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Background:Removal of C-terminal lysine residues that are continuously exposed in lysing fibrin is an established
anti-fibrinolytic mechanism dependent on the plasma carboxypeptidase TAFIa, which also removes arginines
that are exposed at the time of fibrinogen clotting by thrombin.
Objective: To evaluate the impact of alterations in fibrin structure mediated by constitutive carboxypeptidase
activity on the function of fibrin as a template for tissue plasminogen activator-(tPA) induced plasminogen acti-
vation and its susceptibility to digestion by plasmin.
Methods and results:Weused the stable carboxypeptidase B (CPB), which shows the same substrate specificity as
TAFIa. If 1.5 – 6 μM fibrinogen was clotted in the presence of 8 U/mL CPB, a denser fibrin network was formed
with thinner fibers (the median fiber diameter decreased from 138 – 144 nm to 89 – 109 nm as established
with scanning electron microscopy). If clotting was initiated in the presence of 5 – 10 μM arginine, a similar
decrease in fiber diameter (82 -95 nm)wasmeasured. The fine structure of arginine-treated fibrin enhanced plas-

minogen activation by tPA, but slowed down lysis monitored using fluorescent tPA and confocal lasermicroscopy.
However, if lysis was initiatedwith plasmin in CPB-treated fibrin, the rate of dissolution increased to a degree cor-
responding to doubling of the plasmin concentration.
Conclusion: The present data evidence that CPB activity generatesfine-meshfibrinwhich ismore difficult to lyse by
tPA, but conversely, CPB and plasmin together can stimulate fibrinolysis, possibly by enhancing plasmin diffusion.
© 2013 The Authors. Published by Elsevier Ltd.Open access under CC BY license.
Introduction

Binding of tissue-type plasminogen activator (tPA) and plasminogen
to fibrin is a prerequisite for efficient fibrinolysis (reviewed in [1]), in
the course of which the generated plasmin provides a positive feed-
back loop through exposure of new carboxyl terminal lysines that pro-
mote fibrinolysis primarily through plasminogen and plasmin binding
[2]. The amplifying effect of C-terminal lysines on plasminogen activa-
tion and the protection of the bound plasmin against its major plasma
inhibitor α2-plasmin inhibitor is counterbalanced by the action of
thrombin activatable fibrinolysis inhibitor (TAFI, or carboxypeptidase
U), an exopeptidase that removes basic amino acids (arginine and
xypeptidase N; TAFI, thrombin
ogen activator.
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lysine) from theC-terminal of peptides (reviewed in [3]). TAFI is present
in blood plasma in zymogenic form and it is activated by thrombin-
thrombomodulin complex to TAFIa, but its activity decays with a half-
life of several minutes [4]. A distinct, constitutively active enzyme, car-
boxypeptidase N (CPN) is also present in plasma [5,6]. It binds fibrin
and can be detected in the structure of plasma clots [7,8]. Despite the
identical primary specificity of TAFIa and CPN the anti-fibrinolytic ac-
tion of CPN is only a fraction of that of TAFIa even after an activating
cleavage by plasmin [9]. The lysis of whole blood clots immersed in
tPA is surprisingly insensitive to the action of CPN; no impairment of
lysis is observed under conditions when CPN removes lysyl residues
from fibrin at a rate corresponding to 50% of that by TAFIa [10]. The
background of the differential anti-fibrinolytic potential of CPN and
TAFI is still not clarified.

