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Abstract

Background: In osteosarcoma survival rates could not be improved over the last 30 years. Novel biomarkers are warranted
to allow risk stratification of patients for more individual treatment following initial diagnosis. Although previous studies of
the tumor microenvironment have identified promising candidates, novel biomarkers have not been translated into routine
histopathology. Substantial difficulties regarding immunohistochemical detection and quantification of antigens in
decalcified and heterogeneous osteosarcoma might largely explain this translational short-coming. Furthermore, we
hypothesized that conventional hot spot analysis is often not representative for the whole section when applied to
heterogeneous tissues like osteosarcoma. We aimed to overcome these difficulties for major biomarkers of the
immunovascular microenvironment.

Methods: Immunohistochemistry was systematically optimized for cell surface (CD31, CD8) and intracellular antigens
(FOXP3) including evaluation of 200 different antigen retrieval conditions. Distribution patterns of these antigens were
analyzed in formalin-fixed and paraffin-embedded samples from 120 high-grade central osteosarcoma biopsies and
computer-assisted whole-slide analysis was compared with conventional quantification methods including hot spot
analysis.

Results: More than 96% of osteosarcoma samples were positive for all antigens after optimization of immunohistochem-
istry. In contrast, standard immunohistochemistry retrieved false negative results in 35–65% of decalcified osteosarcoma
specimens. Standard hot spot analysis was applicable for homogeneous distributed FOXP3+ and CD8+ cells. However,
heterogeneous distribution of vascular CD31 did not allow reliable quantification with hot spot analysis in 85% of all
samples. Computer-assisted whole-slide analysis of total CD31- immunoreactive area proved as the most appropriate
quantification method.

Conclusion: Standard staining and quantification procedures are not applicable in decalcified formalin-fixed and paraffin-
embedded samples for major parameters of the immunovascular microenvironment in osteosarcoma. Whole-slide imaging
and optimized antigen retrieval overcome these limitations.
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Introduction

Patients with osteosarcoma still suffer from a poor prognosis

with a 5 year median survival of 30–75%. Since the introduction

of neo-adjuvant chemotherapy thirty years ago therapeutic

progress has been limited although most patients are enrolled in

multi-center studies. Standard treatment protocols include uni-

form neo-adjuvant chemotherapy. Patients are not assigned to

different treatment arms at the time of initial diagnosis after

biopsy. Stratification is performed following preoperative chemo-

therapy and tumor resection based on histopathological assess-

ment of the tumor response to chemotherapy. Currently presence

of metastases is considered a key determinant of prognostic

outcome together with response to chemotherapy, tumor size and
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site. However, metastases and chemotherapy response usually

refer to later disease stages [1]. Improved risk stratification at the

time of initial diagnosis is highly warranted but hampered by little

progress in outcome-related histopathologic classifications and due

to huge heterogeneity of osteosarcoma with numerous subentities

[2]. Analysis of the tumor microenvironment might allow

identification of parameters critical for prognosis independent of

the osteosarcoma subtype and less affected by tumor heterogene-

ity. Furthermore, exploration of the immunovascular tumor

microenvironment has been demonstrated to be of particular

clinical value for prognosis and therapy of several other tumor

entities [1,3–9]. Although previous microenvironment studies have

identified promising candidates [1,10,11], novel prognostic bio-

markers have not been successfully translated into standard

osteosarcoma histopathology. Major technical difficulties like

non-standardized immunohistochemistry protocols and varying

quantification methods are currently limiting translation of novel

biomarkers into clinical routine [12–18]. In decalcified, morpho-

logical heterogeneous specimens like osteosarcoma, these difficul-

ties are of exceptional relevance [19–21]. In contrast to emerging

quantification techniques [8,22–27], the current gold standard for

quantification of tumor microenvironment relies on conventional

immunohistochemical analysis of subjectively selected hot spots

[8,17,28]. However, it is even unclear if such hot spot areas can be

defined in all tissues analyzed since hot spot based quantification

originates from histopathological examination of carcinomas with

homogeneous morphologies and abundant hot spot distribution

patterns of vessels and tumor infiltrating cells [8,17,28,29].

Application of hot spot analysis on tumor entities with vast

heterogeneity like osteosarcoma retrieves conflicting results [30–

34]. We hypothesize that hot spots might often not be

representative for the whole section with heterogeneous distribu-

tion patterns of tumor vessels and tumor infiltrating lymphocytes.

Correct quantification is further hampered by inconsistent

detection of numerous antigens [19,20,34,35]. No consensus

quantification algorithm for immunovascular parameters in

osteosarcoma specimen is currently available.

