Click <u>Supplemental Materials</u> and <u>alog</u> <u>Video</u> under article title in Contents at

BACKGROUND: Nonchromosomal congenital anomalies (NCAs) are the most common cause of infant mortality and morbidity. The role of maternal age is well known, although the specifics are not thoroughly elucidated in the literature.

OBJECTIVE: To evaluate the role of maternal age in the incidence of NCAs and to pinpoint age groups at higher risk to refine screening protocols.

STUDY DESIGN: A systematic review and meta-analysis were conducted following the PRISMA 2020 guidelines and *Cochrane Handbook*. Searches were performed on October 19, 2021, across MEDLINE (via PubMed), Cochrane Library (CENTRAL), and Embase. Population-based studies assessing the impact of maternal age on the incidence of NCAs in pregnant women were included, without restrictions on age range, country, or comorbidities. A random-effects model was used for pooling effect sizes, considering the heterogeneity across studies.

RESULTS: From 15,547 studies, 72 were synthesized. Maternal age >35 showed an increased NCA risk (risk ratio [RR]: 1.31, confidence interval [CI]: 1.07 -1.61), rising notably after >40 (RR: 1.44, CI: 1.25 -1.66). The latter changes to 1.25 (CI: 1.08 -1.46) if the co-occurrence of chromosomal aberrations is excluded. Specific anomalies like cleft lip/palate (>40, RR: 1.57, CI: 1.11 -2.20) and circulatory system defects (>40, RR: 1.94, CI: 1.28 -2.93) were significantly associated with advanced maternal age. Conversely, gastroschisis was linked to mothers <20 (RR: 3.08, CI: 2.74 -3.47).

CONCLUSION: The study confirms that both very young and advanced maternal ages significantly increase the risk of NCAs. There is a pressing need for age-specific prenatal screening protocols to better detect these anomalies, especially considering the current trend of delayed childbearing. Further research is required to fully understand the impact of maternal age on the prevalence of rarer NCAs.

Key words: aging, congenital abnormalities, maternal age, nonchromosomal anomalies, pregnancy, screening

identified intrauterinely, at birth, or, less often, only during infancy.¹ Congenital anomalies are the most common cause of infant mortality and morbidity, accounting for the loss of 25.3 to 38.8 million disability-adjusted life years worldwide.² According to data provided by the World Health Organization, 6% of babies are born with a congenital anomaly.³ Maternal age is included among the many known risk factors, and the significance of advanced maternal age (AMA) (\geq 35) particularly appears to be supported.

Over the last few decades, there has been an increasing trend in women's average delivery age.⁴ An increasing portion of couples are having their first child over the maternal age of 30 to 35 years.⁵ Many studies have associated the postponement of childbearing with various pregnancy and fetal complications^{6–8} sand made

Systematic Review

DOI:10.14753/SE.2024.3114

AJOG at a Glance

Why was this study conducted?

This study was conducted to investigate how maternal age affects the risk of nonchromosomal congenital anomalies by analyzing data from numerous population-based studies.

Key findings

Very young and advanced maternal ages are linked to a higher incidence of these anomalies. Specifically, risks increase significantly for those over 40 years old, with elevated risks for conditions affecting the circulatory system and cleft lip/ palate, and for those under 20, with a notable rise in gastroschisis cases.

What does this add to what is known?

First in-depth meta-analysis of the age dependence of the risk of nonchromosomal congenital anomalies by anomaly category. This highlights the necessity for age-specific prenatal screening protocols to better detect congenital anomalies.

recommendations on managing these high-risk pregnancies.⁹ Among congenital anomalies, chromosomal abnormalities (CAs) are clearly associated with AMA, $^{10-13}$ a long-established fact that has led to the current professional screening protocols that are widely used worldwide and constantly evolving.^{14,15} However, the etiology of nonchromosomal congenital anomalies (NCAs) is far from being fully understood. While the role of maternal age in the development of NCAs is well known and is the subject of active research, the literature is inconsistent in its assessment of the risk of NCAs in different age groups. This is a major issue not only because of the trend towards delayed childbearing but also because of the emerging risks of adolescent pregnancies.

Objective

Considering the disagreement in the literature, we aimed to investigate the role of maternal age in the occurrence of NCAs in a meta-analysis. There are currently no meta-analyses or other comprehensive studies that specifically and exclusively examine the association of NCAs with maternal age. We hypothesized that both very young and AMAs increase the risk of NCAs. We aimed to identify high-risk age groups to improve screening protocols and reach a better detection rate for NCAs.

Methods

We reported our systematic review and meta-analysis based on the recommendation of the PRISMA 2020 guideline¹⁶ (see Supplemental Table 1), and we followed the Cochrane Handbook for Systematic Reviews of Interventions.¹⁷ The protocol of the study was prospectively registered on International Prospective Register of Systematic Reviews¹⁸ (registration number CRD42021283593), and we adhered to it, with some deviations: title adjustment for clarity and summary purposes; subgroup analyses were conducted but not prespecified; searches included screening reference lists of eligible articles; only population-based studies with exact NCA counts were included to enable risk assessment; risk ratios (RRs) were used instead of odds ratios for ease of interpretation; publication bias assessed only visually. However, these modifications are fundamentally technical in nature and do not alter the conceptual framework of the study.

Information sources

The systematic search was conducted in 3 comprehensive medical databases: MEDLINE (via PubMed), the Cochrane Library (CENTRAL), and Embase on October 19, 2021.

Search strategy

We used for the systematic search the following search key: ("maternal age" OR "maternal ages" OR "mother age" OR "mother ages") AND (((congenital OR birth) AND (anomaly OR anomalies OR disorder OR disorders OR malformation OR malformations OR defect OR defects)) OR congenital abnormalities. No language restrictions or filters were applied during the search. We also screened the reference list of eligible articles.

Eligibility criteria

We formulated our research question population, using the exposure, comparator, outcome framework. We included population-based studies reporting on pregnant women (P). We did not have predefined exclusion criteria (eg, age range, country, comorbidities) for our population. Eligible studies compared different maternal age groups (E and C) regarding NCAs. We examined every predefined age group reported by the eligible studies. Our primary outcome (O) was the rate of total NACs, while we considered as secondary outcomes the various structural defects regarding different organ systems (eg, congenital heart defects [CHDs]) and common birth defects separately. We did not have predefined diagnostic criteria for the NCAs. Studies not reporting on the exact number of NCAs in the different age groups and the total number of patients were not eligible. The following exclusion criteria were predefined: CAs as target outcomes; casecontrol or cohort studies; case series; and case reports, because our concept was to analyze relative frequency.

Study selection

After removing duplicates, the selection was performed independently by 3 review authors (B.P., F.I., and Z.B.), first by title, then by abstract, and finally based on full text according to the aforementioned criteria. Endnote v20 (Clarivate Analytics, Philadelphia, PA) reference manager software was used for the selection. We calculated Cohen's kappa coefficient (κ) after each selection

DOI:10.14753/SE.2024.3114

process to measure interrater reliability.¹⁹ Disagreements were resolved by consensus; if consensus was not reached, a final decision was made with involvement from a fourth independent review author (S.V.). The study selection process is shown using PRISMA 2020 flowchart (Figure 1).

Data extraction

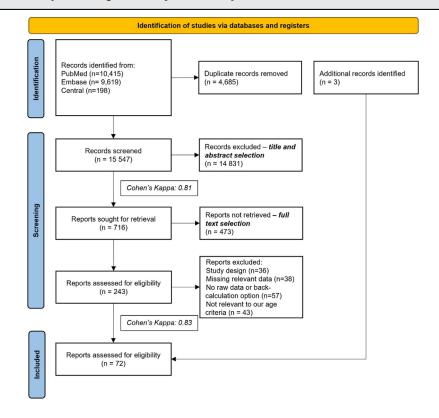
Three authors (B.P., F.I., and Z.B.) independently collected data from the eligible articles. In the case of disagreement, the decision was based on consensus. If consensus was not reached, a final decision was made by involving a fourth author (S.V.).

The following data were extracted with a standardized collection method to an Excel sheet (Office 365, Microsoft, Redmond, WA): first author, the year of publication, study population, study period, study site (country), study design, demographic data of the patients, total number of patients in the age groups, number of NCAs in the age groups, and information for assessing the risk of bias in the studies.

We extracted the total number of live births and events involving birth defects from each study. To investigate which maternal age increases the probability of particular birth defects, we used the age categories from the included studies or defined new ones by merging 2 or more age groups. The age group of 20- to 30year-old mothers was used as a reference group. In defining the age groups, the ideal 10-year period was based on other studies, including our own work.²⁰ We aimed to look at AMA (35 or older), as commonly defined; very young mothers (under 20); and mothers over 40. In addition, between 30 and 40 years of age, we created additional groupings with a 5-year split to investigate at which stage the risk increase occurs for each anomaly. We only included studies for each outcome in the analysis if the reference and at least 1 more age category could be formed. For maximum accuracy, we grouped the endpoints

according to the International Classification of Diseases-10 (ICD-10) categories.

Assessment of risk of bias


Two authors (B.P., Á.M.) performed the risk of bias assessment independently with the help of the Quality in Prognostic Studies tool.²¹ Disagreements were resolved by a third review author (S.V.) (Supplementary Table 3). The specific methodological details are described in Supplemental Appendix 1. The webbased version of the Risk-of-Bias VISualization tool was used to visualization of the results (Supplementary Table 4).²²

Data synthesis

We carried out a mathematical synthesis if there were at least 3 homogenous articles regarding the age groups and NACs.

All statistical analyses were made with R^{23} using the meta (Schwarzer 2022, v5.5.0; University of Freiburg, Freiburg, Germany) and dmetar (Cuijpers

FIGURE 1 PRISMA 2020 flowchart representing the study selection process

DOI:10.14753/SE.2024.3114

[Amsterdam, Netherlands], Furukawa [Tokyo, Japan], and Ebert [Zurich, Switzerland] 2022, v0.0.9000) packages.²⁴

We anticipated considerable betweenstudy heterogeneity in the study population; therefore, a random-effects model was used to pool effect sizes. RR with 95% confidence interval (CI) was calculated as a random effects estimate with the metabin function of the meta (Schwarzer 2022, v5.5.0) R package. The Mantel-Haenszel method^{25–27} was used to pool RRs. Since the exact Mantel-Haenszel method was used, we did not apply continuity correction to handle 0 cell counts.²⁸

For outcomes with at least 5 studies, a Hartung-Knapp adjustment was used.^{29,30}

We applied the Paule-Mandel method³¹ to estimate the between-study variance (tau-2).

Additionally, between-study heterogeneity was investigated by Cochrane's Q test. Significant heterogeneity was considered at P < .1. Higgins & Thompson's I-2 statistics and 95% CI (30) were reported to illustrate the total variation across studies due to betweenstudy heterogeneity.

Following the recommendations of IntHout et al,³² where applicable, we also reported the prediction intervals (ie, the expected range of effects of future studies) of the pooled estimates.

A Cochrane Q test was used between subgroups to assess the age group differences. The null hypothesis was rejected at a 5% significance level. We used forest plots to summarize the results graphically. All statistical analyses were made with R (R Core Team 2022, v4.2.0) using the meta (Schwarzer 2022, v5.5.0) and dmetar (Cuijpers, Furukawa, Ebert 2022, v0.0.9000) packages.

Results

Study selection

Altogether 15,547 studies were identified by our search, from which 72 full-text articles were included in our synthesis following the selection process described above (Figure 1).

Study characteristics

The baseline characteristics of the enrolled studies are detailed in Supplemental Table 1.

Our meta-analysis includes populationbased studies from around the world. A precise geographic location is indicated in the baseline table. From the American continent, 37 articles were included; from Europe, 17; from Asia, 14; from Australia, 3; and from Africa 1. In terms of the study's examination period, the included articles encompass an overall timeframe between 1940 and 2018. All studies are population-based, with 36 studies carried out at the national level, 34 at the subnational level, and 2 at the multinational level, mostly based on the corresponding registries.

Risk of bias assessment

The results of the risk of bias assessment are presented in Supplemental Table 2.

Publication bias and heterogeneity: Most of our analyses showed high heterogeneity. This is attributable to the diversity of geographical regions, population sizes, date, and duration of the study periods represented by the included studies.

Based on the visual inspection of the funnel plots we did not find significant publication bias. The inspection of funnel plots was used to assess publication bias when a minimum of 10 articles were available for 1 outcome (Supplemental Figures 18–37).

Synthesis of results

The role of maternal age in the occurrence of NCAs

Table summarizes our results, while in the Supplementary Materials, we detail each of our forest plots. By default forest plots and summary statistics were prepared including all eligible studies regadless concommittant CAs.

Regarding our primary outcome, when we analyzed the total NCAs, we found that age >35 (RR 1.31, CI: 1.07–1.61) and especially age >40 (RR 1.44, CI: 1.25–1.66) increase the risk of NCAs (Figure 2). On this topic, we conducted 2 subgroup analyses to investigate this question more deeply. When we examined the age risk of total NCAs without the co-occurrence and influence effects of CAs, we found significant results for the >40 age category (RR 1.25, CI: 1.08–1.46). Furthermore, in the analysis where the influence of the chromosome abnormality was present, the risk of NCAs was found to increase in relation to maternal age >35 (RR 1.26, CI: 1.12–1.42) and >40 (RR 1.63, CI: 1.26–2.09), with risk increasing each year. *Congenital malformations of the nervous system* (Q00–Q07)

Analyzing 5 to 10 articles from different age groups, we found no effect between maternal age and congenital nervous system malformations.

Congenital malformations of the circulatory system (Q20–Q28)

We found a risk-increasing effect of AMA (>40, RR 1.94, CI: 1.28–2.93). Among the diseases of the circulatory system, we highlighted the group of CHDs, where we also found the risk-increasing effect of AMA (>35, RR 1.50, CI: 1.11–2.04 and >40, RR 1.75, CI: 1.32–2.32), while the preventive effect of young maternal age was observed (<20, RR 0.87, CI: 0.78–0.97; Figure 3). *Cleft lip and cleft palate* (Q35–Q37)

AMA (>40, RR 1.57, CI: 1.11-2.20) increased the risk of cleft lip and cleft palate. Regarding cleft palate separately, we found an even higher risk with AMA, which appears as early as the 35th maternal age (age >35, RR 1.78, CI: 1.16-2.73, and age >40, RR 1.77, CI: 1.48-2.11).

Congenital malformations of the digestive system (Q38–Q45)

We found a risk-increasing effect of AMA (age >40, RR 2.16, CI: 1.34-3.49). Congenital malformations of the urinary system (Q60-Q64)

We could not show an association between maternal age and congenital malformations of the urinary system after analyzing 3 eligible populationbased articles with homogeneous age categories.

Congenital malformations and deformations of the musculoskeletal system (Q65–Q79)

We did not find an association with maternal age. However, this can also be explained by the low number of articles, the heterogeneity, and the diverse nature of the group.

Other malformations

On the other hand, we found a clear association between maternal age and

DOI:10.14753/SE.2024.3114											
TABLE Summary of our results ba	ased on Internati	ional Classificati	on of	Diseases-10 or	oups						
Congenital anomaly	ICD-10 category	Age<20	N	Age 30–35	N	Age 35–40	N	Age>35	N	Age>40	N
All NCAs (with or without CAs)	Q00—Q89	1.08 (0.89; 1.32)	14	1.23 (0.85; 1.78)	13	1.47 (0.87; 2.49)	9	1.31 (1.06; 1.61)	13	1.44 (1.25; 1.66)	11
All NCAs (without CAs)	Q00—Q89	1.21 (0.59; 2.49)	5	1.54 (0.55; 4.32)	6	1.73 (0.45; 6.70)	5	1.37 (0.76; 2.45)	6	1.25 (1.08; 1.46)	6
All NCAs (with CAs)	Q00—Q89	1.15 (0.87; 1.52)	10	1.02 (0.99; 1.06)	7	1.20 (0.99; 1.44)	4	1.26 (1.12; 1.42)	7	1.63 (1.26; 2.09)	6
Nervous system	Q00—Q07	1.16 (0.74; 1.81)	10	1.64 (0.70; 3.81)	8	2.56 (0.64; 10.32)	5	1.53 (0.80; 2.94)	8	1.56 (0.67; 3.62)	7
Encephalocele	Q01	1.76 (0.44; 7.12)	3	1.51 (0.33; 6.83)	3	No data		1.43 (0.57; 3.60)	3	No data	
Congenital hydrocephalus	Q03	1.19 (1.02; 1.38)	2	No data		No data		No data		No data	
Spina bifida	Q05	1.30 (0.93; 1.82)	9	1.15 (0.65; 2.06)	8	1.79 (0.61; 5.31)	5	1.39 (0.75; 2.59)	8	1.96 (0.72; 5.31)	5
Anencephaly	Q00.0	1.40 (0.98; 1.99)	9	1.15 (0.72; 1.84)	8	1.20 (0.53; 2.72)	6	1.02 (0.60; 1.72)	8	1.30 (0.71; 2.38)	6
Circulatory system	Q20—Q28	0.87 (0.68; 1.11)	3	1.09 (1.00; 1.20)	3	1.18 (0.94; 1.49)	3	1.33 (0.97; 1.82)	3	1.94 (1.28; 2.93)	4
Congenital heart defects	Q20—Q26	0.87 (0.78; 0.97)	10	1.45 (0.83; 2.52)	10	1.91 (0.65; 5.62)	6	1.50 (1.11; 2.04)	10	1.75 (1.32; 2.32)	6
Cleft lip and palate	Q35—Q37	0.93 (0.76; 1.14)	6	1.58 (0.77; 3.22)	6	1.85 (0.59; 5.75)	4	1.47 (0.95; 2.28)	6	1.57 (1.11; 2.20)	4
Cleft palate	Q35	0.99 (0.56; 1.73)	6	1.42 (0.66; 3.06)	8	2.08 (0.54; 7.99)	5	1.78 (1.16; 2.73)	8	1.77 (1.48; 2.11)	5
Digestive system	Q38—Q45	0.98 (0.71; 1.37)	2	No data		No data		No data		2.16 (1.34; 3.49)	2
Urinary system	Q60—Q64	No data		0.97 (0.75; 1.26)	3	No data		0.86 (0.57; 1.29)	3	No data	
Hypospadiasis	Q54	0.99 (0.91; 1.07)	5	1.06 (0.96; 1.17)	4	No data		1.11 (0.88; 1.39)	4	No data	
Musculoskeletal system	Q65—Q79	0.88 (0.72; 1.08)	2	No data		0.93 (0.71; 1.22)	2	0.94 (0.65; 1.37)	2	0.90 (0.55; 1.46)	3
Congenital diaphragmatic hernia	Q79.0	0.96 (0.88; 1.06)	5	1.74 (0.52; 5.80)	4	No data		1.52 (0.79; 2.91)	5	No data	
Omphalocele	Q79.2	1.44 (1.08; 1.92)	14	1.13 (0.85; 1.50)	14	1.35 (0.98; 1.87)	13	1.47 (1.20; 1.79)	14	2.57 (1.77; 3.73)	13
Gastroschisis	Q79.3	3.08 (2.74; 3.47)	22	0.32 (0.23; 0.44)	17	0.27 (0.16; 0.47)	12	0.22 (0.15; 0.32)	17	0.41 (0.23; 0.74)	11

N-numbers represent the number of studies included in the analysis.

The reference group for each comparison was pregnant women between the age of 20-30.

CA, chromosomal abnormality; ICD-10, International Classification of Diseases-10; NCA, nonchromosomal congenital anomaly.

Systematic Review

ARTICLE IN PRESS

Systematic Review

DOI:10.14753/SE.2024.3114

FIGURE 2

Forest plot representing the RR with 95% CI of all nonchromosomal anomalies (ICD-10: Q00-Q89) in different age groups compared to the 20-30 age group

Study	Compara Events	ator group Total	Refere Events	nce group Total	Risk Ratio	RR	95%-CI	Weight
	Lionto	, otal	210110					noight
<20 vs 20 - 30 Sarkar_2013	83	4409	174	7178	-	0.78	[0.60; 1.01]	6.9%
Jaikrishan_2012	67	8833	1116	119314	-	0.81	[0.63; 1.04]	6.9%
Pasnicki_2013	199	17670	1739	125353	-	0.81	[0.70; 0.94]	7.2%
Bodnár_1970	206	13384	1342	71636	-	0.82	[0.71; 0.95]	7.2%
Materna_2009	628	75121	5588	601520	D	0.90	[0.83; 0.98]	7.3%
Hollier_2000	970	27521	2191	60575		0.97	[0.90; 1.05]	7.3%
Xie_2016	256	13535	12677	677622	Ť	1.01	[0.89; 1.14]	7.2%
Zhou_2020	39	5218	1108	157759	Ť	1.06	[0.77; 1.46]	6.6%
Hay_1972 Croen_1995	8688 3052	1240100 103735	33981 16122	5186500 597390	L.	1.07 1.09	[1.04; 1.09] [1.05; 1.13]	7.3% 7.3%
StLouis_2014	16174	1415846	69100	6615611	E Contraction of the second seco	1.09	[1.03; 1.13]	7.3%
Nazer_2007	115	1227	788	10481	<u> </u>	1.25	[1.03; 1.50]	7.1%
Tan_2005	149	5409	3176	150151	-	1.30	[1.11; 1.53]	7.1%
Parkes_2020	2753	18830	4557	109460		3.51	[3.36; 3.67]	7.3%
Random effects model	33379	2950838	153659	14490550	\$	1.08	[0.89; 1.32]	100.0%
Prediction interval							[0.47; 2.52]	
Heterogeneity: I ² = 99% [99 Test for effect in subgroup:			= 0					
>35 vs 20 - 30								
Mucat_2019	295	8163	1201	30231	-	0.91	[0.80; 1.03]	7.7%
Croen_1995	2811	98815	16122	597390	b .	1.05	[1.01; 1.10]	7.8%
StLouis_2014	21341	1929379	69100	6615611	¢.	1.06	[1.04; 1.08]	7.8%
Rider_2013	807	43061	2831	164711	(P)	1.09	[1.01; 1.18]	7.7%
Hay_1972	6103	834900	33981	5186500		1.12	[1.09; 1.15]	7.8%
Zhou_2020	189	22970	1108	157759	*	1.17	[1.00; 1.37]	7.6%
Pasnicki_2013	293	17498	1739 12677	125353	**	1.21	[1.07; 1.36]	7.7% 7.8%
Xie_2016 Hollier_2000	1568 187	68681 4189	12677 2191	677622	□ ₩	1.22	[1.16; 1.29] [1.07; 1.43]	7.8% 7.6%
Nazer_2007	187 389	4189	2191 788	60575 10481	± ±	1.23	[1.07; 1.43]	7.6%
Zhang_2012	389 80	4009	306	21098	-	1.33	[1.08; 1.49]	7.4%
Tan 2005	1935	54784	3176	150151		1.67	[1.58; 1.77]	7.8%
Materna 2009	970	25225	5588	601520		4.14	[3.87; 4.43]	7.8%
Random effects model	36968	3115567	150808	14399002	\$	1.31	[1.07; 1.61]	100.0%
Prediction interval							[0.56; 3.08]	
Heterogeneity: I ² = 99% [99 Test for effect in subgroup:			0					
>40 vs 20 - 30								
Rider_2013	138	7220	2831	164711	÷	1.11	[0.94; 1.32]	9.2%
Mucat_2019	59	1325	1201	30231	+	1.12	[0.87; 1.45]	8.8%
Croen_1995	426	13641	16122	597390		1.16	[1.05; 1.27]	9.3%
Bodnár_1970	63	2656	1342	71636	-	1.27	[0.99; 1.63]	8.9%
Hay_1972	1706	190200	33981	5186500		1.37	[1.30; 1.44]	9.4%
Hollier_2000	34	674	2191	60575	-	1.39	[1.00; 1.94]	8.5%
Materna_2009	248	18741	5588	601520	-	1.42	[1.26; 1.62]	9.3%
Pasnicki_2013 Nazer_2007	73 103	3556 834	1739 788	125353 10481	-	1.48 1.64	[1.17; 1.87] [1.35; 1.99]	8.9% 9.1%
Parkes_2020	454	6552	4557	109460		1.66	[1.52; 1.83]	9.3%
Tan_2005	386	7195	3176	150151		2.54	[2.29; 2.81]	9.3%
Random effects model	3690	252594	73516	7108008	*	1.44	[1.25; 1.66]	100.0%
Prediction interval					<u>+</u>		[0.84; 2.46]	
Heterogeneity: I ² = 94% [9 Test for effect in subgroup:			0.001					
30 - 35 vs 20 - 30								
Mucat_2019	629	17549	1201	30231		0.90	[0.82; 0.99]	7.7%
Zhang_2012	128	9658	306	21098	<u>±</u>	0.91	[0.74; 1.12]	7.4%
StLouis_2014	31473 6070	3145042 228226	69100 16122	6615611 597390	1	0.96	[0.95; 0.97] [0.96; 1.01]	7.8% 7.7%
Croen_1995 Hay_1972	7932	228226	33981	597390	T.	1.00	[0.96; 1.01] [0.97; 1.02]	7.8%
Tay_1972 Zhou_2020	371	52765	1108	157759	1	1.00	[0.89; 1.13]	7.7%
Rider_2013	1682	96088	2831	164711	Ē	1.02	[0.96; 1.08]	7.7%
Tan_2005	2610	117733	3176	150151	ļ.	1.05	[1.00; 1.10]	7.7%
Xie_2016	3253	165575	12677	677622	ļ.	1.05	[1.01; 1.09]	7.7%
Hollier_2000	409	10443	2191	60575	¢.	1.08	[0.98; 1.20]	7.7%
Nazer_2007	475	5482	788	10481		1.15	[1.03; 1.29]	7.7%
Pasnicki_2013	538	31917	1739	125353		1.22	[1.10; 1.34]	7.7%
Materna_2009	1497	14223	5588	601520			[10.73; 11.97]	7.7%
Random effects model	57067	5108801	150808	14399002	`	1.23	[0.85; 1.78]	100.0%
Prediction interval Heterogeneity: I ² = 100% [1 Test for effect in subgroup:			p = 0				[0.27; 5.71]	
35 - 40 vs 20 - 30								
Mucat_2019	236	6838	1201	30231		0.87	[0.76; 1.00]	11.0%
Croen_1995	2385	85174	16122	597390	- Li	1.04	[0.99; 1.08]	11.2%
Hay_1972	4397	644700	33981	5186500	ļ.	1.04	[1.01; 1.07]	11.2%
Rider_2013	669	35841	2831	164711		1.09	[1.00; 1.18]	11.2%
Pasnicki_2013	220	13942	1739	125353	j=	1.14	[0.99; 1.31]	11.0%
Hollier_2000	153	3515	2191	60575	*	1.20	[1.03; 1.41]	11.0%
Nazer_2007	286	3059	788	10481		1.24	[1.09; 1.42]	11.0%
Tan_2005	1549	47589	3176	150151	· · · · · · · · · · · · · · · · · · ·	1.54	[1.45; 1.63]	11.2%
Materna_2009	722 10617	6484 847142	5588	601520 6926912		11.99 1.47	[11.14; 12.90]	11.2%
Random effects model Prediction interval	10617	847142	67617	0926912		1.47	[0.87; 2.49] [0.20; 10.84]	100.0%
Heterogeneity: /2 = 100% [1	00%; 100%	$\tau^2 = 0.64$	p = 0				[0120, 10.04]	
Test for effect in subgroup:								
Test for subgroup difference			0.246)		0.1 0.5 1 2 10			
					0.1 0.5 1 2 10			

Lower with Comparator Higher with Comparator

Cl, confidence interval; RR, risk ratio.

FIGURE 3

Forest plot representing the RR with 95% CI of congenital heart defects (ICD-10: Q20–Q26) in different age groups compared to the 20-30 age group

DOI:10.14753/SE.2024.3114

o		tor group		nce group			0.50	
Study	Events	Total	Events	Total	Risk Ratio	RR	95%-CI	Weight
00 0000					1			
<20 vs 20 - 30	75	10077	4001	400000	-	0.70	[0 EC. 0 99]	10.69/
Donghua_2018	75	12077	4291	482922		0.70	[0.56; 0.88]	10.6%
Hansen_2021	226	31831	2649	267349		0.72	[0.63; 0.82]	10.8%
Pradat_1992	41	20952	904	349375		0.76	[0.55; 1.03]	10.3%
Materna_2009	280	75121	2764	601520		0.81	[0.72; 0.92]	10.9%
Purkey_2019	456	213632	2887	1198936	<u> </u>	0.89	[0.80; 0.98]	10.9%
Hay_1972	677	1240100	3193	5186500		0.89	[0.82; 0.96]	10.9%
Miller_2011	613	175645	2697	708470		0.92	[0.84; 1.00]	10.9%
Gupta_1967	3	488	10	1707		1.05	[0.29; 3.80]	5.0%
Liu_2013	1178	107091	10319	1036502	1	1.10	[1.04; 1.17]	11.0%
Jaikrishan_2012	12	8833	134	119314		1.21	[0.67; 2.18]	8.8%
Random effects model	3561	1885770	29848	9952595	0	0.87	[0.78; 0.97]	100.0%
Prediction interval					-		[0.64; 1.18]	
Heterogeneity: / ² = 85% [7	75%; 91%],	τ ² = 0.02, <i>p</i>	< 0.001					
Test for effect in subgroup:	$t_9 = -2.84$	(p = 0.019)						
>35 vs 20 - 30								
Gupta_1967	0	171	10	1707		0.47	[0.03; 8.06]	1.6%
Persson_2019	5652	366073	9011	671819	(a)	1.15	[1.11; 1.19]	11.0%
Liu_2013	4892	422788	10319	1036502		1.16	[1.12; 1.20]	11.0%
Donghua_2018	579	52828	4291	482922		1.23	[1.13; 1.34]	10.9%
Purkey_2019	1372	461119	2887	1198936		1.24	[1.16; 1.32]	11.0%
Pradat_1992	215	62103	904	349375		1.34	[1.15; 1.55]	10.8%
Miller_2011	739	134120	2697	708470		1.45	[1.33; 1.57]	10.9%
Hay_1972	768	834900	3193	5186500		1.49	[1.38; 1.62]	10.9%
	1491	90587		267349				11.0%
Hansen_2021			2649			1.66	[1.56; 1.77]	
Materna_2009	506	25225	2764	601520		4.37	[3.97; 4.80]	10.9%
Random effects model	16214	2449914	38725	10505100	\$	1.50	[1.11; 2.04]	100.0%
Prediction interval		2 0 10					[0.57; 3.99]	
Heterogeneity: I ² = 99% [9 Test for effect in subgroup:			< 0.001					
rest for effect in subgroup.	(g = 3.04 (p = 0.014						
20 25 00 20								
30 - 35 vs 20 - 30	0010	740040	10010	1000500	1	0.05	1 0 00 0 001	10 70/
Liu_2013	6810	716842	10319	1036502	1	0.95	[0.93; 0.98]	10.7%
Persson_2019	9257	670616	9011	671819	I. I.	1.03	[1.00; 1.06]	10.7%
Purkey_2019	1608	641948	2887	1198936	T T	1.04	[0.98; 1.11]	10.7%
Hay_1972	829	1214100	3193	5186500		1.11	[1.03; 1.20]	10.7%
Miller_2011	1240	283105	2697	708470		1.15	[1.08; 1.23]	10.7%
Pradat_1992	428	140992	904	349375		1.17	[1.05; 1.32]	10.6%
Donghua_2018	1344	125233	4291	482922		1.21	[1.14; 1.28]	10.7%
Hansen_2021	2041	168678	2649	267349	3	1.22	[1.15; 1.29]	10.7%
Gupta_1967	2	221	10	1707		1.54	[0.34; 7.00]	4.0%
Materna_2009	787	14223	2764	601520		12.04	[11.14; 13.01]	10.7%
Random effects model	24346	3975958	38725	10505100	\diamond	1.45	[0.83; 2.52]	100.0%
Prediction interval							[0.23; 8.99]	
Heterogeneity: I ² = 100% [, <i>p</i> = 0					
Test for effect in subgroup:	t ₉ = 1.51 (p = 0.165)						
>40 vs 20 - 30					L			
Pradat_1992	26	8510	904	349375	世	1.18	[0.80; 1.74]	18.0%
Materna_2009	130	18741	2764	601520	+	1.51	[1.27; 1.80]	19.6%
Liu_2013	1091	70844	10319	1036502		1.55	[1.45; 1.65]	19.9%
Hay_1972	246	190200	3193	5186500		2.10	[1.85; 2.39]	19.7%
Hansen_2021	323	13745	2649	267349	+	2.37	[2.12; 2.66]	19.8%
Gupta_1967	0	19	10	1707		- 4.17	[0.25; 68.69]	3.0%
Random effects model	1816	302059	19839	7442953	\$	1.75	[1.32; 2.32]	100.0%
Prediction interval							[0.87; 3.52]	
Heterogeneity: I ² = 91% [8	34%; 95%],	$\tau^2 = 0.05, p$	< 0.001					
Test for effect in subgroup:								
35 - 40 vs 20 - 30								
Gupta_1967	0	152	10	1707		0.53	[0.03; 9.05]	2.9%
Liu_2013	3801	351944	10319	1036502		1.08	[1.05; 1.13]	19.6%
Hay_1972	522	644700	3193	5186500		1.32	[1.20; 1.44]	19.4%
Pradat 1992	189	53593	904	349375	-	1.36	[1.17; 1.59]	19.2%
Hansen_2021	1168	76842	2649	267349		1.53	[1.43; 1.64]	19.5%
Materna_2009	376	6484	2764	601520			[11.36; 14.02]	19.4%
Random effects model		1133715	19839	7442953		1.91	[0.65; 5.62]	100.0%
Prediction interval							[0.10; 35.68]	
Heterogeneity: /2 = 100% [100%; 100%	%], T ² = 0.94	, <i>p</i> = 0					
Test for effect in subgroup:								
Test for subgroup difference			0 < 0.001)					
	÷		.,		0.1 0.5 1 2 10			

Lower with Comparator Higher with Comparator

Systematic Review

ajog.org

some individual malformations. The risk of omphalocele was higher in both very young (age<20, RR 1.44, CI: 1.08-1.92) and AMA (age>40, RR 2.57, CI: 1.77-3.73) women. Based on 22 eligible articles (age<20, RR 3.08, CI 2.74-3.47), gastroschisis shows a strong association with very young maternal age. The analyses of the ICD-10 main groups and certain individual anomalies can be found in the supplementary material (Supplementary Figures 1–17).

Regarding the congenital malformations of the eye, ear, face, and neck (Q10-Q18), congenital malformations of the respiratory system (Q30-Q34), and congenital malformations of genital organs (Q50-Q56), we did not find enough studies with homogenous age groups and NACs to carry out a mathematical synthesis.

Additionally, we also resorted our study-level outcomes by year of publication to showcase any apparent trend in case of outcomes where sufficient number of articles were available to have any chance to reliably assess any effect (Supplemental Figures 38–47) and we could not see any convincing trend. We also analyzed the subset of studies published from 2005 onward (Supplemental Figures 48–57): no clear and convincing trend could be identified, only weak trends in a few cases (summarized in Supplemental Table 6).

Comment

The present study aimed to investigate the influence of maternal age on the risk of NCAs. Overall, our results suggest that maternal age plays a significant role in NCAs, with notable variations observed across different age groups. This finding is particularly important given that the focus of the analysis was specifically on the NCAs, while CAs were excluded from the analysis. The coexistence of CAs occurred in several established studies, but examining maternal age associations of CAs was not the subject of our present study.

Principal findings and comparison with existing literature

One key finding of our study is the association between AMA (\geq 35 years and

DOI:10.14753/SE.2024.3114

 \geq 40 years) and an increased risk of NCAs. This finding is consistent with previous research,^{33–35} highlighting the importance of considering AMA as a risk factor in prenatal care and genetic counseling. The meta-analysis written on the subject in 2022 also considered AMA as a risk.³⁶ However, the significance of our present study is given by the fact that we specifically and exclusively examined NCAs and grouped them according to the International Classification of Diseases. We separately analyzed the main groups and some individual deviations. In addition, during our study, we examined the risk of several age groups compared to the reference age group. The increased risk observed in older mothers may be attributed to various factors, including increased rate of in vitro fertilization,³⁷⁻⁴⁰ increased prevalence of comorbidities especially pregestational diabetes mellitus,41-43 and a higher likelihood of exposure to environmental factors^{44,45} over an extended period. Contrary to our findings, some research has questioned the risk-increasing effect of AMA.^{46,47} This may be explained by the fact that the increase in maternal age in Europe is especially associated with women of higher social status, which may have led to a decrease in the risk of NCA in this age group compared to previous trends.^{47,48} Some studies show that AMA is associated with a reduced risk of NCAs, with researchers hypothesizing that the "all-or-nothing" phenomenon plays a stronger role in embryonic development as the egg ages and that anatomically normal fetuses are more likely to survive.49

Our findings support and strengthen previous research that has suggested a significant association between maternal age and the risk of different NCAs.^{20,50,51} By pooling data from multiple studies, our meta-analysis demonstrates a consistent pattern of increased risk among older and younger mothers. This finding adds to the body of evidence and underscores the importance of considering maternal age as a critical factor in assessing the risk of these anomalies.

Interestingly, we also observed an elevated risk of NCAs among younger

maternal age groups (<20 years), but this association is not statistically significant. This finding is consistent with previous studies and suggests that a very young maternal age may also be a significant risk factor for these anomalies.⁴⁷ Possible explanations for this increased risk among younger mothers include inadequate prenatal care, a higher prevalence of socioeconomic disadvantages, and increased susceptibility to nutritional deficiencies during pregnancy.⁵²

It is known that in addition to CAs, the incidence of NCAs also increases with age, which is why it is worthwhile to examine the relationship even without their copresence. We found that the increased risk persisted in subgroup analyses excluding coincident chromosomal anomalies (see Supplemental Table 5) The RR for NCAs between mothers aged 20 to 30 and those aged >40, without coincidence of chromosomal anomalies, was 1.25 (95% CI: 1.08–1.46), indicating a 25% higher risk of nonchromosomal anomalies in older mothers when chromosomal anomalies were not present. This finding aligns with our recent population-based study,²⁰ which demonstrated an increased risk of nonchromosomal anomalies in older mothers even after excluding CAs from the analysis. According to the current guidelines, there is specific recommendation for screening for NCAs based on maternal age. However, it has been previously demonstrated that maternal age is a significant risk factor for chromosomal anomalies. Consequently, there has been a growing emphasis on age-based screening, which has led to a notable improvement in the detection rate. While CAs are well-established in the etiology of developmental disorders, NCAs can also arise from gene abnormalities. However, no routine screening protocol is currently available for these; thus, their presence could not be excluded in this study. Moreover, their incidence is less associated with maternal age.53,54

A further aim of the present metaanalysis was to investigate the effect of maternal age on the prevalence of NCA using data classified by ICD-10

ajog.org

ARTICLE IN PRESS

DOI:10.14753/SE.2024.3114

Systematic Review

categories. By analyzing data from 5 different age groups (<20; 30-35; >35; 35-40; >40) and comparing them to a control age group of 20 to 30 years, we sought to provide a comprehensive understanding of the relationship between maternal age and specific types of NCAs. CHDs and neural tube defects (NTDs) should be addressed separately, as fetal echocardiography and neurosonography serve as complementary screening methods for these conditions.

In the circulatory system category, the risk of nonchromosomal anomalies was significantly higher in mothers aged >40. Specifically, CHDs within this category showed a similarly increased risk, with a 75% risk-increasing effect for mothers aged >40 compared to those aged 20 to 30. When comparing mothers aged >35 to those aged 20 to 30 a 50% increased risk was indicated in the older age group. These are significant findings from a clinical point of view, because there is currently no maternal age-related indication for fetal echocardiography. 55,56

No association with maternal age was found for NTDs. The literature does not provide consistent findings regarding the effect of age. Most studies also highlight the role of both very young and AMA.^{57,58} While other researchers suggest that a higher risk of NTD is associated with increased maternal age,⁵⁹ the diverse outcomes observed in studies may be attributed to the inconsistent definition of NTDs, as grouping was not uniformly applied across different research studies.

The included studies have span a long time period (1940–2018) during which substantial changes in lifestyle, prevention strategies,⁶⁰ and diagnostics may have happened; hence, the incidence of certain NCAs may have also changed over time. However, this shift does not appear to have impacted the dependence of RRs on maternal age.

Since no specific additional screening options are available for other NCA groups, ultrasound examinations adjusted for age in these particular age groups should prioritize the assessment of these organ systems. Special attention should be dedicated to the more frequent disparities observed in the low and high maternal age categories. Exploring the underlying causes of the risk-increasing effects within each age group can aid the identification of appropriate preventive options. Our findings indicate that the inclusion of age in screening protocols can enhance the likelihood of early detection of NCAs. While this study alone does not provide conclusive evidence regarding the isolated impact of age, it is important to consider the potential influence of lifestyle factors commonly associated with different age categories. Nevertheless, age alone can still be considered a distinct and significant risk factor.

Strengths and limitation

Regarding the strengths of our analysis, we followed our protocol, which was registered in advance. A rigorous methodology was applied. We included population-based articles, which gave us a comprehensive view of all NCAs. We included articles from around the world with a large number of cases, enabling the generalizability of the result.

However, there are several limitations. All included studies had a retrospective design that limited our ability to establish causality and precluded the assessment of certain confounding variables. The quality and heterogeneity of the included studies may have introduced some biases and limitations in interpreting our results. As with any metaanalysis, publication bias may be a concern, as studies with nonsignificant results are less likely to be published. Additionally, the sample sizes, the long study period with changing screening methods, and data reporting across the included studies may have introduced some degree of heterogeneity.

Conclusions and implication

The importance of immediate implementation of the results has been previously proven.^{61,62} Based on our study, we suggest advanced ultrasound screening and additional screening methods (fetal echocardiography) in high-risk age groups, and considering this knowledge in family planning due to the clear advantages of the rapid integration of the results into clinical practice. Our results suggest that introducing fetal echocardiography may be a priority for AMA.

Further prospective data collection is needed to assess the problem in question more accurately and to understand the role of maternal age in the case of rare NCAs.

In conclusion, our meta-analysis of population-based articles provides compelling evidence of the influence of maternal age (especially AMA) on the risk of NCAs. These findings have important clinical implications, emphasizing the need for age-specific prenatal care and genetic counseling to mitigate the risk of these anomalies.

REFERENCES

- 1. WHO. Birth defects/key facts 2022. Available at: https://www.who.int/news-room/fact-she ets/detail/birth-defects. Accessed October 25, 2023.
- **2.** Murray CJ, Vos T, Lozano R, et al. Disabilityadjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012;380:2197–223.