Another determinant of fibrinolytic efficiency is fibrin structure,
which as a cofactor for tPA, regulates plasminogen activation, and sus-
ceptibility to plasmin digestion (reviewed in [11]). The initial structure
and subsequent rearrangements of fibrin during lysismean that binding
events, plasminogen activation and fibrin digestion can be affected in
complex ways, sometimes in opposite directions [12]. With this in
mind, a question arises, can carboxypeptidase activity expressed during
clot formation and dissolution induce structural changes that modulate
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fibrinolysis? The timeliness of this question also stems from rather
contradictory data on the association of TAFI and thrombotic events
reported in epidemiological studies. TAFI levels in circulation are regu-
lated by known gene polymorphisms, but the connectionwith coronary
heart disease [13] or stroke [14] is less clear. In the absence of anymech-
anistic evidence for antithrombotic effects of TAFI the controversy that
both high and low thrombotic risk can be accompanied by elevated
TAFI levels in plasma [15–19] is currently explained by the different
methods used for determination of TAFIa activity or TAFI antigen and
the different sensitivity of the detection assays for TAFI isoforms [20].
However, additional levels of complexity may still remain uncovered
as suggested by the fact that some aspects of TAFIa mechanism of
action established in vitro remain a puzzle. For example, if fibrin con-
tainingα2-plasmin inhibitor or plasma clots are supplemented with in-
creasing concentrations of TAFIa, a threshold concentration can be
reached beyond which TAFIa is profibrinolytic [21]. One hypothesis for
this phenomenon is the removal of lysine452 of α2-plasmin inhibitor
by carboxypeptidases [21], but this is difficult to reconcile with the find-
ings that the C-terminal lysine in the inhibitor is not essential for its in-
teraction with plasmin [22]. The completely normal phenotype of TAFI
knock-out mice (including hemostasis at basal state or if challenged
by a variety of prothrombotic stimuli) [23] also raises the possibility
for subtle TAFI effects in vivo beyond the known mechanism of action.
Thus, the details of TAFI function still require further elaboration despite
its well-documented anti-fibrinolytic action in vitro. The present study
addresses the modulation of fibrinolysis related to fibrin structure
which is altered as a consequence of basic carboxypeptidase activity.

Materials and methods

Plasminogen-depleted human fibrinogen, streptokinase and porcine
carboxypeptidase B (CPB) were from Calbiochem (La Jolla, CA). The
chromogenic substrate for plasmin, Spectrozyme-PL (H-D-norleucyl-
hexahydrotyrosyl-lysine-p-nitroanilide) was from American Diagnostica
(Pfungstadt, Germany) and tPA was from Boehringer Ingelheim
(Germany). Bovine thrombin was purchased from Serva (Heidelberg,
Germany) and further purified by ion-exchange chromatography on
sulfopropyl-Sephadex yielding a preparation with specific activity of
2100 IU/mg [24] and1 IU/mLwas considered equivalent to approximate-
ly 10.7 nM by active site titration [25]. Alexa Fluor® 546-conjugated
fibrinogen was the product of Invitrogen Life Technologies, Budapest,
Hungary. Human plasminogen was purified by affinity chromatography
on Lysine-Sepharose from citrated human plasma provided by the
Hungarian Blood Supply Service [26]. The generation of plasmin from
the zymogen and determination of its active concentration were
performed as previously described [27]. Bloodwas collected fromhealthy
volunteers with venipuncture in 10 mM trisodium-citrate (final concen-
tration) and following 10-min centrifugation at 2,000 g the top ¾ of the
plasma layer was used for the measurements within 4 h.

Turbidimetric fibrinolytic assays

In 96-well microtiter plates, 6 μM fibrinogen in 10 mMHEPES buffer
pH 7.4 containing 150 mMNaCl and arginine or CPB at various concen-
trationsweremixedwith 20 nM thrombin in a total volumeof 100 μl. In
the assays when lysis was initiated by surface tPA, fibrinogen also
contained 1 μM plasminogen and following 30 min clotting, tPA was
applied to the surface of clots at 15 nM. The concentration of CPB that
produced maximum effect in this assay (8 U/mL) was applied in the
rest of the experiments in this study. In the assays when lysis was initi-
ated by tPAdispersed in the clot,fibrinogen contained 0.25 μMplasmin-
ogen and 0.1 nM tPA was added together with thrombin. In the assays
when lysis was initiated by plasmin its concentrations were chosen to
yield complete dissolutionwithin 5 h; in the range 2-10 nM for plasmin
uniformly dispersed in the clot and 0.5 – 2 μMfor plasmin applied to the
clot surface as described previously [28,29]. Clot formation and
dissolution was followed by measuring the light absorbance at
340 nm at 37 °C with a Zenyth 200rt microplate spectrophotometer
(Anthos Labtec Instruments GmbH, Salzburg, Austria). For adequate
comparison of lytic rates from measurements, in which different maxi-
mum turbidity values were reached despite the identical quantities of
fibrin, the absorbance values were evaluated in normalized form [30].
The time needed to reduce the turbidity of the clot to a given fraction
of the maximal value (t0.5 to reach 0.5Amax, t0.1 reach 0.1Amax) was
used as a quantitative parameter of fibrinolytic activity. In certain
cases plasma containing various concentrations of added arginine and
CPB was clotted with 15 nM thrombin and 12.5 mM CaCl2. If plasma
clot dissolution was mediated by tPA dispersed in the clot, tPA was
added at 0.8 nM prior clotting, whereas the concentration of tPA ap-
plied to the surface of plasma clots was 30 nM.

