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Abstract  Coeliac disease (CD) or gluten sensitive enteropathy is one of the most common inflammatory diseases 
of the small intestine with estimated prevalence of 1% in the population. Its incidence is increasing and seems to be 
higher than expected in the pediatric population associated with unfavorable impact on the quality of life. The aim of 
the present review is to highlight the main triggering factors leading to the development of CD and its 
pathomechanism with a special outlook to the recent therapeutic approaches. 
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1. Introduction 
CD occurs in genetically susceptible individuals 

triggered by chronic exposure to dietary gluten and related 
prolamins [1]. Approximately 1% of the population is 
affected and its prevalence is increased over the last 
decades [2,3]. This tendency suggests that beside of the 
genetic predisposition the environmental stress factors 
also have significant impact on the development of CD [4]. 
CD often becomes active after surgery, pregnancy, 
childbirth, viral infection, emotional or other stress 
situations [5]. The disease leads to intestinal inflammation, 
villous atrophy, and crypt hyperplasia of the small 
intestine. In the pathomechanism of CD both the adaptive 
and innate immunity may be involved 6. Presumed disease 
is mainly detected by serologic screening for the presence 
of tissue transglutaminase (tTG) specific immunglobulin 
A antibodies [7]. CD may be associated also with various 
extra-intestinal complications, including isolated iron 
deficiency anemia, bone and skin disease, infertility, 
endocrine and neurologic disorders [8]. 

In the present review we give an overview about the 
role of genetic and environmental factors in the 
development of CD and about the major processes of its 
pathomechanism including the mucosal immune responses 
and epithelial barrier damage. Finally, we discuss the main 
strategies to find alternative therapies for CD. 

1.1. Role of Genetic and Environmental 
Factors 

The genetic predisposition is associated with the major 
histocompatibility complex (MHC) region on 
chromosome 6p21. About 90% of CD patients carry the 
human leukocyte antigen (HLA) DQ2 and the remainder 

expresses DQ8 [9]. Patients with CD who are negative for 
both DQ2 and DQ8 rarely occurs [10]. 

One of the most important environmental factors which 
can initiate the exacerbation of the symptoms of CD is 
gluten and its related prolamins (hordein, secalin, zein). 
The presence of gliadin, the alcohol-soluble fraction of 
gluten that contains the majority of toxic components, 
may initiate inappropriate innate and adaptive immune 
response leading to the development of CD. 

Gliadins are rich in glutamine and proline, which 
protect them from proteolytic degradation by intestinal 
brush-border membrane proteases, they cannot be 
absorbed and remain in the intestinal lumen after gluten 
ingestion [11]. Due to intestinal infections or other 
disturbances in the intestinal permeability the undigested 
gliadin fractions pass through the epithelial barrier [2]. In 
the lamina propria tTGs become activated and catalyze 
polyamination or deamidation at selective glutamine 
residues converting them to negatively charged glutamate 
[12]. This modification promotes the binding of gliadin-
derived fragments to HLA-DQ2 and HLA-DQ8 molecules 
resulting in antigen presentation and activation of gluten-
specific T cells leading to permanent inflammation and 
mucosal damage [13]. 

Beside the most relevant gliadins there are also other 
environmental factors which play crucial role in the 
pathogenesis of CD including mechanical, chemical or 
oxidative stress which may all impair epithelial barrier 
function and facilitate inflammation [14,15]. 

1.2. Mucosal Immune Responses 
Gliadin peptides passing through the damaged epithelial 

layer induce innate and adaptive immune responses 
characterized by the infiltration of immune cells in the 
lamina propria. 
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The importance of the adaptive immune response to 
gluten has been well established. After the presentation of 
deamidated gluten-derived peptides through HLA DQ2 
and DQ8 molecules to CD4+ T helper cells further T cells 
and B lymphocytes become activated which produce anti-
gluten and anti-tTG2 antibodies in the lamina propria [13]. 
Activated T cells express proinflammatory cytokines, e.g. 
tumor necrosis factor alpha (TNFα) and interferon gamma 
(IFNγ) triggering the release of matrix metalloproteinases 
by the local fibroblasts causing epithelial cell damage and 
tissue remodeling, respectively [16]. 

Beside the involvement of the components of adaptive 
immunity the central role of innate immune system has 
been also suggested in the pathogenesis of CD [6]. 

 Recently increased expression of pattern recognition 
receptors including Toll-like receptor (TLR) 2 and 4, the 
well known participants of the innate immune response, 
was demonstrated in the duodenal mucosa of children with 
CD [17]. Increased expression of molecular chaperons, 
heat shock proteins (HSPs) were also demonstrated in 
patients with CD [18, 19]. It is hypothesized that HSPs as 
ligands for TLRs induce antigen presentation process and 
serve as “danger signal” for the immune system [20]. 
Activation of TLRs on the surface of macrophages and 
dendritic cells leads to the upregulation of MHC and 
costimulatory molecules and enhanced expression of 
proinflammatory cytokines and chemokines [21]. 

Gliadin-induced innate immune response is also 
characterized by the increased expression of interleukin-
15 produced mainly by enterocytes, which activates 
intraepithelial CD8+ (cytotoxic) T lymphocytes leading to 
the destruction of the epithelial cells thus contributing to 
the damage of the barrier function. 

1.3. Mucosal Barrier Damage 

The intestinal epithelium is a single-cell layer serving 
as a protective barrier against the external environment. 
The gastrointestinal tract is frequently challenged by 
different pathogens and antigens therefore the regulation 
of intestinal epithelial homeostasis is crucial for the 
maintenance of the mucosal structure and defensive 
barrier functions [22]. The gluten induced inflammation, 
oxidative stress and enhanced epithelial cell apoptosis all 
lead finally to mucosal damage and consequently to the 
loss of epithelial barrier function and increased mucosal 
permeability [6]. 