3. WHO. Congenital anomalies. Available at: https://www.who.int/health-topics/congenital-anomalies#tab=tab_1. Accessed October 25, 2023.

- **4.** United Nations, Department of Economic and Social Affairs, Population Division. World fertility patterns 2015–data booklet (ST/ESA/SER. A/ 370). New York, NY: United Nations; 2015.
- **5.** Stone L. Declining fertility in America. American Enterprise Institute:Washington, D.C.; 2018.
- **6.** Frick AP. Advanced maternal age and adverse pregnancy outcomes. Best Pract Res Clin Obstet Gynaecol 2021;70:92–100.
- **7.** Frederiksen LE, Ernst A, Brix N, et al. Risk of adverse pregnancy outcomes at advanced maternal age. Obstet Gynecol 2018;131: 457–63.

8. Cao J, Xu W, Liu Y, et al. Trends in maternal age and the relationship between advanced age and adverse pregnancy outcomes: a population-based register study in Wuhan, China, 2010-2017. Public Health 2022;206: 8–14.

Glick I, Kadish E, Rottenstreich M. Management of pregnancy in women of advanced maternal age: improving outcomes for mother and baby. Int J Womens Health 2021;13:751–9.
 Polani PE, Alberman E, Berry AC, Blunt S, Singer JD. Chromosome abnormalities and maternal age. Lancet 1976;1:516–7.

Systematic Review

DOI:10.14753/SE.2024.3114

11. Ferguson-Smith MA. Maternal age and Down syndrome. Lancet 1978;2:213.

12. Cuckle H. Maternal age-standardisation of prevalence of Down's syndrome. Lancet 1999;354:529–30.

13. Ma JY, Li S, Chen LN, Schatten H, Ou XH, Sun QY. Why is oocyte aneuploidy increased with maternal aging? J Genet Genomics 2020;47:659–71.

14. American College of Obstetricians and Gynecologists' Committee on Practice Bulletins— Obstetrics; Committee on Genetics; Society for Maternal-Fetal Medicine. Screening for fetal chromosomal abnormalities: ACOG practice bulletin, number 226. Obstet Gynecol 2020; 136:e48–69.

15. Fiorentino DG, Hughes F. Fetal screening for chromosomal abnormalities. Neoreviews 2021;22:e805–18.

16. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Rev Esp Cardiol (Engl Ed) 2021;74:790–9.

17. Cumpston M, Li T, Page MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev 2019;10:14651858.

 PROSPERO. Available at: https://www.crd. york.ac.uk/prospero/. Accessed May 11, 2023.
 McHugh ML. Interrater reliability: the kappa statistic. Biochem Med 2012;22:276–82.

20. Petho B, Matrai A, Agocs G, et al. Maternal age is highly associated with non-chromosomal congenital anomalies: analysis of a population-based case-control database. BJOG 2023;130:1217–25.

21. Sterne JA, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 2019;366:I4898.

22. McGuinness LA, Higgins JP. Risk-of-bias VISualization (robvis): an R package and Shiny web app for visualizing risk-of-bias assessments. Res Synth Methods 2021;12:55–61.

23. R Core Team. R Foundation for Statistical Computing. R: A language and environment for statistical computing. Vienna, Austria, 2023.

24. Egger M, Higgins JPT, & Smith GD, (eds). G. S. Meta-Analysis in R. Systematic reviews in health research: meta-analysis in context. Chapman and Hall/CRC, Boca Raton, FL, 2022: 510–34.

25. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 1959;22: 719–48.

26. Robins J, Greenland S, Breslow NE. A general estimator for the variance of the Mantel-Haenszel odds ratio. Am J Epidemiol 1986;124:719–23.

27. Thompson SG, Turner RM, Warn DE. Multilevel models for meta-analysis, and their application to absolute risk differences. Stat Methods Med Res 2001;10:375–92.

28. Sweeting MJ, Sutton AJ, Lambert PC. What to add to nothing? Use and avoidance of

continuity corrections in meta-analysis of sparse data. Stat Med 2004;23:1351–75.

29. Knapp G, Hartung J. Improved tests for a random effects meta-regression with a single covariate. Stat Med 2003;22:2693–710.

30. IntHout J, Ioannidis JP, Borm GF. The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method. BMC Med Res Methodol 2014;14:25.

31. Veroniki AA, Jackson D, Viechtbauer W, et al. Methods to estimate the between-study variance and its uncertainty in meta-analysis. Res Synth Methods 2016;7:55–79.

32. IntHout J, Ioannidis JP, Rovers MM, Goeman JJ. Plea for routinely presenting prediction intervals in meta-analysis. BMJ Open 2016;6:e010247.

33. Hollier LM, Leveno KJ, Kelly MA, MCIntire DD, Cunningham FG. Maternal age and malformations in singleton births. Obstet Gynecol 2000;96:701–6.

34. Moges N, Anley DT, Zemene MA, et al. Congenital anomalies and risk factors in Africa: a systematic review and meta-analysis. BMJ Paediatr Open 2023;7:e002022.

35. Cleary-Goldman J, Malone FD, Vidaver J, et al. Impact of maternal age on obstetric outcome. Obstet Gynecol 2005;105:983–90.

36. Ahn D, Kim J, Kang J, Kim YH, Kim K. Congenital anomalies and maternal age: a systematic review and meta-analysis of observational studies. Acta Obstet Gynecol Scand 2022;101:484–98.

37. Hwang SS, Dukhovny D, Gopal D, et al. Health of infants after ART-treated, subfertile, and fertile deliveries. Pediatrics 2018;142: e20174069.

38. Yu HT, Yang Q, Sun XX, et al. Association of birth defects with the mode of assisted reproductive technology in a Chinese data-linkage cohort. Fertil Steril 2018;109:849–56.

39. Hoorsan H, Mirmiran P, Chaichian S, Moradi Y, Hoorsan R, Jesmi F. Congenital malformations in infants of mothers undergoing assisted reproductive technologies: a systematic review and meta-analysis study. J Prev Med Public Health 2017;50:347–60.

40. Chen M, Heilbronn LK. The health outcomes of human offspring conceived by assisted reproductive technologies (ART). J Dev Orig Health Dis 2017;8:388–402.

41. Riskin A, Itzchaki O, Bader D, Iofe A, Toropine A, Riskin-Mashiah S. Perinatal outcomes in infants of mothers with diabetes in pregnancy. Isr Med Assoc J 2020;22:569–75.

42. Lemaitre M, Bourdon G, Bruandet A, et al. Pre-gestational diabetes and the risk of congenital heart defects in the offspring: a French nationwide study. Diabetes Metab 2023;49:101446.

43. Chen LJ, Chiu CH, Huang JY, et al. Maternal diabetes mellitus and birth defects in Taiwan: a 5-year nationwide population-based cohort study. J Chin Med Assoc 2023;86:589–95.

44. Ravindra K, Chanana N, Mor S. Exposure to air pollutants and risk of congenital anomalies: a systematic review and metaanalysis. Sci Total Environ 2021;765:142772.

45. Peyvandi S, Baer RJ, Chambers CD, et al. Environmental and socioeconomic factors influence the live-born incidence of congenital heart disease: a population-based study in California. J Am Heart Assoc 2020;9:e015255. **46.** Okmen Ozkan B, Koroglu N, Turkgeldi LS, Cetin BA, Aslan H. Advanced maternal age and risk of non-chromosomal anomalies: data from a tertiary referral hospital in Turkey. J Matern Fetal Neonatal Med 2019:32:749–52.

47. Loane M, Dolk H, Morris JK, Group EW. Maternal age-specific risk of non-chromosomal anomalies. BJOG 2009;116:1111–9.

48. Yang J, Carmichael SL, Canfield M, Song J, Shaw GM, National Birth Defects Prevention Study. Socioeconomic status in relation to selected birth defects in a large multicentered US case-control study. Am J Epidemiol 2008;167:145–54.

49. Goetzinger K, Shanks A, Odibo A, Macones G, Cahill A. Advanced maternal age and the risk of major congenital anomalies: survival of the fittest? Am J Obstet Gynecol 2014;210:S23.

50. Reefhuis J, Honein MA. Maternal age and non-chromosomal birth defects, Atlanta–1968-2000: teenager or thirty-something, who is at risk? Birth Defects Res A Clin Mol Teratol 2004;70:572–9.

51. Gill SK, Broussard C, Devine O, et al. Association between maternal age and birth defects of unknown etiology: United States, 1997-2007. Birth Defects Res A Clin Mol Teratol 2012;94:1010–8.

52. Miranda VIA, da Silva Dal Pizzol T, Silveira MPT, et al. The use of folic acid, iron salts and other vitamins by pregnant women in the 2015 Pelotas birth cohort: is there socioeconomic inequality? BMC Public Health 2019;19: 889.

53. Wojcik MH, Agrawal PB. Deciphering congenital anomalies for the next generation. Cold Spring Harb Mol Case Stud 2020;6: a005504.

54. Donahoe PK, Noonan KM, Lage K. Genetic tools and algorithms for gene discovery in major congenital anomalies. Birth Defects Res A Clin Mol Teratol 2009;85:6–12.

55. Donofrio MT, Moon-Grady AJ, Hornberger LK, et al. Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association. Circulation 2014;129:2183–242.

56. AIUM practice parameter for the performance of fetal echocardiography. J Ultrasound Med 2020;39:E5–16.

57. Feldman JG, Stein SC, Klein RJ, Kohl S, Casey G. The prevalence of neural tube defects among ethnic groups in Brooklyn, New York. J Chronic Dis 1982;35:53–60.

58. Borman GB, Smith AH, Howard JK. Risk factors in the prevalence of anencephalus and

DOI:10.14753/SE.2024.3114

spina bifida in New Zealand. Teratology 1986;33:221–30.

59. Dudin A. Neural tube defect among Palestinians: a hospital-based study. Ann Trop Paediatr 1997;17:217–22.

60. Oakley GP Jr, Bell KN, Weber MB. Recommendations for accelerating global action to

prevent folic acid-preventable birth defects and other folate-deficiency diseases: meeting of experts on preventing folic acid-preventable neural tube defects. Birth Defects Res A Clin Mol Teratol 2004;70:835–7.

61. Hegyi P, Eross B, Izbeki F, Parniczky A, Szentesi A. Accelerating the translational

medicine cycle: the Academia Europaea pilot. Nat Med 2021;27:1317-9.

62. Hegyi P, Petersen OH, Holgate S, et al. Academia Europaea position paper on translational medicine: the cycle model for translating scientific results into community benefits. J Clin Med 2020;9:1532.

Systematic Review

Appendix Supplementary Appendix 1. Risk of bias assessment methodology

Overall ratings for each domain were assigned as carrying 'low' (green), 'moderate' (yellow), or 'high' (red) risk of bias, based on the items included in each domain.

Study design: (1) low risk of bias was attributed if the proportion of baseline sample was available, also if the reason for lost to follow-up was detailed; (2) moderate risk of bias was attributed if a part of the above listed criteria were missing; (3) high risk of bias was attributed if data was missing for the above mentioned criteria.

Study participation measurement: (1) low risk of bias was attributed if authors adequately described the source population, including methods to identify patients and eligibility criteria; (2) moderate risk of bias was attributed if a part of the above listed descriptions were missing; (3) high risk of bias was attributed if baseline characteristics, eligibility criteria, time and place of recruitment were not described.

Prognostic factor measurement: (1) low risk of bias was attributed if clear and detailed age categories were used covering all age groups; (2) moderate risk of bias was attributed if clear categories were defined but some age groups were missing; (3) high risk of bias was attributed if only 1 group was examined.

Outcome measurement: (1) low risk of bias was attributed if there was clear definition of outcome, if the study used International Classification of Diseases-10 (ICD-10) category; (2) moderate risk of bias was attributed if a mentioned criteria were missing but can be matched to ICD-10 category; (3) high risk of bias was attributed if the anomaly could not be precisely identified or it was inadequate.

Study confounding measurement: (1) low risk of bias was attributed if important potential confounders were described and accounted for in the analysis; (2) moderate risk of bias was attributed if some of the important confounders were not measured; (3) high risk of bias was attributed if studies did not provide data on confounding factors.

DOI:10.14753/SE.2024.3114

Statistical analysis measurement: (1) low risk of bias was attributed if there is clear, raw data (no or negligible contradiction); (2) moderate risk of bias was attributed if requires some calculation or reading from a graph (minor contradiction); (3) high risk of bias was attributed if only approximate data can be obtained (serious contradiction).

SUPPLEMENTAL REFERENCES

1. Agopian A, Marengo L, Mitchell LE. Descriptive epidemiology of nonsyndromic omphalocele in Texas, 1999-2004. Am J Med Genet A 2009;149:2129–33.

2. Baer RJ, Chambers CD, Jones KL, et al. Maternal factors associated with the occurrence of gastroschisis. Am J Med Genet A 2015;167: 1534–41.

3. Beckman L, Nordstrom M. Population studies in northern Sweden. VIII. Frequencies of congenital malformations by region, time, sex and maternal age. Hereditas 1976;84:35–40.

4. Bergman JE, Loane M, Vrijheid M, et al. Epidemiology of hypospadias in Europe: a registry-based study. World J Urol 2015;33: 2159–67.

5. Baird PA, Sadovnick AD, Yee IM. Maternal age and oral cleft malformations: data from a population-based series of 576,815 consecutive livebirths. Teratology 1994;49:448–51.

6. Bodnár L. The effect of maternal age and birth order on the incidence of congenital abnormalities. Orv Hetil 1970;111:625–8.

7. Borman GB, Smith AH, Howard JK. Risk factors in the prevalence of anencephalus and spina bifida in New Zealand. Teratology 1986;33:221–30.

8. Bourque DK, Meng L, Dougan S, et al. Gastroschisis in Ontario, Canada: 2012–2018. Birth Defects Res 2021;113:1044–51.

9. Bugge M, Drachmann G, Kern P, et al. Abdominal wall defects in Greenland 1989-2015. Birth Defects Res 2017:109:836–42.

10. Byron-Scott R, Haan E, Chan A, Bower C, Scott H, Clark K. A population-based study of abdominal wall defects in South Australia and Western Australia. Paediatr Perinat Epidemiol 1998;12:136–51.

11. Canfield MA, Marengo L, Ramadhani TA, Suarez L, Brender JD, Scheuerle A. The prevalence and predictors of anencephaly and spina bifida in Texas. Paediatr Perinat Epidemiol 2009;23:41–50.

12. Canon S, Mosley B, Chipollini J, Purifoy JA, Hobbs C. Epidemiological assessment of hypospadias by degree of severity. J Urol 2012;188:2362–6.

13. Croen LA, Shaw GM. Young maternal age and congenital malformations: a population-based study. Am J Public Health 1995;85: 710–3.

14. DeRoo LA, Gaudino JA, Edmonds LD. Orofacial cleft malformations: associations with

maternal and infant characteristics in Washington state. Birth Defects Res A Clin Mol Teratol 2003;67:637–42.

15. Dott MM, Wong LY, Rasmussen SA. Population-based study of congenital diaphragmatic hernia: risk factors and survival in Metropolitan Atlanta, 1968-1999. Birth Defects Res A Clin Mol Teratol 2003;67:261–7.

16. Dudin A. Neural tube defect among Palestinians: a hospital-based study. Ann Trop Paediatr 1997;17:217–22.

17. Fedrick J. Anencephalus in Scotland 1961-72. Br J Prev Soc Med 1976;30:132–7.

18. Feldman JG, Stein SC, Klein RJ, Kohl S, Casey G. The prevalence of neural tube defects among ethnic groups in Brooklyn, New York. J Chronic Dis 1982;35:53–60.

19. Forrester MB, Merz RD. Descriptive epidemiology of oral clefts in a multiethnic population, Hawaii, 1986-2000. Cleft Palate Craniofac J 2004;41:622–8.

20. Forrester MB, Merz RD. Epidemiology of abdominal wall defects, Hawaii, 1986-1997. Teratology 1999;60:117–23.

21. Forrester MB, Merz RD. Epidemiology of neural tube defects, Hawaii, 1986-1997. Hawaii Med J 2000;59:323–7. 41.

22. Friedman AM, Ananth CV, Siddiq Z, D'Alton ME, Wright JD. Gastroschisis: epidemiology and mode of delivery, 2005–2013. Am J Obstet Gynecol 2016;215:348.e1-e9.

23. Gupta B, Antia AU. Incidence of congenital heart disease in Nigerian children. Br Heart J 1967;29:906–9.

24. Hansen M, Greenop K, Yim D, Ramsay J, Thomas Y, Baynam GS. Birth prevalence of congenital heart defects in Western Australia, 1990-2016. J Paediatr Child Health 2021;57: 1672–80.

25. Hay S. Incidence of selected congenital malformations in Iowa. Am J Epidemiol 1971;94: 572–84.

26. Hollier LM, Leveno KJ, Kelly MA, McIntire DD, Cunningham FG. Maternal age and malformations in singleton births. Obstet Gynecol 2000;96:701–6.

27. Jaikrishan G, Sudheer KR, Andrews VJ, et al. Study of stillbirth and major congenital anomaly among newborns in the high-level natural radiation areas of Kerala, India. J Community Genet 2013;4:21–31.

28. Janerich DT. Maternal age and spina bifida: longitudinal versus cross-sectional analysis. Am J Epidemiol 1972;96:389–95.

29. Janerich DT. Anencephaly and maternal age. Am J Epidemiol 1972;95:319–26.

30. Jaruratanasirikul S, Chicharoen V, Chakranon M, et al. Population-based study of prevalence of cleft lip/palate in southern Thailand. Cleft Palate Craniofac J 2016;53:351–6.

31. Jones AM, Isenburg J, Salemi JL, et al. Increasing prevalence of gastroschisis–14 states, 1995-2012. MMWR Morbid Mortal Wkly Rep 2016;65:23–6.

32. Kazaura M, Lie RT, Skjærven R. Paternal age and the risk of birth defects in Norway. Ann Epidemiol 2004;14:566–70.

Systematic Review

33. Kirby RS, Marshall J, Tanner JP, et al. Prevalence and correlates of gastroschisis in 15 states, 1995 to 2005. Obstet Gynecol 2013;122:275–81.

34. Liu S, Joseph KS, Lisonkova S, et al. Association between maternal chronic conditions and congenital heart defects: a population-based cohort study. Circulation 2013;128: 583–9.

35. Liu S, Evans J, MacFarlane AJ, et al. Association of maternal risk factors with the recent rise of neural tube defects in Canada. Paediatr Perinat Epidemiol 2019;33:145–53.

36. Li ZY, Chen YM, Qiu LQ, et al. Prevalence, types, and malformations in congenital anomalies of the kidney and urinary tract in newborns: a retrospective hospital-based study. Ital J Pediatr 2019;45:50.

37. Vo LU, Langlois PH. Time trends in prevalence of gastroschisis in Texas, 1999 to 2011: subgroup analyses by maternal and infant characteristics. Birth Defects Res A Clin Mol Teratol 2015;103:928–40.

38. Luo YL, Wang W, Gao XH, Huang YH, Xu Q, Cheng YL. Birth prevalence of orofacial clefts among perinatal infants: a register-based study in Bao'an district, Shenzhen, China. Birth Defects Res 2019;111:353–9.

39. Martínez Frías ML, Salvador J, Prieto L, Zaplana J. Incidence of gastroschisis and omphalocele in Spain. Rev Sanid Hig Pública (Madr) 1982;56:107–18.

40. Materna-Kiryluk A, Wisniewska K, Badura-Stronka M, et al. Parental age as a risk factor for isolated congenital malformations in a Polish population. Paediatr Perinat Epidemiol 2009;23: 29–40.

41. McGivern MR, Best KE, Rankin J, et al. Epidemiology of congenital diaphragmatic hernia in Europe: a register-based study. Arch Dis Child Fetal Neonatal Ed 2015;100:F137–44.

42. Miller A, Riehle-Colarusso T, Siffel C, Frías JL, Correa A. Maternal age and prevalence of isolated congenital heart defects in an urban area of the United States. Am J Med Genet A 2011;155:2137–45.

43. Mucat Baron Y, Gatt M, Calleja N, Collict M. Advanced maternal age and neonatal outcomes in Malta. Clin Exp Obstet Gynecol 2019;46: 265–9.

44. Nazer J, Aravena T, Cifuentes L. Congenital malformations in Chile. An emerging problem (period 1995-1999). Rev Med Chile 2001;129: 895–904.

45. Nazer HJ, Cifuentes OL. [Congenital malformations among newborns of teenage mothers]. Rev Med Chile 2013;141:1300–6.

46. Parkes B, Hansell AL, Ghosh RE, et al. Risk of congenital anomalies near municipal waste incinerators in England and Scotland:

retrospective population-based cohort study. Environ Int 2020;134:104845.

DOI:10.14753/SE.2024.3114

47. Paśnicki M, Wiśniewska K, Materna-Kiryluk A, Latos-Bieleńska A, Krawczyński M. The congenital malformations in children aged 0-2 in Zielona Góra province (1988-1997) and Lubuskie province (1998-2007) according to the Polish Registry of Congenital Malformations. Part 3. Age of mother and frequency of congenital malformations in children. Pediatr Pol 2013;88:48–56.

48. Persson M, Razaz N, Edstedt Bonamy AK, Villamor E, Cnattingius S. Maternal overweight and obesity and risk of congenital heart defects. J Am Coll Cardiol 2019;73:44–53.

49. Petrova JG, Vaktskjold A. The incidence of neural tube defects in Norway and the Arkhangelskaja Oblast in Russia and the association with maternal age. Acta Obstet Gynecol Scand 2009;88:667–72.

50. Pradat P. Epidemiology of major congenital heart defects in Sweden, 1981-1986. J Epidemiol Community Health 1992;46:211–5.

51. Purkey NJ, Axelrod DM, McElhinney DB, et al. Birth location of infants with critical congenital heart disease in California. Pediatr Cardiol 2019;40:310–8.

52. Rankin J, Dillon E, Wright C. Congenital anterior abdominal wall defects in the North of England, 1986-1996: occurrence and outcome. Prenat Diagn 1999;19:662–8.

53. Rankin J, Glinianaia S, Brown R, Renwick M. The changing prevalence of neural tube defects: a population-based study in the north of England, 1984-96. Northern Congenital Abnormality Survey Steering Group. Paediatr Perinat Epidemiol 2000;14:104–10.

54. Rider RA, Stevenson DA, Rinsky JE, Feldkamp ML. Association of twinning and maternal age with major structural birth defects in Utah, 1999 to 2008. Birth Defects Res A Clin Mol Teratol 2013;97:554–63.

55. Roeper PJ, Harris J, Lee G, Neutra R. Secular rates and correlates for gastroschisis in California (1968-1977). Teratology 1987;35: 203–10.

56. Salihu HM, Pierre-Louis BJ, Druschel CM, Kirby RS. Omphalocele and gastroschisis in the State of New York, 1992-1999. Birth Defects Res A Clin Mol Teratol 2003;67:630–6.

57. Salim TR, Soares GP, Klein CH, Oliveira GMM. Fetal and maternal factors are associated with mortality due to circulatory system disorders in children. Rev Saude Publica 2019;53:31.

58. Sarkar S, Patra C, Dasgupta MK, Nayek K, Karmakar PR. Prevalence of congenital anomalies in neonates and associated risk factors in a tertiary care hospital in eastern India. J Clin Neonatol 2013;2:131–4.

59. Sever LE. An epidemiologic study of neural tube defects in Los Angeles County II. Etiologic factors in an area with low prevalence at birth. Teratology 1982;25:323–34.

60. Shields ED, Bixler D, Fogh-Andersen P. Cleft palate: a genetic and epidemiologic investigation. Clin Genet 1981;20:13–24.

61. Short TD, Stallings EB, Isenburg J, et al. Gastroschisis trends and ecologic link to opioid prescription rates - United States, 2006-2015. MMWR Morb Mortal Wkly Rep 2019;68: 31–6.

62. St Louis AM, Kim K, Browne ML, et al. Prevalence trends of selected major birth defects: a multi-state population-based retrospective study, United States, 1999 to 2007. Birth Defects Res 2017;109:1442–50.

63. Tan KH, Kilby MD, Whittle MJ, Beattie BR, Booth IW, Botting BJ. Congenital anterior abdominal wall defects in England and Wales 1987-93: retrospective analysis of OPCS data. Br Med J 1996;313:903–6.

64. Pregnancy outcomes in women of very advanced maternal age: editorial comment. Obstet Gynecol Surv 2005;60:562–3.

65. Tan KB, Tan KH, Chew SK, Yeo GS. Gastroschisis and omphalocele in Singapore: a tenyear series from 1993 to 2002. Singap Med J 2008;49:31–6.

66. Williams LJ, Kucik JE, Alverson CJ, Olney RS, Correa A. Epidemiology of gastroschisis in metropolitan Atlanta, 1968 through 2000. Birth Defects Res A Clin Mol Teratol 2005;73:177–83.

67. Xie D, Yang T, Liu Z, Wang H. Epidemiology of birth defects based on a birth defect surveillance system from 2005 to 2014 in Hunan Province, China. PLoS One 2016;11:e0147280.
68. Xie D, Fang J, Liu Z, et al. Epidemiology and major subtypes of congenital heart defects in Hunan Province, China. Medicine (Baltimore) 2018;97:e11770.

69. Xu LL, Yuan XQ, Zhu J, et al. [Incidence and its trends on gastroschisis in some parts of China, 1996 - 2007]. Zhonghua Liu Xing Bing Xue Za Zhi 2011;32:268–70.

70. Zhang X, Li S, Wu S, et al. Prevalence of birth defects and risk-factor analysis from a population-based survey in Inner Mongolia, China. BMC Pediatr 2012;12:125.

71. Yang W, Carmichael SL, Harris JA, Shaw GM. Epidemiologic characteristics of congenital diaphragmatic hernia among 2.5 million California births, 1989-1997. Birth Defects Res A Clin Mol Teratol 2006;76:170–4.

72. Zhou Y, Mao X, Zhou H, et al. Epidemiology of birth defects based on a birth defect surveillance system in Southern Jiangsu, China, 2014-2018. J Matern Fetal Neonatal Med 2022;35: 745–51.

Systematic Review

DOI:10.14753/SE.2024.3114

SUPPLEMENTAL FIGURE 1

Forest plot representing the RR with 95% Cl of *all nonchromosomal anomalies (only studies excluding concomitant chromosomal anomalies)* (ICD-10 Q00–Q89) in different age groups compared to the 20 to 30 age group

Study	Comparate Events		Referer Events	ice group Total	Risk Ratio	RR	95%-Cl Weight
<20 vs 20 - 30					1		-
	100	17670	1720	105252		0.01	10.70.004 10.0%
Pasnicki_2013	199	17670	1739	125353	1		[0.70; 0.94] 19.9%
Materna_2009	628	75121	5588	601520	1		[0.83; 0.98] 20.0%
Hollier_2000	970	27521	2191	60575	× .		[0.90; 1.05] 20.0%
StLouis_2014				6615611	Π		[1.08; 1.11] 20.1%
Parkes_2020	1231	18830	2136	109460			[3.13; 3.59] 20.0%
Random effects		1554988	80754	7512519	~	1.21	[0.59; 2.49] 100.0%
Prediction interv			•	•			[0.16; 9.09] -
Heterogeneity: J ² = 10 Test for effect in subg			33, p < 0.00	01			
>35 vs 20 - 30							
Mucat_2019	295	8163	1201	30231	ц.	0.91	[0.80; 1.03] 16.6%
StLouis_2014	21341	1929379	69100	6615611	ļ.	1.06	[1.04; 1.08] 16.8%
Rider_2013	807	43061	2831	164711		1.09	[1.01; 1.18] 16.7%
Pasnicki_2013	293	17498	1739	125353		1.21	[1.07; 1.36] 16.6%
Hollier_2000	187	4189	2191	60575			[1.07; 1.43] 16.6%
Materna_2009	970	25225	5588	601520			[3.87; 4.43] 16.7%
Random effects	model3893	2027515	82650	7598001	\$		[0.76; 2.45] 100.0%
Prediction interv	al .						[0.26; 7.18] -
Heterogeneity: $I^2 = 10$		w1. 7 ² = 0.3	B1, p = 0				
Test for effect in subg							
>40 vs 20 - 30					1		
Parkes_2020	139	6552	2136	109460	면		[0.92; 1.29] 16.9%
Rider_2013	138	7220	2831	164711	100 E		[0.94; 1.32] 16.9%
Mucat_2019	59	1325	1201	30231	픈	1.12	[0.87; 1.45] 16.5%
Hollier_2000	34	674	2191	60575	-	1.39	[1.00; 1.94] 16.2%
Materna_2009	248	18741	5588	601520	-	1.42	[1.26; 1.62] 17.0%
Pasnicki_2013	73	3556	1739	125353	-	1.48	[1.17; 1.87] 16.6%
Random effects	model 691	38068	15686	1091850	۰	1.25	[1.08; 1.46] 100.0%
Prediction interv	al .						[0.91; 1.73] -
Heterogeneity: <i>I</i> ² = 57 Test for effect in subg			= 0.040				
30 - 35 vs 20 - 30	1						
Mucat 2019	629	17549	1201	30231		0.90	[0.82; 0.99] 16.6%
StLouis_2014		3145042			di la constante		[0.95; 0.97] 16.7%
Rider_2013	1682	96088	2831	164711	i i		[0.96; 1.08] 16.7%
Hollier_2000	409	10443	2191	60575	Б		[0.98; 1.20] 16.6%
Pasnicki_2013	538	31917	1739	125353			[1.10; 1.34] 16.6%
Materna 2009	1497	14223	5588	601520			[10.73; 11.97] 16.7%
Random effects							[0.55; 4.32] 100.0%
Prediction interv							[0.08; 29.38] -
Heterogeneity: J ² = 10		1%1.7°-04					
Test for effect in subg	•						
35 - 40 vs 20 - 30	1						
Mucat_2019	236	6838	1201	30231		0.87	[0.76; 1.00] 20.0%
Rider_2013	669	35841	2831	164711			[1.00; 1.18] 20.1%
Pasnicki_2013	220	13942	1739	125353			[0.99; 1.31] 20.0%
Hollier_2000	153	3515		60575			[1.03; 1.41] 19.9%
Materna_2009	722	6484	5588	601520			[11.14; 12.90] 20.1%
Random effects Prediction interv	model2000		13550	982390		1.73	[0.45; 6.70] 100.0% [0.04; 77.01] -
Heterogeneity: $I^2 = 10$		······································	18, p = 0				
Test for effect in subg					·		
Test for subgroup diffe	erences: $?_4^2 = 0$.	.82, df = 4 (j	p = 0.935)		0.1 0.51 2 10		

Lower with Comparator Higher with Comparator

SUPPLEMENTAL FIGURE 2 Forest plot representing the RR with 95% CI of *all nonchromosomal anomalies (only studies including concomitant chromosomal anomalies)* (ICD-10: Q00–Q89 with Q90–Q99) in different age groups compared to the 20 to 30 age group

DOI:10.14753/SE.2024.3114

	Comparate	or group	Referen	ce droup		
Study	Events		Events	Total	Risk Ratio	RR 95%-Cl Weight
<20 vs 20 - 30					1	
Sarkar_2013	83	4409	174	7178	-	0.78 [0.60; 1.01] 9.2%
Jaikrishan_2012	67	8833	1116	119314	-	0.81 [0.63; 1.04] 9.3%
Bodnár_1970	206	13384	1342		-	
Xie_2016	206	13535	12677	71636 677622	-	
Zhou_2020	39	5218	1108		<u> </u>	
-		1240100		157759		1.06 [0.77; 1.46] 8.5%
Hay_1972				5186500	-	1.07 [1.04; 1.09] 10.8%
Croen_1995	3052	103735	16122	597390	- M	1.09 [1.05; 1.13] 10.8%
Nazer_2007	115	1227	788	10481		1.25 [1.03; 1.50] 9.9%
Tan_2005	149 1522	5409 18830	3176 2421	150151 109460		1.30 [1.11; 1.53] 10.1%
Parkes_2020 Random effects m					L	■3.65 [3.43; 3.89] 10.7%
Prediction interva		1414000	12905	/00/491		1.15 [0.87; 1.52] 100.0%
		· · · ·		•		- [0.40; 3.35]
Heterogeneity: I ² = 991 Test for effect in subgro			< 0.001			
est for enect in subgro	iup. z = 1.00 (p = 0.320)				
>35 vs 20 - 30						
Croen_1995	2811	98815	16122	597390		1.05 [1.01; 1.10] 14.8%
Hay_1972	6103	834900	33981	5186500		1.12 [1.09; 1.15] 14.8%
Zhou_2020	189	22970	1108	157759		1.17 [1.00; 1.37] 13.9%
Xie_2016	1568	68681	12677	677622		1.22 [1.16; 1.29] 14.7%
Nazer_2007	389	3893	788	10481	-	1.33 [1.18; 1.49] 14.3%
Zhang_2012	80	4009	306	21098		1.38 [1.08; 1.76] 12.8%
Tan_2005	1935	54784	3176	150151		1.67 [1.58; 1.77] 14.7%
Random effects m					\$	1.26 [1.12; 1.42] 100.0%
Prediction interva	a .					[0.83; 1.90]
Heterogeneity: /2 = 97%	6 [96%; 98%].	? ² = 0.02, p	< 0.001			• / •
Test for effect in subgro	oup: z = 3.79 (p < 0.001				
10						
>40 vs 20 - 30 Croen_1995	426	13641	16122	597390	-	1.16 [1.05; 1.27] 17.2%
Bodnár_1970	63	2656	1342	71636	-	1.27 [0.99; 1.63] 15.1%
Hay_1972	1706	190200	33981	5186500		1.37 [1.30; 1.44] 17.5%
Nazer_2007	103	834	788	10481		1.64 [1.35; 1.99] 16.0%
Parkes_2020	315	6552	2421	109460	-	2.17 [1.94; 2.44] 17.0%
Tan_2005	386	7195	3176	150151		2.54 [2.29; 2.81] 17.1%
Random effects m		221078			~	1.63 [1.26; 2.09] 100.0%
Prediction interva		221010	57000	0123010		- [0.65; 4.09]
Heterogeneity: /2 = 97%		2 ² = 0.09. c	< 0.001			[0.00, 4.00]
Test for effect in subgro						
30 - 35 vs 20 - 30 Zhang_2012	128	9658	306	21098		0.91 [0.74; 1.12] 13.2%
Croen_1995		228226	16122	597390	1	0.99 [0.96; 1.01] 14.6%
Hay_1972		1214100	33981	5186500	1	1.00 [0.97; 1.02] 14.6%
Zhou_2020	371	52765	1108	157759	1	1.00 [0.89; 1.13] 14.1%
Tan_2005	2610	117733	3176	150151	Ĩ.	1.05 [1.00; 1.10] 14.6%
				677622	μ.	
Xie_2016	3253 475	165575 5482	12677 788	10481		
		040Z				1.15 [1.03; 1.29] 14.2% 1.02 [0.99; 1.06] 100.0%
		1702520		0001001	v	
Nazer_2007 Random effects m	node20839		68158		\perp	
Random effects m Prediction interva	node20839				+	[0.92; 1.14]
Random effects m Prediction interva Heterogeneity: J ² = 63%	node20839 II	? ² = < 0.01			t	
Random effects m Prediction interva Heterogeneity: J ² = 63%	node20839 II	? ² = < 0.01			+	
Random effects n Prediction interva Heterogeneity: I ² = 63 ³ Test for effect in subgro	node20839 II	? ² = < 0.01			Ť	
Random effects n Prediction interva Hatarageneity: J ² = 63 ⁹ Test for effect in subgro 35 - 40 vs 20 - 30	node20839 II	? ² = < 0.01	, p = 0.012	597390	ļ	
Random effects m Prediction interva Heterogeneity: 1 ² = 63 ³ Test for effect in subgro 35 - 40 vs 20 - 30 Croen_1995	node20839 il & [17%; 84%], pup: z = 1.18 (? ² = < 0.01 p = 0.236)	, p = 0.012		6	[0.92; 1.14] 1.04 [0.99; 1.08] 25.3%
Random effects m Prediction interva Heterogeneity: 1 ² = 631 Test for effect in subgro 35 - 40 vs 20 - 30 Groen_1995 Hay_1972	nod@0839 il & [17%; 84%], pup: z = 1.18 (2385	? ² = < 0.01 p = 0.236) 85174	, p = 0.012 16122	597390		[0.92; 1.14] 1.04 [0.99; 1.08] 25.3% 1.04 [1.01; 1.07] 25.3% 1.24 [1.09; 1.42] 24.3%
Random effects m Prediction interva Heterogeneity: J ² = 63% Test for effect in subgro 35 - 40 vs 20 - 30 Croen_1995 Hay_1972 Nazer_2007	100620839 11 6 [17%; 84%], pup: z = 1.18 (2385 4397	? ² = < 0.01 p = 0.236) 85174 644700	<i>p</i> = 0.012 16122 33981	597390 5186500		[0.92; 1.14] 1.04 [0.99; 1.08] 25.3% 1.04 [1.01; 1.07] 25.3% 1.24 [1.09; 1.42] 24.3%
Random effects m Prediction interva	100420839 11 54 [17%; 84%], 50000; z = 1.18 (2385 4397 286 1549	? ² = < 0.01 (p = 0.236) 85174 644700 3059 47589	, p = 0.012 16122 33981 788 3176	597390 5186500 10481 150151		[0.92; 1.14] 1.04 [0.99; 1.08] 25.3% 1.04 [1.01; 1.07] 25.3% 1.24 [1.09; 1.42] 24.3% 1.54 [1.45; 1.63] 25.1%
Random effects m Prediction interva Heterogeneity: J ² = 63% Test for effect in subgro 35 - 40 vs 20 - 30 Croen_1995 Hay_1972 Nazer_2007 Tan_2005	100420839 11 54 [17%; 84%], 5000: z = 1.18 (2385 4397 286 1549 1004818617	? ² = < 0.01 (p = 0.236) 85174 644700 3059 47589	, p = 0.012 16122 33981 788 3176	597390 5186500 10481 150151		[0.92; 1.14] 1.04 [0.99; 1.08] 25.3% 1.04 [1.01; 1.07] 25.3% 1.24 [1.09; 1.42] 24.3% 1.54 [1.45; 1.63] 25.1%
Random effects m Prediction interva Heterogeneity. I ² = 631 Test for effect in subgro 35 - 40 vs 20 - 30 Croen_1995 Hay_1972 Nazer_2007 Tan_2005 Random effects m	node20839 I . 6 [17%; 84%], sup: z = 1.18 (2385 4397 286 1549 node18617 I .	2 ² = < 0.01	16122 33981 788 3176 54067	597390 5186500 10481 150151	• • •	[0.92; 1.14] 1.04 [0.99; 1.08] 25.3% 1.04 [1.01; 1.07] 25.3% 1.24 [1.09; 1.42] 24.3% 1.54 [1.45; 1.63] 25.1% 1.20 [0.99; 1.44] 100.0%
Random effects m Prediction interva Heterogeneity: / ² = 639 Test for effect in subgro 35 - 40 vs 20 - 30 Croen_1995 Hay_1972 Nazer_2007 Tan_2005 Random effects m Prediction interva	node20839 ll . 6 [17%; 84%]. pup: z = 1.18 (2385 4397 286 1549 node18617 ll . 6 [96%; 99%].	? ² = < 0.01 (p = 0.236) 85174 644700 3059 47589 780522 ? ² = 0.03, p	16122 33981 788 3176 54067	597390 5186500 10481 150151		[0.92; 1.14] 1.04 [0.99; 1.08] 25.3% 1.04 [1.01; 1.07] 25.3% 1.24 [1.09; 1.42] 24.3% 1.54 [1.45; 1.63] 25.1% 1.20 [0.99; 1.44] 100.0%
Random effects m Prediction interva Heterogeneity: <i>I</i> ² = 639 Test for effect in subgro 35 - 40 vs 20 - 30 Croen_1995 Hay_1972 Nazer_2007 Tan_2005 Random effects m Prediction interva Heterogeneity: <i>I</i> ² = 969	node20839 ll . 4 [17%; 84%], pup: z = 1.18 (2385 4397 286 1549 node18617 ll . 4 [96%; 99%].	? ² = < 0.01 (p = 0.236) 85174 644700 3059 47589 780522 ? ² = 0.03, p	16122 33981 788 3176 54067	597390 5186500 10481 150151		[0.92; 1.14] 1.04 [0.99; 1.08] 25.3% 1.04 [1.01; 1.07] 25.3% 1.24 [1.09; 1.42] 24.3% 1.54 [1.45; 1.63] 25.1% 1.20 [0.99; 1.44] 100.0%

Lower with Comparator Higher with Comparator

Systematic Review

DOI:10.14753/SE.2024.3114

SUPPLEMENTAL FIGURE 3

Forest plot representing the RR with 95% CI of *congenital anomalies of the nervous system* (ICD-10: Q00–Q07) in different age groups compared to the 20 to 30 age group