Scanning electron microscopic (SEM) studies

Fibrin clots of 50 μl volume were prepared in duplicate: fibrinogen
(at concentration in the range 1.5 – 6 μM) in 10 mM HEPES buffer
pH 7.4 containing 150 mM NaCl and the additives (arginine or CPB)
was clotted with 20 nM thrombin at 37 °C for 30 min. Thereafter clots
were placed into 10 mL 100 mM Na-cacodylate pH 7.2 buffer for 24 h
at 4 °C. Following repeated washes with the same buffer, samples
were fixed in 1%(v/v) glutaraldehyde for 16 h. The fixed samples were
dehydrated in a series of ethanol dilutions (20 – 96%(v/v)), 1:1 mixture
of 96%(v/v) ethanol/acetone and pure acetone followed by critical point
drying with CO2 in E3000 Critical Point Drying Apparatus (Quorum
Technologies, Newhaven, UK). The specimens were mounted on adhe-
sive carbon discs, sputter coated with gold in SC7620 Sputter Coater
(Quorum Technologies, Newhaven, UK) and images were taken with
scanning electron microscope EVO40 (Carl Zeiss GmbH, Oberkochen,
Germany). The SEM images were analyzed to determine the diameter
of the fibrin fibers using self-designed program functions running
under the Image Processing Toolbox v. 8.2 of Matlab 8.1.0.604
(R2013a) (TheMathworks, Natick, MA) as previously described [12,31].

Plasminogen activation assay

In 96-well microtiter plates, 6 μM fibrinogen in 10 mMHEPES buffer
pH 7.4 containing 150 mMNaCl, 0.5 μMplasminogen and additives (ar-
ginine or CPB) was clotted with 25 nM thrombin in a volume of 80 μl.
After 30 min at 37 °C 60 μl of 15 nM tPA and 0.6 mM Spectrozyme-PL
in 10 mM HEPES, 150 mM NaCl pH 7.4 were placed on the surface of
the clot. The forming plasmin generated p-nitroaniline, the absorbance
ofwhichwas continuously recorded at 405 nm(A405)with Zenith 200rt
spectrophotometer. The measured values were plotted versus time
squared (t2) yielding a linear relationship according to the equation
ΔA405 = 0.5εk1kcat[tPA] t2 [32], where ε = 12.6 mM-1 cm-1 is the ex-
tinction coefficient of p-nitroaniline [33], k1 = 350 min-1 is the turn-
over number of plasmin on Spectrozyme-PL [33], kcat and [tPA] are the
catalytic constant for plasminogen activation and the concentration of
tPA in the reactive layer on the surface of fibrin, respectively [34]. The
termVapp = kcat[tPA] is equivalent to the apparentmaximal rate of plas-
minogen activation in the reactive layer of fibrin and was determined
from linear regression according to the abovementioned equation
(Curve fitting toolbox v. 3.3.1 of Matlab 2013a).