Therefore, we evaluated 120 decalcified, formalin-fixed and

paraffin-embedded high-grade central osteosarcoma samples from

two European centers. We considered CD31, CD8 (cell surface

epitopes) and FOXP3 (intracellular epitope) as immunovascular

biomarkers of major interest in osteosarcoma, representing

intratumoral vessels (CD31), tumor attacking T-cells (CD8) and

immunosuppressive or anergic T-cells (FOXP3). After optimiza-

tion and standardization of epitope retrieval protocols we analyzed

the distribution patterns of these biomarkers and compared hot

spot and computer-assisted whole-slide quantification methods for

immunovascular parameters to establish a reliable and feasible

quantification algorithm for immunohistochemical analysis of

osteosarcoma biopsies.

Materials and Methods

Patient specimens
All formalin-fixed and paraffin-embedded specimens of open

high grade central osteosarcoma biopsies were randomly selected

from the University of Heidelberg and the University of Budapest

bone tumor bank.

Ethics statement
Ethical approval was obtained by the ethical committee of the

faculty of medicine, University of Heidelberg. General sampling of

tumor biopsies was approved by the ethics committee vote 207/

2005. This study in specific was approved by the ethics committee

vote 312/2006. The study was conducted in accordance to the

declaration of Helsinki.

Immunohistochemistry
Most samples were acid-decalcified by either 10–20% formic

acid (68% of samples), 10% EDTA (17,5%) or other agents (14%).

Standard immunohistochemistry protocols for CD31, FOXP3 and

CD8 were used as a starting point for systematic optimization of

antigen retrieval, antigen detection by primary antibodies and

visualization by different labeling systems and chromogens as

shown in table 1 [26,29,36].

Best results were retrieved as follows: After deparaffinization

and rehydration of sections antigen retrieval for CD31 detection

was performed by incubation with 5% Pronase (30 min, 37uC),

followed by three times washing in PBS and incubation with 0,1%

Hyaluronidase (30 min, 37uC). FOXP3 and CD8 antigen retrieval

was performed in a CertoClav EL pressure cooker (Certoclav,

Traun, Austria) at 127u for 15 min in EDTA buffer with pH 7,0

for FOXP3 or pH 8,0 for CD8.

Table 1. Parameters included in systematic evaluation of
staining conditions for CD31, CD8 and FOXP3 in
osteosarcoma samples.

Retrieval DRS pH 6, 98uC, 30 min

EDTA pH 7–9, 98uC, 30 min

Citrat ph 6, 98uC, 30 min

DRS pH 6, 110uC–136uC*, 5–15 min**

EDTA pH 7–9, 110uC–136uC*, 5–15 min**

Citrat pH 6, 110–136uC*, 5–15 min**

Chymotrypsin, Proteinase 24, Proteinase K, Pronase,
Hyaluronidase ***

Blocking No blocking

BSA, 5%/10%

Human Serum, 5%/10%

Antibodies CD31 (JC70A)

FOXP3 (236A/E7)

CD8 (C8/144B)

Detection
systems

Vectastain ABC-AP Kit (Vector Labs)

Vectastain Elite ABC-HRP Kit (Vector Labs)

Ultravision LP detection system HRP (Polymer, Thermo Fisher)

Ultravision LP detection system AP (Polymer, Thermo Fisher)

EnVision+HRP labelled Polymer (Dako)

Chromogens Liquid Fast Red (Thermo Fisher)

Fast Red (Roche)

3,39-Diaminobenzidine (DAB) (Vector Labs)

3,39-Diaminobenzidine (DAB) + Nickel (Vector Labs)

3-amino-9-ethylcarbazole (AEC) (Vector Labs)

Histogreen (Linaris)

Systematic evaluation of more than 200 different antigen retrieval conditions,
different blocking conditions, detection systems and chromogens allowed
identification of optimal staining conditions for formalin-fixed and paraffin-
embedded osteosarcoma samples.
* In steps of 3–5uC;
** in steps of 5 min;
*** in concentrations of 0.1%–10%, adjusted temperatures and various times
and combinations.
doi:10.1371/journal.pone.0090727.t001
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After three times washing in PBS and blocking with 10%

human serum in PBS, osteosarcoma cross sections were covered

by cover plates and transferred to slide racks (Thermo Shandon

Limited, Astmoor, UK). CD31 mAb (clone JC70A, Dako,

Glostrup, Denmark) was diluted 1:30 in 10% human serum and

incubated (2 h, room temperature). FOXP3 mAb (clone236A/E7,

eBioscience, San Diego, USA) and CD8 mAb (clone C8/144B,

Dako) were diluted 1:50 in 10% human serum and incubated

(16 h, 4uC).