Chudu		nparator		Reference	Dist. Datis		oral of Weight
Study	Events	Total	Events	Total	Risk Ratio	RR	95%-CI Weight
<20 vs 20 - 30							
Jaikrishan_2012	1	8833	65	119314		0.21	[0.03; 1.50] 4.4%
Bodnár_1970	38	13384	276	71636	-	0.74	[0.53; 1.03] 10.6%
Dudin_1997	30	7798	74	14619	ㅋ		[0.50; 1.16] 10.4%
Feldman_1982	24	29235	114	111052	1	0.80	
Pasnicki_2013 Rankin_2000	22 108	17670 52816	146 580	125353	Ť	1.07	
Rankin_2000 Forrester_2000B	28	23026	134	317512 126287	Ē	1.12	[0.91; 1.37] 10.9% [0.76; 1.72] 10.4%
Materna_2009	63	75121	415	601520	Ę		[0.93; 1.58] 10.8%
Petrova_2009	68	28497	357	239383	-		[1.23; 2.07] 10.8%
Sever_1982	140	146173	586	2628305			[3.57; 5.17] 11.0%
Random effects mo	del 522	402553	2747	4354981	\$	1.16	[0.74; 1.81] 100.0%
Prediction interval							[0.29; 4.69]
Heterogeneity: I ² = 95% [9 Test for effect in subgroup			< 0.001				
l est for effect in subgroup	$r_{g} = 0.74$	(p = 0.478)					
>35 vs 20 - 30							
Petrova_2009	57	52941	357	239383	-	0.72	[0.55; 0.95] 12.8%
Rankin_2000	53	36304	580	317512	*		[0.60; 1.06] 12.8%
Pasnicki_2013	20	17498	146	125353	+	0.98	[0.62; 1.57] 12.2%
Forrester_2000B	31	27938	134	126287	辛	1.05	[0.71; 1.55] 12.5%
Mucat_2019	14	8163	42	30231	- -	1.23	
Feldman_1982	21	11508	114	111052	*		[1.12; 2.83] 12.2%
Materna_2009	59 88	25225 61315	415 586	601520	±		[2.58; 4.45] 12.9%
Sever_1982 Random effects mod		240892		2628305 4179643	~		[5.15; 8.05] 13.0% [0.80; 2.94] 100.0%
Prediction interval		210002	2014				[0.22; 10.87]
Heterogeneity: /2 = 97% [9	96%; 98%],	7 = 0.57, p	< 0.001				[
Test for effect in subgroup	: f ₇ = 1.56	(p = 0.164)					
>40 vs 20 - 30					_		
Pasnicki_2013 Materna, 2009	1	3556 18741	146 415	125353 601520		0.24	
Materna_2009 Forrester_2000B	5	4409	134	126287		1.07	
Bodnár_1970	13	2656	276	71636	<u>1</u>	1.27	
Mucat_2019	3	1325	42	30231		1.63	
Dudin_1997	4	272	74	14619		2.91	[1.07; 7.89] 13.8%
Sever_1982	18	13696	586	2628305			[3.69; 9.42] 17.6%
Random effects mo	del 55	44655	1673	3597951	~		[0.67; 3.62] 100.0%
Prediction interval Heterogeneity: l ² = 84% [6		7-061					[0.17; 13.99]
Test for effect in subgroup							
30 - 35 vs 20 - 30							
Petrova_2009	125	113746	357	239383	-	0.74	[0.60; 0.90] 12.8%
Rankin_2000	163	100773	580	317512	<u> </u>	0.89	
Feldman_1982	20	21860	114	111052	Ť	0.89	
Forrester_2000B Pasnicki_2013	52 40	51844 31917	134 146	126287 125353	1	0.95 1.08	
Mucat 2019	32	17549	42	30231	Ē.	1.31	[0.83; 2.08] 12.0%
Sever_1982	144	109762	586	2628305			[4.90; 7.06] 12.8%
Materna_2009	105	14223	415	601520	=		[8.64; 13.25] 12.8%
Random effects mo	del 681	461674	2374	4179643	~	1.64	[0.70; 3.81] 100.0%
Prediction interval	•			•			[0.12; 21.90]
Heterogeneity: I ² = 99% [9 Test for effect in subgroup			< 0.001				
rest for effect in subgroup	. 17 = 1.50	(0 = 0.210)					
35 - 40 vs 20 - 30							
Forrester_2000B	26	23529	134	126287	<u>+</u>	1.04	[0.68; 1.58] 20.1%
Mucat_2019	11	6838	42	30231			[0.60; 2.25] 18.4%
Pasnicki_2013	19	13942	146	125353	幸	1.17	[0.73; 1.89] 19.7%
Sever_1982	70	47619	586	2628305			[5.15; 8.45] 21.0%
Materna_2009	48	6484	415	601520	=		[7.97; 14.45] 20.8%
Random effects mod Prediction interval	dei 174	98412	1323	3511696			[0.64; 10.32] 100.0%
Heterogeneity: 1 ² = 97% [9		7 = 1 21		•		- 1	[0.05; 120.01]
Test for effect in subgroup							
Test for subgroup differen	oes: ? ² ₄ = 2.	.77, df = 4 (j	p = 0.598)	0	.01 0.1 1 10	100	
				awar with	Compositor Historiul		

Lower with Comparator Higher with Comparator

Forest plot representing the RR with 95% CI of *encephalocele* (ICD-10: Q01) in different age groups compared to the 20 to 30 age group

DOI:10.14753/SE.2024.3114

	Comparator	R	eference				
Study	Events Total	Events	Total	Risk Ratio	RR		95%-Cl Weight
				1			
<20 vs 20 - 30							
Forrester_2000B	3 23077		126243	11111111111111111111111111111111111111	0.57	[0.17;	1.86] 27.1%
StLouis_2014	121 1415846		6615611		1.25	[1.02;	1.53] 38.0%
Sever_1982	15 146173		2628305	-	6.58	[3.64;	11.88] 34.9%
Random effects mo	odel 139 1585096	523	9370159	\$	1.76	[0.44;	7.12] 100.0%
Prediction interval					- [0	0.00; 68106	679.55] -
Heterogeneity: I ² = 93%	[84%; 97%], ? ² = 1.38, /	p < 0.001					
Test for effect in subgrou	p: z = 0.79 (p = 0.428)						
>35 vs 20 - 30							
Forrester_2000B	6 28034	29	126243	D	0.93	[0.39;	2.24] 31.7%
StLouis_2014	126 1929379	453	6615611	di seconda d	0.95	[0.78;	1.16] 38.5%
Sever 1982	4 61315	41	2628305	=	4.18	[1.50;	11.67 29.7%
Random effects mo	del 136 2018728	523	9370159	\$	1.43	[0.57;	3.60] 100.0%
Prediction interval						[0.00; 84	219.85] -
Heterogeneity: $I^2 = 74\%$	[13%: 92%], ? ² = 0.52,	p = 0.021				•	
Test for effect in subgrou							
30 - 35 vs 20 - 30							
Forrester_2000B	7 51852	29	126243	E1	0.59	[0.26;	1.34] 30.7%
StLouis_2014	179 3145042	453	6615611	(d)	0.83	[0.70;	0.99] 36.5%
Sever_1982	12 109762	41	2628305		7.01	[3.68;	13.33] 32.8%
Random effects mo	del 198 3306656	523	9370159	\$	1.51	[0.33;	6.83] 100.0%
Prediction interval					[0	.00; 326684	715.16] -
Heterogeneity: $I^2 = 95\%$	[89%; 98%], ? ² = 1.69,	p < 0.001			-	-	-
Test for effect in subgrou							
Test for subgroup different	nces: $?_{2}^{2} = 0.06$, df = 2 (p = 0.971)		0.001 1 1000			
v ,	2	,					
		L	ower with	Comparator Higher wi	th Compa	arator	

Forest plot representing the RR with 95% CI of *congenital hydrocephalus* (ICD-10: Q03) in different age groups compared to the 20 to 30 age group

	Com	parator	R	eference					
Study	Events	Total	Events	Total		Risk Ratio	RF	95%-	CI Weight
<20 vs 20 - 30						1			
Hay_1972	455	1240100	1644	5186500			1.10	6 [1.04; 1.2	28] 88.9%
Materna_2009	24	75121	130	601520				8 (0.96; 2.2	28] 11.1%
Random effects m	nodel 479 1	1315221	1774	5788020		\sim	1.19	9 [1.02; 1.3	8] 100.0%
Heterogeneity: /2 = 13%	6, ? ² = < 0.01,	p = 0.284							
Test for effect in subgro	up: z = 2.26 (j	p = 0.024							
Test for subgroup differ	ences: $?_0^2 = 0.0$	00, df = 0 (/	p = NA)		0.5	1	2		

Lower with Comparator Higher with Comparator

Forest plot representing the RR with 95% CI of *spina bifida* (ICD-10: Q05) in different age groups compared to the 20 to 30 age group

DOI:10.14753/SE.2024.3114

	0.						
Study	Events	mparator Total	Events	teference Total	Risk Ratio	RR	95%-CI Weight
<20 vs 20 - 30					1		
Borman_1986	5	6853	35	35211		0.73	[0.29; 1.87] 7.9%
Canfield_2009	85	269890		1004687	*		[0.72; 1.16] 11.7%
StLouis_2014	435	1415846	2059	6615611	4		[0.89; 1.09] 12.0%
Janerich_1972	407	379484	2615	2780544	2		[1.03; 1.27] 12.0%
Hay_1972	952	1240100	3477	5186500	3	1.15	[1.07; 1.23] 12.1%
Forrester_2000B	12	23033	56	126252	- -	1.17	[0.63; 2.19] 9.8%
Liu_2019	81	209192	436	1633199	*	1.45	[1.14; 1.84] 11.7%
Petrova_2009	34	28497	178	239383			[1.11; 2.32] 11.2%
Sever_1982	52	146173		2628305	*		[2.60; 4.71] 11.5%
Random effects mo	del2063	3719068	9468	20249692	\$		[0.93; 1.82] 100.0%
Prediction interval	•	· · · ·	•	•			[0.48; 3.53] -
Heterogeneity: I ² = 89% Test for effect in subgrou			< 0.001				
>35 vs 20 - 30							
Petrova_2009	32	52941	178	239383			[0.56; 1.18] 12.0%
StLouis_2014		1929379		6615611			[0.82; 1.00] 13.0%
Llu_2019	120	485278		1633199	Ť.		[0.76; 1.13] 12.7%
Hay_1972	635	834900	3477		E.		[1.04; 1.23] 13.0%
Canfield_2009	76	190264		1004687	ţ		[0.91; 1.49] 12.6%
Janerich_1972	609 20	525904 27944	2015	2780544 126252	Ĕ.		[1.13; 1.34] 13.0% [0.97; 2.69] 11.3%
Forrester_2000B Sever_1982	51	61315		2628305			[0.97; 2.69] 11.3% [6.07; 11.05] 12.4%
Random effects mo				2020303			[0.75; 2.59] 100.0%
Prediction interval							[0.21; 9.29] -
Heterogeneity: J ² = 97% [95%; 98%].	7 = 0.53, p	< 0.001				
Test for effect in subgrou	p: t7 = 1.26	(p = 0.249)					
30 - 35 vs 20 - 30							
Petrova_2009	56	113746	178	239383		0.66	[0.49; 0.89] 12.3%
Liu_2019	221	1000093		1633199	-		[0.70; 0.97] 12.7%
StLouis_2014	870	3145042		6615611	9		[0.82; 0.96] 12.9%
Hay_1972	770	1214100	3477		1		[0.88; 1.02] 12.9%
Forrester_2000B	23	51919	56	126252	Ť.		[0.61; 1.62] 11.3%
Janerich_1972 Canfield_2009	819 137	869682 362254		2780544 1004687	T.		[0.93; 1.08] 12.9% [0.90; 1.34] 12.6%
Sever_1982	69	109762		2628305	Ĩ +		[4.75; 8.06] 12.4%
Random effects mo				20214481	-		[0.65; 2.06] 100.0%
Prediction interval							[0.20; 6.80] -
Heterogeneity: <i>I</i> ² = 97% Test for effect in subgrou			< 0.001				
>40 vs 20 - 30							
Forrester_2000B	2	4415	56	126252		1.02	[0.25; 4.18] 10.9%
Hay_1972	163	190200		5186500			[1.09; 1.50] 23.9%
Janerich_1972	134	104213		2780544			[1.15; 1.63] 23.8%
Canfield_2009	20	32324	345	1004687	-		[1.15; 2.83] 21.6%
Sever_1982	11	13696	267	2628305		7.91	[4.33; 14.45] 19.8%
Random effects mo	del 330	344848	6760	11726288		1.96	[0.72; 5.31] 100.0%
Prediction interval				•		- 1	[0.14; 26.88] -
Heterogeneity: J ² = 88% Test for effect in subgrou			< 0.001				
35 - 40 vs 20 - 30							
Canfield_2009	56	157940	345	1004687	÷	1.03	[0.78; 1.37] 20.2%
Hay_1972	472	644700	3477	5186500	ė.	1.09	[0.99; 1.20] 21.0%
Janerich_1972	475	421691		2780544			[1.09; 1.32] 21.0%
Forrester_2000B	18	23529	56	126252			[1.01; 2.93] 18.0%
Sever_1982	40	47619		2628305			[5.93; 11.53] 19.8%
Random effects mo	del1061	1295479	6760	11726288			[0.61; 5.31] 100.0%
Prediction interval		· · ·	•	•		- '	[0.09; 36.19] -
Heterogeneity: J ² = 97% [Test for effect in subgrou			< 0.001				
Test for subgroup differer	nces: $?_4^2 = 2$.	.10, df = 4 (p	= 0.717)		0.1 0.5 1 2 10		
	f Diagona		1	Lower with	Comparator Higher with	n Comp	parator

Systematic Review

DOI:10.14753/SE.2024.3114

SUPPLEMENTAL FIGURE 7

Forest plot representing the RR with 95% CI of *anencephaly* (ICD-10: Q00.0) in different age groups compared to the 20 to 30 age group

		mparator		Reference			
Study E	vents	Iotal	Events	Total	Risk Ratio	RR	95%-CI Weight
<20 vs 20 - 30					1		
Hay_1972	309	1240100	1341	5186500		0.96	[0.85; 1.09] 11.3%
Borman_1986	6	6853	31	35211		0.99	[0.42; 2.38] 7.0%
StLouis_2014	115	1415846	492	6615611	÷	1.09	[0.89; 1.34] 11.0%
Petrova_2009_Russia	26	20857	104	94164	*	1.13	[0.73; 1.73] 9.9%
Fedrick_1976	286	103161	1765	735182	0	1.15	[1.02; 1.31] 11.3%
Canfield_2009	91	269890	284	1004687	ŧ	1.19	[0.94; 1.51] 10.9%
Janerich_1972	306	320794	1833	2457349			[1.13; 1.44] 11.3%
Forrester_2000B	13	23009	49	126212			[0.79; 2.68] 8.7%
Petrova_2009_Norway	8	7640	75	145219	<u> </u>		[0.98; 4.20] 7.9%
Sever_1982	73	146173		2628305	*		[3.65; 6.11] 10.8%
Random effects mode	11233	3554323	6252	19028440	0	1.40	[0.98; 1.99] 100.0% [0.47; 4.17] –
Prediction interval Heterogeneity: 1 ² = 93% [899		7 000 -		•			[0.47; 4.17]
Test for effect in subgroup: t			< 0.001				
	,	() – elecci,					
>35 vs 20 - 30							
Forrester_2000B	5	27996	49	126212		0.46	[0.18; 1.15] 7.6%
Petrova_2009_Russia	5	8575	104	94164		0.53	[0.22; 1.29] 7.7%
StLouis_2014	103	1929379	492	6615611	-	0.72	[0.58; 0.89] 12.4%
Canfield_2009	45	190264	284	1004687	+	0.84	[0.61; 1.15] 11.9%
Petrova_2009_Norway	20	44366	75	145219	-	0.87	[0.53; 1.43] 10.7%
Hay_1972	202	834900	1341	5186500		0.94	[0.81; 1.08] 12.6%
Janerich_1972	391	495715	1833	2457349	- P	1.06	[0.95; 1.18] 12.7%
Fedrick_1976	367	125433	1765	735182		1.22	[1.09; 1.36] 12.7%
Sever_1982	33	61315		2628305	-		[3.55; 7.30] 11.6%
Random effects mode	11171	3717943	6221	18993229	\$	1.02	[0.60; 1.72] 100.0%
Prediction interval	•						[0.20; 5.11] -
Heterogeneity: I ² = 92% [87%			< 0.001				
Test for effect in subgroup: t	s = 0.08	(p = 0.936)					
30 - 35 vs 20 - 30							
Petrova 2009 Russia	12	17376	104	94164		0.63	[0.34; 1.14] 9.2%
StLouis_2014	198	3145042		6615611	Ŧ		[0.72; 1.00] 11.7%
Canfield_2009	94	362254	284	1004687	+		[0.73; 1.16] 11.5%
Janerich_1972	560	803311	1833	2457349			[0.85; 1.03] 11.9%
Hay_1972	308	1214100	1341	5186500			[0.87; 1.11] 11.8%
Fedrick_1976	518	198537	1765	735182	ģ.		[0.99; 1.20] 11.9%
Forrester_2000B	22	51887	49	126212	+	1.09	[0.66; 1.81] 9.9%
Petrova_2009_Norway	57	96370	75	145219	+	1.15	[0.81; 1.62] 10.9%
Sever_1982	63	109762	278	2628305	+	5.43	[4.13; 7.13] 11.3%
Random effects mode	11832	5998639	6221	18993229	\$	1.15	[0.72; 1.84] 100.0%
Prediction interval				•			[0.26; 5.04] -
Heterogeneity: I ² = 95% [92%			< 0.001				
Test for effect in subgroup: t	5 = 0.69	(p = 0.510)					
>40 vs 20 - 30							
Forrester_2000B	0	4411	49	126212		0.29	[0.02; 4.68] 3.0%
Hay_1972	45	190200	1341		*		[0.68; 1.23] 21.1%
Janerich 1972	78	98025		2457349	<u>_</u>		[0.85; 1.34] 21.8%
Canfield_2009	11	32324	284	1004687	- <u>-</u> -		[0.66; 2.20] 17.4%
Fedrick_1976	93	28490	1765	735182	+	1.36	[1.10; 1.67] 21.9%
Sever_1982	6	13696	278	2628305		4.14	[1.85; 9.30] 14.7%
Random effects mode	1 233	367146	5550	12138235	~	1.30	[0.71; 2.38] 100.0%
Prediction interval	•			•			[0.29; 5.77] -
Heterogeneity: J ² = 68% [249			= 0.008				
Test for effect in subgroup: t	5 = 1.11	(p = 0.318)					
35 - 40 vs 20 - 30							
Forrester_2000B	5	23585	49	126212		0.55	[0.22; 1.37] 11.0%
Canfield_2009	34	157940	284	1004687	-		[0.53; 1.09] 17.0%
Hay_1972	157	644700	1341	5186500			[0.80; 1.11] 18.3%
Janerich_1972	313	397690	1833		- E		[0.94; 1.19] 18.5%
Fedrick_1976	274	96943	1765	735182	Ъ		[1.04; 1.34] 18.5%
Sever_1982	27	47619		2628305	_ 		[3.61; 7.96] 16.6%
Random effects mode				12138235	~		[0.53; 2.72] 100.0%
Prediction interval							[0.13; 11.51] -
Heterogeneity: J ² = 93% [889	6; 96%]	7 = 0.56, p	< 0.001				
Test for effect in subgroup: t	= 0.58	(p = 0.585)					
Test for subgroup difference:	s: ? ₄ ² = 1	.53, df = 4 (p	= 0.822)		0.1 0.51 2 10		

Lower with Comparator Higher with Comparator

Forest plot representing the RR with 95% CI of *congenital anomalies of the circulatory system* (ICD-10: Q20–Q28) in different age groups compared to the 20 to 30 age group

DOI:10.14753/SE.2024.3114

Study Ev	/ents						
Study Ev		Total	Events	Total	Risk Ratio	RR	95%-CI Weight
<20 vs 20 - 30					1		
Pasnicki 2013	50	17670	496	125353	-	0.72 [0).53; 0.96] 32.8%
Bodnár_1970	27	13384	189	71636		-).51; 1.14] 28.1%
Salim 2019	772		1957				.96; 1.14] 39.1%
Random effects model	849	873577	2642	2428091	4	•	.68; 1.11] 100.0%
Prediction interval							06; 13.34]
Heterogeneity: /2 = 75% [16%	: 92%].	7 = 0.03. c	= 0.020			1	
Test for effect in subgroup: z							
>35 vs 20 - 30							
Mucat_2019	24	8163	86	30231	4	1.03 [0	0.66; 1.62] 26.2%
Pasnicki_2013	79	17498	496	125353	두	•	0.90; 1.45] 34.8%
Salim_2019	696		1957		la la	-	.58; 1.88] 39.0%
Random effects model			2539	2386686	•		.97; 1.82] 100.0%
Prediction interval	100	403703	2000	2000000	Ť	-	03; 53.19]
Heterogeneity: /2 = 86% [59%	· 95%]	7-006 0	-0.001	•		[0.	
Test for effect in subgroup: z							
>40 vs 20 - 30							
Bodnár_1970	9	2656	189	71636		1 28 10).66; 2.50] 19.1%
Mucat 2019	5	1325	86	30231		•	0.54; 3.26] 13.3%
Pasnicki_2013	24	3556	496	125353	-	-	.13; 2.57] 28.6%
Salim 2019	254	95745	1957			-	2.65; 3.45] 39.1%
Random effects model			2728	2458322	\$.28; 2.93] 100.0%
Prediction interval	LUL	TUDLOL	2120	LAUODEL	<u> </u>		35; 10.62]
Heterogeneity: /2 = 80% [46%	92%]	$7^2 = 0.11$	- 0.002			10.	
Test for effect in subgroup: z							
30 - 35 vs 20 - 30							
Salim_2019	677	736367	1957	2231102		1.05 (0	.96; 1.14] 36.6%
Mucat 2019	57	17549	86	30231	토	•).82; 1.59] 29.0%
Pasnicki_2013	155	31917	496	125353	E.		.03; 1.47] 34.4%
Random effects model				2386686	6	-	.00; 1.20] 100.0%
Prediction interval	000	100000	2000	2000000		_	.52; 2.31]
Heterogeneity: /2 = 20% [0%;	92%1	· · · · · · · · · · · · · · · · · · ·	- 0 288	•		10	
Test for effect in subgroup: z			p = 0.200				
35 - 40 vs 20 - 30							
Mucat_2019	19	6838	86	30231	4	0.09 10	0.59; 1.60] 25.3%
Pasnicki_2013	55	13942		125353	<u> </u>	-	0.76; 1.32] 34.5%
Salim_2019	442				in the second se	-	.25; 1.53] 40.2%
Random effects model				2386686	6	-	.94; 1.49] 100.0%
Prediction interval	510		2555	2300000		-	10; 13.94]
Heterogeneity: $l^2 = 67\%$ [0%]	91%].	7 ² = 0.02, p		-			
Test for effect in subgroup: z							
		, , , , , , , , , , , , , , , , , , , ,					
Test for subgroup differences	: ? ₄ ² = 1	2.36, df = 4	(p = 0.015))	0.1 0.51 2 10		
				Lower with	Comparator Higher wit	h Compa	rator

DOI:10.14753/SE.2024.3114

SUPPLEMENTAL FIGURE 9

Forest plot representing the RR with 95% CI of *cleft lip and cleft palate* (ICD-10: Q35–Q37) in different age groups compared to the 20 to 30 age group

	Car			oforonoo			
Study Ev	ents	nparator	Events	Reference Total	Risk Ratio	RR	95%-CI Weight
	enta	IViai	Lvents	Total	nisk nauo	nn	55%-Ci Weight
<20 vs 20 - 30					1		
Materna_2009	42	75121	523	601520	-	0.64	[0.47; 0.88] 17.3%
Jaikrishan_2012	8	8833	126	119314	+	0.86	[0.42; 1.75] 14.1%
Hay_1972	556	1240100	2680	5186500	n n n n n n n n n n n n n n n n n n n	0.87	[0.79; 0.95] 18.2%
Pasnicki_2013	17	17670	133	125353	*	0.91	[0.55; 1.50] 15.9%
Jaruratanasirikul_2016	32	22265	126	95535	Ť	1.09	[0.74; 1.61] 16.8%
DeRoo_2003	84	31617	357	173893			[1.02; 1.64] 17.7%
Random effects model	739	1395606	3945	6302115	1	0.93	[0.76; 1.14] 100.0%
Prediction interval	•		•	•	+		[0.52; 1.68]
Heterogeneity: $l^2 = 67\%$ [20%	-						
Test for effect in subgroup: z	= -0.69	(p = 0.490)					
>35 vs 20 - 30							
DeRoo_2003	43	27067	357	173893	4	0.77	[0.56; 1.06] 16.5%
Jaruratanasirikul_2016	45	28891	126	95535	1		[0.84; 1.66] 16.4%
Hay_1972	526						[1.11; 1.34] 17.4%
Pasnicki_2013	26	17498	133	125353	노		[0.92; 2.13] 15.8%
Luo_2019	100	55368	273	235136			[1.24; 1.96] 16.9%
Materna_2009	87	25225	523	601520			[3.16; 4.98] 17.0%
Random effects model	827	988949	4092	6417937	\$	1.47	[0.95; 2.28] 100.0%
Prediction interval							[0.30; 7.24]
Heterogeneity: / ² = 95% [92%	; 97%]	, 7 = 0.28, ,	p < 0.001				
Test for effect in subgroup: z	= 1.71	(p = 0.087)					
30 - 35 vs 20 - 30					1		
DeRoo_2003	123	65218	357	173893	7		[0.75; 1.13] 16.8%
Hay_1972		1214100		5186500	Ц.		[0.90; 1.07] 17.1%
Luo_2019 Jaruratapasirikul. 2016	175 66	142086 39702	273 126	235136	<u>Ľ</u>		[0.88; 1.28] 16.8%
Jaruratanasirikul_2016 Baapiaki 2012	46	39702		95535 125353	Ē.		[0.94; 1.70] 16.3%
Pasnicki_2013 Materna_2009	117	14223		601520			[0.97; 1.90] 16.1% [7.75; 11.55] 16.8%
Random effects model				6417937	⇒		[0.77; 3.22] 100.0%
Prediction interval							[0.11; 22.44]
Heterogeneity: /2 = 99% [98%	; 99%]	? = 0.78, j	p < 0.001				• • •
Test for effect in subgroup: z	= 1.26	(p = 0.209)					
>40 vs 20 - 30	-						
DeRoo_2003	5	3559	357	173893			[0.28; 1.65] 20.7%
Pasnicki_2013	6	3556	133	125353			[0.70; 3.60] 21.7%
Hay_1972	169	190200		5186500			[1.47; 2.01] 29.7%
Materna_2009 Random effects model	30	18741	523	601520 6087266	•		[1.27; 2.66] 27.9% [1.11; 2.20] 100.0%
Prediction interval	210	210030	3033	0007200	-	1.57	[0.43; 5.75]
Heterogeneity: /2 = 30% [0%;	75%].	7 ² = 0.06. p	- 0.230	•			[0.40, 0.70]
Test for effect in subgroup: z							
35 - 40 vs 20 - 30							
DeRoo_2003	38	23508	357	173893	킛		[0.56; 1.10] 24.9%
Hay_1972	357						[0.96; 1.20] 26.3%
Pasnicki_2013	20	13942		125353	—		[0.85; 2.16] 23.5%
Materna_2009	57	6484		601520			[7.70; 13.27] 25.4%
Random effects model	472	688634	3693	6087266	-		[0.59; 5.75] 100.0%
Prediction interval Heterogeneity: l ² = 99% [98%		å		•		- 1	[0.01; 465.66]
Heterogeneity: I" = 99% [98% Test for effect in subgroup: z -			p < 0.001				
, our for enfort in subgroup; 2 (1.08	(J2 = 0.230)					
Test for subgroup differences:	$2^{2}_{4} = 9$.94. df = 4 (p = 0.041		0.01 0.1 1 10 100		
4 F			,				

Lower with Comparator Higher with Comparator

DOI:10.14753/SE.2024.3114

SUPPLEMENTAL FIGURE 10

Forest plot representing the RR with 95% CI of *cleft palate* (ICD-10: Q35) in different age groups compared to the 20 to 30 age group

O		mparator		Reference	D		
Study	Events	Total	Events	Total	Risk Ratio	RR	95%-CI Weight
<20 vs 20 - 30					1		
	22	205752	224	1469671	-	0.40	10.00, 0.751 16.0%
Shields_1981	23	205752	334	1463671	-		[0.32; 0.75] 16.2%
Materna_2009	26	75121	266	601520	二二		[0.52; 1.17] 16.3%
Hay_1972	411	1240100		5186500	9		[0.83; 1.03] 17.6%
StLouis_2014	742	1415846		6615611	1		[0.88; 1.03] 17.7%
Forrester_2004C	19	28492	95	152575		1.07	[0.65; 1.75] 15.7%
Baird_1994	33	34274	145	387862		2.58	[1.77; 3.76] 16.5%
Random effects mod	lel 1254	2999585	6327	14407739	\$	0.99	[0.56; 1.73] 100.0%
Prediction interval							[0.21; 4.56]
Heterogeneity: I ² = 87% [7:	3%; 93%],	? ² = 0.25, p	< 0.001				
Test for effect in subgroup:	$t_5 = -0.05$	(p = 0.963)					
>35 vs 20 - 30							
StLouis_2014	1240	1929379	3626	6615611		1.17	[1.10; 1.25] 13.4%
Forrester_2004C	29	36537	95	152575			[0.84; 1.93] 12.3%
Hay_1972	406	834900	1861	5186500			[1.22; 1.51] 13.4%
Shields_1981	98	300245		1463671	-		[1.14; 1.79] 13.1%
Baird_1994	19	32993	145	387862	-		[0.96; 2.48] 12.0%
Beckman_1976	15	8335	18	19008			[0.96; 3.77] 10.7%
	32	55368	58	235136			
Luo_2019							[1.52; 3.61] 12.2%
Materna_2009	60	25225	266	601520	<u> </u>		[4.07; 7.12] 12.9%
Random effects mod	iei 1899	3222982	6403	14661883	~	1.78	[1.16; 2.73] 100.0%
Prediction interval	•		•	•			[0.51; 6.19]
Heterogeneity: /2 = 94% [9			< 0.001				
Test for effect in subgroup:	t ₇ = 3.19	(p = 0.015)					
30 - 35 vs 20 - 30	_						
Beckman_1976	8	11388	18	19008			[0.32; 1.71] 9.8%
Baird_1994	30	86632	145	387862	*	0.93	[0.63; 1.37] 12.4%
Shields_1981	93	436986	334	1463671		0.93	[0.74; 1.17] 13.0%
StLouis_2014	1770	3145042	3626	6615611	ų.	1.03	[0.97; 1.09] 13.4%
Hay_1972	481	1214100	1861	5186500	121	1.10	[1.00; 1.22] 13.3%
Forrester_2004C	49	68803	95	152575	+	1.14	[0.81; 1.61] 12.6%
Luo_2019	50	142086	58	235136	-	1.43	[0.98; 2.08] 12.5%
Materna_2009	80	14223	266	601520	-	12.72	[9.91; 16.32] 13.0%
Random effects mod	lel 2561	5119260	6403	14661883	~	1.42	[0.66; 3.06] 100.0%
Prediction interval							[0.14; 14.64]
Heterogeneity: / ² = 98% [9]	7%; 99%],	? ² = 0.80, p	< 0.001				
Test for effect in subgroup:	$t_7=1.09$	$(\rho = 0.312)$					
>40 vs 20 - 30							
Forrester_2004C	6	6065	95	152575		1.59	[0.70; 3.62] 17.2%
Hay_1972	111	190200	1861	5186500		1.63	[1.34; 1.97] 23.1%
Shields_1981	34	74260	334	1463671		2.01	[1.41; 2.86] 22.1%
Baird_1994	5	6288	145	387862		2.13	[0.87; 5.19] 16.5%
Materna_2009	19	18741	266	601520	-		[1.44; 3.65] 21.1%
Random effects mod	lel 175	295554	2701	7792128	*	1.77	[1.48; 2.11] 100.0%
Prediction interval					-		[1.44; 2.17]
Heterogeneity: /2 = 0% [0%	6: 79%1. ?	$^{2} = 0, p = 0.6$	18				
Test for effect in subgroup:							
35 - 40 vs 20 - 30							
Forrester_2004C	23	30472	95	152575	 	1.21	[0.77; 1.91] 19.3%
Shields_1981	64	225985		1463671	±		[0.95; 1.62] 20.7%
Hay_1972	295	644700		5186500			[1.13; 1.44] 21.3%
Baird_1994	14	26705		387862	<u>_</u>		[0.81; 2.43] 18.5%
Materna 2009	41	6484		601520			[10.30; 19.85] 20.3%
Random effects mod		934346		7792128			[0.54; 7.99] 100.0%
Prediction interval		304040	2/01	1102120			[0.05; 86.61]
Heterogeneity: 1 ² = 98% [9]	7%- 00%1	2-114 -	-0.001			-	[0.00, 00.01]
Test for effect in subgroup:			0.001				
	4 - 1.01	e.e.e.)			r		
Test for subgroup difference	as: 2 ² - 7	08 df - 4 /-	- 0 1995		0.1 0.51 2 10		
. as to subgroup difference	······································		- 0.1021				
					· · · · · · · · · · · · · · · · · · ·	•	•

Lower with Comparator Higher with Comparator

Forest plot representing the RR with 95% CI of *congenital anomalies of the digestive system* (ICD-10: Q38–Q45) in different age groups compared to the 20 to 30 age group

	Comp	arator	Re	ference			
Study E	vents	Total	Events	Total	Risk Ratio	RR	95%-CI Weight
<20 vs 20 - 30					1		
Pasnicki_2013	6	17670	62	125353		0.69 [0	0.30; 1.59] 35.7%
Bodnár_1970	35	13384	178	71636		1.05 [0	0.73; 1.51] 64.3%
Random effects mode	I 41	31054	240	196989	~	0.98 [0	.71; 1.37] 100.0%
Heterogeneity: $I^2 = 0\%$, $?^2 = 1$	0, p = 0	.359					
Test for effect in subgroup: z	= -0.09	(p = 0.9	24)				
>40 vs 20 - 30							
Pasnicki_2013	3	3556	62	125353		· 1.71 [0	0.54; 5.43] 30.9%
Bodnár_1970	15	2656	178	71636		2.27 [1	1.34; 3.84] 69.1%
Random effects mode	I 18	6212	240	196989	\diamond	2.16 [1	.34; 3.49] 100.0%
Heterogeneity: $I^2 = 0\%$, $?^2 = 1$	0, p = 0	.658					
Test for effect in subgroup: z	= 3.16	(p = 0.00	(2)				
Test for subgroup differences	: ? ₁ ² = 7	.03, df =	1 (p = 0.00	08)	0.2 0.5 1 2 5		
			Lo	wer with	Comparator Higher w	ith Compa	rator

Forest plot representing the RR with 95% CI of *hypospadiasis* (ICD-10: Q54) in different age groups compared to the 20 to 30 age group

DOI:10.14753/SE.2024.3114

	Co	mparator	F	Reference			
Study	Events	Total	Events	Total	Risk Ratio	RR	95%-CI Weight
<20 vs 20 - 30					1		
Jaikrishan_2012	14	8833	246	119314		0.77.10	.45; 1.32] 5.2%
StLouis_2014	3506	1415846				-	
Canon_2012	214	31331	852	119414		•	0.89; 0.95] 26.4% 0.82; 1.11] 20.4%
Hay_1972	839	1240100			1	-	0.96; 1.12] 24.8%
Bergman_2015	385	194807	3494	1950188	Ē	•	0.99; 1.23] 23.2%
Random effects me				13991027		-	.92; 1.07] 100.0%
Prediction interval		2000011	20110	10001021	<u> </u>	-	.78; 1.27]
Heterogeneity: 12 = 75%	-	r 001	- 0.003	•		[0	
Test for effect in subgrou			p = 0.000				
g	,	<i>y</i> ,					
>35 vs 20 - 30							
Hay_1972	492	834900	3389	5186500		0.90 [0	.82; 0.99] 25.2%
Bergman_2015	1522	917849	3494	1950188	-	0.93 (0	.87; 0.98] 27.0%
StLouis_2014	6782	1929379	17794	6615611		1.31 [1	.27; 1.34] 28.1%
Canon_2012	148	14652	852	119414		1.42 [1	.19; 1.68] 19.8%
Random effects me	odel8944	3696780	25529	13871713	A	1.11 [0	.88; 1.39] 100.0%
Prediction interval						[0	.37; 3.29]
Heterogeneity: / ² = 98%	[97%; 99%],	$7^2 = 0.05, p$	< 0.001				
Test for effect in subgrou	ip: z = 0.90 ((p = 0.370)					
30 - 35 vs 20 - 30							
Bergman_2015		1428079		1950188		•	0.89; 0.99] 26.4%
Hay_1972	828	1214100		5186500	Ē		0.97; 1.13] 25.3%
Canon_2012	241	30653	852	119414		•	0.96; 1.27] 21.2%
StLouis_2014	10001	3145042		6615611		-	.15; 1.21] 27.2%
Random effects me	00813479	5817874	25529	13871713	8	-	.96; 1.17] 100.0%
Prediction interval Heterogeneity: / ² = 95%		÷		•		Įu	.67; 1.67]
Test for effect in subgrou			p < 0.001				
reactor enect in subgrou	ip. z = 1.201	p = 0.220)					
Test for subgroup differe	0005: 2 ² - 1	69 di - 2 (a	- 0 429\		0.5 1 2		
reactor subgroup differe	1		- 5.425)				
				Lower with	Comparator Higher	with Compa	rator

DOI:10.14753/SE.2024.3114

SUPPLEMENTAL FIGURE 13

Forest plot representing the RR with 95% CI of *congenital anomalies of the urinary system* (ICD-10: Q60–Q64) in different age groups compared to the 20 to 30 age group

	Com	parator	R	eference			
Study	Events	Total	Events	Total	Risk Ratio	RR	95%-CI Weight
5 25 via 20 20					1		
>35 vs 20 - 30							
Mucat_2019	5	8163	42	30231		0.44 [0).17; 1.11] 8.3%
Pasnicki_2013	12	17498	104	125353	-*-	0.83 [0).45; 1.50] 17.6%
Liz_2019	271	166708	1817	1157979		1.04 [0	.91; 1.18] 74.1%
Random effects m	nodel 288	192369	1963	1313563	4	0.86 [0	.57; 1.29] 100.0%
Prediction interva	ı .					— [O.	01; 61.64]
Heterogeneity: /2 = 45%	6 [0%; 84%], 1	? = 0.07, /	p = 0.161			-	-
Test for effect in subgro	oup: z = -0.73	(p = 0.468	3)				
30 - 35 vs 20 - 30							
Mucat 2019	16	17549	42	30231	-*	0.66 [0	.37; 1.17] 14.8%
Pasnicki_2013	24	31917	104	125353	+	-	.58; 1.41] 21.7%
Liz_2019	650	374560	1817	1157979	in the second	1.11 [1	.01; 1.21] 63.5%
Random effects m	nodel 690	424026	1963	1313563	4	0.97 [0	.75; 1.26] 100.0%
Prediction interva	ι.					[0.	07; 14.33]
Heterogeneity: 12 = 479	6 [0%; 84%], 1	? = 0.03, /	p = 0.154				
Test for effect in subgro	oup: z = -0.20	(p = 0.840))				
Test for subgroup differ	rences: $?_1^2 = 0$.25, df = 1	(p = 0.616	5)	0.1 0.51 2 10		

Lower with Comparator Higher with Comparator

Forest plot representing the RR with 95% CI of *congenital anomalies of the musculoskeletal system* (ICD-10: Q65 -Q79) in different age groups compared to the 20 to 30 age group

DOI:10.14753/SE.2024.3114

c	omparator	Reference			
Study Eve	ents Total	Events Total	Risk Ratio	RR	95%-CI Weight
<20 vs 20 - 30			1		
Bodnár_1970	91 13384	606 71636		0.80	[0.65; 1.00] 53.7%
Pasnicki_2013	64 17670	458 125353		0.99	[0.76; 1.29] 46.3%
Random effects model	155 31054	1064 196989	4		[0.72; 1.08] 100.0%
Heterogeneity: $I^2 = 31\%$, $7^2 = 4$	0.01, p = 0.228	3			
Test for effect in subgroup: z =	-1.21 (p = 0.22)	7)			
>35 vs 20 - 30					
Mucat_2019	91 8163	432 30231		0.78	[0.62; 0.98] 51.9%
Pasnicki_2013	73 17498	458 125353			[0.89; 1.46] 48.1%
Random effects model		890 155584			[0.65; 1.37] 100.0%
Heterogeneity: I ² = 80% [14%;		p = 0.025			,
Test for effect in subgroup: z =	-0.32 (p = 0.74)	7)			
>40 vs 20 - 30					
Mucat_2019	11 1325	432 30231	- 22	0.58	[0.32; 1.05] 25.2%
Bodnár_1970	19 2656	606 71636	~ ~ ~	0.85	[0.54; 1.33] 38.3%
Pasnicki_2013	18 3556	458 125353		1.39	[0.87; 2.22] 36.5%
Random effects model	48 7537	1496 227220	4	0.90	[0.55; 1.46] 100.0%
Prediction interval				— (0.00; 193.64] -
Heterogeneity: $I^2 = 62\%$ [0%; :					
Test for effect in subgroup: z =	-0.42 (p = 0.67)	3)			
35 - 40 vs 20 - 30					
Mucat 2019	80 6838	432 30231		0.82	[0.65; 1.04] 53.8%
Pasnicki_2013	55 13942	458 125353		1.08	[0.82; 1.43] 46.2%
Random effects model		890 155584	4		[0.71; 1.22] 100.0%
Heterogeneity: I ² = 54% [0%;					
Test for effect in subgroup: z =					
				Г	
Test for subgroup differences:	? ₃ ² = 0.15, df = 3	(p = 0.986)	0.01 0.1 1 10 10	00	

Lower with Comparator Higher with Comparator

Forest plot representing the RR with 95% CI of *congenital diaphragma hernia* (ICD-10 Q79.0) in different age groups compared to the 20 to 30 age group

	Co	mparator	F	Reference					
Study	Events		Events	Total	Risk Ratio	RR	95%-CI Weight		
					1				
<20 vs 20 - 30		150000					(a. c.a		
Dott_2003	30	150000	60	272727	立	0.91			
StLouis_2014	333	1415846		6615611	1		[0.81; 1.03] 21.4%		
McGivern_2015	113	511312		5770035	1	1.05			
Materna_2009	8	75121	59	601520	<u> </u>		[0.52; 2.27] 17.0%		
Yang_2006	49	314160			于		[0.82; 1.53] 20.6%		
Random effects m		2466439	3223	14602732	1	0.96	[0.88; 1.06] 100.0%		
Prediction interva			•	•	Ť		[0.83; 1.12] –		
Heterogeneity: $I^2 = 0\%$			54						
Test for effect in subgro	up: z = -0.78	(p = 0.433)							
>35 vs 20 - 30									
StLouis_2014	485	1929379	1698	6615611		0.98	[0.89; 1.08] 21.1%		
Yang_2006	45	301898	187	1342839	<u>т</u>		[0.77; 1.48] 20.2%		
McGivern_2015	427	1786611	1219		T		[1.01; 1.26] 21.1%		
Dott 2003	26	89655	60	272727	도		[0.83; 2.09] 19.2%		
Materna 2009	15	25225	59	601520	Γ 		[3.44; 10.68] 18.3%		
Random effects m				14602732	5		[0.79; 2.91] 100.0%		
Prediction interva		1102100	OLLO	14002102			[0.12; 18.80] -		
Heterogeneity: /2 = 90%		2 = 0.52. p	< 0.001	•			[0.12, 10.00]		
Test for effect in subgro									
-	-	-							
30 - 35 vs 20 - 30									
StLouis_2014	738	3145042	1698	6615611		0.91	[0.84; 1.00] 26.0%		
Yang_2006	74	547291	187	1342839		0.97	[0.74; 1.27] 25.2%		
McGivern_2015	706	3410628	1219	5770035	L.	0.98	[0.89; 1.07] 26.0%		
Materna_2009	16	14223	59	601520		11.47	[6.60; 19.92] 22.7%		
Random effects m	odel1534	7117184	3163	14330005	~	1.74	[0.52; 5.80] 100.0%		
Prediction interva	ι.					- 1	[0.00; 617.12]		
Heterogeneity: I ² = 96%	6 [93%; 98%]	, ? ² = 1.48, p	< 0.001						
Test for effect in subgro	up: z = 0.90	(p = 0.368)							
Test for subgroup differ	ences: ?2 = 2	.74, df = 2 (p	= 0.254)		0.01 0.1 1 10 100				
Lawswith Comparator – Historywith Comparator									