Confocal microscopic imaging

Fibrin clots were prepared from 6 μM fibrinogen, 2% of which was
Alexa Fluor® 546-labelled in 10 mM HEPES buffer pH 7.4 containing
150 mM NaCl, 1.5 μM plasminogen and the tested additives with
15 nM thrombin for 30 min at room temperature in sterile, uncoated
IBIDI VI 0.4 μ-slides (Ibidi GmbH, Martinsried, Germany). Thereafter
50 nM tPA-YFP (tPA with Yellow Fluorescent Protein fused to its C-
terminal expressed using pFastBac-tPA as previously described) [12]
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was added to the edge of the clot and thefluorescence (excitationwave-
length 488 nm, emissionwavelength 525 nm for tPA-YFP detection and
excitation wavelength 543 nm, emission wavelength 575 nm for
Alexa546-fibrinogen detection) was monitored with Confocal Laser
Scanning System LSM710 (Carl Zeiss GmbH, Jena, Germany) taking se-
quential images of the fluid-fibrin interface at a distance of approxi-
mately 50 μm from the chamber surface with identical exposures and
laser intensities using a Plan-Neofluar 20x/0.5 objective. It should be
noted that the 10 – 20 μm fluorescent aggregates present in the com-
mercial Alexa Fluor® 546-labelled fibrinogen were not centrifuged
before clotting as done in our earlier work [35], but these were pre-
served and used as position markers in the fibrin.

Statistical analysis

The distribution of the data on fiber diameterwas analyzed according
to an algorithm used previously [12,31]: theoretical distributions were
fitted to the empirical data sets and compared using Kuiper test and
Monte Carlo simulation procedures. The statistical evaluation of other
experimental measurements in this report was performed with
Kolmogorov-Smirnov test (Statistics Toolbox 8.2 of Matlab R2013a).

Results

Structural modifications of fibrin related to CPB activity or presence of
arginine

We have previously shown [12], when CPB was used as a stable an-
alogue of TAFIa to evaluate the impact of removal of carboxyl terminal
lysines on the kinetics of fibrinolysis, that the presence of CPB during fi-
brinogen clotting modifies the turbidity of the clots before initiation of
lysis, which suggested changes in the structure of fibrin. SEM imaging
provided direct evidence for the alteration of the fibrin structure related
to the action of CPB (Fig. 1A). Morphometric analysis of the SEM images
(Fig. 1B) revealed that the fiber diameter decreased by 21 – 25% in CPB-
treated clots prepared from fibrinogen at physiologically relevant con-
centration (1.5 – 6 μM). Because the native fibrinogen molecule does
not contain any substrate (C-terminal lysine or arginine) for CPB, the
single target of CPB action in this purified system could be the arginine
residues in the fibrinopeptides newly cleaved by thrombin in the pro-
cess of clotting. If all new C-terminal arginines were released from the
4 fibrinopeptides derived from each fibrinogen molecule, an increment
of 25 – 50 μMwould be expected in the local concentration of arginine
in clots prepared from 2 – 4 mg/mL fibrinogen (a prediction supported
by direct measurements of arginine release by TAFIa in fibrin: 10 μM in
5 min after clotting [36]). As evidenced by the morphometric data
(Fig. 1C), addition of arginine at 5 – 20% of this maximal concentration
caused changes in the structure of fibrin comparable to those induced
by the action of CPB (Fig. 1B). Considering the normal plasma level of ar-
ginine of about 100 μM [37] and these subtle structural alterations in fi-
brin, inclusion of micromolar arginine appears to be essential for
appropriate modelling of the physiological conditions when fibrin
structure-dependent processes are evaluated with in vitro assays.

Kinetics of plasminogen activation and fibrin dissolution

On amicroscopic scale (Fig. 2), tPA-induced lysis of fibrinmodified by
CPB was significantly slowed down with a granular pattern of accumula-
tion of tPA on the surface of the clot similar to that of native fibrin. On a
macroscopic scale of lytic kinetics, CPB had a maximal inhibitory effect
at 8 U/mL in the assay when tPA was added to the surface of pre-
formed clots containing plasminogen, as shown in Fig. 3. A similar level
of inhibition of lysis was also seen in clots formed in the presence of argi-
nine at concentration as low as 2 μM. Although with either CPB or argi-
nine the acceleration seen at later stages of lysis in pure fibrin was
missing and despite the identical time to complete dissolution, the lysis
kinetics were somewhat different with CPB or arginine, suggesting a dif-
ferent mechanism of action. To address this difference two assays were
used; one that monitored solely the generation of plasmin (Fig. 4) and a
second one that bypassed the stage of plasminogen activation (Fig. 5).