Alkaline phosphatase labeling was performed by polymer linked

secondary antibody (UltraVision LP, Thermo Fisher Scientific,

Waltham, USA) and fast red tablets (Roche, Rotkreuz, Suisse) for

CD31. For Alkaline phosphatase based detection of FOXP3 and

CD8 liquid fast red (Thermo Fisher Scientific, Waltham, USA)

was used. After staining (25 min), sections were washed in PBS,

and counterstained with hematoxylin (1 min).

Digital Imaging and quantification
Immunohistochemical stained osteosarcoma sections were

digitalized using a Scanscope CS slide scanner from Aperio (Vista,

USA) and tumor areas were differentially annotated by an

experienced bone pathologist using the Aperio ImageScope

software. Quantification of vascularization was performed by

computer assisted determination of CD31- immunoreactive area

either for the whole section or within three annotated vascular hot

spots (0,26 mm2 each) using the Aperio micro vessel algorithm.

The mean analyzed tumor area was 70 mm2 representing

approximately 300 hot spots. Slides with an evaluable area below

5 mm2 were excluded. 90% of all included slides showed an

analyzed area of vital, non- perinecrotic tumor area of at least

40 mm2. To minimize effects of heterogeneous staining intensities

color threshold settings were optimized for each osteosarcoma

cross section. Chalkley and micro vessel density counts were

performed manually within the annotated hot spots as previously

described by others [8,28], but adapted for digitalized slides. In

brief, a 25-dot Chalkley graticule was applied to hot spots and was

adjusted to allow a maximum number of dots to touch or lay

within stained vessels. These dots were counted. Micro vessel

density was determined by counting singular identifiable vessels

within annotated hot spots.

For quantification of tumor infiltrating lymphocytes digital color

deconvolution was performed and immunoreactive cells were

manually counted within the area of the whole section or the area

of hot spots. All analyses were conducted by two independent

investigators. Interobserver variability was determined as follows:

mean values of the analyzed cohort were calculated and

interobserver difference values for a given slide were compared

to mean values. Interobserver variability was considered accept-

able when below 10%.

Statistical analysis
Correlations of different vessel quantification methods (micro

vessel density, Chalkley count and total stained area) and

correlations of whole-slide and hot spot analyses for tumor

vascularization and tumor infiltrating lymphocytes were deter-

mined by the Pearson correlation coefficient. Statistical tests are

based on two-sided testing with the significance defined as p,0.05.

Kaplan-Maier curves were used for estimating the survival

function from lifetime data. All statistics were performed using

SPSS software (IBM, Armonk, NY).

Results

Enzymatic CD31 antigen retrieval is superior to heat-
induced antigen retrieval in decalcified osteosarcoma
samples

When we applied recommended heat-induced epitope retrieval

protocols for detection of CD31 [30,31,37] in decalcified,

formalin-fixed and paraffin-embedded osteosarcoma samples,

results were false negative in approximately 35% of all analyzed

samples (n = 120). 51% of analyzed samples seemed evaluable, but

most samples showed false low staining results. In addition, we

observed high variability in staining intensities. Systematic

evaluation of different conditions for antigen retrieval (Table 1)

in serial sections revealed that enzymatic antigen retrieval in

combination with polymer detection is superior to heat-induced

antigen retrieval and conventional avidin-biotin complex based

detection (Fig. 1A,B). Even heat-induced antigen retrieval with

temperatures above 117uC for at least 15 min was less efficient

than optimized enzymatic antigen retrieval (Fig. 1E). Optimized

staining conditions allowed an evaluation of more than 96% of all

analyzed samples (Fig. 1G). Of note, even under optimized

conditions, staining intensities still varied somewhat throughout

different specimens, reflecting the heterogeneous antigenicity in

osteosarcoma specimens (Fig. 1E). We did not see relevant

differences in CD31 immunoreactivity depending on the decalci-

fication solution used. Furthermore, no signs of inadequate

decalcification like altered hematoxylin staining were observed.

High pressure heat-induced epitope retrieval allows
reliable detection of nuclear FOXP3 and cell surface CD8
antigens in decalcified osteosarcoma samples

We and others have previously established an optimized

protocol for FOXP3 immunohistochemistry using heat-induced

epitope retrieval at 98uC in EDTA pH 9 for 30 min in various

tissues [29,38–40]. However, when we applied this protocol on

osteosarcoma specimens, we retrieved inconsistent staining inten-

sities with false low detection of FOXP3 positive cells in 35%, and

negative detection of FOXP3 positive cells in 65% of all tested

samples (n = 20) (Fig. 1C,F). Systematic evaluation of different

antigen retrieval protocols (Table 1) revealed high pressure heat-

induced epitope retrieval in combination with polymer detection

as a reliable method for detection of CD8 and FOXP3 in

decalcified osteosarcoma sections. In fact, under these conditions

FOXP3+ cells could be detected in 98% of 120 analyzed

osteosarcoma samples which could further be evaluated (Fig. 1G).