Lower with Comparator Higher with Comparator

DOI:10.14753/SE.2024.3114

SUPPLEMENTAL FIGURE 16

Forest plot representing the RR with 95% CI of *omphalocele* (ICD-10: Q79.2) in different age groups compared to the 20 to 30 age group

Study	Co Events	mparator Total	F Events	teference Total	Risk Ratio	RR	95%-CI Weight
<20 vs 20 - 30		00000		126290		0.40.10).14; 1.48] 3.8%
Forrester_1999 Bugge_2017	3	23022 3483	36 3	126290			0.14; 1.48] 3.8% .03; 11.93] 0.9%
Rankin_1999	5	44099	47	263580			0.25; 1.60] 5.0%
Agopian_2009	42	322274	182	1213802	土		0.62; 1.22] 9.2%
Roeper_1987	131 33	552523	456	2143483	<u> </u>		0.92; 1.35] 10.1%
Kazaura_2004 StLouis_2014	175	129089 1415846	249 638	1205402 6615611	G		0.86; 1.78] 9.0% 1.08; 1.51] 10.2%
Materna_2009	9	75121	51	601520			0.70; 2.87] 6.4%
Tan_2008	2	8020	33	209595	- <u>+-</u>		0.38; 6.60] 2.9%
Hay_1972	325 58	1240100 384335	788 255	5186500 3000053		1.72 [1	1.52; 1.96] 10.3% 1.34; 2.36] 9.5%
Tan_1996 Martinez_1984	5	15940	200	158016			0.73; 4.96] 4.8%
Byron_1998	25	47215	99	455885	*	2.44 [1	1.57; 3.78] 8.5%
Salihu_2003	67	195335	100	1037088			2.61; 4.85] 9.4%
Random effects me Prediction interval	odel 880	4456402	2963	22231852	\$.08; 1.92] 100.0%
Heterogeneity: 12 = 82%	[71%; 89%].	7 = 0.16, p	< 0.001	•	T	10	.58; 3.60]
Test for effect in subgrou	up: t ₁₃ = 2.77	(p = 0.016)					
>35 vs 20 - 30							
Martinez_1984	3	28992	26	158016		0.63 [0	0.19; 2.08] 3.5%
Bugge_2017	0	3052	3	15027			.04; 13.61] 0.8%
Hay_1972	111	834900	788	5186500	1		0.72; 1.07] 9.4%
Roeper_1987 Tan_1996	41 48	182499 425950	456 255	2143483 3000053	Ť.		0.77; 1.45] 8.7% 0.97; 1.80] 8.8%
Agopian_2009	40	425950	182	1213802	-		0.98; 1.86] 8.7%
StLouis_2014	261	1929379	638	6615611	1		1.21; 1.62] 9.6%
Salihu_2003	50	333297	100	1037088			1.11; 2.18] 8.6%
Forrester_1999	14	27951 160929	36 249	126290	-		0.95; 3.26] 6.6%
Kazaura_2004 Rankin 1999	59 11	31529	249	1205402 263580	=		I.34; 2.36] 8.9% I.01; 3.77] 6.3%
Byron_1998	26	51653	99	455885			1.51; 3.57] 7.9%
Materna_2009	5	25225	51	601520			0.93; 5.86] 4.7%
Tan_2008	31	77775 4344797	33	209595	*		1.55; 4.13] 7.5%
Random effects me Prediction interval	odel 707	4344/9/	2903	22231852	Ľ		.20; 1.79] 100.0% .82; 2.64]
Heterogeneity: I ² = 69%			< 0.001				
Test for effect in subgrou	up: t ₁₃ = 4.18	(p = 0.001)					
30 - 35 vs 20 - 30							
Martinez_1984	6	46592	26	158016			0.32; 1.90] 4.6%
Hay_1972	149	1214100	788	5186500 1213802	3		0.68; 0.96] 8.9% 0.60: 1.11] 8.3%
Agopian_2009 Kazaura_2004	54 67	440737 373968	182 249	1213802	7		0.60; 1.11] 8.3% 0.66; 1.14] 8.5%
StLouis_2014	269	3145042	638	6615611	0		0.77; 1.02] 9.0%
Tan_1996	84	1063209	255	3000053	辛	0.93 [0	0.73; 1.19] 8.6%
Bugge_2017 Forrester_1999	1 15	5104 51863	3 36	15027 126290			0.10; 9.43] 1.2% 0.56; 1.85] 6.3%
Roeper_1987	91	418566	456	2143483	Ŧ		0.56; 1.85] 6.3% 0.82; 1.28] 8.7%
Salihu_2003	70	588235	100	1037088	F		0.91; 1.67] 8.3%
Tan_2008	34	165142	33	209595	-		0.81; 2.11] 7.1%
Byron_1998 Bonkin_1999	46 27	161414 87486	99 47	455885 263580	<u> </u>		0.93; 1.86] 8.0%
Rankin_1999 Materna 2009	2/	14223	4/ 51	203500 601520			1.08; 2.78] 7.2% .15; 13.98] 5.4%
Random effects m		7775681		22231852	\$	1.13 [0	.85; 1.50] 100.0%
Prediction Interval Heterogeneity: 1 ² = 72%		÷	.0.001		+	[0	.43; 2.99]
Test for effect in subgrou			< 0.001				
>40 vs 20 - 30 Martinez_1984	0	7060	26	158016		0.42 (0	0.03; 6.93] 1.3%
Materna_2009	1	18741	51	601520			0.09; 4.55] 2.5%
Hay_1972	36	190200	788	5186500			0.89; 1.74] 13.0%
Rankin_1999	1	4410	47	263580	*		0.18; 9.21] 2.5%
Roeper_1987 Salihu_2003	14	36983 56701	456	2143483 1037088	*		1.05; 3.03] 10.9% 1.08; 3.75] 9.9%
Tan_1996	13	66822	255	3000053			1.31; 4.00] 10.6%
Agopian_2009	18	39751	182	1213802			1.86; 4.90] 11.4%
Kazaura_2004	19	26791	249	1205402	-		2.15; 5.47] 11.6%
Bugge_2017 Tan_2008	0	577 10301	3 33	15027 209595			.19; 71.88] 1.2% .28; 10.68] 8.4%
Byron_1998	7	6307	99	455885			.38; 11.00] 8.4%
Forrester_1999	8	4411	36	126290			.96; 13.68] 8.5%
Random effects m	odel 136	469055	2325	15616241	*		.77; 3.73] 100.0%
Prediction interval Heterogeneity: 1 ² = 67%	-	7 = 0.20 p	< 0.001	•		lo	.90; 7.30]
Test for effect in subgrou							
35 - 40 vs 20 - 30							
35 - 40 VS 20 - 30 Hay_1972	75	644700	788	5186500	4	0.77 (0	0.60: 0.97] 10.7%
Martinez_1984	3						0.25; 2.75] 4.1%
Bugge_2017	0			15027	<u> </u>	0.87 [0	.04; 16.78] 0.9%
Roeper_1987	27	145516		2143483	Ť		0.59; 1.29] 9.6%
Forrester_1999 Agopian_2009	6 29	23540 191915		126290 1213802	1		0.38; 2.12] 5.9% 0.68; 1.49] 9.6%
Tan_1996		359128	255	3000053	T.		0.81; 1.63] 9.9%
Kazaura_2004	40			1205402			1.03; 2.02] 10.1%
Salihu_2003 Buron_1998	39 19	276596 45346		1037088 455885			I.01; 2.12] 9.8% I.18; 3.15] 8.8%
Byron_1998 Rankin_1999	19	27119	99 47	455885 263580		2.07 [1	
Tan_2008	23	67474	33	209595		2.17 [1	1.27; 3.69] 8.4%
Materna_2009	4	6484	51	601520		7.28 [2	.63; 20.13] 4.9%
Random effects me Prediction interval		1946363	2325	15616241	×		.98; 1.87] 100.0% .49; 3.73]
Heterogeneity: /2 = 72%	[51%; 84%].		< 0.001		T	Į0	
Test for effect in subgrou							
Test for subgroup differe	nces: ?? = 1	4.97, df = 4 //	p = 0.0053		0.1 0.51 2 10		
-0	.4				Comparate III	h C	rator
n of Disassas_1	<u>о. пп</u> .	iol, rotic		Lower with	Comparator Higher wit	in Compa	rator

DOI:10.14753/SE.2024.3114

SUPPLEMENTAL FIGURE 17

Forest plot representing the RR with 95% CI of *gastroschisis* (ICD-10: Q79.3) in different age groups compared to the 20 to 30 age group

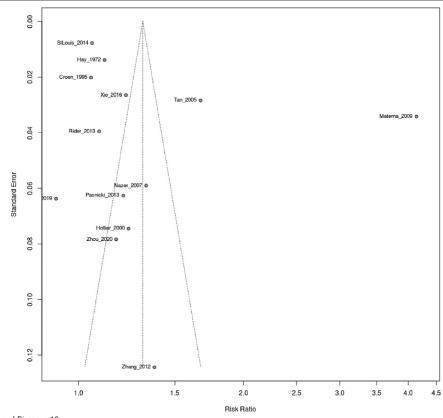
Study	Co Events	mparator Total	Events	Reference Total	Risk Ratio	RR	95%-CI Weight			
<20 vs 20 - 30					1					
Bugge_2017	6	3483	19	15027	-+		0.54; 3.41] 4.1%			
Williams_2005 Jones_2016	68 3311	111475 2439934	67 3586	216129 5527463	2	2.09	1.40; 2.76] 4.7% 2.00; 2.19] 4.8%			
Forrester_1999 Salinas_2018	19 4038	23022 3076243	46 4209	126290 7434269		2.27	1.33; 3.87] 4.5% 2.22; 2.42] 4.8%			
Tan_2008 Friedman_2016	1 2336	8020 2294000	10 4675	209595 12994463		2.61 [0.33; 20.41] 2.6% 2.69; 2.97] 4.8%			
Materna_2009	32	75121	90	601520	+	2.85	1.90; 4.26] 4.6%			
Roeper_1987 Shor_2019	68 2249	552523 1499333	91 4612	2143483 8931429	-		2.12; 3.97] 4.7% 2.76; 3.05] 4.8%			
Kazaura_2004 Borque_2021	63 28	129089 21722	194 154	1205402 378014	- +		2.28; 4.03] 4.7% 2.12; 4.73] 4.6%			
Loc_2015 Kirby_2013	1025 1822	683716 1589319	1267 2447	2716567 7002082		3.21	2.96; 3.49] 4.8% 3.09; 3.49] 4.8%			
StLouis_2014	1466	1415846	2086	6615611		3.28	3.07; 3.51] 4.8%			
Martinez_1984 Baer_2014	3 459	15940 290813	9 701	158016 1503796			0.89; 12.20] 3.6% [3.01; 3.81] 4.8%			
Xu_2011 Rankin 1999	36 48	33043 44099	1322	4757989 263580	*	3.92	2.82; 5.46] 4.7% 2.80; 5.83] 4.7%			
Tan_1996	181	384335	315	3000053	-	4.49	3.74; 5.38] 4.8%			
Salihu_2003 Byron_1998	135 18	195369 23622	145 34	1040323 228095	*		3.92; 6.27] 4.7% 2.89; 9.05] 4.5%			
Random effects mo Prediction interval	del7412	14910067	26150	67069196	<u>•</u>		2.74; 3.47] 100.0% 1.92; 4.95]			
	Prediction interval [1.52; 4.55] - Hoterogeneity: r ² = 94% (92%; 95%), r ² = 0.05, p < 0.001									
	2. 121 - 12.0	0 (0 < 0.001	·							
>35 vs 20 - 30 Salihu_2003	4	328283	145	1040323		0.09	0.03; 0.24] 6.2%			
Baer_2014 Bugge_2017	26 0	530265 3052	701 19	1503796 15027	+	0.11	0.07; 0.16] 7.2% 0.01; 2.09] 2.9%			
Roeper_1987	1	182499	91	2143483		0.13	0.02; 0.93] 4.2%			
StLouis_2014 Kirby_2013	81 86	1929379 1697974	2086 2447	6615611 7002082			0.11; 0.17] 7.4% 0.12; 0.18] 7.4%			
Friedman_2016 Tan_1996	200	3603972 425950	4675 315	12994463 3000053		0.15	0.13; 0.18] 7.4%			
Borque_2021	14	202899	154	378014	+	0.17	0.10; 0.29] 7.0%			
Rankin_1999 Byron_1998	2	31529 25880	71	263580 228095			0.06; 0.96] 5.3% 0.04; 1.89] 4.1%			
Martinez_1984	0	28992 27951	9 46	158016 126290		0.29	0.02; 4.93] 2.8%			
Forrester_1999 Kazaura_2004	11	27951 160929	194	126290			0.23; 0.78] 6.9%			
Materna_2009 Xu_2011	2 77	25225 354511	90 1322	601520 4757989			0.13; 2.15] 5.3% 0.62; 0.98] 7.4%			
Tan_2008 Random effects mo	3	77775	10 12409	209595 42243339	~	0.81	0.22; 2.94] 5.6%			
Prediction interval				42243339	<u> </u>		0.15; 0.32] 100.0% 0.06; 0.74]			
Heterogeneity: $t^2 = 92\%$ [Test for effect in subgroup										
30 - 35 vs 20 - 30										
StLouis_2014 Martinez_1984	152 0	3145042 46592	2086 9	6615611 158016			0.13; 0.18] 6.6% 0.01; 3.07] 2.5%			
Borque_2021	32	372093	154	378014	+	0.21	0.14; 0.31] 6.4%			
Kirby_2013 Friedman_2016	218 472	2943860 5944342	2447 4675	7002082 12994463			0.18; 0.24] 6.6% 0.20; 0.24] 6.6%			
Tan_1996 Rankin_1999	28 6	1063209 87486	315 71	3000053 263580	*	0.25	0.17; 0.37] 6.4% 0.11; 0.59] 5.8%			
Forrester_1999	5	51863	46	126290		0.26 [0.11; 0.67] 5.6%			
Baer_2014 Salihu_2003	93 24	745872 585366	701 145	1503796 1040323	*		0.22; 0.33] 6.5% 0.19; 0.45] 6.4%			
Roeper_1987 Kazaura_2004	6 23	418566 373968	91 194	2143483 1205402			0.15; 0.77] 5.8% 0.25; 0.59] 6.3%			
Bugge_2017	3	5104	19	15027		0.46	0.14; 1.57] 5.1%			
Byron_1998 Xu_2011	6 162	81081 1163051	34 1322	228095 4757989			0.21; 1.18] 5.7% 0.43; 0.59] 6.6%			
Tan_2008 Materna_2009	7	165142 14223	10 90	209595 601520	÷		0.34; 2.33] 5.5% 0.95; 5.78] 5.7%			
Random effects mo Prediction interval	del 1242	17206860	12409	42243339	۵	0.32 [0.23; 0.44] 100.0% 0.10; 1.02]			
Heterogeneity: $l^2 = 90\%$ [Test for effect in subgroup	85%; 93%].	7 = 0.27, p	< 0.001			ľ				
	2: 716 = -7.6	3 (p < 0.001)								
>40 vs 20 - 30 Salihu_2003	1	55556	145	1040323		0.13	0.02; 0.92] 10.7%			
Materna_2009 Kazaura_2004	0	18741 26791	90 194	601520 1205402		0.18	0.01; 2.86] 7.4%			
Tan_1996	2	66822	315	3000053		0.29	0.07; 1.14] 13.6%			
Roeper_1987 Rankin_1999	0	36983 4410	91 71	2143483 263580			0.02; 5.10] 7.4% 0.03; 6.75] 7.4%			
Forrester_1999 Bugge_2017	1	4411 577	46 19	126290 15027			0.09; 4.51] 10.6%			
Byron_1998	0	3153	34	228095		1.05 [0.06; 17.09] 7.4%			
Martinez_1984 Tan_2008	0	7060 10301	9 10	158016 209595	-	2.03 [0	0.07; 20.24] 7.2% 0.26; 15.89] 10.2%			
Random effects mo Prediction interval	del 6	234805	1024	8991384	<u>ہ</u>		0.23; 0.74] 100.0% 0.23; 0.74]			
Heterogeneity: $t^2 = 0\%$ [0 Test for effect in subgroup	0%; 60%], 7	² = 0, p = 0.8	26							
	2. 110 - 13.4	, (p = 0.007)								
35 - 40 vs 20 - 30 Salihu_2003	3	272727	145	1040323		0.08	0.03; 0.25] 9.5%			
Tan_1996 Bugge_2017	5	359128 2475	315 19	3000053 15027		0.13	0.05; 0.32] 10.4%			
Roeper_1987	1	145516 202899	91 154	2143483 378014		0.16	0.02; 1.16] 6.8%			
Borque_2021 Rankin_1999	14	202899 27119	154	263580		0.27	0.10; 0.29] 11.3% 0.07; 1.12] 8.6%			
Byron_1998 Forrester_1999	1	22727 23540	34 46	228095 126290		0.30	0.04; 2.16] 6.7% 0.11; 1.12] 9.4%			
Martinez_1984	0	21932	9	158016		0.38 [0.02; 6.51] 4.6%			
Kazaura_2004 Tan_2008	10 2	134138 67474	194 10	1205402 209595		0.62	0.25; 0.87] 11.1% 0.14; 2.84] 8.2%			
Materna_2009 Random effects mo	2	6484 1286159	90 1178	601520 9369398		2.06	0.51; 8.37] 8.6% 0.16; 0.47] 100.0%			
Prediction interval						1	0.07; 1.05] -			
Heterogeneity: $l^2 = 51\%$ [Test for effect in subgroup						_				
Test for subgroup differer	icos: ? ² ₄ = 4	56.69, df = 4	(p < 0.001) (0.01 0.1 1 10	100				
				Lower with	Comparator Higher wi	ith Comp	arator			
Discoso 10	DD ric	k rotio								

ajog.org

ARTICLE IN PRESS

DOI:10.14753/SE.2024.3114

SUPPLEMENTAL FIGURE 18 Funnel plot for the association between maternal age and *all nonchromosomal anomalies* (ICD-10: Q00–Q89) (<20 vs 20–30 age groups)



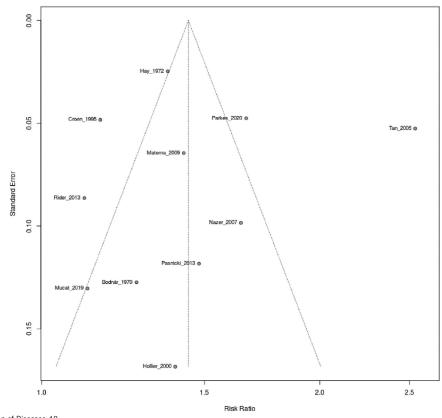
ICD-10, International Classification of Diseases-10.

Systematic Review

DOI:10.14753/SE.2024.3114

SUPPLEMENTAL FIGURE 19 Funnel plot for the association between maternal age and *all nonchromosomal anomalies* (ICD-10: Q00–Q89) (>35 vs 20–30 age groups)

ICD-10, International Classification of Diseases-10.

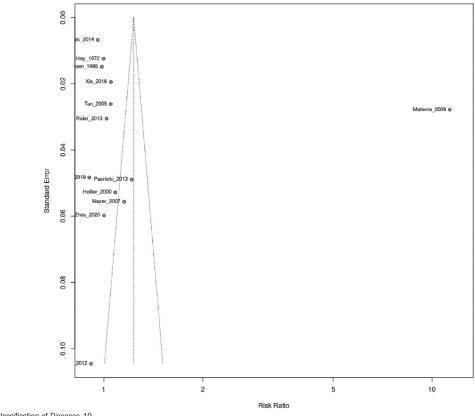

ajog.org

ARTICLE IN PRESS

DOI:10.14753/SE.2024.3114

Systematic Review

SUPPLEMENTAL FIGURE 20 Funnel plot for the association between maternal age and *all nonchromosomal anomalies* (ICD-10: Q00–Q89) (>40 vs 20–30 age groups)

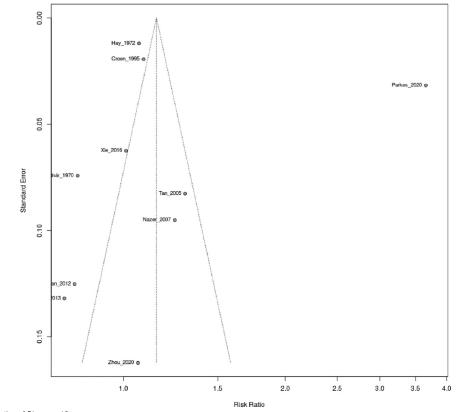


ICD-10, International Classification of Diseases-10.

Systematic Review

DOI:10.14753/SE.2024.3114

SUPPLEMENTAL FIGURE 21 Funnel plot for the association between maternal age and *all nonchromosomal anomalies* (ICD-10: Q00–Q89) (30–35 vs 20–30 age groups)

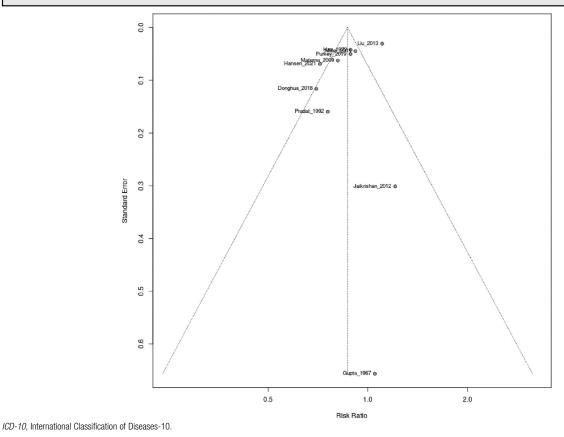


ICD-10, International Classification of Diseases-10.

DOI:10.14753/SE.2024.3114

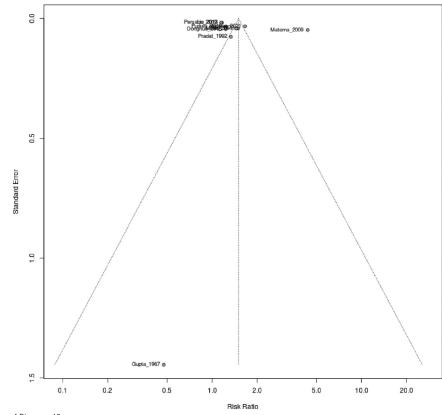
SUPPLEMENTAL FIGURE 22

Funnel plot for the association between maternal age and *all nonchromosomal anomalies (only studies including concomitant chromosomal anomalies)* (ICD-10: Q00–Q99 with Q90–Q99) (<20 vs 20–30 age groups)



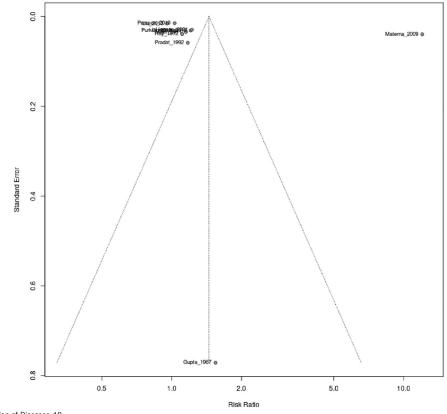
ICD-10, International Classification of Diseases-10.

Systematic Review


DOI:10.14753/SE.2024.3114

SUPPLEMENTAL FIGURE 23 Funnel plot for the association between maternal age and *congenital heart defects* (ICD-10: Q20–Q26) (<20 vs 20–30 age groups)

DOI:10.14753/SE.2024.3114



ICD-10, International Classification of Diseases-10.

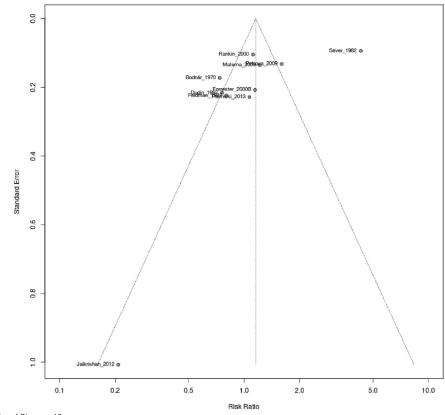
Systematic Review

DOI:10.14753/SE.2024.3114

SUPPLEMENTAL FIGURE 25 Funnel plot for the association between maternal age and *congenital heart defects* (ICD-10: Q20–Q26) (30–35 vs 20–30 age groups)

ICD-10, International Classification of Diseases-10.

ajog.org

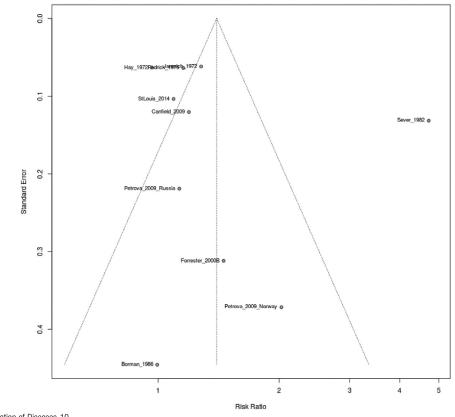

ARTICLE IN PRESS

Systematic Review

DOI:10.14753/SE.2024.3114

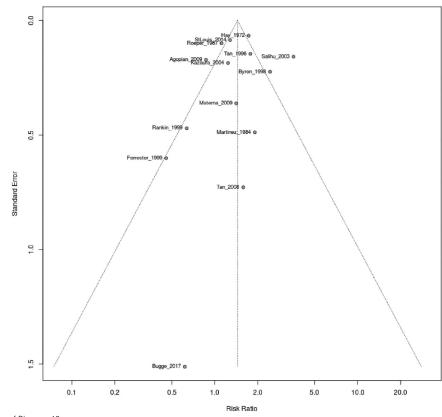
SUPPLEMENTAL FIGURE 26

Funnel plot for the association between maternal age and *congenital anomalies of the nervous system* (ICD-10: Q00-Q07) (<20 vs 20-30 age groups)


ICD-10, International Classification of Diseases-10.

Systematic Review

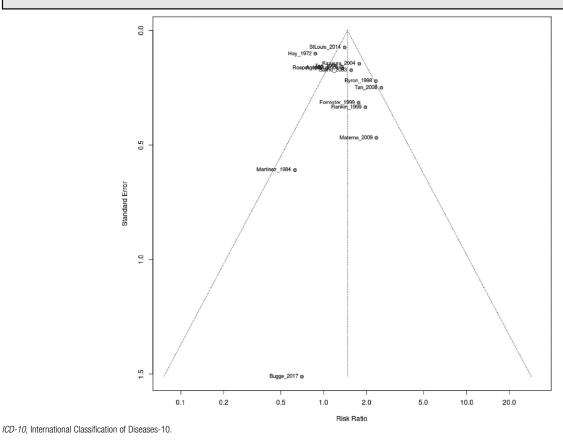
DOI:10.14753/SE.2024.3114


SUPPLEMENTAL FIGURE 27

Funnel plot for the association between maternal age and *anencephaly* (ICD-10: Q00.0) (<20 vs 20-30 age groups)

ICD-10, International Classification of Diseases-10.

SUPPLEMENTAL FIGURE 28 Funnel plot for the association between maternal age and *omphalocele* (ICD-10: Q79.2) (<20 vs 20–30 age groups)

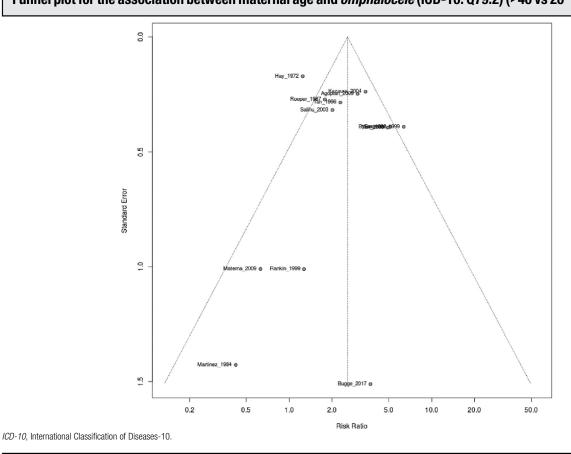


ICD-10, International Classification of Diseases-10.

Systematic Review

DOI:10.14753/SE.2024.3114

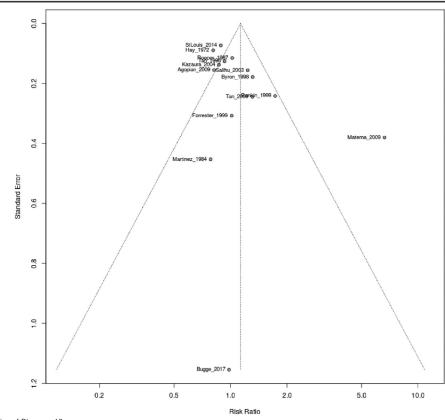
SUPPLEMENTAL FIGURE 29 Funnel plot for the association between maternal age and *omphalocele* (ICD-10: Q79.2) (>35 vs 20–30 age groups)


ajog.org

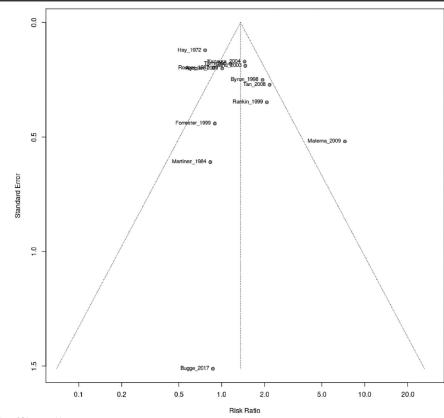
ARTICLE IN PRESS

Systematic Review

SUPPLEMENTAL FIGURE 30 Funnel plot for the association between maternal age and *omphalocele* (ICD-10: Q79.2) (>40 vs 20—30 age groups)


DOI:10.14753/SE.2024.3114

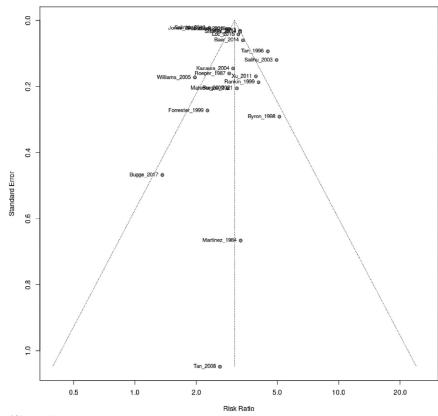
Systematic Review


DOI:10.14753/SE.2024.3114

SUPPLEMENTAL FIGURE 31 Funnel plot for the association between maternal age and *omphalocele* (ICD-10: Q79.2) (30–35 vs 20–30 age groups)

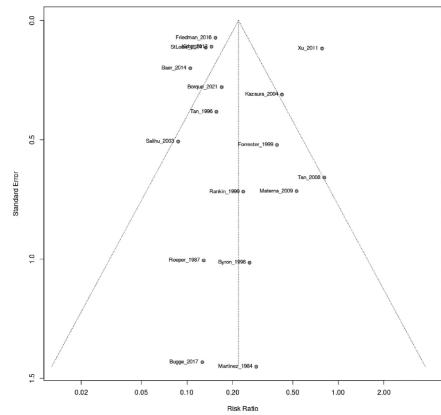
ICD-10, International Classification of Diseases-10.

SUPPLEMENTAL FIGURE 32 Funnel plot for the association between maternal age and *omphalocele* (ICD-10: Q79.2) (35–40 vs 20–30 age groups)


ICD-10, International Classification of Diseases-10.

Systematic Review

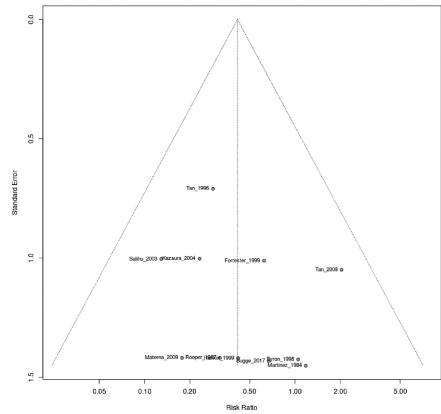
DOI:10.14753/SE.2024.3114


SUPPLEMENTAL FIGURE 33

Funnel plot for the association between maternal age and *gastroschisis* (ICD-10: Q79.3) (<20 vs 20–30 age groups)

ICD-10, International Classification of Diseases-10.

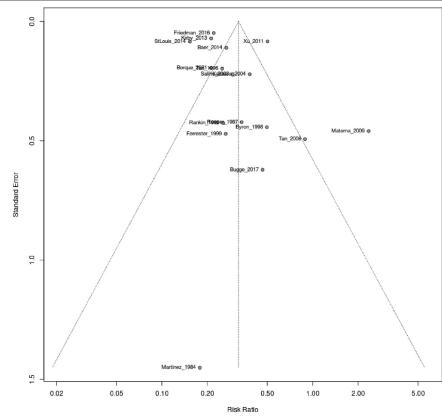
SUPPLEMENTAL FIGURE 34 Funnel plot for the association between maternal age and *gastroschisis* (ICD-10: Q79.3) (>35 vs 20–30 age groups)



ICD-10, International Classification of Diseases-10.

Systematic Review

DOI:10.14753/SE.2024.3114


SUPPLEMENTAL FIGURE 35 Funnel plot for the association between maternal age and *gastroschisis* (ICD-10: Q79.3) (>40 vs 20–30 age groups)

ICD-10, International Classification of Diseases-10.

DOI:10.14753/SE.2024.3114

SUPPLEMENTAL FIGURE 36 Funnel plot for the association between maternal age and *gastroschisis* (ICD-10: Q79.3) (30–35 vs 20–30 age groups)

ICD-10, International Classification of Diseases-10.

Systematic Review

DOI:10.14753/SE.2024.3114

SUPPLEMENTAL FIGURE 37 Funnel plot for the association between maternal age and *gastroschisis* (ICD-10: Q79.3) (35–40 vs 20–30 age groups)

ICD-10, International Classification of Diseases-10.

Systematic Review

SUPPLEMENTAL FIGURE 38

Forest plot representing the RR with 95% CI of *all nonchromosomal anomalies* (ICD-10: Q00–Q89) in different age groups compared to the 20 to 30 age group and sorted by year of publication

DOI:10.14753/SE.2024.3114

	Co	omparator		Reference				
Study	Events	Total	Events	Total	Risk Ratio	RR	95%-CI	Weight
<20 vs 20 - 30							Norman Avenue	
Bodnár_1970	206 8688	13384	1342	71636	*	0.82	[0.71; 0.95]	7.2%
Hay_1972 Croen_1995	3052	1240100 103735	33981 16122	5186500 597390	L.	1.07 1.09	[1.04; 1.09] [1.05; 1.13]	7.3% 7.3%
Hollier_2000	970	27521	2191	60575	5	0.97	[0.90; 1.05]	7.3%
Tan_2005	149	5409	3176	150151	-	1.30	[1.11; 1.53]	7.1%
Nazer_2007	115	1227	788	10481	-	1.25	[1.03; 1.50]	7.1%
Materna_2009	628	75121	5588	601520		0.90	[0.83; 0.98]	7.3%
Jaikrishan_2012	67	8833	1116	119314		0.81	[0.63; 1.04]	6.9%
Pasnicki_2013	199	17670	1739	125353	-	0.81	[0.70; 0.94]	7.2%
Sarkar_2013	83	4409	174	7178		0.78	[0.60; 1.01]	6.9%
StLouis_2014 Xie_2016	16174 256	1415846 13535	69100 12677	6615611 677622	Ľ	1.09 1.01	[1.08; 1.11] [0.89; 1.14]	7.3% 7.2%
Parkes_2020	2753	18830	4557	109460		3.51	[3.36; 3.67]	7.3%
Zhou_2020	39	5218	1108	157759	+ -	1.06	[0.77; 1.46]	6.6%
Random effects model	33379	2950838	153659	14490550	\$	1.08		100.0%
Prediction interval							[0.47; 2.52]	
Heterogeneity: /2 - 99% [99			- 0					
Test for effect in subgroup: 2	r = 0.79 (p	= 0.427)						
>35 vs 20 - 30								
Hay_1972	6103	834900	33981	5186500		1.12	[1.09; 1.15]	7.8%
Croen_1995	2811	98815	16122	597390		1.05	[1.01; 1.10]	7.8%
Hollier_2000	187	4189	2191	60575	-	1.23	[1.07; 1.43]	7.6%
Tan_2005	1935	54784	3176	150151		1.67	[1.58; 1.77]	7.8%
Nazer_2007	389	3893	788	10481	×	1.33	[1.18; 1.49]	7.7%
Materna_2009	970	25225	5588	601520		4.14	[3.87; 4.43]	7.8%
Zhang_2012	80	4009	306	21098	*	1.38	[1.08; 1.76]	7.4%
Pasnicki_2013	293 807	17498 43061	1739 2831	125353 164711		1.21	[1.07; 1.36]	7.7% 7.7%
Rider_2013 StLouis_2014	21341	1929379	69100	6615611	L.	1.09	[1.01; 1.18] [1.04; 1.08]	7.8%
Xie_2016	1568	68681	12677	677622	To a	1.22	[1.16; 1.29]	7.8%
Mucat_2019	295	8163	1201	30231	*	0.91	[0.80; 1.03]	7.7%
Zhou_2020	189	22970	1108	157759	*	1.17	[1.00; 1.37]	7.6%
Random effects model	36968	3115567	150808	14399002	\diamond	1.31	[1.07; 1.61]	100.0%
Prediction interval							[0.56; 3.08]	
Heterogeneity: /2 - 99% [99			0					
Test for effect in subgroup: 2	e = 2.57 (p	= 0.010)						
>40 vs 20 - 30								
Bodnár_1970	63	2656	1342	71636	-	1.27	[0.99; 1.63]	8.9%
Hay_1972	1706	190200	33981	5186500	E	1.37	[1.30; 1.44]	9.4%
Croen_1995	426	13641	16122	597390		1.16	[1.05; 1.27]	9.3%
Hollier_2000	34	674	2191	60575		1.39	[1.00; 1.94]	8.5%
Tan_2005	386	7195	3176	150151		2.54	[2.29; 2.81]	9.3%
Nazer_2007	103	834	788	10481		1.64	[1.35; 1.99]	9.1%
Materna_2009 Pasnicki_2013	248 73	18741 3556	5588 1739	601520 125353	*	1.42 1.48	[1.26; 1.62]	9.3% 8.9%
Rider_2013	138	7220	2831	164711	-	1.40	[0.94; 1.32]	9.2%
Mucat_2019	59	1325	1201	30231	<u>F</u>	1.12	[0.87; 1.45]	8.8%
Parkes_2020	454	6552	4557	109460		1.66	[1.52; 1.83]	9.3%
Random effects model	3690	252594	73516	7108008	\$	1.44	[1.25; 1.66]	100.0%
Prediction interval		2			<u>+</u>		[0.84; 2.46]	
Heterogeneity: /2 - 94% [91			0.001					
Test for effect in subgroup: 2	:= 4.99 (p	< 0.001)						
30 - 35 vs 20 - 30								
Hay_1972	7932	1214100	33981	5186500		1.00	[0.97; 1.02]	7.8%
Croen_1995	6070	228226	16122	597390		0.99	[0.96; 1.01]	7.7%
Hollier_2000	409	10443	2191	60575		1.08	[0.98; 1.20]	7.7%
Tan_2005	2610	117733	3176	150151	<u>0</u>	1.05	[1.00; 1.10]	7.7%
Nazer_2007	475	5482	788	10481		1.15	[1.03; 1.29]	7.7%
Materna_2009	1497 128	14223 9658	5588 306	601520 21098		11.33 0.91	[10.73; 11.97] [0.74; 1.12]	7.7% 7.4%
Zhang_2012 Pasnicki_2013	538	31917	1739	125353		1.22	[1.10; 1.34]	7.7%
Rider_2013	1682	96088	2831	164711		1.02	[0.96; 1.08]	7.7%
StLouis_2014	31473	3145042	69100	6615611	li l	0.96	[0.95; 0.97]	7.8%
Xie_2016	3253	165575	12677	677622	(a)	1.05	[1.01; 1.09]	7.7%
Mucat_2019	629	17549	1201	30231		0.90	[0.82; 0.99]	7.7%
Zhou_2020	371	52765	1108	157759	÷	1.00	[0.89; 1.13]	7.7%
Random effects model	57067	5108801	150808	14399002	-	1.23	[0.85; 1.78]	100.0%
Prediction interval Heterogeneity: I ² = 100% [10	0.0% - 10.0%	$1 \tau^2 - 0.45$	n - 0				[0.27; 5.71]	
Test for effect in subgroup: 2			~ - v					
35 - 40 vs 20 - 30								
Hay_1972	4397	644700	33981	5186500	<u>.</u>	1.04	[1.01; 1.07]	11.2%
Croen_1995	2385	85174	16122	597390	- E	1.04	[0.99; 1.08]	11.2%
Hollier_2000	153	3515	2191	60575		1.20	[1.03; 1.41]	11.0%
Tan_2005 Nazer_2007	1549 286	47589 3059	3176 788	150151 10481	100	1.54 1.24	[1.45; 1.63] [1.09; 1.42]	11.2% 11.0%
Materna_2009	286	3059 6484	788 5588	601520	141		[11.14; 12.90]	11.0%
Pasnicki_2013	220	13942	1739	125353	-	1.14	[0.99; 1.31]	11.0%
Rider_2013	669	35841	2831	164711		1.09	[1.00; 1.18]	11.2%
Mucat_2019	236	6838	1201	30231		0.87	[0.76; 1.00]	11.0%
Random effects model	10617	847142	67617	6926912	\sim		[0.87; 2.49]	100.0%
Prediction interval							[0.20; 10.84]	
Heterogeneity: I ² = 100% [1]			p = 0					
Test for effect in subgroup: 2 Test for subgroup difference			0 246)		r			
. say tor saughoup unrefetice	A4 = 0.40	, + (p =			0.1 0.5 1 2 10)		
				L auror ····	th Compositor Higher with C			

Lower with Comparator Higher with Comparator

Forest plot representing the RR with 95% CI of *all nonchromosomal anomalies (only studies excluding concomitant chromosomal anomalies)* (ICD-10: Q00–Q89) in different age groups compared to the 20 to 30 age group and sorted by year of publication