The effects of CPB and arginine on plasminogen activation by tPA on
the surface of fibrin was studied in isolation using the substrate
Spectrozyme-PL to follow plasmin generation. As expected, plasmin
generation was inhibited in the presence of CPB, presumably resulting
from removal of newly exposed C-terminal lysine binding sites in
fibrin (Fig. 4). In contrast however, fibrin formed in the presence of
arginine proved to be a better template for plasminogen activation
than the native fibrin structure (Fig. 4), despite the overall inhibiting
effect of arginine on tPA-induced fibrin degradation seen in Fig. 3. It
is noteworthy that arginine at identical concentrations does not
affect plasminogen activation by tPA in fibrin-free systems (data not
shown).

When plasminwas added to the surface of fibrin, slower lysis was ob-
served similarly to the tPA-induced lysis, if clots were formed in the pres-
ence of arginine (Fig. 5A). Quite unexpectedly, CPB rendered fibrin more
susceptible to lysis by plasmin added to the surface of the clot (Fig. 5B).
The complete lysis of CPB-treated fibrin was faster (Table 1) and non-
treated fibrin was dissolved by 2 μM plasmin at approximately the
same rate as CPB-modified fibrin by 1 μM plasmin (no significant differ-
ence between the values for these two states in the 4th and 5th column
of Table 1). However, if plasmin was homogeneously dispersed within
the clot, neither inhibitory effect of arginine, nor stimulatory effect of
CPB could be observed (data not shown). The discordant effects of the
modulators in the two assay formats indicate that at least in part their ef-
fects arise from the variations in the penetration of plasmin infibrin of dif-
ferent structure.
Fibrinolysis in plasma environment

In line with the effects observed with purified fibrinolytic compo-
nents (Fig. 3), arginine and CPB retarded the dissolution of plasma
clots by tPA (Fig. 6). However, CPB inhibited plasma clot lysis at lower
concentrations than used in the purified systems above. If tPA was uni-
formly dispersed in the plasma prior clotting, 0.1 U/mL CPB prolonged
the half lysis time more than two-fold, whereas the effect of arginine
at physiologically relevant concentration (100 μM) was minimal
(Fig. 6B). If tPA was applied to the surface of pre-formed clots, the effect
of this arginine was equivalent to 0.4 U/mL CPB (Fig. 6A).
Discussion

Since the discovery of TAFI [38] its anti-fibrinolytic action has been
largely attributed to the removal of plasmin-generated C-terminal
lysines in the fibrinmatrix, but it has been difficult to show convincingly
that TAFI levels affect myocardial infarction or stroke outcomes at a
population level or to explain the different anti-fibrinolytic impact of
TAFI and plasma CPN. In the present study we used CPB, a homologous,
but stable carboxypeptidase with specificity for basic amino acids
and addressed alternative or additional factors that could modulate
its anti-fibrinolytic function. The application of CPB overcomes the
short half-life of TAFIa of approximately 10 min [4], has the technical
advantage that it does not inactivate plasmin in contrast to TAFIa [36]
and models also the constitutive in vivo activity of CPN at the stage of
fibrin clot formation. Our work identified two consequences of CPB
activity in fibrin that antagonize the CPB-dependent blockade of the
positive feed-back loop in fibrinolysis based on C-terminal lysine
exposure: 1) enhancement of plasmin activity when the fluid-borne
enzyme attacks the surface of pre-formed clots, probably due to
improved diffusion; and 2) fibrin structure-related acceleration of
plasminogen activation.