Cell adhesion molecules including adherent junction 
and tight junction proteins (cadherins, claudins, occludin, 
and junctional adhesion molecules) as well as zonulin as a 
modulator of tight junctions are crucial regulators of the 
epithelial barrier function [23,24]. Zonulin is 
overexpressed in CD and induces an increase in intestinal 
permeability [25]. Furthermore, the cell adhesion 
structures are damaged in patients with CD also 
contributing to the increased mucosal permeability [26]. 

Recently, it has been demonstrated that gluten peptides 
can induce the generation of reactive oxygen species 
(ROS), which then stabilize hypoxia-inducible factor 
(HIF)-1α by the inactivation of prolyl hydroxylases 
[27,28]. The increased presence of mucosal HIF-1α and its 
newly described regulator molecule Parkinson’s disease 7 
(PARK7) were demonstrated in patients with newly 
diagnosed CD [29,30] suggesting their contribution to the 
pathomechanism of CD. Previously some HIF-1 driven 
gene, such as trefoil factor 1, multidrug resistance gene 1 
of ecto-5-prime nucleotidase was suggested to participate 
in the regulation of intestinal epithelial barrier function in 
CD [31]. Therefore it can be hypothetized that the gluten, 
ROS, HIF/PARK7 axis may play a cental role in the 
pathomechanism of CD. 

 
Figure 1. Alternative therapeutic strategies targeting the pathomechanism of CD. Abbreviations: tTG: tissue transglutaminase; IEL: intraepithelial 
lymphocytes; IL-15: interleukin-15; APC: antigen presenting cell; HLA: human leukocyte antigen, T: T lymphocyte; B: B lymphocyte; TNF: tumor 
necrosis factor; IFN: interferon, LPS: lipopolysaccharide 

 



 International Journal of Celiac Disease 11 

1.4. Therapy 
Since undigested gluten and related prolamins are the 

key triggering factors of CD, it is not surprising that all of 
the therapeutic interventions aim to eliminate gluten or 
attenuate its biological effects. At present gluten free diet 
(GFD) is the accepted treatment for CD, which involves 
the lifelong elimination of wheat, rye, barley and other 
gluten-containing foods from the diet. The strict GFD is 
costly and has an adverse impact on the quality of life [32]. 
In addition GFD is not fully effective in a significant part 
of the patients who are unresponsive [4], therefore new 
therapeutic strategies are under development [33] (Figure 1). 

As an alternative therapeutic approach of CD, the use of 
genetically altered wheat strains lacking harmful gluten 
epitopes [34] and the detoxification of dietary gluten by 
enzymatic degradation of gliadin fragments [35] came into 
the focus and are in preclinical stage. Other therapeutic 
strategies aim to induce mucosal tolerance by intranasal 
administration of recombinant α-gliadin, which resulted in 
the downregulation of the immune response against whole 
gliadin [36]. Furthermore, immunization with gluten vaccines 
is under clinical testing showing a well tolerance [37]. 

Other therapeutic interventions are directed to modulate 
the immune responses against gliadin peptides and to 
inhibit the development of inflammation. The blocking of 
the antigen presentation process through the selective 
inhibition of tTG2 (e.g. use of cystamine, imidazolium 
derivates, dihydroisoaxole compounds) are only partly 
effective because of the risk of undesired interactions with 
vital biological pathways, thus clinical trials were not 
undertaken [33, 38]. However, the inhibition of antigen 
presentation through the blocking of gliadin peptide 
binding to HLA molecules using gluten peptide analogues 
is a more effective potential treatment for CD [39]. 
Likewise the prevention of the recruitment of lymphocytes 
targeting the chemokine receptor and ligand interactions 
e.g. CCR9 and CCL25 [40] and CXCR3 and CXCL10 [41] 
and the modulation of inflammation by monoclonal 
antibodies against TNF-α (Infliximab) [42] and IFN-γ [43] 
are another attractive therapeutic options for CD [44]. 

Another way of action is the preservation of the 
structure of intestinal barrier: the modulation of the 
intestinal permeability by zonulin antagonist AT-1001 is a 
completed phase IIb complementary approach with 
promising results [45]. Also the administration of a 
specific anti-IL-15 antibody was able to reverse the 
intestinal barrier damage through the induction of 
apoptosis of intraepithelial lymphocytes [46], however 
clinical studies for CD have been not yet performed. As 
another strategy to maintain the integrity of the epithelial 
layer may be the administration of exogenous intestinal 
alkaline phosphatase (iAP), an enzyme with advantageous 
bacterial LPS detoxification capacity [47], since its 
decreased level was reported in CD [48] and when added 
to newborns with necrotizing enterocolitis significant 
decrease in inflammatory cytokine expression and 
intestinal injury were observed [49]. 

2. Conclusions 
CD is a genetically determined autoimmune disease 

triggered by dietary gluten and related prolamins. The 

worldwide prevalence of CD is 1% and is still 
continuously increasing. At present the accepted treatment 
of CD is a strict and lifelong elimination of gluten from 
the diet. This therapy is circumstantial and negatively 
influences the quality of life of both the affected 
individuals and also their families. In a significant part of 
the patients GFD is ineffective indicating the need for 
other alternative therapies. Accordingly different therapies 
are under development aiming the alternative elimination 
of gluten from the nutrition or the modulation of the 
immune responses against gluten. 
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