0		mparator		Reference	D' I D .'		0.50/ 01	
Study	Events	Total	Events	Total	Risk Ratio	RR	95%-CI	Weight
<20 vs 20 - 30								
Hollier_2000	970	27521	2191	60575		0.97	[0.90; 1.05]	20.0%
Materna_2009	628	75121	5588	601520		0.90	[0.83; 0.98]	20.0%
Pasnicki 2013	199	17670	1739	125353		0.81	[0.70; 0.94]	19.9%
StLouis 2014		1415846	69100	6615611		1.09	[1.08; 1.11]	20.1%
_ Parkes_2020	1231	18830	2136	109460	1	3.35	[3.13; 3.59]	20.0%
Random effects model		1554988	80754	7512519	\diamond	1.21	[0.59; 2.49]	
Prediction interval							[0.16; 9.09]	
Heterogeneity: I ² = 100% [10	00%; 100%	%], τ ² = 0.33	, <i>p</i> < 0.001					
Test for effect in subgroup: ta	4 = 0.74 (p	0 = 0.498)						
>35 vs 20 - 30								
Hollier_2000	187	4189	2191	60575		1.23	[1.07; 1.43]	16.6%
Materna_2009	970	25225	5588	601520	4	4.14	[3.87; 4.43]	16.7%
Pasnicki_2013	293	17498	1739	125353	-	1.21	[1.07; 1.36]	16.6%
Rider_2013	807	43061	2831	164711	1	1.09	[1.01; 1.18]	16.7%
StLouis_2014	21341	1929379	69100	6615611		1.06	[1.04; 1.08]	16.8%
Mucat_2019	295	8163	1201	30231		0.91	[0.80; 1.03]	16.6%
Random effects model	23893	2027515	82650	7598001	\diamond	1.37	[0.76; 2.45]	100.0%
Prediction interval		1 -2					[0.26; 7.18]	
Heterogeneity: $I^2 = 100\%$ [10 Test for effect in subgroup: $t_{\rm f}$, p = 0					
rest for effect in subgroup. (5 = 1.30 (µ	0 = 0.227						
>40 vs 20 - 30								
Hollier_2000	34	674	2191	60575	*	1.39	[1.00; 1.94]	16.2%
Materna_2009	248	18741	5588	601520	+	1.42	[1.26; 1.62]	17.0%
Pasnicki_2013	73	3556	1739	125353	-	1.48	[1.17; 1.87]	16.6%
Rider_2013	138	7220	2831	164711		1.11	[0.94; 1.32]	16.9%
Mucat_2019	59	1325	1201	30231	÷	1.12	[0.87; 1.45]	16.5%
Parkes_2020	139	6552	2136	109460	<u>p</u>	1.09	[0.92; 1.29]	16.9%
Random effects model	691	38068	15686	1091850	\$	1.25	[1.08; 1.46]	100.0%
Prediction interval					-		[0.91; 1.73]	
Heterogeneity: $I^2 = 57\%$ [0%			0.040					
Test for effect in subgroup: te	5 = 3.81 (<i>p</i>	o = 0.013)						
30 - 35 vs 20 - 30								
Hollier_2000	409	10443	2191	60575		1.08	[0.98; 1.20]	16.6%
Materna 2009	1497	14223	5588	601520			[10.73; 11.97]	16.7%
Pasnicki 2013	538	31917	1739	125353		1.22	[1.10; 1.34]	16.6%
Rider_2013	1682	96088	2831	164711		1.02	[0.96; 1.08]	16.7%
StLouis_2014		3145042	69100	6615611	T.	0.96	[0.95; 0.97]	16.7%
Mucat_2019	629	17549	1201	30231		0.90	[0.82; 0.99]	16.6%
Random effects model		3315262	82650	7598001	\diamond	1.54	[0.55; 4.32]	100.0%
Prediction interval							[0.08; 29.38]	
Heterogeneity: $I^2 = 100\%$ [10			, p = 0					
Test for effect in subgroup: te	5 = 1.07 (p	o = 0.334)						
35 - 40 vs 20 - 30	15-	05/-	0101	00575	L	4.05	[10.00/
Hollier_2000	153	3515	2191	60575		1.20	[1.03; 1.41]	19.9%
Materna_2009	722	6484	5588	601520			[11.14; 12.90]	20.1%
Pasnicki_2013	220	13942	1739	125353		1.14	[0.99; 1.31]	20.0%
Rider_2013 Muset_2019	669	35841	2831	164711	100	1.09	[1.00; 1.18]	20.1%
Mucat_2019 Bandom offects model	236	6838	1201	30231		0.87	[0.76; 1.00] [0.45; 6.70]	20.0%
Random effects model Prediction interval	2000	66620	13550	982390		1.73	[0.45; 6.70]	100.0%
Heterogeneity: $I^2 = 100\%$ [10]	0% 100%	6] τ ² - 1 19	n = 0				[0.04, 77.01]	
Test for effect in subgroup: t_i			, 0					
Test for subgroup differences			= 0.935)					
	A4 510		,		0.1 0.51 2 10			

Lower with Comparator Higher with Comparator

SUPPLEMENTAL FIGURE 40

Forest plot representing the RR with 95% CI of *congenital anomalies of the nervous system* (ICD-10: Q00–Q07) in different age groups compared to the 20 to 30 age group and sorted by year of publication

0. 1		mparator		Reference	D ' 1 D 1'		0.50	
Study	Events	lotal	Events	Total	Risk Ratio	RR	95%-Cl	weight
<20 vs 20 - 30					1			
800 ar_1970	38	13384	276	71636	-	0.74	[0.53; 1.03]	10.6%
Feldman_1982	24	29235	114	111052	-	0.80	[0.52; 1.24]	10.3%
Sever_1982	140	146173	586	2628305		4.30	[3.57; 5.17]	11.0%
Dudin_1997	30	7798	74	14619	-	0.76	[0.50; 1.16]	10.4%
Forrester_2000B	28	23026	134	126287	1	1.15	[0.76; 1.72]	10.4%
Rankin_2000	108	52816	580	317512	Ē	1.12	[0.91; 1.37]	10.4%
Materna_2009	63	75121	415	601520	Ę	1.12	[0.93; 1.58]	10.8%
Petrova_2009	68	28497	357	239383	-	1.60	[1.23; 2.07]	10.8%
Jaikrishan_2012	1	8833	65	119314		0.21	[0.03; 1.50]	4.4%
Pasnicki_2013	22	17670	146	125353	-	1.07	[0.68; 1.67]	10.3%
Random effects model	522	402553	2747	4354981	L.	1.16		100.0%
Prediction interval	JEE	402000	2141	4004001		1.10	[0.29; 4.69]	100.078
Heterogeneity: $l^2 = 95\%$ [92]	%·97%] T	$^{2} = 0.33 $ m.	- 0.001				[0.23, 4.03]	
Test for effect in subgroup: t			0.001					
restrict encount subgroup. t	9 - 0.14 (p	- 0.470)						
>35 vs 20 - 30								
Feldman_1982	21	11508	114	111052		1.78	[1.12; 2.83]	12.2%
Sever_1982	88	61315	586	2628305		6.44	[5.15; 8.05]	13.0%
Forrester_2000B	31	27938	134	126287	4	1.05	[0.71; 1.55]	12.5%
	53	36304	580	317512	1	0.80		
Rankin_2000		25225			1_		[0.60; 1.06]	12.8% 12.9%
Materna_2009	59		415	601520		3.39	[2.58; 4.45]	
Petrova_2009	57	52941	357	239383	7	0.72	[0.55; 0.95]	12.8%
Pasnicki_2013	20	17498	146	125353	t	0.98	[0.62; 1.57]	12.2%
Mucat_2019	14	8163	42	30231	Ť.	1.23	[0.67; 2.26]	11.6%
Random effects model	343	240892	2374	4179643	\sim	1.53		100.0%
Prediction interval	or	2 0 57	0.004				[0.22; 10.87]	
Heterogeneity: $I^2 = 97\%$ [96]			< 0.001					
Test for effect in subgroup: t	7 = 1.56 (<i>p</i>	= 0.164)						
10								
>40 vs 20 - 30	10	0050	070	71000	-	1.07	[0 70. 0 01]	17 10/
Bodnár_1970	13	2656	276	71636 2628305	T	1.27	[0.73; 2.21]	17.1%
Sever_1982	18	13696	586			5.89	[3.69; 9.42]	17.6%
Dudin_1997	4	272	74	14619		2.91	[1.07; 7.89]	13.8%
Forrester_2000B	5	4409	134	126287	-	1.07	[0.44; 2.61]	14.6%
Materna_2009	11	18741	415	601520	-	0.85	[0.47; 1.55]	16.8%
Pasnicki_2013	1	3556	146	125353		0.24	[0.03; 1.73]	7.7%
Mucat_2019	3	1325	42	30231		1.63	[0.51; 5.25]	12.5%
Random effects model	55	44655	1673	3597951		1.56		100.0%
Prediction interval		2					[0.17; 13.99]	
Heterogeneity: $I^2 = 84\%$ [69]			< 0.001					
Test for effect in subgroup: t	₆ = 1.28 (p	= 0.248)						
00 05 ··· 00 00								
30 - 35 vs 20 - 30	20	21960	114	111050		0.90	[0.55: 1.42]	11.00/
Feldman_1982	20	21860		111052	T =	0.89	[0.55; 1.43]	11.9%
Sever_1982	144	109762	586	2628305		5.88	[4.90; 7.06]	12.8%
Forrester_2000B	52	51844	134	126287	Ī	0.95	[0.69; 1.30]	12.5%
Rankin_2000	163	100773	580	317512		0.89	[0.74; 1.05]	12.8%
Materna_2009	105	14223	415	601520		10.70	[8.64; 13.25]	12.8%
Petrova_2009	125	113746	357	239383	1	0.74	[0.60; 0.90]	12.8%
Pasnicki_2013	40	31917	146	125353	Ť.	1.08	[0.76; 1.53]	12.4%
Mucat_2019	32	17549	42	30231	Ē.	1.31	[0.83; 2.08]	12.0%
Random effects model	681	461674	2374	4179643		1.64	[0.70; 3.81]	100.0%
Prediction interval		2					[0.12; 21.90]	
Heterogeneity: $I^2 = 99\%$ [98'			< 0.001					
Test for effect in subgroup: t	7 = 1.38 (p	= 0.210)						
25 40 10 00 00								
35 - 40 vs 20 - 30	70	17010	500	000000-			[E 4E: 0.4E]	01 00/
Sever_1982	70	47619	586	2628305		6.59	[5.15; 8.45]	21.0%
Forrester_2000B	26	23529	134	126287	Ť –	1.04	[0.68; 1.58]	20.1%
Materna_2009	48	6484	415	601520	_ ≞	10.73	[7.97; 14.45]	20.8%
Pasnicki_2013	19	13942	146	125353	圭	1.17	[0.73; 1.89]	19.7%
Mucat_2019	11	6838	42	30231		1.16	[0.60; 2.25]	18.4%
Random effects model	174	98412	1323	3511696		2.56	• / •	100.0%
Prediction interval	e/ . 000/1 -	2 1 01	. 0.001				[0.05; 120.01]	
Heterogeneity: $I^2 = 97\%$ [95'			< 0.001					
Test for effect in subgroup: t Test for subgroup difference	4 = 1.07 (p) $e y^2 = 0.77$	= 0.134	0 500)			_		
reactor adogroup unicience	$\sim \Lambda_4 = 2.77$, ai – 4 (p :	- 0.000)	(0.01 0.1 1 10	100		

Lower with Comparator Higher with Comparator

SUPPLEMENTAL FIGURE 41

Forest plot representing the RR with 95% CI of *anencephaly* (ICD-10: Q00.0) in different age groups compared to the 20 to 30 age group and sorted by year of publication

								_
Study	Co Events	omparator Total	Events	Reference Total	Risk Ratio	RR	95%-CI Weigh	ht
Study	Lvents	Total	Lvents	Total	hisk hallo	nn	35 /8-CI Weigi	ĸ
<20 vs 20 - 30								
Hay_1972	309	1240100	1341	5186500	<u> </u>	0.96	[0.85; 1.09] 11.39	
Janerich_1972	306	320794	1833	2457349		1.28	[1.13; 1.44] 11.39	
Fedrick_1976 Sever_1982	286 73	103161 146173	1765 278	735182 2628305	-	1.15 4.72	[1.02; 1.31] 11.39 [3.65; 6.11] 10.89	
Borman_1986	6	6853	31	35211		0.99	[0.42; 2.38] 7.09	
Forrester_2000B	13	23009	49	126212		1.46	[0.79; 2.68] 8.79	
Canfield_2009	91	269890	284	1004687	*	1.19	[0.94; 1.51] 10.99	
Petrova_2009_Norway	8	7640	75	145219		2.03	[0.98; 4.20] 7.99	%
Petrova_2009_Russia	26	20857	104	94164	-	1.13	[0.73; 1.73] 9.99	
StLouis_2014	115	1415846	492	6615611	÷.	1.09	[0.89; 1.34] 11.09	
Random effects model Prediction interval	1233	3554323	6252	19028440		1.40	[0.98; 1.99] 100.09	%
Heterogeneity: $I^2 = 93\%$ [89'	%·95%] т	$^{2} = 0.20$ n <	0.001				[0.47; 4.17]	
Test for effect in subgroup: t			0.001					
>35 vs 20 - 30								
Hay_1972	202	834900	1341	5186500	4	0.94	[0.81; 1.08] 12.69	%
Janerich_1972	391	495715	1833	2457349	in the second	1.06	[0.95; 1.18] 12.79	
Fedrick_1976	367	125433	1765	735182		1.22	[1.09; 1.36] 12.79	
Sever_1982	33	61315	278	2628305 126212	*	5.09	[3.55; 7.30] 11.69	
Forrester_2000B Canfield_2009	5 45	27996 190264	49 284	1004687	-	0.46 0.84	[0.18; 1.15] 7.6 ^o [0.61; 1.15] 11.9 ^o	
Petrova_2009_Norway	20	44366	75	145219	7	0.87	[0.53; 1.43] 10.79	
Petrova_2009_Russia	5	8575	104	94164		0.53	[0.22; 1.29] 7.79	
StLouis_2014	103	1929379	492	6615611	-	0.72	[0.58; 0.89] 12.49	%
Random effects model	1171	3717943	6221	18993229	\diamond	1.02	[0.60; 1.72] 100.09	%
Prediction interval		2					[0.20; 5.11]	
Heterogeneity: $I^2 = 92\%$ [87]			0.001					
Test for effect in subgroup: t	8 = 0.08 (p	= 0.936)						
30 - 35 vs 20 - 30								
Hay_1972	308	1214100	1341	5186500	4	0.98	[0.87; 1.11] 11.89	%
Janerich_1972	560	803311	1833	2457349		0.93	[0.85; 1.03] 11.99	%
Fedrick_1976	518	198537	1765	735182		1.09	[0.99; 1.20] 11.99	%
Sever_1982	63	109762	278	2628305	-	5.43	[4.13; 7.13] 11.39	
Forrester_2000B	22	51887	49	126212	1	1.09	[0.66; 1.81] 9.99	
Canfield_2009	94	362254	284	1004687	Ī.	0.92	[0.73; 1.16] 11.59	
Petrova_2009_Norway Petrova_2009_Russia	57 12	96370 17376	75 104	145219 94164	T	1.15 0.63	[0.81; 1.62] 10.99 [0.34; 1.14] 9.29	
StLouis_2014	198	3145042	492	6615611	*	0.85	[0.72; 1.00] 11.79	
Random effects model	1832	5998639	6221	18993229	\diamond	1.15	[0.72; 1.84] 100.09	
Prediction interval							[0.26; 5.04]	
Heterogeneity: $l^2 = 95\%$ [92]			0.001					
Test for effect in subgroup: t	₈ = 0.69 (p	= 0.510)						
>40 vs 20 - 30								
Hay_1972	45	190200	1341	5186500	4	0.92	[0.68; 1.23] 21.19	%
Janerich_1972	78	98025	1833	2457349	1	1.07	[0.85; 1.34] 21.89	
Fedrick_1976	93	28490	1765	735182		1.36	[1.10; 1.67] 21.99	
Sever_1982	6	13696	278	2628305		4.14	[1.85; 9.30] 14.79	
Forrester_2000B	0	4411	49	126212		0.29	[0.02; 4.68] 3.04	
Canfield_2009	11	32324	284	1004687	Ť.	1.20	[0.66; 2.20] 17.49	
Random effects model Prediction interval	233	367146	5550	12138235		1.30	[0.71; 2.38] 100.09 [0.29; 5.77]	%
Heterogeneity: $l^2 = 68\%$ [24]	%: 86%]. τ	$^{2} = 0.23$, p =	0.008				[0.29, 0.77]	
Test for effect in subgroup: t								
35 - 40 vs 20 - 30								
Hay_1972	157	644700	1341	5186500	<u><u><u></u></u></u>	0.94	[0.80; 1.11] 18.39	
Janerich_1972	313	397690	1833	2457349	<u>P</u>	1.06	[0.94; 1.19] 18.59	
Fedrick_1976 Sever 1982	274	96943 47619	1765 278	735182		1.18	[1.04; 1.34] 18.59	
Sever_1982 Forrester_2000B	27 5	47619 23585	278 49	2628305 126212		5.36 0.55	[3.61; 7.96] 16.69 [0.22; 1.37] 11.09	
Canfield_2009	34	157940	284	1004687	-	0.35	[0.53; 1.09] 17.09	
Random effects model	810	1368477	5550		\sim	1.20	[0.53; 2.72] 100.09	
Prediction interval							[0.13; 11.51]	
Heterogeneity: I ² = 93% [88			0.001					
Test for effect in subgroup: t			0.000					
Test for subgroup difference	s: χ ₄ = 1.53	з, ат = 4 (<i>p</i> =	0.822)		0.1 0.5 1 2 10			

Lower with Comparator Higher with Comparator

Forest plot representing the RR with 95% CI of *spina bifida* (ICD-10: Q05) in different age groups compared to the 20 to 30 age group and sorted by year of publication

DOI:10.14753/SE.2024.3114

				Defense			
Study	Events	omparator Total	Events	Reference Total	Risk Ratio	RR	95%-CI Weight
<20 vs 20 - 30							
Hay_1972	952	1240100	3477	5186500		1.15	[1.07; 1.23] 12.1%
Janerich_1972	407	379484	2615	2780544		1.14	[1.03; 1.27] 12.0%
Sever_1982	52	146173	267	2628305		3.50	[2.60; 4.71] 11.5%
Borman_1986	5	6853	35	35211		0.73	[0.29; 1.87] 7.9%
Forrester_2000B Canfield 2009	12 85	23033 269890	56 345	126252	1	1.17	[0.63; 2.19] 9.8%
Petrova_2009	85 34	289890	345 178	1004687 239383	Ī.	0.92 1.60	[0.72; 1.16] 11.7% [1.11; 2.32] 11.2%
StLouis_2014	435	1415846	2059	6615611		0.99	[0.89; 1.09] 12.0%
Liu_2019	81	209192	436	1633199	T_	1.45	[1.14; 1.84] 11.7%
Random effects model	2063	3719068		20249692		1.30	[0.93; 1.82] 100.0%
Prediction interval							[0.48; 3.53]
Heterogeneity: 12 = 89% [82	%; 94%], τ	$p^2 = 0.16, p < 0.16$	0.001				,
Test for effect in subgroup: t	₈ = 1.81 (p	= 0.109)					
>35 vs 20 - 30							
Hay_1972	635	834900	3477	5186500		1.13	[1.04; 1.23] 13.0%
Janerich_1972	609	525904	2615	2780544	±	1.23	[1.13; 1.34] 13.0%
Sever_1982	51	61315	267	2628305	*	8.19	[6.07; 11.05] 12.4%
Forrester_2000B	20	27944	56	126252	-	1.61	[0.97; 2.69] 11.3%
Canfield_2009	76	190264	345	1004687	11日	1.16	[0.91; 1.49] 12.6%
Petrova_2009	32	52941	178	239383		0.81	[0.56; 1.18] 12.0%
StLouis_2014	544	1929379	2059	6615611	9	0.91	[0.82; 1.00] 13.0%
Liu_2019	120	485278	436	1633199	7	0.93	[0.76; 1.13] 12.7%
Random effects model	2087	4107925	9433	20214481	\diamond	1.39	[0.75; 2.59] 100.0%
Prediction interval Heterogeneity: / ² = 97% [95 ^o	v . 00% 1 ==	2 0.50 -	0.001				[0.21; 9.29]
Test for effect in subgroup: t			0.001				
rest for enect in subgroup. a	7 = 1.20 (p	= 0.243)					
30 - 35 vs 20 - 30							
Hay_1972	770	1214100	3477	5186500		0.95	[0.88; 1.02] 12.9%
Janerich_1972	819	869682	2615	2780544	L.	1.00	[0.93; 1.08] 12.9%
Sever_1982	69	109762	267	2628305	-	6.19	[4.75; 8.06] 12.4%
Forrester_2000B	23	51919	56	126252	+	1.00	[0.61; 1.62] 11.3%
Canfield_2009	137	362254	345	1004687	÷	1.10	[0.90; 1.34] 12.6%
Petrova_2009	56	113746	178	239383	-	0.66	[0.49; 0.89] 12.3%
StLouis_2014	870	3145042	2059	6615611		0.89	[0.82; 0.96] 12.9%
Liu_2019	221	1000093	436	1633199	Ŧ	0.83	[0.70; 0.97] 12.7%
Random effects model	2965	6866598	9433	20214481	\diamond	1.15	[0.65; 2.06] 100.0%
Prediction interval							[0.20; 6.80]
Heterogeneity: $I^2 = 97\%$ [95%			0.001				
Test for effect in subgroup: t	7 = 0.58 (p	= 0.582)					
>40 vs 20 - 30							
Hay_1972	163	190200	3477	5186500		1.28	[1.09; 1.50] 23.9%
Janerich_1972	134	104213	2615	2780544		1.37	[1.15; 1.63] 23.8%
Sever_1982	11	13696	267	2628305		7.91	[4.33; 14.45] 19.8%
Forrester_2000B	2	4415	56	126252		1.02	[0.25; 4.18] 10.9%
Canfield_2009	20	32324	345	1004687		1.80	[1.15; 2.83] 21.6%
Random effects model	330	344848	6760	11726288	\sim	1.96	[0.72; 5.31] 100.0%
Prediction interval							[0.14; 26.88]
Heterogeneity: I ² = 88% [75	-		0.001				
Test for effect in subgroup: t	₄ = 1.87 (p	= 0.134)					
35 - 40 vs 20 - 30					L	10.722	
Hay_1972	472	644700	3477	5186500	<u> </u>	1.09	[0.99; 1.20] 21.0%
Janerich_1972	475	421691	2615	2780544		1.20	[1.09; 1.32] 21.0%
Sever_1982	40	47619	267	2628305	_ =	8.27	[5.93; 11.53] 19.8%
Forrester_2000B	18	23529	56	126252		1.72	[1.01; 2.93] 18.0%
Canfield_2009	56	157940	345	1004687	-	1.03	[0.78; 1.37] 20.2%
Random effects model Prediction interval	1061	1295479	6760	11726288		1.79	[0.61; 5.31] 100.0%
Heterogeneity: $I^2 = 97\%$ [95%	× 98%1 -	$^{2} = 0.74$ m s	0.001			-	[0.09; 36.19]
Test for effect in subgroup: t			0.001				
Test for subgroup difference			0.717)				
J	A				0.1 0.5 1 2 10		

Lower with Comparator Higher with Comparator

SUPPLEMENTAL FIGURE 43

Forest plot representing the RR with 95% CI of *congenital heart defects* (ICD-10: Q20–Q26) in different age groups compared to the 20 to 30 age group and sorted by year of publication

0		mparator		Reference	D' L D d'		050/ 01	
Study	Events	Total	Events	Total	Risk Ratio	RR	95%-CI	Weight
<20 vs 20 - 30					T			
Gupta_1967	3	488	10	1707	_	1.05	[0.29; 3.80]	5.0%
Hay_1972	677	1240100	3193	5186500	0	0.89	[0.82; 0.96]	10.9%
Pradat_1992	41	20952	904	349375	-	0.76	[0.55; 1.03]	10.3%
Materna_2009	280	75121	2764	601520		0.81	[0.72; 0.92]	10.9%
Miller_2011	613	175645	2697	708470	4	0.92	[0.84; 1.00]	10.9%
Jaikrishan_2012	12	8833	134	119314	-	1.21	[0.67; 2.18]	8.8%
Liu_2013	1178	107091	10319	1036502	(a)	1.10	[1.04; 1.17]	11.0%
Donghua_2018	75	12077	4291	482922	*	0.70	[0.56; 0.88]	10.6%
Purkey_2019	456	213632	2887	1198936		0.89	[0.80; 0.98]	10.9%
Hansen_2021	226	31831	2649	267349		0.72	[0.63; 0.82]	10.8%
Random effects model	3561	1885770	29848	9952595	0	0.87	[0.78; 0.97]	100.0%
Prediction interval Heterogeneity: / ² = 85% [75		2 0.00	0.004		1		[0.64; 1.18]	
Test for effect in subgroup: to			< 0.001					
rescion eneccin subgroup. (9 = -2.04 (0 = 0.013)						
>35 vs 20 - 30								
Gupta_1967	0	171	10	1707		0.47	[0.03; 8.06]	1.6%
Hay_1972	768	834900	3193	5186500		1.49	[1.38; 1.62]	10.9%
Pradat_1992	215	62103	904	349375		1.34	[1.15; 1.55]	10.8%
Materna_2009	506	25225	2764	601520		4.37	[3.97; 4.80]	10.9%
Miller_2011	739	134120	2697	708470		1.45	[1.33; 1.57]	10.9%
Liu_2013	4892	422788	10319	1036502	0	1.16	[1.12; 1.20]	11.0%
Donghua_2018	579	52828	4291	482922		1.23	[1.13; 1.34]	10.9%
Persson_2019	5652	366073	9011	671819		1.15	[1.11; 1.19]	11.0%
Purkey_2019	1372	461119	2887	1198936		1.24	[1.16; 1.32]	11.0%
Hansen_2021	1491	90587	2649	267349		1.66	[1.56; 1.77]	11.0%
Random effects model	16214	2449914	38725	10505100	\$	1.50	[1.11; 2.04]	100.0%
Prediction interval	or	2 0 10					[0.57; 3.99]	
Heterogeneity: / ² = 99% [99			< 0.001					
Test for effect in subgroup: te	9 = 3.04 (p	0 = 0.014						
30 - 35 vs 20 - 30								
Gupta_1967	2	221	10	1707		1.54	[0.34; 7.00]	4.0%
Hay_1972	829	1214100	3193	5186500	1	1.11	[1.03; 1.20]	10.7%
Pradat_1992	428	140992	904	349375		1.17	[1.05; 1.32]	10.6%
Materna_2009	787	14223	2764	601520			[11.14; 13.01]	10.7%
Miller_2011	1240	283105	2697	708470	0	1.15	[1.08; 1.23]	10.7%
Liu_2013	6810	716842	10319	1036502	φ	0.95	[0.93; 0.98]	10.7%
Donghua_2018	1344	125233	4291	482922		1.21	[1.14; 1.28]	10.7%
Persson_2019	9257	670616	9011	671819	÷.	1.03	[1.00; 1.06]	10.7%
Purkey_2019	1608	641948	2887	1198936	ė.	1.04	[0.98; 1.11]	10.7%
Hansen_2021	2041	168678	2649	267349		1.22	[1.15; 1.29]	10.7%
Random effects model	24346	3975958	38725	10505100	\diamond	1.45	[0.83; 2.52]	100.0%
Prediction interval		() _2 o ==					[0.23; 8.99]	
Heterogeneity: $I^2 = 100\%$ [10 Test for effect in subgroup: the			p = 0					
Test for effect in subgroup: te	9 = 1.51 (p	= 0.165)						
>40 vs 20 - 30								
Gupta_1967	0	19	10	1707		- 4.17	[0.25; 68.69]	3.0%
Hay_1972	246	190200	3193	5186500		2.10	[1.85; 2.39]	19.7%
Pradat_1992	26	8510	904	349375		1.18	[0.80; 1.74]	18.0%
Materna 2009	130	18741	2764	601520		1.51	[1.27; 1.80]	19.6%
Liu_2013	1091	70844	10319	1036502		1.55	[1.45; 1.65]	19.9%
Hansen_2021	323	13745	2649	267349		2.37	[2.12; 2.66]	19.8%
Random effects model	1816	302059	19839	7442953	\$	1.75	[1.32; 2.32]	100.0%
Prediction interval							[0.87; 3.52]	
Heterogeneity: / ² = 91% [84			< 0.001					
Test for effect in subgroup: te	5 = 5.12 (p	= 0.004)						
35 - 40 vs 20 - 30								
Gupta_1967	0	152	10	1707		0.53	[0.03; 9.05]	2.9%
Hay_1972	522	644700	3193	5186500		1.32	[1.20; 1.44]	19.4%
Pradat_1992	189	53593	904	349375	122 I	1.36	[1.17; 1.59]	19.2%
Materna_2009	376	6484	2764	601520			[11.36; 14.02]	19.4%
Liu_2013 Hansen_2021	3801 1168	351944 76842	10319 2649	1036502 267349	Les .	1.08	[1.05; 1.13] [1.43; 1.64]	19.6% 19.5%
Random effects model		76842 1133715	19839	267349 7442953		1.53 1.91	[1.43; 1.64] [0.65; 5.62]	19.5% 100.0%
Prediction interval	0000	1100/10	13039	1442503		1.91	[0.10; 35.68]	.00.0 %
Heterogeneity: $l^2 = 100\%$ [10	00%; 100%	6], $\tau^2 = 0.94$	p = 0				,	
Test for effect in subgroup: te	5 = 1.54 (p	= 0.185)						
Test for subgroup difference			o < 0.001)					
					0.1 0.51 2 10			

Lower with Comparator Higher with Comparator

Forest plot representing the RR with 95% CI of *cleft lip and cleft palate* (ICD-10: Q35–Q37) in different age groups compared to the 20 to 30 age group and sorted by year of publication

DOI:10.14753/SE.2024.3114

	0.			D-4			
Study	Events	mparator Total	Events	Reference Total	Risk Ratio	RR	95%-CI Weight
oludy	Lveins	iotai	Lvento	Total	mok nuto		So to the Mergine
<20 vs 20 - 30							
Hay_1972	556	1240100	2680	5186500	D. C.	0.87	[0.79; 0.95] 18.2%
DeRoo_2003	84	31617	357	173893		1.29	[1.02; 1.64] 17.7%
Materna_2009	42	75121	523	601520		0.64	[0.47; 0.88] 17.3%
Jaikrishan_2012	8	8833	126	119314		0.86	[0.42; 1.75] 14.1%
Pasnicki_2013	17	17670	133	125353	+	0.91	[0.55; 1.50] 15.9%
Jaruratanasirikul_2016	32	22265	126	95535	辛	1.09	[0.74; 1.61] 16.8%
Random effects model	739	1395606	3945	6302115	4	0.93	[0.76; 1.14] 100.0%
Prediction interval					+		[0.52; 1.68]
Heterogeneity: $I^2 = 67\%$ [20]			= 0.011				
Test for effect in subgroup: 2	z = -0.69 (µ	o = 0.490)					
>35 vs 20 - 30							
Hay_1972	526	834900	2680	5186500		1.22	[1.11; 1.34] 17.4%
DeRoo_2003	43	27067	357	173893		0.77	[0.56; 1.06] 16.5%
Materna 2009	87	25225	523	601520		3.97	[3.16; 4.98] 17.0%
Pasnicki 2013	26	17498	133	125353		1.40	[0.92; 2.13] 15.8%
Jaruratanasirikul 2016	45	28891	126	95535	-	1.18	[0.84; 1.66] 16.4%
Luo_2019	100	55368	273	235136		1.56	[1.24; 1.96] 16.9%
Random effects model	827	988949	4092	6417937	\diamond	1.47	[0.95; 2.28] 100.0%
Prediction interval				••••••			[0.30; 7.24]
Heterogeneity: $l^2 = 95\%$ [92]	%; 97%], T	$r^2 = 0.28, p$	< 0.001				[]
Test for effect in subgroup: 2							
30 - 35 vs 20 - 30							
Hay_1972		1214100	2680	5186500	9	0.98	[0.90; 1.07] 17.1%
DeRoo_2003	123	65218	357	173893		0.92	[0.75; 1.13] 16.8%
Materna_2009	117	14223	523	601520	E2	9.46	[7.75; 11.55] 16.8%
Pasnicki_2013	46	31917	133	125353	<u> </u>	1.36	[0.97; 1.90] 16.1%
Jaruratanasirikul_2016	66	39702	126	95535	Ē	1.26	[0.94; 1.70] 16.3%
Luo_2019	175	142086	273	235136		1.06	[0.88; 1.28] 16.8%
Random effects model	1144	1507246	4092	6417937	\sim	1.58	[0.77; 3.22] 100.0%
Prediction interval Heterogeneity: $I^2 = 99\%$ [98'	a/.000/1 =	2 0.70 -	0.001				[0.11; 22.44]
Test for effect in subgroup: 2			< 0.001				
>40 vs 20 - 30							
Hay_1972	169	190200	2680	5186500	+	1.72	[1.47; 2.01] 29.7%
DeRoo_2003	5	3559	357	173893		0.68	[0.28; 1.65] 20.7%
Materna_2009	30	18741	523	601520	-	1.84	[1.27; 2.66] 27.9%
Pasnicki_2013	6	3556	133	125353		1.59	[0.70; 3.60] 21.7%
Random effects model	210	216056	3693	6087266	♦	1.57	[1.11; 2.20] 100.0%
Prediction interval	-				+-		[0.43; 5.75]
Heterogeneity: $I^2 = 30\%$ [0%			- 0.230				
Test for effect in subgroup: 2	z = 2.58 (p	= 0.010)					
35 - 40 vs 20 - 30							
Hay 1972	357	644700	2680	5186500		1.07	[0.96; 1.20] 26.3%
DeRoo 2003	38	23508	357	173893	Ŧ	0.79	[0.56; 1.10] 24.9%
Materna 2009	57	6484	523	601520		10.11	[7.70; 13.27] 25.4%
Pasnicki 2013	20	13942	133	125353	<u> </u>	1.35	[0.85; 2.16] 23.5%
Random effects model	472	688634	3693	6087266		1.85	[0.59; 5.75] 100.0%
Prediction interval							[0.01; 465.66]
Heterogeneity: $I^2 = 99\%$ [98'	%; 99%]. т	$r^2 = 1.32, p$	< 0.001				
Test for effect in subgroup: 2							
Test for subgroup difference			= 0.041)				
					0.01 0.1 1 10 100		

Lower with Comparator Higher with Comparator

Forest plot representing the RR with 95% CI of *cleft palate* (ICD-10: Q35) in different age groups compared to the 20 to 30 age group and sorted by year of publication

Chudu		omparator		Reference	Diale Datia		OF9/ CL Wainht
Study	Events	Iotai	Events	Total	Risk Ratio	RR	95%-CI Weight
<20 vs 20 - 30					1		
Hay_1972	411	1240100	1861	5186500	4	0.92	[0.83; 1.03] 20.8%
Shields_1981	23	205752	334	1463671	=	0.49	[0.32; 0.75] 19.3%
Baird 1994	33	34274	145	387862		2.58	[1.77; 3.76] 19.6%
Materna 2009	26	75121	266	601520	1	0.78	
StLouis_2014	742	1415846	3626	6615611	1	0.78	[0.52; 1.17] 19.4% [0.88; 1.03] 20.8%
Random effects model	1235	2971093		14255164	۲.		-
Prediction interval	1235	2971093	0232	14255104	<u> </u>	0.98	[0.58; 1.64] 100.0%
Heterogeneity: $I^2 = 89\%$ [78%]	V · 059/1 -	2 0.22 p.	0.001				[0.13; 7.25]
Test for effect in subgroup: z			0.001				
>35 vs 20 - 30							
Hay_1972	406	834900	1861	5186500	CI	1.36	[1.22; 1.51] 15.1%
Beckman_1976	15	8335	18	19008	-	1.90	[0.96; 3.77] 12.5%
Shields_1981	98	300245	334	1463671	C3	1.43	[1.14; 1.79] 14.8%
Baird_1994	19	32993	145	387862	-	1.54	[0.96; 2.48] 13.7%
Materna_2009	60	25225	266	601520	-	5.38	[4.07; 7.12] 14.7%
StLouis_2014	1240	1929379	3626	6615611	la la	1.17	[1.10; 1.25] 15.2%
Luo 2019	32	55368	58	235136	-	2.34	[1.52; 3.61] 14.0%
Random effects model	1870	3186445	6308	14509308	\diamond	1.86	[1.26; 2.76] 100.0%
Prediction interval							[0.47; 7.43]
Heterogeneity: /2 = 95% [92%	%; 97%], τ	$^{2} = 0.25, p < $	0.001				-
Test for effect in subgroup: z	r = 3.10 (p	= 0.002)					
30 - 35 vs 20 - 30							
Hay_1972	481	1214100	1861	5186500	in the second se	1.10	[1.00; 1.22] 15.1%
Beckman_1976	8	11388	18	19008		0.74	[0.32; 1.71] 11.5%
Shields_1981	93	436986	334	1463671	9	0.93	[0.74; 1.17] 14.9%
Baird_1994	30	86632	145	387862	÷	0.93	[0.63; 1.37] 14.2%
Materna_2009	80	14223	266	601520	E.	12.72	[9.91; 16.32] 14.8%
StLouis_2014	1770	3145042	3626	6615611	÷.	1.03	[0.97; 1.09] 15.2%
Luo_2019	50	142086	58	235136	-	1.43	[0.98; 2.08] 14.3%
Random effects model	2512	5050457	6308	14509308	\diamond	1.47	[0.71; 3.04] 100.0%
Prediction interval							[0.10; 20.94]
Heterogeneity: $I^2 = 98\%$ [98% Test for effect in subgroup: z			0.001				
>40 vs 20 - 30							
Hay_1972	111	190200	1861	5186500	+	1.63	[1.34; 1.97] 27.5%
Shields_1981	34	74260	334	1463671	+	2.01	[1.41; 2.86] 26.5%
Baird_1994	5	6288	145	387862	-	2.13	[0.87; 5.19] 20.5%
Materna_2009	19	18741	266	601520		2.29	[1.44; 3.65] 25.5%
Random effects model	169	289489	2606	7639553	0	1.78	[1.52; 2.07] 100.0%
Prediction interval					-		[1.26; 2.50]
Heterogeneity: $I^2 = 0\%$ [0%;	; 85%], τ ² -	= 0, <i>p</i> = 0.460	0				
Test for effect in subgroup: z							
35 - 40 vs 20 - 30							
Hay_1972	295	644700	1861	5186500		1.28	[1.13; 1.44] 26.2%
Shields_1981	64	225985	334	1463671	<u>i</u>	1.24	[0.95; 1.62] 25.5%
Baird_1994	14	26705	145	387862	*	1.40	[0.81; 2.43] 23.2%
Materna_2009	41	6484	266	601520		14.30	[10.30; 19.85] 25.1%
Random effects model	414	903874	2606	7639553	\diamond	2.38	[0.73; 7.70] 100.0%
Prediction interval							[0.01; 725.04]
Heterogeneity: I ² = 98% [97%	%; 99%], τ	² = 1.41, <i>p</i> <	0.001				
Test for effect in subgroup: z							
Test for subgroup differences	s: χ ₄ ² = 5.36	6, df = 4 (<i>p</i> =	0.253)		0.01 0.1 1 10 100		

Lower with Comparator Higher with Comparator

Forest plot representing the RR with 95% CI of *omphalocele* (ICD-10: Q79.2) in different age groups compared to the 20 to 30 age group and sorted by year of publication