Fig. 1. Modification of fibrin structure by arginine and carboxypeptidase B. Fibrin clots were prepared in duplicate from fibrinogen at various concentrations and following fixation and
drying imageswere takenwith a scanning electronmicroscope (SEM). A: Representative images of nativefibrin at 6 μM(left panel) andfibrin at the same concentration treatedwith 8 U/mL
CPB. Scale bar = 1 μm. B: Effect of CPB on the ultrastructure of fibrin. Morphometric analysis of fibrin was performed on SEM images illustrated in panel A. The diameter of 300 fibres was
measured and their empiric (black histograms) as well as best-fitted theoretical (gray curves) probability density function (PDF) was determined. Median values and interquartile range (in
brackets) are shown for the theoretical distributions of the diameter values. The concentrations of fibrinogen (Fg) indicated on the left side refer to both non-treated and CPB-treated fibrin.
C: Effect of arginine on the fibrin structure. The same morphometric analysis was performed on fibrin prepared from 6 μM fibrinogen containing the concentrations of arginine indicated.
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Fig. 2. Effects of arginine and carboxypeptidase B on the penetration of tPA-YFP into fibrin in the course of lysis. Clots were prepared from fibrinogen containing Alexa546-label,
plasminogen and the indicated additives. tPA-YFP was added to the surface of fibrin (at the top of the images) and the fluid/fibrin interface was monitored by confocal laser scanning
microscopy using double fluorescent tracing (tPA-related fluorescence stains in green, whereas the fibrin is shown in red in these images). The time after the application of tPA-YFP is
indicated, and the scale bar = 50 μm. The numbers in the bottom panels indicate the distance for penetration of tPA-YFP in the clot at 25 min (mean and standard deviation from 3 sam-
ples, the values for arginine and CPB differ from pure fibrin at p b 0.05 level according to Kolmogorov-Smirnov test).
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Degradation of fibrin by plasmin at the surface of the clot

A rather unexpected observation arose from the study of surface ap-
plication of plasmin to fibrin containing CPB (Fig. 5B, Table 1), where in-
creased potency of plasmin was noted. Under the conditions shown,
CPB treatmentwas equivalent to doubling the concentration of plasmin.
This was in contrast to the lack of CPB effect on fibrin digestion when
plasminwas dispersed in the clot (data not shown). Enhanced suscepti-
bility to plasmin could be explained by removal of newly exposed C-
terminal lysines that serve as binding sites for plasmin and retard its
penetration into the lysing clot. The elimination of these retarding inter-
actions shifts the dynamic equilibrium of free and bound plasmin in
favour of the former which is actually engaged in the degradation of
the fibrin matrix. This interpretation of the CPB effect on plasmin-
mediated fibrinolysis is in agreement with earlier findings that TAFIa
increases the susceptibility of fibrin-bound plasmin to inactivation by
α2-plasmin inhibitor [39] due to elimination of binding sites essential
for the reduction of the inhibition rate constant by orders of magnitude
compared to fibrin-free solution [27]. This enhancement of plasmin
Fig. 3. Arginine and carboxypeptidase B in fibrin clot lysis assay. Fibrin clots containing
plasminogen and the indicated additiveswere prepared, tPAwas added to the surface and
the absorbancewas continuouslymeasured at 340 nm (turbidity, A340 is presented in rel-
ative units, normalized for maximal value of absorbance of each individual curve). Mean
values of 8 measurements from 3 independent experiments (continuous lines with sym-
bols at every 10th measured point for identification of the curves) and SEM values above
and below mean (gray lines) are shown.
action provides an explanation for the observed reversal of the anti-
fibrinolytic effect of TAFI in situationswhen abundant plasmin is formed
at the surface of the clot and thus the major control point of the overall
fibrinolysis is shifted from the stage of plasminogen activation to the ac-
tion of plasmin. Such a loss of TAFI-dependent inhibition of fibrinolysis
has been reported for high concentrations of tPA [40] and other activa-
tors [41], as well as when plasma is supplemented with plasminogen
[42]. The key finding from the present study that CPB activity favours
the action of plasmin is in line with the predictions of recent theoretical
models offibrinolysis [43] and provides a clue for understanding the dif-
ference in the anti-fibrinolytic potential of a transiently active (TAFIa)
and constitutive (CPN) carboxypeptidase [9,10].

tPA-mediated fibrinolysis

Although as expected, CPB slows down the tPA-dependent lysis of
both pure fibrin (Figs. 2 & 3) and plasma clots (Fig. 6), the route of action
Fig. 4. Plasminogen activation on the surface of fibrin. Fibrin clots containing plasmin-
ogen and the indicated additives were prepared and following addition of tPA and the
plasmin substrate Spectrozyme-PL the absorbance was continuously measured at
405 nm(A405).Meanvaluesof 8measurements from3 independent experiments (contin-
uous lines with symbols at every 5th measured point for identification of the curves) and
SEM values above and below mean (gray lines) are shown. Inset: Secondary plots of the
raw data the slopes of which represent the apparentmaximal activation rates of plasmin-
ogen as defined in Materials and methods (1.1 nM/min in the absence of additives,
0.8 nM/min in CPB-treated fibrin, 1.8 nM/min in arginine-modified fibrin).