DOI:10.14753/SE.2024.3114

Study	Co Events	omparator Total	Events	Reference Total	Risk Ratio	RR	95%-CI	Weight
<20 vs 20 - 30					Ĩ.			
<20 vs 20 - 30 Hay_1972	325	1240100	788	5186500		1.72	[1.52; 1.96]	10.3%
Martinez_1984	5	15940	26	158016	+	1.91	[0.73; 4.96]	4.8%
Roeper_1987 Tan_1996	131 58	552523 384335	456 255	2143483 3000053	-	1.11 1.78	[0.92; 1.35] [1.34; 2.36]	10.1% 9.5%
Byron_1998	25	47215	99	455885	*	2.44	[1.57; 3.78]	8.5%
Forrester_1999	3	23022	36	126290		0.46	[0.14; 1.48]	3.8%
Rankin_1999 Salihu 2003	5 67	44099 195335	47 100	263580 1037088	-*-	0.64	[0.25; 1.60] [2.61; 4.85]	5.0% 9.4%
Kazaura_2004	33	129089	249	1205402	*	1.24	[0.86; 1.78]	9.0%
Tan_2008	2	8020	33	209595		1.58	[0.38; 6.60]	2.9%
Agopian_2009 Materna_2009	42 9	322274 75121	182 51	1213802 601520		0.87	[0.62; 1.22] [0.70; 2.87]	9.2% 6.4%
StLouis_2014	175	1415846	638	6615611		1.28	[1.08; 1.51]	10.2%
Bugge_2017	0	3483	3	15027		0.62	[0.03; 11.93]	0.9%
Random effects model Prediction interval	880	4456402	2963	22231852		1.44	[1.08; 1.92] [0.58; 3.60]	100.0%
Heterogeneity: I2 = 82% [71			0.001					
Test for effect in subgroup:	t ₁₃ = 2.77 (p	o = 0.016)						
>35 vs 20 - 30								
Hay_1972	111	834900	788	5186500		0.88	[0.72; 1.07]	9.4%
Martinez_1984 Roeper_1987	3 41	28992 182499	26 456	158016 2143483	-*	0.63	[0.19; 2.08] [0.77; 1.45]	3.5% 8.7%
Tan_1996	41	425950	255	3000053	-	1.33	[0.97; 1.40]	8.8%
Byron_1998	26	51653	99	455885	-#	2.32	[1.51; 3.57]	7.9%
Forrester_1999	14 11	27951 31529	36 47	126290 263580		1.76 1.96	[0.95; 3.26] [1.01; 3.77]	6.6% 6.3%
Rankin_1999 Salihu_2003	50	333297	100	1037088	*	1.56	[1.11; 2.18]	8.6%
Kazaura_2004	59	160929	249	1205402	*	1.77	[1.34; 2.36]	8.9%
Tan_2008	31	77775	33	209595 1213802	-#-	2.53	[1.55; 4.13]	7.5%
Agopian_2009 Materna_2009	47 5	231666 25225	182 51	1213802 601520		1.35 2.34	[0.98; 1.86] [0.93; 5.86]	8.7% 4.7%
StLouis_2014	261	1929379	638	6615611		1.40	[1.21; 1.62]	9.6%
Bugge_2017 Bandam offects model	0 707	3052 4344797	3	15027 22231852		0.70 1.47	[0.04; 13.61]	0.8%
Random effects model Prediction interval	707	4344797	2963	22231852	<u> </u>	1.47	[1.20; 1.79] [0.82; 2.64]	100.0%
Heterogeneity: I2 = 69% [47			0.001					
Test for effect in subgroup:	(₁₃ = 4.18 (p	o = 0.001)						
30 - 35 vs 20 - 30								
Hay_1972	149	1214100	788	5186500		0.81	[0.68; 0.96]	8.9%
Martinez_1984 Roeper_1987	6 91	46592 418566	26 456	158016 2143483		0.78 1.02	[0.32; 1.90] [0.82; 1.28]	4.6% 8.7%
Tan_1996	84	1063209	255	3000053	÷.	0.93	[0.73; 1.19]	8.6%
Byron_1998	46	161414	99	455885	*	1.31	[0.93; 1.86]	8.0%
Forrester_1999	15 27	51863 87486	36 47	126290 263580	+	1.01 1.73	[0.56; 1.85] [1.08; 2.78]	6.3% 7.2%
Rankin_1999 Salihu_2003	70	588235	100	1037088	*	1.23	[0.91; 1.67]	8.3%
Kazaura_2004	67	373968	249	1205402	+	0.87	[0.66; 1.14]	8.5%
Tan_2008	34 54	165142	33	209595		1.31	[0.81; 2.11]	7.1%
Agopian_2009 Materna_2009	54	440737 14223	182 51	1213802 601520	1	0.82	[0.60; 1.11] [3.15; 13.98]	8.3% 5.4%
StLouis_2014	269	3145042	638	6615611	0	0.89	[0.77; 1.02]	9.0%
Bugge_2017 Random effects model	1 921	5104 7775681	3	15027 22231852		0.98	[0.10; 9.43] [0.85; 1.50]	1.2% 100.0%
Prediction interval	921	7775081	2903	22231052	Ť.	1.13	[0.43; 2.99]	100.0%
Heterogeneity: /2 = 72% [52			0.001					
Test for effect in subgroup:	(₁₃ = 0.94 ()	0 = 0.365)						
>40 vs 20 - 30								
Hay_1972	36	190200	788	5186500	÷	1.25	[0.89; 1.74]	13.0%
Martinez_1984 Roeper_1987	0 14	7060 36983	26 456	158016 2143483		0.42	[0.03; 6.93] [1.05; 3.03]	1.3% 10.9%
Tan_1996	13	66822	255	3000053		2.29	[1.31; 4.00]	10.6%
Byron_1998	7	6307	99	455885		5.11	[2.38; 11.00]	8.4%
Forrester_1999 Rankin 1999	8 1	4411 4410	36 47	126290 263580		6.36 1.27	[2.96; 13.68] [0.18; 9.21]	8.5% 2.5%
Salihu_2003	11	56701	100	1037088		2.01	[1.08; 3.75]	9.9%
Kazaura_2004	19	26791 10301	249	1205402		3.43	[2.15; 5.47]	11.6%
Tan_2008 Agopian_2009	8 18	10301 39751	33 182	209595 1213802		4.93 3.02	[2.28; 10.68] [1.86; 4.90]	8.4% 11.4%
Materna_2009	1	18741	51	601520		0.63	[0.09; 4.55]	2.5%
Bugge_2017 Bandom offects model	0 136	577 469055	3	15027	*	- 3.72 2.57	[0.19; 71.88] [1.77; 3.73]	1.2%
Random effects model Prediction interval	130	469055	2325	15616241	~	2.57	[0.90; 7.30]	100.0%
Heterogeneity: /2 = 67% [41			0.001					
Test for effect in subgroup:	t ₁₂ = 5.51 (p	o < 0.001)						
35 - 40 vs 20 - 30								
Hay_1972	75	644700		5186500			[0.60; 0.97]	10.7%
Martinez_1984 Roeper_1987	3 27	21932 145516		158016 2143483		0.83	[0.25; 2.75] [0.59; 1.29]	4.1% 9.6%
Tan_1996	35	359128		3000053	7		[0.81; 1.63]	9.9%
Byron_1998	19	45346	99	455885		1.93	[1.18; 3.15]	8.8%
Forrester_1999 Bankin_1999	6 10	23540 27119		126290 263580		0.89	[0.38; 2.12]	5.9% 7.2%
Rankin_1999 Salihu_2003	10	27119	4/	263580 1037088	-		[1.05; 4.09] [1.01; 2.12]	9.8%
Kazaura_2004	40	134138	249	1205402	-	1.44	[1.03; 2.02]	10.1%
Tan_2008	23	67474		209595		2.17	[1.27; 3.69]	8.4%
Agopian_2009 Materna_2009	29 4	191915 6484		1213802 601520			[0.68; 1.49] [2.63; 20.13]	9.6% 4.9%
Bugge_2017	0	2475	3	15027		0.87	[0.04; 16.78]	0.9%
Random effects model	310	1946363	2325	15616241	\$	1.35	[0.98; 1.87]	100.0%
Prediction interval Heterogeneity: I ² = 72% [51	%; 84%l. +	² = 0,19. p ~	0.001		+-		[0.49; 3.73]	
Test for effect in subgroup:	t ₁₂ = 2.03 (µ	o = 0.065)						
Test for subgroup difference	$x_4^2 = 14.9$	97, df = 4 (p	= 0.005)		0.1 0.51 2 10			
				1				
	00			Lower wi	th Comparator Higher with C	ompara	ator	

SUPPLEMENTAL FIGURE 47

Forest plot representing the RR with 95% CI of *gastroschisis* (ICD-10: Q79.3) in different age groups compared to the 20 to 30 age group and sorted by year of publication

Study	Cr Events	omparator Total	Events	Reference Total	Risk Ratio	RR	95%-CI	Weight	
	Liono	Total	Liono		, i			noigin	
<20 vs 20 - 30 Martinez_1984	3	15940	9	158016		3.30	[0.89; 12.20]	3.6%	
Roeper_1987	68	552523	91	2143483	*	2.90	[2.12; 3.97]	4.7%	
Tan_1996 Byron_1998	181 18	384335 23622	315 34	3000053 228095	*	4.49 5.11	[3.74; 5.38] [2.89; 9.05]	4.8% 4.5%	
Forrester_1999	19	23022	46	126290	-*-	2.27	[1.33; 3.87]	4.5%	
Rankin_1999 Salihu_2003	48 135	44099 195369	71 145	263580 1040323	*	4.04	[2.80; 5.83] [3.92; 6.27]	4.7% 4.7%	
Kazaura_2004	63	129089	194	1205402	*	3.03	[2.28; 4.03]	4.7%	
Williams_2005 Tan_2008	68 1	111475 8020	67 10	216129 209595	*	1.97 2.61	[1.40; 2.76] [0.33; 20.41]	4.7% 2.6%	
Materna_2009	32	75121	90	601520	*	2.85	[1.90; 4.26]	4.6%	
Xu_2011 Kirby_2013	36 1822	33043 1589319	1322 2447	4757989 7002082	*	3.92 3.28	[2.82; 5.46] [3.09; 3.49]	4.7% 4.8%	
Baer_2014	459	290813	701	1503796		3.39	[3.03; 3.43]	4.8%	
StLouis_2014	1466	1415846	2086	6615611		3.28	[3.07; 3.51]	4.8%	
Loc_2015 Friedman_2016	1025 2336	683716 2294000	1267 4675	2716567 12994463		3.21 2.83	[2.96; 3.49] [2.69; 2.97]	4.8% 4.8%	
Jones_2016	3311	2439934	3586	5527463		2.09	[2.00; 2.19]	4.8%	
Bugge_2017 Salinas 2018	6 4038	3483 3076243	19 4209	15027 7434269	-	1.36	[0.54; 3.41] [2.22; 2.42]	4.1% 4.8%	
Shor_2019	2249	1499333	4612	8931429		2.90	[2.76; 3.05]	4.8%	
Borque_2021 Random effects model	28 17412	21722 14910067	154 26150	378014 67069196	*	3.16 3.08	[2.12; 4.73] [2.74: 3.47]	4.6% 100.0%	
Prediction interval	1/412	14910007	20150	07009190	<u> </u>	3.08	[1.92; 4.95]	100.0%	
Heterogeneity: I ² = 94% [92 ⁴ Test for effect in subgroup: t	%; 95%], τ	² = 0.05, p <	0.001						
Test for effect in subgroup: (21 = 19.68	(p < 0.001)							
>35 vs 20 - 30									
Martinez_1984 Roeper_1987	0	28992 182499	9 91	158016 2143483		0.29	[0.02; 4.93] [0.02; 0.93]	2.8%	
Tan_1996	7	425950	315	3000053		0.16	[0.07; 0.33]	6.7%	
Byron_1998	1	25880 27951	34 46	228095 126290		0.26	[0.04; 1.89]	4.1% 6.2%	
Forrester_1999 Rankin_1999	4	31529	46	126290 263580		0.39	[0.14; 1.09] [0.06; 0.96]	5.3%	
Salihu_2003	4	328283	145	1040323		0.09	[0.03; 0.24]	6.2%	
Kazaura_2004 Tan_2008	11	160929 77775	194 10	1205402 209595		0.42	[0.23; 0.78] [0.22; 2.94]	6.9% 5.6%	
Materna_2009	2	25225	90	601520	-*-	0.53	[0.13; 2.15]	5.3%	
Xu_2011	77	354511	1322	4757989	*	0.78	[0.62; 0.98]	7.4%	
Kirby_2013 Baer_2014	86 26	1697974 530265	2447 701	7002082 1503796	*	0.14	[0.12; 0.18] [0.07: 0.16]	7.4%	
StLouis_2014	81	1929379	2086	6615611	*	0.13	[0.11; 0.17]	7.4%	
Friedman_2016	200	3603972 3052	4675 19	12994463 15027		0.15	[0.13; 0.18] [0.01; 2.09]	7.4%	
Bugge_2017 Borque_2021	14	202899	154	378014	-#-	0.13	[0.10; 0.29]	7.0%	
Random effects model Prediction interval	519	9637065	12409	42243339	\$	0.22	[0.15; 0.32]	100.0%	
Prediction interval Heterogeneity: I ² = 92% [899	%; 94%], τ	² = 0.30, p <	0.001				[0.06; 0.74]		
Test for effect in subgroup: t									
30 - 35 vs 20 - 30									
Martinez_1984	0	46592	9	158016		0.18	[0.01; 3.07]	2.5%	
Roeper_1987 Tan_1996	6 28	418566 1063209	91 315	2143483 3000053		0.34	[0.15; 0.77] [0.17; 0.37]	5.8% 6.4%	
Byron_1998	6	81081	34	228095	-*-	0.50	[0.21; 1.18]	5.7%	
Forrester_1999	5	51863 87486	46 71	126290 263580		0.26	[0.11; 0.67]	5.6% 5.8%	
Rankin_1999 Salihu_2003	24	585366	145	1040323	+	0.25	[0.11; 0.59] [0.19; 0.45]	6.4%	
Kazaura_2004	23	373968	194	1205402	*	0.38	[0.25; 0.59]	6.3%	
Tan_2008 Materna_2009	7	165142 14223	10 90	209595 601520		0.89	[0.34; 2.33] [0.95; 5.78]	5.5% 5.7%	
Xu_2011	162	1163051	1322	4757989		0.50	[0.43; 0.59]	6.6%	
Kirby_2013 Baer_2014	218 93	2943860 745872	2447 701	7002082 1503796		0.21	[0.18; 0.24] [0.22; 0.33]	6.6% 6.5%	
StLouis_2014	152	3145042	2086	6615611		0.15	[0.13; 0.18]	6.6%	
Friedman_2016	472	5944342 5104	4675 19	12994463 15027		0.22	[0.20; 0.24]	6.6% 5.1%	
Bugge_2017 Borque_2021	32	5104 372093	19	378014	*	0.46	[0.14; 1.57] [0.14; 0.31]	5.1% 6.4%	
Random effects model		17206860	12409	42243339	\$	0.32	[0.23; 0.44]	100.0%	
Prediction interval Heterogeneity: I ² = 90% [859	%: 93%], τ	² = 0.27, p <	0.001				[0.10; 1.02]		
Test for effect in subgroup: t									
>40 vs 20 - 30									
Martinez_1984	0	7060 36983	9	158016			[0.07; 20.24]	7.2%	
Roeper_1987 Tan_1996	0	66822	91 315	2143483 3000053		0.32	[0.02; 5.10] [0.07; 1.14]	7.4%	
Byron_1998	0	3153	34	228095		1.05	[0.06; 17.09]	7.4%	
Forrester_1999 Rankin_1999	1	4411 4410	46 71	126290 263580		0.62	[0.09; 4.51] [0.03; 6.75]	10.6% 7.4%	
Salihu_2003	1	55556	145	1040323		0.13	[0.02; 0.92]	10.7%	
Kazaura_2004	1	26791 10301	194 10	1205402 209595		0.23	[0.03; 1.65]	10.7% 10.2%	
Tan_2008 Materna_2009	0	18741	90	209595		0.18	[0.26; 15.89] [0.01; 2.86]	7.4%	
Bugge_2017	0	577	19	15027			[0.04; 11.04]	7.3%	
Random effects model Prediction interval	6	234805	1024	8991384	\$	0.41	[0.23; 0.74] [0.19; 0.89]	100.0%	
Heterogeneity: I2 = 0% [0%			6				[,]		
Test for effect in subgroup: t	10 = -3.41 (p = 0.007)							
35 - 40 vs 20 - 30									
Martinez_1984 Roeper 1987	0	21932 145516	9 91	158016 2143483	*	0.38	[0.02; 6.51] [0.02; 1.16]	4.6% 6.8%	
Tan_1996	5	359128	315	3000053		0.13	[0.05; 0.32]	10.4%	
Byron_1998 Forrester_1999	1	22727	34 46	228095 126290		0.30	[0.04; 2.16] [0.11; 1.12]	6.7% 9.4%	
Rankin_1999	2	27119	71	263580		0.35	[0.07; 1.12]	8.6%	
Salihu_2003	3	272727	145	1040323 1205402		0.08	[0.03; 0.25]	9.5%	
Kazaura_2004 Tan_2008	10 2	134138 67474	194 10	1205402 209595		0.46	[0.25; 0.87] [0.14; 2.84]	11.1% 8.2%	
Materna_2009	2	6484	90	601520		2.06	[0.51; 8.37]	8.6%	
Bugge_2017 Borque_2021	0 14	2475 202899	19 154	15027 378014	*	0.16	[0.01; 2.58] [0.10; 0.29]	4.7%	
Random effects model	43	1286159	1178	9369398	\$		[0.16; 0.47]	100.0%	
Prediction interval Heterogeneity: I ² = 51% [49	(- 74H 1 -	- 0.30 -	0.022				[0.07; 1.05]		
Test for effect in subgroup: t	11 = -5.20 (p < 0.001)							
Test for subgroup difference	s: χ ₄ ² = 456	.69, df = 4 (p	< 0.001)		.01 0.1 1 10	٦ 100			
				Lower wi	th Comparator Higher with	Compar	aior		

Forest plot representing the RR with 95% CI of *all nonchromosomal anomalies* (ICD-10: Q00–Q89) in different age groups compared to the 20 to 30 age group and sorted by year of publication but only including studies published since 2005

DOI:10.14753/SE.2024.3114

Study	Co Events	mparator Total	Events	Reference Total	Risk Ratio	RR	95%-CI	Weight
<20 vs 20 - 30								
Tan_2005	149	5409	3176	150151	-	1.30	[1.11; 1.53]	10.0%
Nazer_2007	115	1227	788	10481	-	1.25	[1.03; 1.50]	10.0%
Materna_2009	628	75121	5588	601520	0	0.90	[0.83; 0.98]	10.2%
Jaikrishan_2012	67	8833	1116	119314	-	0.81	[0.63; 1.04]	9.8%
Pasnicki_2013	199	17670	1739	125353	-	0.81	[0.70; 0.94]	10.1%
Sarkar_2013	83	4409	174	7178	-	0.78	[0.60; 1.01]	9.8%
StLouis_2014	16174	1415846	69100	6615611	la la	1.09	[1.08; 1.11]	10.2%
Xie_2016	256	13535	12677	677622	4	1.01	[0.89; 1.14]	10.1%
Parkes_2020	2753	18830	4557	109460		3.51	[3.36; 3.67]	10.2%
Zhou_2020	39	5218	1108	157759	+	1.06	[0.77; 1.46]	9.5%
Random effects model	20463	1566098	100023	8574449	\diamond	1.13	[0.85; 1.49]	100.0%
Prediction interval							[0.39; 3.24]	
Heterogeneity: /2 = 100% [1			$\theta, p = 0$					
Test for effect in subgroup: 2	r = 0.84 (p	= 0.399)						
>35 vs 20 - 30								
Tan_2005	1935	54784	3176	150151		1.67	[1.58; 1.77]	10.1%
Nazer_2007	389	3893	788	10481	111	1.33	[1.18; 1.49]	10.0%
Materna_2009	970	25225	5588	601520		4.14	[3.87; 4.43]	10.1%
Zhang_2012	80	4009	306	21098	-	1.38	[1.08; 1.76]	9.7%
Pasnicki_2013	293	17498	1739	125353		1.21	[1.07; 1.36]	10.0%
Rider_2013	807	43061	2831	164711		1.09	[1.01; 1.18]	10.1%
StLouis_2014	21341		69100	6615611	P	1.06	[1.04; 1.08]	10.1%
Xie_2016	1568	68681	12677	677622	0	1.22	[1.16; 1.29]	10.1%
Mucat_2019	295	8163	1201	30231	-	0.91	[0.80; 1.03]	10.0%
Zhou_2020	189	22970	1108	157759	-	1.17	[1.00; 1.37]	9.9%
Random effects model	27867	2177663	98514	8554537	\diamond	1.37	[1.05; 1.78]	100.0%
Prediction interval		145					[0.50; 3.79]	
Heterogeneity: <i>1</i> ² = 99% [99			<i>p</i> = 0					
Test for effect in subgroup: 2	z = 2.34 (p	= 0.019)						
>40 vs 20 - 30								
Tan_2005	386	7195	3176	150151		2.54	[2.29; 2.81]	14.5%
Nazer_2007	103	834	788	10481	-	1.64	[1.35; 1.99]	14.2%
Materna_2009	248	18741	5588	601520		1.42	[1.26; 1.62]	14.4%
Pasnicki_2013	73	3556	1739	125353	-	1.48	[1.17; 1.87]	14.1%
Rider_2013	138	7220	2831	164711	÷	1.11	[0.94; 1.32]	14.3%
Mucat_2019	59	1325	1201	30231	辛	1.12	[0.87; 1.45]	13.9%
Parkes_2020	454	6552	4557	109460		1.66	[1.52; 1.83]	14.5%
Random effects model	1461	45423	19880	1191907	\$	1.53	[1.24; 1.89]	100.0%
Prediction interval					<u>+</u>		[0.73; 3.22]	
Heterogeneity: / ² = 94% [90 Test for effect in subgroup: 2			< 0.001					
30 - 35 vs 20 - 30								
Tan_2005	2610	117733	3176	150151	1	1.05	[1.00; 1.10]	10.1%
Nazer_2007	475	5482	788	10481	T_	1.15	[1.03; 1.29]	10.0%
Materna_2009	1497	14223	5588	601520			[10.73; 11.97]	10.0%
Zhang_2012	128	9658	306	21098		0.91		9.8%
Pasnicki_2013	538	31917	1739	125353	les .	1.22	[0.74; 1.12] [1.10; 1.34]	10.0%
Rider_2013	1682	96088	2831	125353	E.	1.02	[0.96; 1.08]	10.0%
StLouis_2014		3145042	69100	6615611	Ţ.	0.96	[0.95; 0.97]	10.0%
Xie_2016	31473	165575	12677	677622	T		[0.95; 0.97]	10.1%
Mucat 2019	629	17549	12077	30231	T.	1.05 0.90		10.1%
-					Ţ.		[0.82; 0.99]	
Zhou_2020 Random effects model	371	52765 3656032	1108 98514	157759 8554537	Ĩ.	1.00	[0.89; 1.13]	10.0%
Random effects model	42000	3050032	90514	0004037		1.30	[0.81; 2.10]	100.0%
Heterogeneity: / ² = 100% [1]	00% - 100%	1 T ² 0 50	0 0 - 0				[0.20; 8.30]	
Test for effect in subgroup: 2			$\rho = 0$					
05 40 05 55								
35 - 40 vs 20 - 30	1515	17565	0.175	15015	_			10.00/
Tan_2005	1549	47589	3176	150151		1.54	[1.45; 1.63]	16.8%
Nazer_2007	286	3059	788	10481		1.24	[1.09; 1.42]	16.6%
Materna_2009	722	6484	5588	601520			[11.14; 12.90]	16.7%
Pasnicki_2013	220	13942	1739	125353	<u> </u>	1.14	[0.99; 1.31]	16.6%
Rider_2013	669	35841	2831	164711		1.09	[1.00; 1.18]	16.7%
Mucat_2019	236	6838	1201	30231		0.87	[0.76; 1.00]	16.6%
Random effects model Prediction interval	3682	113753	15323	1082447		1.71	[0.78; 3.72] [0.09; 31.53]	100.0%
Heterogeneity: /2 = 100% [1			5, p = 0				[2.00, 01.00]	
Test for effect in subgroup: 2								
Test for subgroup difference	s: χ ₄ ² = 3.3	2, df = 4 (p	= 0.506)					
					0.1 0.5 1 2 10			

Cl, confidence interval; ICD-10, International Classification of Diseases-10; RR, risk ratio.

Lower with Comparator Higher with Comparator

Forest plot representing the RR with 95% Cl of *all nonchromosomal anomalies (only studies excluding concomitant chromosomal anomalies)* (ICD-10: Q00–Q89) in different age groups compared to the 20 to 30 age group and sorted by year of publication but only including studies published since 2005

Study	Co Events	mparator Total	Events	Reference Total	Risk Ratio	RR	95%-CI	Weig
olddy	Lvents	Total	Lvents	Total	Thisk flatto		5576-01	meng
<20 vs 20 - 30								
Materna_2009	628	75121	5588	601520		0.90	[0.83; 0.98]	25.0
Pasnicki_2013	199	17670	1739	125353		0.81	[0.70; 0.94]	24.9
StLouis_2014	16174	1415846	69100	6615611		1.09	[1.08; 1.11]	25.
Parkes_2020	1231	18830	2136	109460		3.35	[3.13; 3.59]	25.0
Random effects model	18232	1527467	78563	7451944	\diamond	1.28	[0.67; 2.43]	100.
Prediction interval							[0.06; 29.56]	
Heterogeneity: I ² = 100% [10	00%; 100%	%], τ ² = 0.43	s, <i>p</i> < 0.00	1				
Test for effect in subgroup: z	: = 0.76 (p	= 0.449)						
>35 vs 20 - 30								
Materna_2009	970	25225	5588	601520		4.14	[3.87; 4.43]	20.
Pasnicki 2013	293	17498	1739	125353		1.21	[1.07; 1.36]	19.
Rider_2013	807	43061	2831	164711		1.09		20.
StLouis_2014		1929379	69100	6615611		1.06		20.
Mucat_2019	295	8163	1201	30231	T I	0.91	[0.80; 1.03]	19.
Random effects model		2023326	80459	7537426	6	1.39	[0.81; 2.40]	
Prediction interval	20,00	1010010	00100		Ť		[0.16; 11.95]	
Heterogeneity: $I^2 = 100\%$ [10]	00%: 100%	6]. τ ² = 0.38	D = 0				[0.10, 11.00]	
Test for effect in subgroup: z		-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
40 1/2 00 00								
>40 vs 20 - 30	0.40	10711	5500	001500		4 40		
Materna_2009	248	18741	5588	601520		1.42	[1.26; 1.62]	20.
Pasnicki_2013	73	3556	1739	125353		1.48		19.
Rider_2013	138	7220	2831	164711	<u> </u>	1.11	[0.94; 1.32]	20.
Mucat_2019	59	1325	1201	30231	<u> </u>	1.12		19.
Parkes_2020	139	6552	2136	109460	The second se	1.09	[0.92; 1.29]	20.
Random effects model	657	37394	13495	1031275	¢	1.24	[1.09; 1.41]	100.
Prediction interval					-		[0.81; 1.89]	
Heterogeneity: $I^2 = 64\%$ [7% Test for effect in subgroup: z			= 0.024					
30 - 35 vs 20 - 30	1407	1 4000	5500	001500		11.00	[10 70: 11 07]	00
Materna_2009	1497	14223	5588	601520			[10.73; 11.97]	20.
Pasnicki_2013	538	31917	1739	125353	<u></u>	1.22	[1.10; 1.34]	20.
Rider_2013	1682	96088	2831	164711	<u> </u>	1.02	[0.96; 1.08]	20.
StLouis_2014		3145042	69100	6615611	11 I I I I I I I I I I I I I I I I I I	0.96	[0.95; 0.97]	20.
Mucat_2019	629	17549	1201	30231		0.90	[0.82; 0.99]	20.
Random effects model	35819	3304819	80459	7537426	\diamond	1.65	[0.64; 4.26]	100.
Prediction interval							[0.04; 71.98]	
Heterogeneity: $I^2 = 100\%$ [10			p = 0					
Test for effect in subgroup: z	: = 1.03 (p	= 0.303)						
35 - 40 vs 20 - 30	722	6484	5588	601520	+	11.99	[11.14; 12.90]	25.
35 - 40 vs 20 - 30 Materna_2009		13942	1739	125353	+	1.14	[0.99; 1.31]	24.
	220		2831	164711		1.09	[1.00; 1.18]	25.
Materna_2009	220 669	35841	2001		T			
Materna_2009 Pasnicki_2013		35841 6838	1201	30231	P	0.87	[0.76; 1.00]	24.
Materna_2009 Pasnicki_2013 Rider_2013	669				\Leftrightarrow	0.87 1.90		
Materna_2009 Pasnicki_2013 Rider_2013 Mucat_2019	669 236	6838	1201	30231 921815			[0.56; 6.37]	
Materna_2009 Pasnicki_2013 Rider_2013 Mucat_2019 Random effects model Prediction interval	669 236 1847	6838 63105	1201 11359					
Materna_2009 Pasnicki_2013 Rider_2013 Mucat_2019 Random effects model	669 236 1847 00%; 100%	6838 63105 6], τ ² = 1.52	1201 11359				[0.56; 6.37]	
Materna_2009 Pasnicki_2013 Rider_2013 Mucat_2019 Random effects model Prediction interval Heterogeneity: / ² = 100% [10	669 236 1847 00%; 100% r = 1.03 (<i>p</i>	6838 63105 6], τ ² = 1.52 = 0.301)	1201 11359 2, <i>p</i> = 0				[0.56; 6.37]	24.9 100.0

Lower with Comparator Higher with Comparator

Forest plot representing the RR with 95% CI of *congenital anomalies of the nervous system* (ICD-10: Q00–Q07) in different age groups compared to the 20 to 30 age group and sorted by year of publication but only including studies published since 2005

DOI:10.14753/SE.2024.3114

	Con	nparator	B	eference					
Study	Events		Events	Total	Risk Ratio	RR		95%-Cl	Weight
····· ,									
<20 vs 20 - 30									
Materna_2009	63	75121	415	601520	ų.	1.22	[0.93;	1.58]	29.4%
Petrova_2009	68	28497	357	239383	(a)	1.60	[1.23;	2.07]	29.4%
Jaikrishan_2012	1	8833	65	119314		0.21	[0.03;	1.50]	13.0%
Pasnicki_2013	22	17670	146	125353	÷	1.07	[0.68;	1.67]	28.2%
Random effects model	154	130121	983	1085570	\$	1.16	[0.70;	1.94]	100.0%
Prediction interval					<u>+-</u>		[0.13;	10.24]	
Heterogeneity: $I^2 = 55\%$ [0%	%; 85%], τ	$^{2} = 0.19, p$	= 0.082						
Test for effect in subgroup: 2	r = 0.58 (p	= 0.565)							
>35 vs 20 - 30									
Materna 2009	59	25225	415	601520		3.39	[2.58;	4.45]	25.9%
Petrova 2009	57	52941	357	239383	4	0.72	[0.55;	0.95]	25.8%
Pasnicki_2013	20	17498	146	125353		0.98	[0.62;	1.57]	24.7%
Mucat 2019	14	8163	42	30231	÷	1.23	[0.67;	2.26]	23.6%
Random effects model	150	103827	960	996487	•	1.32	[0.67;	2.60]	
Prediction interval					<u> </u>		[0.06;	31.70]	
Heterogeneity: $I^2 = 95\%$ [91	%; 98%], т	$t^2 = 0.43, \mu$	o < 0.001				. ,		
Test for effect in subgroup: 2									
30 - 35 vs 20 - 30									
Materna 2009	105	14223	415	601520		10.70	[8.64;	13.25]	25.5%
Petrova 2009	125		357	239383		0.74	[0.60;	0.90]	25.5%
Pasnicki 2013	40	31917	146	125353	T	1.08	[0.76;	1.53]	24.9%
Mucat 2019	32	17549	42	30231	T.	1.31	[0.83;	2.08]	24.2%
Random effects model		177435	960	996487	6	1.83	[0.56;	5.99]	
Prediction interval							[0.01;	586.65]	
Heterogeneity: $I^2 = 99\%$ [99%	%; 99%], T	$t^2 = 1.43, \mu$	o < 0.001				L ,		
Test for effect in subgroup: 2	-								
>40 vs 20 - 30									
Materna_2009	11	18741	415	601520		0.85	[0.47;	1.55]	44.3%
Pasnicki 2013	1	3556	146	125353		0.24	[0.03;	1.73]	21.6%
Mucat 2019	3	1325	42	30231	+	1.63	[0.51;	5.25]	34.0%
Random effects model	15	23622	603	757104	4	0.86	[0.38;	1.98]	100.0%
Prediction interval							[0.00;	2940.14]	
Heterogeneity: $I^2 = 27\%$ [0%	6; 92%], τ	$^{2} = 0.23, p$	= 0.254				-	-	
Test for effect in subgroup: 2	z = -0.34 (µ	o = 0.730)							
35 - 40 vs 20 - 30									
Materna_2009	48	6484	415	601520		10.73	[7.97;	14.45]	35.0%
Pasnicki 2013	19	13942	146	125353		1.17	[0.73;	1.89]	33.5%
Mucat 2019	11	6838	42	30231	÷	1.16	[0.60;	2.25]	31.4%
Random effects model	78	27264	603	757104	\diamond	2.49	[0.58;	-	100.0%
Prediction interval						-	[0.00; 3140	-	
Heterogeneity: $I^2 = 97\%$ [95%	%; 99%], т	τ ² = 1.60, μ	o < 0.001						
Test for effect in subgroup: 2	-								
Test for subgroup difference	s: $\chi_4^2 = 2.1$	2, df = 4 (µ	o = 0.714)						
					0.001 1101000				

Lower with Comparator Higher with Comparator

Forest plot representing the RR with 95% CI of *anencephaly* (ICD-10: Q00.0) in different age groups compared to the 20 to 30 age group and sorted by year of publication but only including studies published since 2005

	Co	mparator	1	Reference				
Study	Events	Total	Events	Total	Risk Ratio	RR	95%-Cl	Weight
					I			
<20 vs 20 - 30				1001007	_		[0.04.4.54]	00 00 <i>/</i>
Canfield_2009	91	269890	284	1004687		1.19	[0.94; 1.51]	33.9%
Petrova_2009_Norway	8	7640	75	145219	¥	2.03	[0.98; 4.20]	9.5%
Petrova_2009_Russia	26	20857	104	94164		1.13	[0.73; 1.73]	19.9%
StLouis_2014	115	1415846	492	6615611		1.09	[0.89; 1.34]	36.7%
Random effects model	240	1714233	955	7859681	\diamond	1.16	[1.01; 1.34]	100.0%
Prediction interval					+		[0.85; 1.58]	
Heterogeneity: $I^2 = 0\%$ [0%	-		16					
Test for effect in subgroup:	z = 2.03 (p	= 0.042)						
05								
>35 vs 20 - 30	45	100004	004	1004007		0.04	[0.01.1.15]	01 00/
Canfield_2009	45	190264	284	1004687		0.84	[0.61; 1.15]	31.6%
Petrova_2009_Norway	20	44366	75	145219	-	0.87	[0.53; 1.43]	19.3%
Petrova_2009_Russia	5	8575	104	94164		0.53	[0.22; 1.29]	7.7%
StLouis_2014	103	1929379	492	6615611		0.72	. , ,	41.4%
Random effects model	173	2172584	955	7859681	\diamond	0.76	[0.64; 0.89]	100.0%
Prediction interval	2						[0.53; 1.08]	
Heterogeneity: $I^2 = 0\% [0\%]$			6					
Test for effect in subgroup:	z = -3.36 (/	o < 0.001)						
30 - 35 vs 20 - 30								
Canfield_2009	94	362254	284	1004687		0.92	[0.73; 1.16]	30.4%
Petrova_2009_Norway	57	96370	75	145219		1.15	[0.81; 1.62]	22.5%
Petrova 2009 Russia	12	17376	104	94164		0.63	[0.34; 1.14]	11.5%
StLouis_2014		3145042	492	6615611		0.85	[0.72; 1.00]	35.7%
Random effects model	361		955	7859681		0.00	-	100.0%
Prediction interval	501	3021042	333	7055001	<u> </u>	0.30	[0.52; 1.55]	100.078
Heterogeneity: $I^2 = 22\%$ [0%	· 88%1 +	2 - < 0.01 -	- 0.201				[0.52, 1.55]	
Test for effect in subgroup: $T = 22\% [0\%]$			= 0.201					
Test for subgroup difference			~ 0.001)		r1			
rescior subgroup difference	$x_2 = 15.$	44, ui = 2 (p	< 0.001)		0.5 1 2			

Lower with Comparator Higher with Comparator

SUPPLEMENTAL FIGURE 52

Forest plot representing the RR with 95% CI of *spina bifida* (ICD-10: Q05) in different age groups compared to the 20 to 30 age group and sorted by year of publication but only including studies published since 2005

	Cor	nparator	1	Reference				
Study	Events	Total	Events	Total	Risk Ratio	RR	95%-Cl	Weight
<20 vs 20 - 30					I			
Canfield 2009	85	269890	345	1004687		0.92	[0.72; 1.16]	24.9%
Petrova 2009	85 34	28497	178	239383		1.60		24.9% 18.1%
-		1415846	2059		1	0.99	[1.11; 2.32]	
StLouis_2014	435 81	209192	2059 436	6615611	Ť_=-		[0.89; 1.09]	32.0% 25.0%
Liu_2019 Random effects model				1633199		1.45	[1.14; 1.84]	
Prediction interval	635	1923425	3018	9492880		1.17	[0.90; 1.53]	100.0%
Heterogeneity: $I^2 = 80\%$ [47	0/ . 000/ 1 -4	2 0.00	0.000				[0.36; 3.85]	
	-		= 0.002					
Test for effect in subgroup: 2	z = 1.19 (p =	= 0.234)						
>35 vs 20 - 30								
Canfield 2009	76	190264	345	1004687	- 	1.16	[0.91; 1.49]	24.0%
Petrova 2009	32	52941	178	239383		0.81	[0.56; 1.18]	17.4%
StLouis_2014			2059	6615611	-	0.91	[0.82; 1.00]	31.9%
Liu 2019	120	485278	436	1633199		0.93	[0.76; 1.13]	26.6%
Random effects model		2657862	3018	9492880	\$	0.94		100.0%
Prediction interval							[0.65; 1.36]	
Heterogeneity: $I^2 = 23\%$ [09	%: 88%]. τ ²	= < 0.01, p) = 0.272				,	
Test for effect in subgroup:								
30 - 35 vs 20 - 30								
Canfield_2009	137	362254	345	1004687		1.10	[0.90; 1.34]	24.6%
Petrova_2009	56	113746	178	239383		0.66	[0.49; 0.89]	19.4%
StLouis_2014	870	3145042	2059	6615611	-	0.89	[0.82; 0.96]	29.7%
Liu_2019	221	1000093	436	1633199		0.83	[0.70; 0.97]	26.4%
Random effects model	1284	4621135	3018	9492880	\diamond	0.87	[0.72; 1.05]	100.0%
Prediction interval							[0.38; 2.00]	
Heterogeneity: $I^2 = 66\%$ [29	%; 89%], τ ²	= 0.03, <i>p</i> =	0.030				-	
Test for effect in subgroup:	z = -1.43 (p	= 0.151)						
Test for subgroup difference	es: $\chi_2^2 = 3.30$), df = 2 (<i>p</i> =	= 0.192)					
	-				0.5 1 2			

Lower with Comparator Higher with Comparator

Forest plot representing the RR with 95% CI of *congenital heart defects* (ICD-10: Q20–Q26) in different age groups compared to the 20 to 30 age group and sorted by year of publication but only including studies published since 2005

	Co	mparator		Reference					
Study	Events	Total	Events	Total	Risk Ratio	RR		95%-Cl	Weight
					I				
<20 vs 20 - 30	000	75101	0704	01500		0.01	[0 70.	0.001	14.09/
Materna_2009	280	75121	2764	601520	Ĩ.	0.81	[0.72;	0.92]	14.6%
Miller_2011	613	175645	2697	708470	ï	0.92	[0.84;	1.00]	14.7%
Jaikrishan_2012	12	8833	134	119314	Ï	1.21	[0.67;	2.18]	12.5%
Liu_2013	1178	107091	10319	1036502	Ï	1.10	[1.04;	1.17]	14.7%
Donghua_2018	75	12077	4291	482922	1	0.70	[0.56;	0.88]	14.3%
Purkey_2019	456	213632	2887	1198936	I	0.89	[0.80;	0.98]	14.6%
Hansen_2021	226	31831	2649	267349		0.72	[0.63;	0.82]	14.6%
Random effects model Prediction interval	2840	624230	25741	4415013	1	0.87	[0.76;	-	100.0%
Heterogeneity: $l^2 = 90\%$ [81	0/ . 0.40/ 1 .	- ² 0.02 n	- 0.001		Ī		[0.56;	1.35]	
Test for effect in subgroup: z			< 0.001						
	. = 2.00 (a	, = 0.011)							
>35 vs 20 - 30									
Materna_2009	506	25225	2764	601520	13	4.37	[3.97;	4.80]	14.3%
Miller_2011	739	134120	2697	708470	¢	1.45	[1.33;	1.57]	14.3%
Liu_2013	4892	422788	10319	1036502		1.16	[1.12;	1.20]	14.3%
Donghua_2018	579	52828	4291	482922	¢.	1.23	[1.13;	1.34]	14.3%
Persson_2019	5652	366073	9011	671819	φ	1.15	[1.11;	1.19]	14.3%
Purkey_2019	1372	461119	2887	1198936	¢.	1.24	[1.16;	1.32]	14.3%
Hansen_2021	1491	90587	2649	267349	la la	1.66	[1.56;	1.77]	14.3%
Random effects model	15231	1552740	34618	4967518	0	1.55	[1.09;	-	100.0%
Prediction interval					+		[0.42;	5.69]	
Heterogeneity: /2 = 99% [99	%; 99%], *	$\tau^2 = 0.22, p$	< 0.001					-	
Test for effect in subgroup: z	r = 2.43 (p	= 0.015)							
30 - 35 vs 20 - 30									
Materna_2009	787	14223	2764	601520	10	12.04	[11.14;	13.01]	14.3%
Miller_2011	1240	283105	2697	708470	Ŷ	1.15	[1.08;	1.23]	14.3%
Liu_2013	6810	716842	10319	1036502	Ŷ	0.95	[0.93;	0.98]	14.3%
Donghua_2018	1344	125233	4291	482922	Ŷ	1.21	[1.14;	1.28]	14.3%
Persson_2019	9257	670616	9011	671819	Ŷ	1.03	[1.00;	1.06]	14.3%
Purkey_2019	1608	641948	2887	1198936	Ŷ	1.04	[0.98;	1.11]	14.3%
Hansen_2021	2041	168678	2649	267349	Ŷ	1.22	[1.15;	1.29]	14.3%
Random effects model	23087	2620645	34618	4967518	Þ	1.54	[0.79;	3.03]	100.0%
Prediction interval					+		[0.13;	18.80]	
Heterogeneity: $I^2 = 100\%$ [10		-	b, p = 0						
Test for effect in subgroup: z	r = 1.26 (p	= 0.207)							
>40 vs 20 - 30									
Materna_2009	130	18741	2764	601520		1.51	[1.27;	1.80]	33.1%
Liu_2013	1091	70844	10319	1036502		1.55	[1.45;	1.65]	33.5%
Hansen 2021	323	13745	2649	267349	The second se	2.37	[2.12;	2.66]	33.4%
Random effects model	1544	103330	15732	1905371	6	1.77	[1.33;	-	100.0%
Prediction interval	1344	105550	15/52	1303371	<u> </u>	1.77	[0.05;	67.78]	100.078
Heterogeneity: $I^2 = 95\%$ [90	%·98%]·	$T^2 = 0.06 \ p$	< 0.001				[0.00,	01.10]	
Test for effect in subgroup: z	-		< 0.001						
	(J.								
35 - 40 vs 20 - 30									
Materna_2009	376	6484	2764	601520		12.62	[11.36;	14.02]	33.2%
Liu_2013	3801	351944	10319	1036502	<u>.</u>	1.08	[1.05;	1.13]	33.4%
Hansen_2021	1168	76842	2649	267349	ļu —	1.53	[1.43;	1.64]	33.4%
Random effects model	5345	435270	15732	1905371	\diamond	2.76	[0.61;	12.39]	100.0%
Prediction interval							[0.00; 79188	31552.74]	
Heterogeneity: $I^2 = 100\%$ [10	00%; 100%	6], τ ² = 1.76	b, p = 0						
Test for effect in subgroup: z	r = 1.32 (p	= 0.186)							
Test for subgroup differences	s: $\chi_4^2 = 27.8$	89, df = 4 (p	< 0.001)						
					0.001 1 1000				

Lower with Comparator Higher with Comparator

Forest plot representing the RR with 95% CI of *cleft lip and cleft palate* (ICD-10: Q35–Q37) in different age groups compared to the 20 to 30 age group and sorted by year of publication but only including studies published since 2005

DOI:10.14753/SE.2024.3114

	Comp	parator	R	eference				
Study	Events	Total	Events	Total	Risk Ratio	RR	95%-Cl	Weight
					1			
<20 vs 20 - 30								
Materna_2009	42	75121	523	601520	+	0.64	[0.47; 0.88]	26.7%
Jaikrishan_2012	8	8833	126	119314		0.86	[0.42; 1.75]	22.3%
Pasnicki_2013	17	17670	133	125353	*	0.91	[0.55; 1.50]	24.9%
Jaruratanasirikul_2016	32	22265	126	95535	÷	1.09	[0.74; 1.61]	26.1%
Random effects model	99 1	123889	908	941722	\$	0.83	[0.65; 1.07]	100.0%
Prediction interval					<u> </u>		[0.38; 1.81]	
Heterogeneity: $I^2 = 34\%$ [09	%; 77%], τ ² =	= 0.02, p	= 0.209					
Test for effect in subgroup:	z = -1.44 (p =	= 0.150)						
>35 vs 20 - 30								
Materna_2009	87	25225	523	601520	-	3.97	[3.16; 4.98]	25.6%
Pasnicki_2013	26	17498	133	125353		1.40	[0.92; 2.13]	24.1%
Jaruratanasirikul_2016	45	28891	126	95535		1.18	[0.84; 1.66]	24.8%
Luo_2019	100	55368	273	235136	C+1	1.56	[1.24; 1.96]	25.6%
Random effects model	258 1	126982	1055	1057544	\diamond	1.81	[1.06; 3.10]	100.0%
Prediction interval							[0.14; 23.25]	
Heterogeneity: / ² = 94% [88	%; 97%], τ ² -	= 0.28, p	< 0.001					
Test for effect in subgroup:	z = 2.16 (p =	0.031)						
30 - 35 vs 20 - 30								
Materna_2009	117	14223	523	601520	-	9.46	[7.75; 11.55]	25.4%
Pasnicki_2013	46	31917	133	125353		1.36	[0.97; 1.90]	24.5%
Jaruratanasirikul_2016	66	39702	126	95535	(E)	1.26	[0.94; 1.70]	24.8%
Luo_2019	175 1	142086	273	235136	÷	1.06	[0.88; 1.28]	25.4%
Random effects model	404 2	227928	1055	1057544	\diamond	2.04	[0.74; 5.62]	100.0%
Prediction interval							[0.01; 283.11]	
Heterogeneity: / ² = 99% [98	%; 99%], τ ² :	= 1.05, p	< 0.001					
Test for effect in subgroup:	z = 1.38 (p =	0.166)						
Test for subgroup difference	s: $\chi_2^2 = 8.64$,	df = 2 (p	= 0.013)					
	-				0.01 0.1 1 10 100			

Lower with Comparator Higher with Comparator

SUPPLEMENTAL FIGURE 55

Forest plot representing the RR with 95% CI of *cleft palate* (ICD-10: Q35) in different age groups compared to the 20 to 30 age group and sorted by year of publication but only including studies published since 2005

	Comparator			Reference					
Study	Events	Total	Events	Total	Risk Ratio	RR		95%-Cl	Weight
>35 vs 20 - 30					I				
		05005		004500		5.00	14 07	7 4 01	00 404
Materna_2009	60	25225	266	601520		5.38	[4.07;	7.12]	33.4%
StLouis_2014	1240	1929379	3626	6615611		1.17	[1.10;	1.25]	34.1%
Luo_2019	32	55368	58	235136		2.34	[1.52;	3.61]	32.5%
Random effects model	1332	2009972	3950	7452267	¢	2.44	[1.02;	5.82]	100.0%
Prediction interval							[0.00; 16	6984.46]	
Heterogeneity: / ² = 98% [97	%; 99%], 1	$t^2 = 0.57, p$	< 0.001						
Test for effect in subgroup:	z = 2.00 (p	= 0.045)							
30 - 35 vs 20 - 30									
Materna_2009	80	14223	266	601520		12.72	[9.91;	16.32]	33.4%
StLouis_2014	1770	3145042	3626	6615611		1.03	[0.97;	1.09]	33.9%
Luo_2019	50	142086	58	235136		1.43	[0.98;	2.08]	32.7%
Random effects model	1900	3301351	3950	7452267	\diamond	2.65	[0.56;	12.48]	100.0%
Prediction interval						- (0.00; 130743	35733.36]	
Heterogeneity: $I^2 = 99\%$ [99	%; 100%],	$\tau^2 = 1.86, \mu$	0 < 0.001						
Test for effect in subgroup:	z = 1.23 (p	= 0.218)							
Test for subgroup difference	es: $\chi^2_{1} = 0.0$	1, df = 1 (p =	= 0.926)						
3. 1			,		0.001 1 1000				

Lower with Comparator Higher with Comparator

_____DOI:10.14753/SE.2024.3114

SUPPLEMENTAL FIGURE 56

Forest plot representing the RR with 95% CI of *omphalocele* (ICD-10: Q79.2) in different age groups compared to the 20 to 30 age group and sorted by year of publication but only including studies published since 2005

	Co	mparator		Reference				
Study	Events	•	Events	Total	Risk Ratio	RR	95%-Cl	Weight
,								0
<20 vs 20 - 30								
Tan_2008	2	8020	33	209595		1.58	[0.38; 6.60]	11.1%
Agopian_2009	42	322274	182	1213802	*	0.87	[0.62; 1.22]	30.2%
Materna_2009	9	75121	51	601520		1.41	[0.70; 2.87]	22.4%
StLouis_2014	175	1415846	638	6615611	-	1.28	[1.08; 1.51]	32.7%
Bugge_2017	0	3483	3	15027		0.62	[0.03; 11.93]	3.5%
Random effects model	228	1824744	907	8655555	\$	1.18	[0.99; 1.40]	100.0%
Prediction interval					+		[0.83; 1.66]	
Heterogeneity: I ² = 15% [0%	%; 82%], τ	$^{2} = < 0.01, \mu$	0 = 0.321					
Test for effect in subgroup: 2	z = 1.85 (p	= 0.064)						
>35 vs 20 - 30								
Tan_2008	31	77775	33	209595		2.53	[1.55; 4.13]	24.2%
Agopian_2009	47	231666	182	1213802	-	1.35	[0.98; 1.86]	27.2%
Materna_2009	5	25225	51	601520	-	2.34	[0.93; 5.86]	16.3%
StLouis_2014	261	1929379	638	6615611	123	1.40	[1.21; 1.62]	29.3%
Bugge_2017	0	3052	3	15027		0.70	[0.04; 13.61]	3.1%
Random effects model	344	2267097	907	8655555	\$	1.59	[1.23; 2.06]	100.0%
Prediction interval					+		[0.78; 3.24]	
Heterogeneity: /2 = 39% [0%	%; 78%], τ	² = 0.03, <i>p</i> =	0.159					
Test for effect in subgroup: 2	z = 3.54 (p	< 0.001)						
30 - 35 vs 20 - 30								
Tan_2008	34	165142	33	209595		1.31	[0.81; 2.11]	23.1%
Agopian_2009	54	440737	182	1213802	-	0.82	[0.60; 1.11]	26.0%
Materna_2009	8	14223	51	601520		6.63	[3.15; 13.98]	18.3%
StLouis_2014	269		638	6615611		0.89	[0.77; 1.02]	27.8%
Bugge_2017	1	5104	3	15027		0.98	[0.10; 9.43]	4.7%
Random effects model	366	3770248	907	8655555	\sim	1.44	[0.66; 3.12]	100.0%
Prediction interval		2					[0.09; 23.90]	
Heterogeneity: $I^2 = 87\%$ [71]	-		< 0.001					
Test for effect in subgroup: 2	$z = 0.93 \ (p$	= 0.354)						
>40 vs 20 - 30								
Tan 2008	8	10301	33	209595		4.93	[2.28; 10.68]	36.0%
Agopian 2009	18	39751	182	1213802		3.02	[1.86; 4.90]	46.4%
Materna_2009	1	18741	51	601520		0.63	[0.09; 4.55]	11.7%
Bugge_2017	0	577	3	15027		- 3.72	[0.19; 71.88]	5.9%
Random effects model	27	69370	269	2039944	\diamond		[1.71; 5.84]	
Prediction interval							[0.41; 24.24]	
Heterogeneity: $I^2 = 22\%$ [0%	6: 88%]. τ	$^{2} = 0.13$, $p =$	0.277				[0111, 21121]	
Test for effect in subgroup: 2	-							
35 - 40 vs 20 - 30								
Tan_2008	23	67474	33	209595	-	2.17	[1.27; 3.69]	34.8%
Agopian_2009	29	191915	182	1213802	+	1.01	[0.68; 1.49]	38.7%
Materna_2009	4	6484	51	601520		7.28	[2.63; 20.13]	22.0%
Bugge_2017	0	2475	3	15027		0.87	[0.04; 16.78]	4.6%
Random effects model	56	268348	269	2039944	\diamond	2.11	[0.86; 5.18]	100.0%
Prediction interval							[0.05; 94.32]	
Heterogeneity: $I^2 = 80\%$ [48]			= 0.002					
Test for effect in subgroup: 2								
Test for subgroup difference	s: χ ₄ ² = 12.	25, df = 4 (p	= 0.016)					
					0.1 0.51 2 10			

Lower with Comparator Higher with Comparator

SUPPLEMENTAL FIGURE 57

Forest plot representing the RR with 95% CI of *gastroschisis* (ICD-10: Q79.3) in different age groups compared to the 20 to 30 age group and sorted by year of publication but only including studies published since 2005

Study	Events	omparator	Events	Reference Total	Risk Ratio	RR	٥	5%-CI	Weigh
olddy	Lveins	Total	Lvento	Total	Thisk flatto		5	070-01	neigi
<20 vs 20 - 30									
Williams_2005	68	111475	67	216129	*	1.97	[1.40;	2.76]	7.4
Tan_2008	1	8020	10	209595		2.61	[0.33;	20.41]	4.2
Materna_2009	32	75121	90	601520	+	2.85	[1.90;	4.26]	7.3
Xu_2011	36	33043	1322	4757989	-	3.92	[2.82;	5.46]	7.4
Kirby_2013	1822	1589319	2447	7002082		3.28	[3.09;	3.49]	7.5
Baer_2014	459	290813	701	1503796		3.39	[3.01;	3.81]	7.5
			2086			3.28		-	
StLouis_2014	1466	1415846		6615611			[3.07;	3.51]	7.5
Loc_2015	1025	683716	1267	2716567		3.21	[2.96;	3.49]	7.5
Friedman_2016	2336	2294000	4675	12994463		2.83	[2.69;	2.97]	7.5
Jones_2016	3311	2439934	3586	5527463	13	2.09	[2.00;	2.19]	7.5
Bugge_2017	6	3483	19	15027	+-	1.36	[0.54;	3.41]	6.5
Salinas_2018	4038	3076243	4209	7434269		2.32	[2.22;	2.42]	7.5
Shor_2019	2249	1499333	4612	8931429		2.90	[2.76;	3.05]	7.5
Borque_2021	28	21722	154	378014	+	3.16	[2.12;	4.73]	7.3
Random effects model		13542068	25245	58903954	•	2.84	[2.54;	3.18]	100.0
	10077	13342008	20240	38503534	<u>_</u>	2.04			100.0
Prediction interval		2			-		[1.89;	4.28]	
Heterogeneity: I ² = 95% [94 Test for effect in subgroup: 2			0.001						
05 00									
> 35 vs 20 - 30 Tan_2008	3	77775	10	209595	+	0.81	[0.22;	2.94]	9.8
Materna 2009	2	25225	90	601520		0.53	[0.13;	2.15]	9.4
Xu 2011	77	354511	1322	4757989	1	0.78	[0.62;	0.98]	12.7
Kirby_2013	86	1697974	2447	7002082		0.14	[0.02;	0.38]	12.7
. –								-	
Baer_2014	26	530265	701	1503796	*	0.11	[0.07;	0.16]	12.5
StLouis_2014	81	1929379	2086	6615611		0.13	[0.11;	0.17]	12.7
Friedman_2016	200	3603972	4675	12994463		0.15	[0.13;	0.18]	12.8
Bugge_2017	0	3052	19	15027		0.13	[0.01;	2.09]	5.2
Borque_2021	14	202899	154	378014	*	0.17	[0.10;	0.29]	12.2
Random effects model	489	8425052	11504	34078097	♦	0.22	[0.13;	0.38]	100.0
Prediction interval							[0.04;	1.34]	
Test for effect in subgroup: 2		² = 0.50, <i>p</i> < < 0.001)	0.001						
Test for effect in subgroup: 2 30 - 35 vs 20 - 30	z = -5.57 (p	< 0.001)							
30 - 35 vs 20 - 30 Tan_2008	z = -5.57 (p	< 0.001) 165142	10	209595	+	0.89	[0.34;	2.33]	
30 - 35 vs 20 - 30 Tan_2008 Materna_2009	z = -5.57 (p	< 0.001)		209595 601520	*	0.89 2.35	[0.34; [0.95;	2.33] 5.78]	
30 - 35 vs 20 - 30 Tan_2008	z = -5.57 (p	< 0.001) 165142	10		*		•	-	10.3
30 - 35 vs 20 - 30 Tan_2008 Materna_2009	z = -5.57 (p 7 5	< 0.001) 165142 14223	10 90	601520	*	2.35	[0.95;	5.78]	10.3 11.8
30 - 35 vs 20 - 30 Tan_2008 Materna_2009 Xu_2011 Kirby_2013	z = -5.57 (p 7 5 162	< 0.001) 165142 14223 1163051	10 90 1322	601520 4757989 7002082		2.35 0.50 0.21	[0.95; [0.43; [0.18;	5.78] 0.59] 0.24]	10.3 11.8 11.8
30 - 35 vs 20 - 30 Tan_2008 Materna_2009 Xu_2011 Kirby_2013 Baer_2014	z = -5.57 (p 7 5 162 218 93	< 0.001) 165142 14223 1163051 2943860 745872	10 90 1322 2447 701	601520 4757989 7002082 1503796		2.35 0.50 0.21 0.27	[0.95; [0.43; [0.18; [0.22;	5.78] 0.59] 0.24] 0.33]	10.3 11.8 11.8 11.7
30 - 35 vs 20 - 30 Tan_2008 Materna_2009 Xu_2011 Kirby_2013 Baer_2014 StLouis_2014	z = -5.57 (p 7 5 162 218 93 152	< 0.001) 165142 14223 1163051 2943860 745872 3145042	10 90 1322 2447 701 2086	601520 4757989 7002082 1503796 6615611		2.35 0.50 0.21 0.27 0.15	[0.95; [0.43; [0.18; [0.22; [0.13;	5.78] 0.59] 0.24] 0.33] 0.18]	10.3 11.8 11.8 11.7 11.8
30 - 35 vs 20 - 30 Tan_2008 Materna_2009 Xu_2011 Kirby_2013 Baer_2014 StLouis_2014 Friedman_2016	z = -5.57 (p 7 5 162 218 93 152 472	< 0.001) 165142 14223 1163051 2943860 745872 3145042 5944342	10 90 1322 2447 701 2086 4675	601520 4757989 7002082 1503796 6615611 12994463		2.35 0.50 0.21 0.27 0.15 0.22	[0.95; [0.43; [0.18; [0.22; [0.13; [0.20;	5.78] 0.59] 0.24] 0.33] 0.18] 0.24]	10.3 11.8 11.8 11.7 11.8 11.8
30 - 35 vs 20 - 30 Tan_2008 Materna_2009 Xu_2011 Kirby_2013 Baer_2014 StLouis_2014 Friedman_2016 Bugge_2017	z = -5.57 (p 7 5 162 218 93 152 472 3	< 0.001) 165142 14223 1163051 2943860 745872 3145042 5944342 5104	10 90 1322 2447 701 2086 4675 19	601520 4757989 7002082 1503796 6615611 12994463 15027		2.35 0.50 0.21 0.27 0.15 0.22 0.46	[0.95; [0.43; [0.18; [0.22; [0.13; [0.20; [0.14;	5.78] 0.59] 0.24] 0.33] 0.18] 0.24] 1.57]	10.3 11.8 11.8 11.7 11.8 11.8 9.3
30 - 35 vs 20 - 30 Tan_2008 Materna_2009 Xu_2011 Kirby_2013 Baer_2014 StLouis_2014 Friedman_2016 Bugge_2017 Borque_2021	z = -5.57 (p 7 5 162 218 93 152 472 3 32	< 0.001) 165142 14223 1163051 2943860 745872 3145042 5944342 5104 372093	10 90 1322 2447 701 2086 4675 19 154	601520 4757989 7002082 1503796 6615611 12994463 15027 378014	0 0 0 *	2.35 0.50 0.21 0.27 0.15 0.22 0.46 0.21	[0.95; [0.43; [0.18; [0.22; [0.13; [0.20; [0.14; [0.14;	5.78] 0.59] 0.24] 0.33] 0.18] 0.24] 1.57] 0.31]	10.3 11.8 11.8 11.7 11.8 11.8 9.3 11.5
30 - 35 vs 20 - 30 Tan_2008 Materna_2009 Ku_2011 Kirby_2013 Baer_2014 StLouis_2014 Friedman_2016 Bugge_2017 Borque_2021	z = -5.57 (p 7 5 162 218 93 152 472 3 32	< 0.001) 165142 14223 1163051 2943860 745872 3145042 5944342 5104	10 90 1322 2447 701 2086 4675 19	601520 4757989 7002082 1503796 6615611 12994463 15027		2.35 0.50 0.21 0.27 0.15 0.22 0.46	[0.95; [0.43; [0.18; [0.22; [0.13; [0.20; [0.14;	5.78] 0.59] 0.24] 0.33] 0.18] 0.24] 1.57]	10.3 11.8 11.8 11.7 11.8 11.8 9.3 11.5
30 - 35 vs 20 - 30 Tan_2008 Materna_2009 Xu_2011 Kirby_2013 Baer_2014 StiLouis_2014 Friedman_2016 Bugge_2017 Borque_2021 Random effects model Prediction interval	z = -5.57 (p 7 5 162 218 93 152 472 3 2 2144	< 0.001) 165142 14223 1163051 2943860 745872 3145042 5944342 5104 372093 14498729	10 90 1322 2447 701 2086 4675 19 154 11504	601520 4757989 7002082 1503796 6615611 12994463 15027 378014	0 0 0 *	2.35 0.50 0.21 0.27 0.15 0.22 0.46 0.21	[0.95; [0.43; [0.18; [0.22; [0.13; [0.20; [0.14; [0.14;	5.78] 0.59] 0.24] 0.33] 0.18] 0.24] 1.57] 0.31]	10.3 11.8 11.8 11.7 11.8 11.8 9.3 11.5
30 - 35 vs 20 - 30 Tan_2008 Materna_2009 Xu_2011 Kirby_2013 Baer_2014 StLouis_2014 Friedman_2016 Bugge_2017 Borque_2021 Random effects model Prediction interval Heterogeneity: <i>I</i> ² = 95% [92	z = -5.57 (p 7 5 162 218 93 152 472 3 2 3 2 1144 *%; 96%], τ	< 0.001) 165142 14223 1163051 2943860 745872 3145042 5944342 5104 372093 14498729 ² = 0.62, <i>p</i> <	10 90 1322 2447 701 2086 4675 19 154 11504	601520 4757989 7002082 1503796 6615611 12994463 15027 378014	0 0 0 *	2.35 0.50 0.21 0.27 0.15 0.22 0.46 0.21	[0.95; [0.43; [0.18; [0.22; [0.13; [0.20; [0.14; [0.14; [0.21;]	5.78] 0.59] 0.24] 0.33] 0.18] 0.24] 1.57] 0.31] 0.61]	10.3 11.8 11.8 11.7 11.8 11.8 9.3 11.5
30 - 35 vs 20 - 30 Tan_2008 Materna_2009 Xu_2011 Kirby_2013 Baer_2014 StLouis_2014 Friedman_2016 Bugge_2017 Borque_2021 Random effects model Prediction interval Heterogeneity: <i>I</i> ² = 95% [92	z = -5.57 (p 7 5 162 218 93 152 472 3 2 3 2 1144 *%; 96%], τ	< 0.001) 165142 14223 1163051 2943860 745872 3145042 5944342 5104 372093 14498729 ² = 0.62, <i>p</i> <	10 90 1322 2447 701 2086 4675 19 154 11504	601520 4757989 7002082 1503796 6615611 12994463 15027 378014	0 0 0 *	2.35 0.50 0.21 0.27 0.15 0.22 0.46 0.21	[0.95; [0.43; [0.18; [0.22; [0.13; [0.20; [0.14; [0.14; [0.21;]	5.78] 0.59] 0.24] 0.33] 0.18] 0.24] 1.57] 0.31] 0.61]	10.3 11.8 11.8 11.7 11.8 11.8 9.3 11.5
30 - 35 vs 20 - 30 Tan_2008 Materna_2009 Xu_2011 Kirby_2013 Baer_2014 StiLouis_2014 Friedman_2016 Bugge_2017 Borque_2021 Random effects model Prediction interval Heterogeneity: <i>I²</i> = 95% (92 Test for effect in subgroup: <i>J</i> >>40 vs 20 - 30	z = -5.57 (p 7 5 162 218 93 152 472 3 2 1144 *%; 96%], τ z = -3.72 (p	< 0.001) 165142 14223 1163051 2943860 745872 3145042 5944342 5144342 5144387293 14498729 2 = 0.62, <i>p</i> < < 0.001)	10 90 1322 2447 701 2086 4675 19 154 11504 0.001	601520 4757989 7002082 1503796 6615611 12994463 15027 378014 34078097	0 0 0 *	2.35 0.50 0.21 0.27 0.15 0.22 0.46 0.21 0.35	0.95; 0.43; 0.18; 0.22; 0.13; 0.20; 0.14; 0.14; [0.21; [0.05;	5.78] 0.59] 0.24] 0.33] 0.24] 1.57] 0.31] 0.61] 2.55]	10.3 11.8 11.7 11.8 11.7 11.8 9.3 11.5 100.0
30 - 35 vs 20 - 30 Tan_2008 Materna_2009 Xu_2011 Kirby_2013 Baer_2014 StLouis_2014 Friedman_2016 Bugge_2017 Borque_2021 Random effects model Prediction interval Heterogeneity: <i>I²</i> = 95% [92 Test for effect in subgroup: <i>2</i> >40 vs 20 - 30 Tan_2008	z = -5.57 (p 7 5 162 218 93 152 472 3 3 2 114 2 (γ; 96%), τ z = -3.72 (p	 < 0.001) 165142 14223 1163051 2943860 745872 3145042 5944342 5104 372093 14498729 2² = 0.62, <i>p</i> < < 0.001) 10301 	10 90 1322 2447 701 2086 4675 19 154 11504 0.001	601520 4757989 7002082 1503796 6615611 12994463 15027 378014 34078097 209595	0 0 0 *	2.35 0.50 0.21 0.27 0.15 0.22 0.46 0.21 0.35	[0.95; [0.43; [0.18; [0.22; [0.13; [0.20; [0.14; [0.21; [0.05;]	5.78] 0.59] 0.24] 0.33] 0.24] 1.57] 0.24] 1.57] 0.31] 0.61] 2.55]	10.3 11.8 11.7 11.8 11.7 11.8 9.3 11.5 100.0
30 - 35 vs 20 - 30 Tan_2008 Materna_2009 Xu_2011 Kirby_2013 Baer_2014 StLouis_2014 Friedman_2016 Bugge_2017 Borque_2021 Random effects model Prediction interval Heterogeneity: I ² = 95% [92 Test for effect in subgroup: 2 >40 vs 20 - 30 Tan_2008 Materna_2009	z = -5.57 (p 7 5 162 218 93 152 472 3 2 472 3 2 1144 **********************************	< 0.001) 165142 14223 1163051 2943860 745872 3145042 5944342 5104 372093 14498729 ² = 0.62, <i>p</i> < < 0.001) 10301 18741	10 90 1322 2447 701 2086 4675 19 154 11504 0.001	601520 4757989 7002082 1503796 6615611 12994463 15027 378014 34078097	0 0 0 *	2.35 0.50 0.21 0.27 0.15 0.22 0.46 0.21 0.35 2.03 0.18	[0.95; [0.43; [0.18; [0.22; [0.13; [0.20; [0.14; [0.21; [0.05;]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	5.78] 0.59] 0.24] 0.33] 0.24] 1.57] 0.31] 0.61] 2.55]	10.3 11.8 11.8 11.7 11.8 9.3 11.5 100.0 40.7 29.8
30 - 35 vs 20 - 30 Tan_2008 Materna_2009 Xu_2011 Kirby_2013 Baer_2014 StLouis_2014 Friedman_2016 Bugge_2017 Borque_2021 Random effects model Prediction interval Heterogeneity: <i>I²</i> = 95% [92 Test for effect in subgroup: <i>2</i> >40 vs 20 - 30 Tan_2008	z = -5.57 (p 7 5 162 218 93 152 472 3 3 2 114 2 (γ; 96%), τ z = -3.72 (p	 < 0.001) 165142 14223 1163051 2943860 745872 3145042 5944342 5104 372093 14498729 2² = 0.62, <i>p</i> < < 0.001) 10301 	10 90 1322 2447 701 2086 4675 19 154 11504 0.001	601520 4757989 7002082 1503796 6615611 12994463 15027 378014 34078097 209595 601520 15027	0 0 0 *	2.35 0.50 0.21 0.27 0.15 0.22 0.46 0.21 0.35	[0.95; [0.43; [0.18; [0.22; [0.13; [0.20; [0.14; [0.21; [0.05;]	5.78] 0.59] 0.24] 0.33] 0.24] 1.57] 0.31] 0.61] 2.55]	10.3 11.8 11.8 11.7 11.8 9.3 11.5 100.0 40.7 29.8
30 - 35 vs 20 - 30 Tan_2008 Materna_2009 Xu_2011 Kirby_2013 Baer_2014 StLouis_2014 Friedman_2016 Bugge_2017 Borque_2021 Random effects model Prediction interval Heterogeneity: I ² = 95% [92 Test for effect in subgroup: 2 >40 vs 20 - 30 Tan_2008 Materna_2009	z = -5.57 (p 7 5 162 218 93 152 472 3 2 472 3 2 1144 **********************************	< 0.001) 165142 14223 1163051 2943860 745872 3145042 5944342 5104 372093 14498729 ² = 0.62, <i>p</i> < < 0.001) 10301 18741	10 90 1322 2447 701 2086 4675 19 154 11504 0.001	601520 4757989 7002082 1503796 6615611 12994463 15027 378014 34078097	0 0 0 *	2.35 0.50 0.21 0.27 0.15 0.22 0.46 0.21 0.35 2.03 0.18	[0.95; [0.43; [0.18; [0.22; [0.13; [0.20; [0.14; [0.21; [0.05;]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	5.78] 0.59] 0.24] 0.33] 0.24] 1.57] 0.31] 0.61] 2.55] 15.89] 2.86] 11.04]	10.3 11.8 11.7 11.8 11.7 11.8 9.3 11.5 100.0 40.7 29.8 29.5
30 - 35 vs 20 - 30 Tan_2008 Materna_2009 Xu_2011 Kirby_2013 Baer_2014 StLouis_2014 Friedman_2016 Bugge_2017 Borque_2021 Random effects model Prediction interval Heterogeneity: / ² = 95% [62] Test for effect in subgroup: 2 >>40 vs 20 - 30 Tan_2008 Materna_2009 Bugge_2017	z = -5.57 (p 7 5 162 218 93 152 472 3 2 1144 ********************************	 < 0.001) 165142 14223 1163051 2943860 745872 3145042 5944342 5104 372093 14498729 2 = 0.62, p < < 0.001) 10301 18741 577 	10 90 1322 2447 701 2086 4675 19 154 11504 0.001	601520 4757989 7002082 1503796 6615611 12994463 15027 378014 34078097 209595 601520 15027	0 0 0 *	2.35 0.50 0.21 0.27 0.15 0.22 0.46 0.21 0.35 2.03 0.18 0.67	[0.95; [0.43; [0.18; [0.22; [0.13; [0.20; [0.14; [0.21; [0.05; [0.26; [0.01; [0.04;	5.78] 0.59] 0.24] 0.33] 0.24] 1.57] 0.31] 0.61] 2.55] 15.89] 2.86] 11.04] 3.34]	10.3 11.8 11.7 11.8 11.7 11.8 9.3 11.5 100.0 40.7 29.8 29.5
30 - 35 vs 20 - 30 Tan_2008 Materna_2009 Xu_2011 Kirby_2013 Baer_2014 StLouis_2014 Friedman_2016 Bugge_2017 Borque_2021 Random effects model Prediction interval Heterogeneity: / ² = 95% [92 Test for effect in subgroup: <i>2</i> >40 vs 20 - 30 Tan_2008 Materna_2009 Bugge_2017 Random effects model Prediction interval	z = -5.57 (p 7 5 162 218 93 152 472 3 2 1144 %; 96%], τ z = -3.72 (p 1 0 0 1	 < 0.001) 165142 14223 1163051 2943860 745872 3145042 5944342 5104 372093 14498729 2² = 0.62, <i>p</i> < < < 0.001) 10301 18741 577 29619 	10 90 1322 2447 701 2086 4675 19 154 11504 0.001 10 90 19 119	601520 4757989 7002082 1503796 6615611 12994463 15027 378014 34078097 209595 601520 15027	0 0 0 *	2.35 0.50 0.21 0.27 0.15 0.22 0.46 0.21 0.35 2.03 0.18 0.67	[0.95; [0.43; [0.18; [0.22; [0.13; [0.20; [0.14; [0.21; [0.05; [0.05; [0.05; [0.01; [0.04; [0.04; [0.19;	5.78] 0.59] 0.24] 0.33] 0.24] 1.57] 0.31] 0.61] 2.55] 15.89] 2.86] 11.04] 3.34]	10.3 11.8 11.8 11.7 11.8 9.3 11.5 100.0 40.7 29.8 29.5
30 - 35 vs 20 - 30 Tan_2008 Materna_2009 Xu_2011 Kirby_2013 Baer_2014 StiLouis_2014 Friedman_2016 Bugge_2017 Borque_2021 Random effects model Prediction interval Heterogeneity: / ² = 95% (92 Test for effect in subgroup: 2 >40 vs 20 - 30 Tan_2008 Materna_2009 Bugge_2017 Random effects model	z = -5.57 (p) 7 5 162 218 93 152 472 3 32 1144 ^(%) ; 96%], τ z = -3.72 (p) 1 0 0 1 5; 90%], τ^2 .	<pre>< 0.001) 165142 14223 1163051 2943860 745872 3145042 5944342 5104 372093 14498729 $^2 = 0.62, p < < 0.001)$ 10301 18741 577 29619 = 0, p = 0.384</pre>	10 90 1322 2447 701 2086 4675 19 154 11504 0.001 10 90 19 119	601520 4757989 7002082 1503796 6615611 12994463 15027 378014 34078097 209595 601520 15027	0 0 0 *	2.35 0.50 0.21 0.27 0.15 0.22 0.46 0.21 0.35 2.03 0.18 0.67	[0.95; [0.43; [0.18; [0.22; [0.13; [0.20; [0.14; [0.21; [0.05; [0.05; [0.05; [0.01; [0.04; [0.04; [0.19;	5.78] 0.59] 0.24] 0.33] 0.24] 1.57] 0.31] 0.61] 2.55] 15.89] 2.86] 11.04] 3.34]	10.3 11.8 11.7 11.8 11.7 11.8 9.3 11.5 100.0 40.7 29.8 29.5
30 - 35 vs 20 - 30 Tan_2008 Materna_2009 Xu_2011 Kirby_2013 Baer_2014 StiLouis_2014 Friedman_2016 Bugge_2017 Borque_2021 Random effects model Prediction interval Heterogeneity: <i>I²</i> = 95% (92 Tast for effect in subgroup: <i>J</i> >40 vs 20 - 30 Tan_2008 Materna_2009 Bugge_2017 Random effects model Prediction interval Heterogeneity: <i>I²</i> = 0% (0% Test for effect in subgroup: <i>J</i>	z = -5.57 (p) 7 5 162 218 93 152 472 3 32 1144 ^(%) ; 96%], τ z = -3.72 (p) 1 0 0 1 5; 90%], τ^2 .	<pre>< 0.001) 165142 14223 1163051 2943860 745872 3145042 5944342 5104 372093 14498729 $^2 = 0.62, p < < 0.001)$ 10301 18741 577 29619 = 0, p = 0.384</pre>	10 90 1322 2447 701 2086 4675 19 154 11504 0.001 10 90 19 119	601520 4757989 7002082 1503796 6615611 12994463 15027 378014 34078097 209595 601520 15027	0 0 0 *	2.35 0.50 0.21 0.27 0.15 0.22 0.46 0.21 0.35 2.03 0.18 0.67	[0.95; [0.43; [0.18; [0.22; [0.13; [0.20; [0.14; [0.21; [0.05; [0.05; [0.05; [0.01; [0.04; [0.04; [0.19;	5.78] 0.59] 0.24] 0.33] 0.24] 1.57] 0.31] 0.61] 2.55] 15.89] 2.86] 11.04] 3.34]	10.3 11.8 11.8 11.7 11.8 9.3 11.5 100.0 40.7 29.8 29.5
30 - 35 vs 20 - 30 Tan_2008 Materna_2009 Xu_2011 Kirby_2013 Baer_2014 StiLouis_2014 Friedman_2016 Bugge_2017 Borque_2021 Random effects model Prediction interval Heterogeneity: / ² = 95% [92 Test for effect in subgroup: <i>2</i> >40 vs 20 - 30 Tan_2008 Materna_2009 Bugge_2017 Random effects model Prediction interval Heterogeneity: / ² = 0% [0% Test for effect in subgroup: <i>2</i> 35 - 40 vs 20 - 30	z = -5.57 (p) 7 5 162 218 93 152 472 3 2 1144 $(\%; 96\%], \tau^2, \tau^2, \tau^2, \tau^2, \tau^2, \tau^2, \tau^2, \tau^2$	< 0.001) 165142 14223 1163051 2943860 745872 3145042 5944342 5104 372093 14498729 ² 0.62, <i>p</i> < < 0.001) 10301 18741 577 29619 = 0, <i>p</i> = 0.388 = 0.765)	10 90 1322 2447 701 2086 4675 19 154 11504 0.001 10 90 19 119	601520 4757989 7002082 1503796 6615611 12994463 15027 378014 34078097 209595 601520 15027 826142	0 0 0 *	2.35 0.50 0.21 0.27 0.15 0.22 0.46 0.21 0.35 2.03 0.18 0.67 0.80	[0.95; [0.43; [0.18; [0.22; [0.13; [0.20; [0.14; [0.21; [0.05; [0.05; [0.01; [0.04; [0.04]; [0.04]; [0.00; 82	5.78] 0.59] 0.24] 0.33] 0.24] 0.24] 1.57] 0.31] 0.61] 2.55] 15.89] 2.86] 11.04] 3.34] 20.45]	10.3 11.8 11.8 11.7 11.8 9.3 11.5 100.0 40.7 29.8 29.5 100.0
30 - 35 vs 20 - 30 Tan_2008 Materna_2009 Xu_2011 Kirby_2013 Baer_2014 StLouis_2014 Friedman_2016 Bugge_2017 Borque_2021 Random effects model Prediction interval Heterogeneity: <i>I</i> ² = 95% [92 Test for effect in subgroup: <i>2</i> >40 vs 20 - 30 Tan_2008 Materna_2009 Bugge_2017 Random effects model Prediction interval Heterogeneity: <i>I</i> ² = 0% [0% Test for effect in subgroup: <i>2</i> 35 - 40 vs 20 - 30 Tan_2008	z = -5.57 (p 7 5 162 218 93 152 472 3 32 1144 **; 96%], τ z = -3.72 (p 1 0 0 1 5; 90%], τ^2 , z = -0.30 (p	<pre>< 0.001) 165142 14223 1163051 2943860 745872 3145042 5104 372093 14498729 2 = 0.62, p < </pre> <pre>< 0.001) 10301 18741 577 29619 = 0, p = 0.384 = 0.765)</pre>	10 90 1322 2447 701 2086 4675 19 154 11504 0.001 10 90 19 119 0	601520 4757889 7002082 1503796 6615611 12994463 15027 378014 34078097 209595 601520 15027 826142 209595	0 0 0 *	2.35 0.50 0.21 0.27 0.15 0.22 0.46 0.21 0.35 2.03 0.18 0.67 0.80	[0.95; [0.43; [0.43; [0.22; [0.13; [0.20; [0.14; [0.21; [0.05; [0.01; [0.04; [0.19; [0.00; 82	5.78] 0.59] 0.24] 0.33] 0.18] 0.24] 1.57] 0.31] 0.61] 2.86] 11.04] 3.34] 2.045]	10.3 11.8 11.8 11.7 11.8 9.3 11.5 100.0 40.7 29.8 29.5 100.0
30 - 35 vs 20 - 30 Tan_2008 Materna_2009 Xu_2011 Kirby_2013 Baer_2014 StiLouis_2014 Friedman_2016 Burgge_2017 Borque_2021 Random effects model Prediction interval Heterogeneity: <i>I²</i> = 9% [92 Test for effect in subgroup: <i>J</i> >40 vs 20 - 30 Tan_2008 Materna_2009 Bugge_2017 Random effects model Prediction interval Heterogeneity: <i>I²</i> = 0% [0% Test for effect in subgroup: <i>J</i> 35 - 40 vs 20 - 30 Tan_2008 Materna_2009	z = -5.57 (p) 7 5 162 218 93 152 472 3 32 1144 1%; 96%], τz z = -3.72 (p) 1 0 0 1 5; 90%], τ^2 , z = -0.30 (p) 2 2	< 0.001) 165142 14223 1163051 2943860 745872 3145042 5944342 5104 372093 14498729 $^2 = 0.62, p < < < 0.001$) 10301 10301 18741 577 29619 $= 0, p = 0.384$ $= 0, 765$) 67474 6484	10 90 1322 2447 701 2086 4675 19 154 11504 0.001 10 90 19 119 0 0	601520 4757989 7002082 1503796 6615611 12994463 15027 378014 34078097 209595 601520 15027 826142 209595 601520	0 0 0 *	2.35 0.50 0.21 0.27 0.15 0.22 0.46 0.21 0.35 2.03 0.18 0.67 0.80	[0.95; [0.43; [0.43; [0.22; [0.13; [0.20; [0.14; [0.14; [0.21; [0.05; [0.05; [0.05; [0.04; [0.09; 82 [0.00; 82	5.78] 0.59] 0.24] 0.33] 0.24] 1.57] 0.24] 1.57] 0.31] 0.24] 1.57] 1.57] 2.86] 1.104] 2.34] 2.46] 2	10.3 11.8 11.8 11.7 11.8 11.8 11.8 11.8 9.3 9.3 11.5 100.0 40.7 29.8 29.5 100.0
30 - 35 vs 20 - 30 Tan_2008 Materna_2009 Xu_2011 Kirby_2013 Baer_2014 StiLouis_2014 Friedman_2016 Bugge_2017 Bandom effects model Prediction interval Heterogeneity: / ² = 95% (92 Test for effect in subgroup: 2 >40 vs 20 - 30 Tan_2008 Materna_2009 Bugge_2017 Random effects model Prediction interval Heterogeneity: / ² = 0% (0% Test for effect in subgroup: 2 35 - 40 vs 20 - 30 Tan_2008 Materna_2009 Bugge_2017	z = -5.57 (p) 7 5 162 218 93 152 472 3 32 1144 $(\%; 96\%), \tau^2$ z = -3.72 (p) 0 1 $(p) (p) (1, \tau^2), z = -0.30 (p)$ 2 2 2 0	<pre>< 0.001) 165142 14223 1163051 2943860 745872 3145042 5944342 5104 372093 14498729 $^2 = 0.62, p < < 0.001)$ 10301 18741 577 29619 = 0, p = 0.384 = 0.765) 67474 6484 2475</pre>	10 90 1322 2447 701 2086 4675 19 154 11504 0.001 10 90 119 0	601520 4757989 7002082 1503796 6615611 12994463 15027 378014 34078097 209595 601520 15027 826142		2.35 0.50 0.21 0.27 0.46 0.22 0.46 0.21 0.35 2.03 0.18 0.67 0.80	[0.95; [0.43; [0.43; [0.22; [0.13; [0.20; [0.14; [0.21; [0.05; [0.05; [0.05; [0.04; [0.04; [0.04; [0.09; 82] [0.00; 82]	5.78] 0.59] 0.24] 0.33] 0.18] 0.24] 1.57] 0.31] 0.61] 2.55] 15.89] 2.86] 11.04] 3.34] 22.843] 8.37] 2.58]	10.3 11.8 11.8 11.7 11.8 9.3 11.5 100.0 40.7 29.8 29.5 100.0 25.1 26.3 14.6
30 - 35 vs 20 - 30 Tan_2008 Materna_2009 Xu_2011 Kirby_2013 Baer_2014 Sritouis_2014 Friedman_2016 Bugge_2017 Borque_2021 Random effects model Prediction interval Heterogeneity: / ² - 95% [92 Test for effect in subgroup: : 2×40 vs 20 - 30 Tan_2008 Materna_2009 Bugge_2017 Test for effect in subgroup: : 35 - 40 vs 20 - 30 Tan_2008 Materna_2009 Bugge_2017 Borque_2021	z = -5.57 (p) 7 5 162 218 93 152 472 3 32 1144 1%; 96%], τz z = -3.72 (p) 1 0 0 1 5; 90%], τ^2 , z = -0.30 (p) 2 2	<pre>< 0.001) 165142 14223 1163051 2943860 745872 3145042 5944342 5944342 5944342 5944342 5104 372093 14498729 2 = 0.62, p < < 0.001) 10301 18741 577 29619 = 0, p = 0.38(= 0.765) 67474 6484 2475 202899</pre>	10 90 1322 2447 701 2086 4675 19 154 11504 0.001 10 90 19 119 0 0	601520 4757989 7002082 1503796 6615611 12994463 15027 378014 34078097 209595 601520 15027 826142 209595 601520	0 0 0 *	2.35 0.50 0.21 0.27 0.15 0.22 0.46 0.21 0.35 2.03 0.18 0.67 0.80	[0.95; [0.43; [0.43; [0.22; [0.13; [0.20; [0.14; [0.21; [0.05; [0.05; [0.01; [0.04; [0.09; 82 [0.09; 82	5.78] 0.59] 0.24] 1.57] 0.33] 0.33 0.34 0.34 0.35 0.25	10.3 11.8 11.8 11.7 11.8 11.7 11.8 9.3 11.5 100.0 40.7 29.8 29.5 100.0 25.1 26.3 14.6 34.0
30 - 35 vs 20 - 30 Tan_2008 Materna_2009 Xu_2011 Kirby_2013 Baer_2014 StiLouis_2014 Friedman_2016 Bugge_2017 Bandom effects model Prediction interval Heterogeneity: / ² = 95% (92 Test for effect in subgroup: 2 >40 vs 20 - 30 Tan_2008 Materna_2009 Bugge_2017 Random effects model Prediction interval Heterogeneity: / ² = 0% (0% Test for effect in subgroup: 2 35 - 40 vs 20 - 30 Tan_2008 Materna_2009 Bugge_2017	z = -5.57 (p) 7 5 162 218 93 152 472 3 32 1144 $(\%; 96\%), \tau^2$ z = -3.72 (p) 0 1 $(p) (p) (1, \tau^2), z = -0.30 (p)$ 2 2 2 0	<pre>< 0.001) 165142 14223 1163051 2943860 745872 3145042 5944342 5104 372093 14498729 $^2 = 0.62, p < < 0.001)$ 10301 18741 577 29619 = 0, p = 0.384 = 0.765) 67474 6484 2475</pre>	10 90 1322 2447 701 2086 4675 19 154 11504 0.001 10 90 119 0	601520 4757989 7002082 1503796 6615611 12994463 15027 378014 34078097 209595 601520 15027 826142		2.35 0.50 0.21 0.27 0.46 0.22 0.46 0.21 0.35 2.03 0.18 0.67 0.80	[0.95; [0.43; [0.43; [0.22; [0.13; [0.20; [0.14; [0.21; [0.05; [0.05; [0.05; [0.04; [0.04; [0.04; [0.09; 82] [0.00; 82]	5.78] 0.59] 0.24] 1.57] 0.33] 0.33 0.34 0.34 0.35 0.25	10.3 11.8 11.8 11.7 11.8 11.7 11.8 9.3 11.5 100.0 40.7 29.8 29.5 100.0 25.1 26.3 14.6 34.0
30 - 35 vs 20 - 30 Tan_2008 Materna_2009 Xu_2011 Kirby_2013 Baer_2014 Sritouis_2014 Friedman_2016 Bugge_2017 Borque_2021 Random effects model Prediction interval Heterogeneity: / ² - 95% [92 Test for effect in subgroup: : 2×40 vs 20 - 30 Tan_2008 Materna_2009 Bugge_2017 Test for effect in subgroup: : 35 - 40 vs 20 - 30 Tan_2008 Materna_2009 Bugge_2017 Borque_2021	z = -5.57 (p 7 5 162 218 93 152 472 3 2 1144 $(\%; 96\%), \tau^2, \tau^2, \tau^2, \tau^2, \tau^2, \tau^2, \tau^2, \tau^2$	<pre>< 0.001) 165142 14223 1163051 2943860 745872 3145042 5944342 5944342 5944342 5944342 5104 372093 14498729 2 = 0.62, p < < 0.001) 10301 18741 577 29619 = 0, p = 0.38(= 0.765) 67474 6484 2475 202899</pre>	10 90 1322 2447 701 154 11504 0.001 10 90 19 119 0 0 10 90 19 9 119 119	601520 4757989 7002082 1503796 6615611 12994463 15027 378014 34078097 209595 601520 15027 826142 209595 601520 15027 378014		2.35 0.50 0.21 0.27 0.15 0.22 0.46 0.21 0.35 2.03 0.18 0.67 0.80	[0.95; [0.43; [0.43; [0.22; [0.13; [0.20; [0.14; [0.21; [0.05; [0.05; [0.01; [0.04; [0.09; 82 [0.09; 82	5.78] 0.59] 0.24] 0.33] 0.33] 0.43] 0.43] 0.43] 1.57] 0.31] 0.31] 2.85] 2.86] 2.84] 8.37] 2.58] 2.84] 8.37] 2.58] 2.84]	10.3 11.8 11.8 11.7 11.8 11.7 11.8 9.3 11.5 100.0 40.7 29.8 29.5 100.0 25.1 26.3 14.6 34.0
30 - 35 vs 20 - 30 Tan_2008 Materna_2009 Xu_2011 Kirby_2013 Baer_2014 StLouis_2014 Friedman_2016 Bugge_2017 Borque_2021 Random effects model Prediction interval Heterogeneity: <i>I</i> ² = 95% [92 Test for effect in subgroup: <i>I</i> >40 vs 20 - 30 Tan_2008 Materna_2009 Bugge_2017 Random effects model Prediction interval Heterogeneity: <i>I</i> ² = 0% [0% Test for effect in subgroup: <i>I</i> 35 - 40 vs 20 - 30 Tan_2008 Materna_2009 Bugge_2017 Borque_2021 Random effects model	z = -5.57 (p) 7 5 162 218 93 152 472 3 2 1144 1%; 96%], τz z = -3.72 (p) 0 0 1 5; 90%], τ^2 , $z = -0.30 (p)$ 2 2 0 14 18	 < 0.001) 165142 14223 1163051 2943860 745872 3145042 5944342 5104 372093 14498729 2 = 0.62, p < < 0.001) 10301 18741 577 29619 = 0.765) 67474 6484 2475 202899 279332 	10 90 1322 2447 701 2086 4675 19 154 11504 0.001 10 90 19 119 0 0 10 90 19 119 0	601520 4757989 7002082 1503796 6615611 12994463 15027 378014 34078097 209595 601520 15027 826142 209595 601520 15027 378014		2.35 0.50 0.21 0.27 0.15 0.22 0.46 0.21 0.35 2.03 0.18 0.67 0.80	[0.95; [0.43; [0.43; [0.22; [0.13; [0.20; [0.14; [0.21; [0.05; [0.01; [0.04; [0.19; [0.00; 82 [0.14; [0.51; [0.01; [0.13;	5.78] 0.59] 0.24] 0.33] 0.33] 0.43] 0.43] 0.43] 1.57] 0.31] 0.31] 2.85] 2.86] 2.84] 8.37] 2.58] 2.84] 8.37] 2.58] 2.84]	10.3 11.8 11.8 11.7 11.8 11.7 11.8 9.3 11.5 100.0 40.7 29.8 29.5 100.0 25.1 26.3 14.6 34.0
30 - 35 vs 20 - 30 Tan_2008 Materna_2009 Xu_2011 Kirby_2013 Baer_2014 StiLouis_2014 Friedman_2016 Bugge_2017 Borque_2021 Random effects model Prediction interval Heterogeneity: <i>I²</i> = 95% [92 Tast for effect in subgroup: <i>J</i> >40 vs 20 - 30 Tan_2008 Materna_2009 Bugge_2017 Random effects model Prediction interval Heterogeneity: <i>I²</i> = 0% [0% Tast for effect in subgroup: <i>J</i> 35 - 40 vs 20 - 30 Tan_2008 Materna_2009 Bugge_2017 Borque_2021 Random effects model Prediction interval Heterogeneity: <i>I²</i> = 75% [32	z = -5.57 (p 7 5 162 218 93 152 472 3 32 1144 $(\%; 96\%), \tau^2, z$ 1 1 (z = -3.72 (p 0 1 (z = -0.30) (p 2 2 0 14 18 $(\%; 91\%), \tau^2, z$	<pre>< 0.001) 165142 14223 1163051 2943860 745872 3145042 5944342 5104 372093 14498729 2 = 0.62, p <</pre>	10 90 1322 2447 701 2086 4675 19 154 11504 0.001 10 90 19 119 0 0 10 90 19 119 0	601520 4757989 7002082 1503796 6615611 12994463 15027 378014 34078097 209595 601520 15027 826142 209595 601520 15027 378014		2.35 0.50 0.21 0.27 0.15 0.22 0.46 0.21 0.35 2.03 0.18 0.67 0.80	[0.95; [0.43; [0.43; [0.22; [0.13; [0.20; [0.14; [0.21; [0.05; [0.01; [0.04; [0.19; [0.00; 82 [0.14; [0.51; [0.01; [0.13;	5.78] 0.59] 0.24] 0.33] 0.33] 0.43] 0.43] 0.43] 1.57] 0.31] 0.31] 2.85] 2.86] 2.84] 8.37] 2.58] 2.84] 8.37] 2.58] 2.84]	10.3 11.8 11.8 11.7 11.8 11.7 11.8 9.3 11.5 100.0 40.7 29.8 29.5 100.0 25.1 26.3 14.6 34.0
30 - 35 vs 20 - 30 Tan_2008 Materna_2009 Xu_2011 Kirby_2013 Baer_2014 StiLouis_2014 Friedman_2016 Bugge_2017 Borque_2021 Random effects model Prediction interval Heterogeneity: / ² = 9% [92 Test for effect in subgroup: 2 >40 vs 20 - 30 Tan_2008 Materna_2009 Bugge_2017 Random effects model Prediction interval Heterogeneity: / ² = 0% [0% Test for effect in Subgroup: 2 35 - 40 vs 20 - 30 Tan_2008 Materna_2009 Bugge_2017 Borque_2021 Random effects model Prediction interval	z = -5.57 (p 7 5 162 218 93 152 472 3 322 1144 z = -3.72 (p 1 0 0 1 ; 90%], τ^2 , z = -0.30 (p 2 2 0 14 18 ; 90%], τ^2 , z = -0.30 (p 14 18 ; 90%], τ^2 , z = -0.30 (p 16 18 ; 90%], τ^2 , z = -0.30 (p 14 18 ; 90%], τ^2 , z = -0.30 (p 16 ; 9	<pre>< 0.001) 165142 14223 1163051 2943860 745872 3145042 55040 372093 14498729 2 < 0.021) 10301 18741 577 29619 = 0, $p = 0.386$ = 0.765) 67474 6484 2475 202899 279332 2² = 0.93, $p =$ = 0.180)</pre>	10 90 1322 2447 701 2086 4675 19 154 11504 0.001 10 90 19 119 0 0 10 90 19 119 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	601520 4757989 7002082 1503796 6615611 12994463 15027 378014 34078097 209595 601520 15027 826142 209595 601520 15027 378014		2.35 0.50 0.21 0.27 0.15 0.22 0.46 0.21 0.35 2.03 0.18 0.67 0.80	[0.95; [0.43; [0.43; [0.22; [0.13; [0.20; [0.14; [0.21; [0.05; [0.01; [0.04; [0.19; [0.00; 82 [0.14; [0.51; [0.01; [0.13;	5.78] 0.59] 0.24] 0.33] 0.33] 0.43] 0.43] 0.43] 1.57] 0.31] 0.31] 2.85] 2.86] 2.84] 8.37] 2.58] 2.84] 8.37] 2.58] 2.84]	10.1 10.3 11.8 11.8 11.7 11.8 11.8 9.3 11.5 100.0 40.7 29.8 29.5 100.0 25.1 26.3 14.6 34.0 100.0