image of Fig.�2
image of Fig.�3
image of Fig.�4


Fig. 5. Dissolution of fibrin by plasmin applied to the surface of the clots. Fibrinogen
containing the indicated additives was clotted with thrombin and thereafter plasmin
was applied to its surface and the absorbancewas continuouslymeasured at 340 nm(tur-
bidity, A340 is presented in relative units, normalized for maximal value of absorbance of
each individual curve). Mean values of 8 measurements from 3 independent experiments
(continuous lines with symbols at every 10th measured point for identification of the
curves) and SEM values above and below mean (gray lines) are shown. A: Effects of argi-
nine on lysis by 0.5 μM plasmin. B: Effect of 8 U/mL CPB on the lysis of fibrin by plasmin.

Fig. 6. Effects of arginine and carboxypeptidase B on fibrinolysis in plasma environ-
ment. Citrated plasma containing the indicated additives was clotted with thrombin and
recalcification and fibrinolysis was initiated either by 30 nM tPA added to the surface of
pre-formed clots (A) or by 0.8 nM tPA mixed with thrombin prior clotting (B). Thereafter
the absorbancewas continuously measured at 340 nm (A340). Mean values of 4 measure-
ments from 3 independent experiments (continuous lines with symbols at every 10th
measured point for identification of the curves) and SEM values above and below mean
(gray lines) are shown.
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of the activator (at the surface or within the clot) profoundly affects its
sensitivity to the action of CPB. The difference in the fibrinolytic out-
come for the two accession routes could be explained by the diffusion-
dependent effects of CPB on plasmin as discussed above (the favorable
CPB effects on plasmin at the clot surface counteract the inhibition of
plasminogen activation, whereas in the absence of such a counter-
balancing factor lower CPB activity is sufficient to inhibit the tPA-
mediated lysis in a homogenous assay format). In addition,we observed
that plasminogen activation on fibrin by fluid-borne tPA is less affected
than expected from earlier studies [36]. In different experimental
setups, where unidirectional diffusion or matrix penetration is not at
issue (e.g. with enzymes uniformly dispersed within fibrin clots), the
cleavage of C-terminal lysines reduces the rate constant of plasminogen
Table 1
Impact of carboxypeptidase B on the kinetics of fibrinolysis by plasmin. Fibrin clots were prepa
time needed for a decrease in themaximal absorbance to the fraction values shown in the indic
iments (asterisk indicates differences between values for CPB-treated and non-treated sample

0.5 μM plasmin 1.0 μM plasm

CPB 0 8 U/mL 0

t0.9 7.9 ± 0.7 10.4 ± 0.6* 5.8 ± 0.7
t0.5 75.4 ± 6.7 81.8 ± 2.3 46.5 ± 0.8
t0.3 126.0 ± 9.3 126.3 ± 1.2 77.6 ± 0.9
t0.1 187.0 ± 9.0 165.0 ± 2.6* 126.5 ± 4.1
activation by a factor of 2.5 [36]. In contrast, only a 27% decrease in the
plasminogen activation rate on the surface of fibrin can be achieved by
CPB treatment (Fig. 4). This discrepancymaybe explained by a compen-
satory increase in plasminogen activation rate due to the formation of
fine mesh fibrin related to CPB activity.

Interestingly, the same structural alterations were observed in the
presence of arginine at micromolar concentrations (Fig. 1C). Because
in the concentration range up to 250 μM, arginine does not affect plas-
min activity on a small peptide substrate (Spectrozyme PL) and plas-
minogen activation by tPA in fibrin-free systems (data not shown),
measurements with arginine-modified fibrin proved to be a helpful
tool to discriminate between cleavage of C-terminal lysines andmodifi-
cation of fibrin structure as a background of the CPB effects discussed
red and lysis initiated with plasmin at various concentrations as illustrated in Fig. 5B. The
es of t is presented inmin asmean and SD of 8 measurements from 3 independent exper-
s at p b 0.05 level according to Kolmogorov-Smirnov test).

in 2.0 μM plasmin

8 U/mL 0 8 U/mL

3.8 ± 0.3* 5.4 ± 1.4 3.9 ± 0.2
37.0 ± 3.5* 33.1 ± 5.6 23.0 ± 2.6*
68.8 ± 4.0* 54.4 ± 11.1 35.6 ± 6.4*

110.5 ± 3.4* 90.6 ± 19.2 54.5 ± 8.8*

image of Fig.�5
image of Fig.�6
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above. Theminimal inhibitory effect of arginine-modified fibrin on plas-
min action at the surface (Fig. 5A) precludes a role for fine-mesh struc-
ture in the pro-fibrinolytic effect of CPB (Fig. 5B) and thus supports the
interpretation of the results based on changes in the penetration pattern
of plasmin in fibrin devoid of C-terminal lysines. The definite accelera-
tion of plasminogen activation on arginine-modified fibrin (Fig. 4) sup-
ports the conclusion given above that the observed rate of plasmin
generation on CPB-modified fibrin is the outcome of two opposing ef-
fects; a positive one based on fine-mesh structure and a negative one
based on elimination of C-terminal lysine binding sites that would oth-
erwise promote plasminogen activation.

Out of these findings a hypothesis is emerging for a causative
relationship between carboxypeptidase activity, arginine release and
structure/function alterations offibrin. Variations of arginine concentra-
tion within the range used in the present study could arise in vivo from
TAFIa action on fibrinopeptides A and B released by thrombin as report-
ed earlier by direct argininemeasurements in fibrin clots prepared from
physiologically relevant fibrinogen concentrations [36]. Alternative
sources of carboxypeptidase activity at the stage of fibrin formation
(before TAFIa peaks) could be the constitutive plasma CPN and under
pathological conditions even pancreatic CPB [44]. A fraction of the argi-
nine concentration that can bemaximally released from this sourcewas
sufficient to modify the structure of fibrin in a similar way to CPB
(Fig. 1). It is noteworthy that in the course of tPA-mediated lysis of
purefibrin, TAFIa releases both arginine and lysine at increasing concen-
trations in the micromolar range and a ratio that is consistently about
five-fold in favor of arginine over a period of several hours [36]. This
fact has been largely ignored in the in vitro fibrinolytic studies using
clots prepared from purified fibrinogen or diluted plasma. Because the
results of the present study indicate that the effects of arginine on fibrin
structure and fibrinolysis are saturable at concentrations approaching
the physiological plasma level of 100 μM [37], and in vitro the genera-
tion of arginine up to 50 μM may account for variability related to the
application of various concentrations of TAFIa (or CPB).

In vivo considerations

The normal plasma concentration of arginine of about 100 μM pro-
vides a baseline level of arginine, at which blood clots are formed
in vivo. However, in sepsis the systemic arginine concentration falls to
values below50 μM[45], whichmeans that locally, around inflammato-
ry cells expressing inducibleNO synthase, arginine could be severely de-
pleted. Furthermore, red blood cells contain high concentrations of
arginase I [46], which could deplete the arginine in erythrocyte-rich
thrombi. Thus, depending on the cell content of thrombi the arginine
concentrations can vary over a range capable of producing the effects
evaluated in the present study.

Our study demonstrates that carboxypeptidase-related modulation
of fibrinolysis is more complex than generally believed. To date, down
regulation of fibrinolysis in vivo has been ascribed to bypassing of the
positive feed-back loop in plasminogen activation or accelerated inacti-
vation of plasmin by α2-plasmin inhibitor in the lysing fibrin. The
current study suggests inhibition of fibrinolysis may be counteracted
to some degree by carboxypeptidases (TAFIa, CPN) effecting changes
in fibrin ultrastructure to improve plasminogen activation rates and
by enhancing plasmin diffusion in fibrin clots. Consideration of these
subtle effects and their balance appears essential in view of the recent
interest in TAFIa as a target of pharmacological agents for potential ad-
ministration as standalone or adjuvant thrombolytics (reviewed in
[47,48]) and the previously suggested regulatory role for the plasma
CPN under certain conditions [9,49].
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