Lower with Comparator Higher with Comparator

DOI:10.14753/SE.2024.3114

Systematic Review

ection and topic	Item #	Checklist item	Location where item is reported
tle			
Title	1	Identify the report as a systematic review.	
bstract			
Abstract	2	See the PRISMA 2020 for Abstracts checklist.	
troduction			
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	
ethods			
Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	
Information sources	6	Specify all databases, registers, websites, organizations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	
Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	
Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (eg, for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	
	10b	List and define all other variables for which data were sought (eg, participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	

ajog.org

SUPPLEMENTAL TABLE 1 PRISMA checklist (continued)

PRISMA checklist (continued)			
Section and topic	Item #	Checklist item	Location where item is reported
Effect measures	12	Specify for each outcome the effect measure(s) (eg, risk ratio, mean difference) used in the synthesis or presentation of results.	
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (eg, tabulating the study intervention characteristics and comparing against the planned groups for each synthesis [item #5]).	
	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	
	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (eg, subgroup analysis, meta-regression).	
	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	
Certainty assessment	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.	
Results			
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram (see Figure 1).	
	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	
Study characteristics	17	Cite each included study and present its characteristics.	
Risk of bias in studies	18	Present assessments of risk of bias for each included study.	
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (eg, confidence/ credible interval), ideally using structured tables or plots.	
(continued)			

ARTICLE IN PRESS

DOI:10.14753/SE.2024.3114

Systematic Review

SUPPLEMENTAL TABLE 1

PRISMA	checklist	(continued)
--------	-----------	-------------

Section and topic	Item #	Checklist item	Location where item is reported
Results of syntheses	20a	For each synthesis, briefly summarize the characteristics and risk of bias among contributing studies.	
	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (eg, confidence/ credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	
	20c	Present results of all investigations of possible causes of heterogeneity among study results.	
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	
Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	
iscussion			
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	
	23b	Discuss any limitations of the evidence included in the review.	
	23c	Discuss any limitations of the review processes used.	
	23d	Discuss implications of the results for practice, policy, and future research.	
ther information			
Registration and protocol	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	
	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	
	24c	Describe and explain any amendments to information provided at registration or in the protocol.	
Support	25	Describe sources of financial or nonfinancial support for the review, and the role of the funders or sponsors in the review.	
Competing interests	26	Declare any competing interests of review authors.	
Availability of data, code, and other materials	27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.	

Systematic

Review

ARTICLE IN PRESS

SUPPLEMENTAL TABLE 2 Basic characteristics of the included studies

Author (year)	Ref	Country	Study period	Total	Cases	Age category	Congenital anomalies
Agopian 2009	1	Texas (USA)	1999—2004	2,208,758	325	<20, 20-24, 25-29, 30-34, 35-39, ≥40	Omhalocele
Baer 2014	2	California (USA)	2005-2010	3,070,957	1279	<19, 20−24, 25−29, 30−34, ≥35	Gastroschisis
Beckman 1976	3	Sweden	1950—1973	61,061	280	<24, 25−29, 30−34, ≥35	Cleft palate, cleft lip with or without cleft palate, polydayctyly, syndactyly, clubfoot
Bergman 2015	4	Europe	2001-2010	5,871,855	10,929	<20, 20-24, 25-29, 30-34, 35-39, ≥40	Hypospadiasis
Baird 1994	5	Canada	1966—1981	576,815	702	<20, 20-24, 25-29, 30-34, 35-39, ≥40	Isolated cleft palate, cleft lip and cleft palate
Bodnár 1970	6	Hungary	1958—1967	115,215	2100	<19, 20−24, 25−29, 30−39, ≥40	All NCAs, nervous system, circulatory system, urogenital anomalies, musculoskeletal system, digestive system
Borman 1986	7	New Zeland	1978	52,143	104	<20, 20−24, 25−29, ≥30	Anencephlaus, spina bifida
Borque 2021	8	Canada	2012-2018	1,001,080	231	<20, 20-24, 25-29, 30-34, 35-39, ≥40	Gastroschisis
Bugge 2017	9	Greenland	1989—2015	26,666	33	<20, 20-24, 25-29, 30-34, 35-39, 40 -44, \geq 45	Gastroschisis, omphalocele
Byron 1998	10	Australia	1980—1990	358,679	59; 104	$<$ 20, 20 $-$ 24, 25 $-$ 29, 30 $-$ 34, 35 $-$ 39, \geq 40	Gastroschisis, omphalocele
Canfield 2009	11	Texas (USA)	1999—2003	1,827,317	514; 643	$<$ 20, 20 $-$ 24, 25 $-$ 29, 30 $-$ 34, 35 $-$ 39, \geq 40	Anencephlaus, spina bifida
Canon 2012	12	Arkansas (USA)	1998—2007	196,050	1455	$<$ 20, 20 $-$ 24, 25 $-$ 29, 30 $-$ 34, \geq 35	Hypospadiasis
Croen 1995	13	California (USA)	1983—1988	1,028,255	29,848	<20, 20-24, 25-29, 30-34, 35-39, ≥40	All NCAs
DeRoo 2003	14	Washington (USA)	1987—1990	298,138	608	<20, 20-24, 25-29, 30-34, 35-39, ≥40	Cleft lip and cleft palate
Dott 2003	15	Metropolitan Atlanta (USA)	1968—1999	1,029,143	249	<20, 20-24, 25-34, ≥35	Diaphragmatic hernia
Dudin 1997	16	Palestina	1986—1993	26,934	148	15-19, 20-24, 25-29, 30-39, ≥40	Neural tube defects
Fedrick 1976	17	Scotland	1961—1972	1,162,939	3246	<20, 20–24, 25–29, 30–34, 35–39, 40 –44, \geq 45	Anencephlaus
Feldman 1982	18	New York, Brooklyn (USA)	1968—1976	173,670	179	<20, 20−24, 25−29, 30−34, ≥35	Neural tube defects
Forrester 2004	19	Hawaii (USA)	1986—2000	281,866	544	<19, 20-24, 25-29, 30-34, 35-39, ≥40	Cleft lip and cleft palate
Forrester 1999	20	Hawaii (USA)	1986—1997	229,584	150	19≥, 20−24, 25−29, 30−34, 35−39, ≥40	Omphalocele, gastoschisis
Forrester 2000	21	Hawaii (USA)	1986—1997	246,231	245	19≥, 20−24, 25−29, 30−34, 35−39, ≥40	Anencephaly, spina bifida, encephalocele
Friedman 2016	22	USA	2005-2013	24,836,777	5985	<20, 20-24, 25-29, 30-34, ≥35	Gastroschisis
(continued)							

ajog.org

SUPPLEMENTAL TABLE 2

Basic characteristics of the included studies (continued)

Author (year)	Ref	Country	Study period	Total	Cases	Age category	Congenital anomalies
Gupta 1967	23	Nigeria	1964	4220	15	15—19 20—24, 25—29, 30—34, 35—39, 40 —44	CHD
Hansen 2021	24	Australia	1990—2016	765,419	8173	<20, 20-24, 25-29, 30-34, 35-39, ≥40	CHD
Hay 1972	25	USA	1961—1966	8,475,600	1063	<20, 20−24, 25−29, 30−34, 35−39, ≥40	Anencephlay, spina bifida, hydrocephalus, congenital heart defects, cleft lip without cleft palate, cleft lip and palate, cleft palate without cleft lift, tracheoesophageal fistula and other esophageal defects, omhalocele, imperforate anus and other anorectal defects, hypospadias, position foot defects, polydactyly, syndactyly, reduction deformities
Hollier 2000	26	Dallas (Texas, USA)	1988—1994	102,728	3466	<20, 20-24, 25-29, 30-34, 35-39, ≥40	All NCAs
Jaikrishan 2012	27	India	1995—2011	141,540	1370	15−19, 20−29, ≥30	Clubfood, CHD, cleft palate/lip, NTD, hypospadias
Janerich 1972	28	New York State (USA)	1945—1970	4,555,614	4450	15–19; 20–24; 25–29; 30–34; 35–39; 40 –44	Spina bifida
Janerich 1972	29	New York State (USA)	1945—1967	4,074,079	3090	15–19; 20–24; 25–29; 30–34; 35–39; 40 –44	Anencephaly
Jaruratanasirikul 2016	30	Southern Thailand	2009-2013	186,393	269	<20; 20-<25; 25-<30; 30-<35; ≥35	Oral clefts
Jones 2016	31	USA	1995-2012	21,040,437	8866	<20; 20–24; 25–29; 30–34; 35<	Gastroschisis
Kazaura 2004	32	Norway	1967—1998	1,869,388	699	<20; 20-24; 25-29; 30-34; 35-39; ≥40	Gastroschisis, omphalocele
Kirby 2013	33	USA	1995—2005	13,233,235	4713	<20; 20–24; 25–29; 30–34; 35<	Gastroschisis
Liu 2013	34	Canada	2002-2010	2,283,223	26,488	<19; 20-24; 25-29; 30-34; 35-39; 40<	CHD
Liu 2019	35	Canada	2004—2015	3,327,762	1517	<19; 20-24; 25-29; 30-34; 35-39; 40<	Spina bifida, anencephaly/ encephalocele
Li 2019	36	Zhejiang Province (China, People's Republic of)	2010-2016	1,748,023	2790	<20; 20−25; 30−35; ≥35	Kidney and urinary tract defects
Loc-Uyen 2015	37	USA-Texas	1999—2011	4,970,525	2549	<19; 20–24; 25–29; 30<	Gastroschisis
Luo 2019	38	China-Shenzhen	2003-2017	591,024	777	<25; 25–; 30–; 35<	Cleft lip and palate
Martinez-Frias 1984	39	Spain	1976	264,502	52	<19; 20–24; 25–29; 30–34; 35–39; 40<	Gastroschisis, omphalocele

MONTH 2024 American Journal of Obstetrics & Gynecology 11.e64

SUPPLEMENTAL TABLE 2

11.e65

American Journal of Obstetrics ය Gynecology MONTH 2024

Basic characteristics of the included studies (continued)

Author (year)	Ref	Country	Study period	Total	Cases	Age category	Congenital anomalies
Materna-Kiryluk 2009	40	Poland	1998—2002	716,089	8683	<19; 20—24; 25—29; 30—34; 35—39; 40<	All NCAs (excluded muskuloskeletal defects),diaphragmatic hernia, gastroschisis, omphalocele, neural tube defects, microcephalus, hydrocephalus, congenital heart defects, hypospadias, renal agenesis or hypoplasia, cystic kidney disease, hydronephrosis, cleft palate, cleft lip with or without cleft palate, oesophageal atresia, small intestinal/ large intestinal atresia or stenosis, anal atresia or stenosis
McGivern 2015	41	Europe	1980-2009	11,478,586	3373	<20; 20–24; 25–29; 30–34; 35<	Diaphragmatic hernia
Miller 2011	42	Atlanta (Georgia, USA)	1968-2005	1,301,340	5289	<35; 35<	CHD
Mucat 2019	43	Malta	2000—2014	55,943		20—24; 25—29; 30—34; 35—39; 40<	All NCAs, nervous system, eye, ear, face, neck, circulatory system, respiratory system, digestive system, genital organs, urinary system, muskoloskeletal system
Nazer 2007	44	Chile	1996—2005	21,083	1767	<15; 15–19; 20–24; 25–29; 30–34; 35 –39; 40–44; 45<	All NCAs
Nazer 2013	45	Chile	2002—2011	15,636	1174	<15; 15–19; 20–24; 25–29; 30–34; 35 –39; 40–44; 45<	All NCAs
Parkes 2020	46	England, Scotland (UK)	2003-2010	219,486		<19; 20–29; 30–39; 40<	All NCAs
Pasnicki 2013	47	Poland	1988—2007	192,438	2769	<18; 20-24; 25-29; 30-34; 35-39; 40<	All NCAs, nervous system, circulatory system, cleft lip and cleft palate, digestive system, genital organs, urinary system, muskoloskeletal system, other
Persson 2019	48	Sweden	1992-2012	2,050,491	28,628	>24; 25–29; 30–34; 35<	CHD
Petrova 2009	49	Norway and Arkhangelskaja Oblast (Russia)	1995—2004	434,567	615	<19; 20–24; 25–29; 30–34; 35<	Neural tube defects: anencephalus, spina bifida
Pradat 1992	50	Sweden	1981—1986	573,422	1605	<20; 20–24; 25–29; 30–34; 35–39; 40 –44; >44	CHD
Purkey 2019	51	California (USA)	2008-2012	2,054,516	6325	<19; 20–24; 25–29; 30–34; 35<	CHD
Rankin 1999	52	North of England	1986—1996	426,694	296	11–19; 20–24; 25–29; 30–34; 35–39; >40	Gastroschisis, omphalocele, omphalocele
(continued)							

SUPPLEMENTAL TABLE 2

MONTH 2024 American Journal of Obstetrics & Gynecology 11.e66

Basic characteristics of the included studies (continued)

Author (year)	Ref	Country	Study period	Total	Cases	Age category	Congenital anomalies
Rankin 2000	53	North of England	1984—1996	507,405	934	11–19; 20–24; 25–29; 30–34; 35–39; >40	Neural tube defects
Rider 2013	54	Utah (USA)	1999—2008	480,125	8510	<24; 25–29; 30–34; 35–39; 40–60	All NCAs
Roeper 1987	55	California (USA)	1968—1977	3,297,071	166	<19; 20–24; 25–29; 30–34; 35–39; 40<	Gastroschisis, omphalocele
Salihu 2003	56	NewYork State (USA)	1992—1999	2,153,955; 2,149,340	595	<19; 20-24; 25-29; 30-34; 35-39; 40<	Omphalocele, gastroschisis
Salim 2019	57	Brazil	1996—2014	4,270,114	5062	<19; 20–29; 30–34; 35–39; 40<	Circulatory system
Sarkar 2013	58	India	2011-2012	12,896	286	<20; 20–30; 30<	All NCAs
Sever 1982	59	Los Angeles County (California, USA)	1966—1972	2,945,555	962	<14; 15—19; 20—24; 25—29; 30—34; 35 —39; 40—44; 45<	Anencephalus, spina bifida, encephalocele, neural tube defects, all NCAs
Shields 1981	60	Denmark	1940—1971	2,406,654	548	<19; 20-24; 25-29; 30-34; 35-39; 40 -44; 45<	Cleft palate
Short 2019	61	USA	2006-2015	17,686,317	3489	<19; 20–24; 25–29; 30<	Gastroschisis
StLouis 2017	62	USA	1999—2007	13,105,878	138,999	<19; 20—24; 25—29; 30—34; 35<	All NCAs, anencephalus, spina bifida, encephalocele, anotia/microtia, common truncus CHD, transposition of the great arteries, tetralogy of fallot, atrioventricular septal defect without down syndrome, hypoplastic left heart syndrome, coarctation of the aorta, aortic valve stenosis, cleft palate without cleft lip, cleft lip with and without cleft palate, esophageal atresia/tracheoesophageal fistula, pyloric stenosis, rectal and large intestinal atresia/stenosis, hypospadiasis, upper limb deficiency, lower limb deficiency, any limb deficiency, diaphragmatic hernia, gastroschisis, omphalocele
Tan 1996	63	England, Wales (UK)	1987—1993	4,873,547	1043	<20; 20–24; 25–29; 30–34; 35–39; >40	Gastroschisis, omphalocele
Tan 2005	64	Singapore	1994—2000	328,077	7870	<20; 20–24; 25–29; 30–34; 35–39; >40	All NCAs
Tan 2008	65	Singapore	1993—2002	460,532	121	<20; 20–24; 25–29; 30–34; 35–39; >40	Gastroschisis, omphalocele
Williams 2005	66	Atlanta (USA)	1968-2000	877,604	211	<20; 20–24; 24<	Gastroschisis
	67	China-Hunan Province	2005-2014	925,413	17,753	<20; 20–24; 25–29; 30–34; 35<	All NCAs
Xie 2016		onna nanan novinoo					

SUPPLEMENTAL TABLE 2

Basic characteristics of the included studies (continued)

Author (year)	Ref	Country	Study period	Total	Cases	Age category	Congenital anomalies
Xu 2011	69	China (People's Republic of)	1996—2007	6,308,594	1601	<19; 20–24; 25–29; 30–34; 35<	Gastroschisis
Zhang 2012	70	China (People's Republic of)	2012	62,526	976	<25; 25–30; 35<	All NCAs
Yang 2006	71	California (USA)	1989—1997	2,506,188	550	<20; 20–24; 25–29; 30–34; 35–39; 40–55	Diaphragmatic hernia
Zhou 2020	72	China (People's Republic of), Southern Jiangsu	2014-2018	238,712	1707	<19; 20–24; 25–29; 30–34; 35<	All NCAs

ARTICLE IN PRESS

SUPPLEMENTAL TABLE 3

DOI:10.14753/SE.2024.3114

ajog.org

ARTICLE IN PRESS

Systematic Review

	D1	D2	D3	D4	D5	D6	
	Low-risk: table or detailed text about population Moderate: moderate information about population High risk: limited information about study population	Low risk: population— based study—whole country/region/ hospital Moderate risk: case- control study—high- case numbers High risk: case-control study—low case numbers or just descriptive information about cases	Low risk: clear and detailed age categories covering all age groups Moderate risk: clear categories, but some age groups are missing High risk: only 1 group is examined	Low risk: clear definition of outcome—exact ICD-10 category Moderate risk: can be matched to ICD-10 category High risk: unclear definition	Low risk: clear information about confounders/ multivariate models Moderate risk: limited informationHigh risk: no information about relevant confounders	Low risk: clear, raw data; no or negligible contradiction Moderate risk: needs some calculation or reading from graph; minor contradiction High risk: only approximate data can be obtained; serious contradiction	High quality: max. $++$ Acceptable: max. $++$ +/+ Low quality: $++$ or more
Code	Study population	Study design	Prognostic factor measurment	Outcome	Study confounding	Data Quality— statistics	Overall rate
Agopian_2009	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	High quality
Baer_2014	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	High quality
Beckman_1976	Moderate risk	Low risk	Low risk	Moderate risk	Low risk	Moderate risk	Acceptable
Bergman_2015	Low risk	Low risk	Low risk	Low risk	Moderate risk	Low risk	High quality
Baird_1994	Moderate risk	Low risk	Low risk	Moderate risk	Moderate risk	Low risk	Acceptable
Bodnár_1970	Moderate risk	Low risk	Low risk	Moderate risk	Moderate risk	Low risk	Acceptable
Borman_1986	Moderate risk	Low risk	Low risk	Low risk	Moderate risk	Low risk	High quality
Borque_2021	Moderate risk	Low risk	Low risk	Low risk	Moderate risk	Moderate risk	Acceptable
Bugge_2017	Moderate risk	Low risk	Low risk	Low risk	Low risk	Low risk	High quality
Byron_1998	Low risk	Low risk	Low risk	Low risk	Low risk	Moderate risk	High quality
Canfield_2009	Moderate risk	Low risk	Low risk	Low risk	Low risk	Low risk	High quality
Canon_2012	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	High quality
Croen_1995	Low risk	Low risk	Low risk	Moderate risk	Moderate risk	Moderate risk	Acceptable
DeRoo_2003	Moderate risk	Low risk	Low risk	Moderate risk	Low risk	Low risk	High quality
Donghua_2018	Low risk	Low risk	Low risk	Moderate risk	Moderate risk	Low risk	High quality
Dott_2003	Moderate risk	Low risk	Low risk	Low risk	Moderate risk	Moderate risk	Acceptable
Dudin_1997	Moderate risk	Low risk	Low risk	Low risk	Moderate risk	Low risk	High quality
Fedrick_1976	Moderate risk	Low risk	Low risk	Low risk	Low risk	Low risk	High quality

(continued)

MONTH 2024 American Journal of Obstetrics & Gynecology 11.e68

SUPPLEMENTAL TABLE 3

Risk of bias assessment using the QUIPS tool (continued)

	D1	D2	D3	D4	D5	D6	
	Low-risk: table or detailed text about population Moderate: moderate information about population High risk: limited information about study population	Low risk: population— based study—whole country/region/ hospital Moderate risk: case- control study—high- case numbers High risk: case-control study—low case numbers or just descriptive information about cases	Low risk: clear and detailed age categories covering all age groups Moderate risk: clear categories, but some age groups are missing High risk: only 1 group is examined	Low risk: clear definition of outcome—exact ICD-10 category Moderate risk: can be matched to ICD-10 category High risk: unclear definition	Low risk: clear information about confounders/ multivariate models Moderate risk: limited informationHigh risk: no information about relevant confounders	Low risk: clear, raw data; no or negligible contradiction Moderate risk: needs some calculation or reading from graph; minor contradiction High risk: only approximate data can be obtained; serious contradiction	High quality: max. + + Acceptable: max. + + +/+ Low quality: + + or more
Code	Study population	Study design	Prognostic factor measurment	Outcome	Study confounding	Data Quality— statistics	Overall rate
Feldman_1982	Moderate risk	Low risk	Low risk	Low risk	Low risk	Low risk	High quality
Forrester_2004C	Low risk	Low risk	Low risk	Moderate risk	Moderate risk	Low risk	High quality
Forrester_1999	Low risk	Low risk	Low risk	Low risk	Moderate risk	Low risk	High quality
Forrester_2000	Moderate risk	Low risk	Low risk	Low risk	Low risk	Low risk	High quality
Friedman_2016	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	High quality
Gupta_1967	Moderate risk	Low risk	Low risk	Low risk	Moderate risk	Low risk	High quality
Hansen_2021	Low risk	Low risk	Low risk	Low risk	Moderate risk	Moderate risk	High quality
Hay_1972	Low risk	Low risk	Low risk	Moderate risk	Moderate risk	Low risk	High quality
Hollier_2000	Low risk	Low risk	Low risk	Moderate risk	Low risk	Low risk	High quality
Jaikrishan_2012	Low risk	Low risk	Low risk	Moderate risk	Moderate risk	Low risk	High quality
Janerich_1972	Moderate risk	Low risk	Low risk	Low risk	Moderate risk	Low risk	High quality
Janerich_1972	Moderate risk	Low risk	Low risk	Low risk	Moderate risk	Low risk	High quality
Jaruratanasirikul_2016	Moderate risk	Low risk	Low risk	Low risk	Moderate risk	Low risk	High quality
Jones_2016	Moderate risk	Low risk	Low risk	Low risk	Moderate risk	Moderate risk	Acceptable
Kazaura_2004	Moderate risk	Low risk	Low risk	Low risk	Low risk	Low risk	High quality
Kirby_2013	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	High quality
Liu_2013	Low risk	Low risk	Low risk	Low risk	Moderate risk	Moderate risk	High quality
Liu_2019	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	High quality

ARTICLE IN PRESS

11.e69

SUPPLEMENTAL TABLE 3

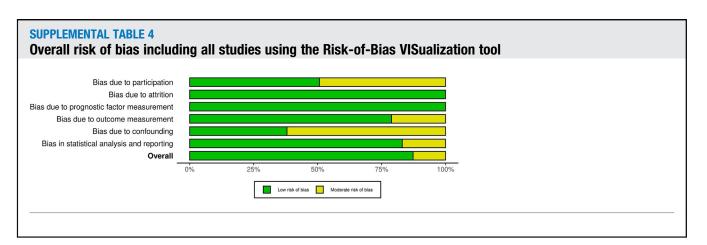
Risk of bias assessment using the QUIPS tool (continued)

	D1	D2	D3	D4	D5	D6	
	Low-risk: table or detailed text about population Moderate: moderate information about population High risk: limited information about study population	Low risk: population— based study—whole country/region/ hospital Moderate risk: case- control study—high- case numbers High risk: case-control study—low case numbers or just descriptive information about cases	Low risk: clear and detailed age categories covering all age groups Moderate risk: clear categories, but some age groups are missing High risk: only 1 group is examined	Low risk: clear definition of outcome—exact ICD-10 category Moderate risk: can be matched to ICD-10 category High risk: unclear definition	Low risk: clear information about confounders/ multivariate models Moderate risk: limited informationHigh risk: no information about relevant confounders	Low risk: clear, raw data; no or negligible contradiction Moderate risk: needs some calculation or reading from graph; minor contradiction High risk: only approximate data can be obtained; serious contradiction	High quality: max. + + Acceptable: max. + + +/+ Low quality: + + or more
Code	Study population	Study design	Prognostic factor measurment	Outcome	Study confounding	Data Quality— statistics	Overall rate
Liz_2019	Low risk	Low risk	Low risk	Low risk	Moderate risk	Low risk	High quality
Loc_2015	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	High quality
Luo_2019	Low risk	Low risk	Low risk	Moderate risk	Low risk	Low risk	High quality
Martinez_1984	Low risk	Low risk	Low risk	Moderate risk	Moderate risk	Low risk	High quality
Materna_2009	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	High quality
McGivern_2015	Low risk	Low risk	Low risk	Low risk	Moderate risk	Moderate risk	High quality
Miller_2011	Low risk	Low risk	Low risk	Moderate risk	Low risk	Moderate risk	High quality
Mucat_2019	Low risk	Low risk	Low risk	Moderate risk	Moderate risk	Low risk	High quality
Nazer_2007	Moderate risk	Low risk	Low risk	Low risk	Moderate risk	Low risk	High quality
Parkes_2020	Moderate risk	Low risk	Low risk	Low risk	Moderate risk	Low risk	High quality
Pasnicki_2013	Moderate risk	Low risk	Low risk	Low risk	Low risk	Low risk	High quality
Persson_2019	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	High quality
Petrova_2009	Moderate risk	Low risk	Low risk	Low risk	Low risk	Low risk	High quality
Pradat_1992	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	High quality
Purkey_2019	Moderate risk	Low risk	Low risk	Low risk	Moderate risk	Low risk	High quality
Rankin_1999	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	High quality
Rankin_2000	Low risk	Low risk	Low risk	Low risk	Moderate risk	Low risk	High quality
Rider_2013	Low risk	Low risk	Low risk	Moderate risk	Low risk	Low risk	High quality

(co

MONTH 2024 American Journal of Obstetrics & Gynecology 11.e70

Risk of bias assessment using the QUIPS tool (continued)									
	D1	D2	D3	D4	D5	D6			
	Low-risk: table or detailed text about population Moderate: moderate information about population High risk: limited information about study population	Low risk: population— based study—whole country/region/ hospital Moderate risk: case- control study—high- case numbers High risk: case-control study—low case numbers or just descriptive information about cases	Low risk: clear and detailed age categories covering all age groups Moderate risk: clear categories, but some age groups are missing High risk: only 1 group is examined	Low risk: clear definition of outcome—exact ICD-10 category Moderate risk: can be matched to ICD-10 category High risk: unclear definition	Low risk: clear information about confounders/ multivariate models Moderate risk: limited informationHigh risk: no information about relevant confounders	Low risk: clear, raw data; no or negligible contradiction Moderate risk: needs some calculation or reading from graph; minor contradiction High risk: only approximate data can be obtained; serious contradiction	High quality: max. + + Acceptable: max. + + +/+ Low quality: + + or more		
Code	Study population	Study design	Prognostic factor measurment	Outcome	Study confounding	Data Quality— statistics	Overall rate		
Roeper_1987	Moderate risk	Low risk	Low risk	Low risk	Low risk	Low risk	High quality		
Salihu_2003	Moderate risk	Low risk	Low risk	Low risk	Moderate risk	Moderate risk	Acceptable		
Salim_2019	Moderate risk	Low risk	Low risk	Low risk	Moderate risk	Low risk	High quality		
Salinas_2018	Low risk	Low risk	Low risk	Low risk	Moderate risk	Low risk	High quality		
Sarkar_2013	Moderate risk	Low risk	Low risk	Low risk	Moderate risk	Low risk	High quality		
Sever_1982	Low risk	Low risk	Low risk	Low risk	Moderate risk	Low risk	High quality		
Shields_1981	Low risk	Low risk	Low risk	Low risk	Moderate risk	Low risk	High quality		
Short_2019	Moderate risk	Low risk	Low risk	Low risk	Moderate risk	Moderate risk	Acceptable		
StLouis_2014	Moderate risk	Low risk	Low risk	Low risk	Moderate risk	Low risk	High quality		
Tan_2008	Moderate risk	Low risk	Low risk	Low risk	Moderate risk	Low risk	High quality		
Tan_2005	Moderate risk	Low risk	Low risk	Low risk	Moderate risk	Low risk	High quality		
Tan_1996	Low risk	Low risk	Low risk	Low risk	Moderate risk	Low risk	High quality		
Williams_2005	Low risk	Low risk	Low risk	Low risk	Moderate risk	Low risk	High quality		
Xie_2016	Low risk	Low risk	Low risk	Low risk	Moderate risk	Low risk	High quality		
Xu_2011	Moderate risk	Low risk	Low risk	Low risk	Moderate risk	Low risk	High quality		
Yang_2006	Moderate risk	Low risk	Low risk	Low risk	Moderate risk	Low risk	High quality		
Zhang_2012	Moderate risk	Low risk	Low risk	Low risk	Moderate risk	Low risk	High quality		
Zhou_2020	Moderate risk	Low risk	Low risk	Low risk	Moderate risk	Low risk	High quality		


Colors represent: Green: low risk of bias, Yellow: moderate risk of bias, Red: high risk of bias.

ICD-10, International Classification of Diseases-10; QUIPS, Quality in Prognostic Studies.

SUPPLEMENTAL TABLE 3

ARTICLE IN PRESS

DOI:10.14753/SE.2024.3114

SUPPLEMENTAL TABLE 5

Comparison of the "all NCAs" (ICD-10: Q00-Q89) risk ratio outcomes: studies with concomitant CAs excluded vs studies with concomitant CAs included

Risk groups	Excluding cases with concomitant CAs	Including cases with concomitant CAs
<20 vs 20-30	1.21 [0.59-2.49; n=5]	1.08 [0.89–1.32; n=14]
>35 vs 20-30	1.37 [0.76–2.45; n=6]	1.31 [1.07–1.61; n=13]
>40 vs 20-30	1.25 [1.08—1.46; n=6]	1.44 [1.25–1.66; n=11]
30-35 vs 20-30	1.54 [0.55–4.32; n=6]	1.23 [0.85–1.78; n=13]
35-40 vs 20-30	1.73 [0.45-6.70; n=5]	1.47 [0.87-2.49; n=9]
CAs, chromosomal abnormalities.		

SUPPLEMENTAL TABLE 6

Summary of effect of year of publication on the maternal age dependence of risk of congenital anomalies

	3 1										
		<20		>35		30—35		>40		35—40	
ICD-10 NCA categories	Trend	Subset	Trend	Subset	Trend	Subset	Trend	Subset	Trend	Subset	
Q00–Q89 all nonchromosomal anomalies	x	x	x	x	x	x	x	x	x	x	
Q00–Q89 ⁱ all nonchromosomal anomalies ⁱ	x	×	✓ ^a	×	✓ ^a	X	✓ ^b	×	✓ ^a	x	
Q00-Q07 malformations of the nervous system	X	×	×	×	X	X	X	×	X	x	
Q00.0 anencephaly	x	✓ ^C	×	✓ ^d	x	x	x	_	x	_	
Q05 spina bifida	×	×	×	×	×	x	×	_	x	_	
Q20-Q26 malformations of the circulatory system	X	×	×	×	X	X	X	×	x	x	
Q35–Q37 cleft lip and cleft palate	X	×	×	✓ ^e	X	X	X	_	x	_	
Q35 cleft palate	x	_	×	✓ ^f	x	x	✓ ^g	_	x	_	
Q79.2 exomphalos	×	✓ ^h	×	×	×	x	×	×	x	×	
Q79.3 gastroschisis	×	×	×	×	×	Xi	×	✓ ^h	x	∕ ^h	

The "trend" column shows if any trend could be detected visually in the study-level effect sizes of the full set of studies sorted by date of publication. The "subset" column shows if the subset of studies published since 2005 yielded a different pooled effect size compared to that of the full set of studies. X: no trend or difference detected. : some trend or difference was detected. : too few articles to analyize the subset.

^a Slight nonsignificant negative trend; ^b Moderate nonsignificant negative trend; ^c Full set is just nonsignificant, subset is just significant; ^d Full set is nonsignificant risk effect, subset is significant; ^p rotective effect; ^e Full set is nonsignificant, subset is significant; ⁱ The risk has increased; ^g Slight nonsignificant positive trend; ^h Full set is significant, subset is nonsignificant; ⁱ subset is less significant as the full set, ^j Only studies where concomitant chromosomal abnormality cases were excluded.