Furthermore, in contrast to standard detection methods,

polymer detection counteracted an increased background staining

frequently observed by reactivated endogenous biotin during the

harsh retrieval process for FOXP3 and CD31 antigen.

Whole-slide analysis but not hot spot analysis allows
correct quantification of the vascular microenvironment
of osteosarcoma specimens

Quantification of marker expression in hot spots can be

performed either by determination of total stained area, micro

vessel density or Chalkley counting [8,28,41]. When we compared

our results obtained by the quantification of the CD31-

immunoreactive endothelial area with micro vessel density or

Chalkley counting in 120 spot areas we found a strong and highly

significant correlation in both cases (Fig. 2A,B). These data

confirm CD31- immunoreactive endothelial area as a good

correlate for micro vessel density or Chalkley counts in preselected

spots. Next, we tested if hot spot analysis of CD31-immunoreactive
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area correlates with vessel quantification of the whole section. To

this end, whole sections were scanned and digital image data

processing was applied (Fig. 3A,B). In 20 representative osteosar-

coma samples CD31-immunoreactive area ranged from 1,17% to

12,77% with a median of 6, 57%62, 89% (SEM). Complete

section size covered an average of 0.7 cm2, whereas standard hot

spot analysis includes three hot spots covering less than 1.1% of

the whole section. When we compared whole-slide analysis with

hot spot analysis we could not observe any significant correlation

(r = 0.391, Fig. 4A). Careful side by side reanalysis revealed high

heterogeneity of the immunovascular microenvironment as the

interfering factor. Samples with homogeneous vessel distribution

of CD31 displayed a comparable amount of CD31- immunore-

active area in the whole section and in hot spots. (Fig. 3C,E). In

contrast, samples with heterogeneous distribution of CD31 showed

a much higher percentage of CD31- immunoreactive area in hot

spots than in the whole section (Fig. 3D,F). Application of standard

hot spot analysis was further limited by heterogeneously scattered

vascularization allowing evident hot spot definitions only in 15%

of 120 evaluated osteosarcoma specimens. In addition, we

compared interobserver variability in hot spot and whole-slide

analysis. Due to the absence of clear-cut vascular hot spots in 85%

of osteosarcoma specimens, interobserver congruency of selected

hot spots was achieved in only 40% of all hot spots. In contrast,

whole-slide analysis remained unaffected by this issue and showed

the lowest interobserver variability (data not shown).

Homogeneous distributed tumor infiltrating
lymphocytes allow both hot spot and whole-slide
analysis for correct quantification in osteosarcoma
specimens

In 20 representative osteosarcoma samples whole-slide numbers

of FOXP3+ cells ranged from 0,003 to 4,1 cells/0,1 mm2 with a

median of 0,73 cells/0,1 mm261,06 (SEM). Semiquantitative

whole-slide assessment of CD8+ cells revealed a high CD8+ cell

frequency in 30%, an intermediate CD8+ cell frequency in 25%,

and a low CD8+ cell frequency in 45% of osteosarcoma samples.

In contrast to the vascular microenvironment, we observed

significant correlation of FOXP3+ cell counts derived by whole-

slide analysis and hot spot analysis (r = 0,835; p,0,00001, Fig. 4B).

Reassessment of the immunostained osteosarcoma cross sections

revealed a homogeneous distribution of FOXP3 immunoreactive

cells (Fig. 4C) in 70% of 120 samples which might explain this

correlation. Similarly, CD8+ cells were distributed homogeneously

in 80% of analyzed osteosarcoma samples (n = 120) (Fig. 4D). We

conclude that hot spot analysis might be applicable for homog-

enous distributed but not heterogeneous distributed elements of

the osteosarcoma microenvironment.

Discussion

In our effort to establish a reliable algorithm to quantify

important parameters of the immunovascular microenvironment

in osteosarcoma, we focused on optimization of antigen retrieval

Figure 1. Effects of different staining conditions on the quantification of immunovascular markers in osteosarcoma. (A) Formalin-
fixed and paraffin-embedded osteosarcoma sample after CD31 staining with standard heat induced epitope retrieval at 98uC and (B) with optimized
enzymatic epitope retrieval. CD31- immunoreactive cells show red cell surface staining. Section was counterstained by hematoxylin. Insert shows 2-
fold magnification of indicated area. (C) Formalin-fixed and paraffin-embedded osteosarcoma sample after FOXP3 staining with standard heat
induced epitope retrieval at 98uC and (D) with optimized epitope retrieval at 127uC. FOXP3 immunoreactive cells (arrows) show red nuclear staining.
Section was counterstained with hematoxylin. Insert shows 3.8 fold magnification of indicated area. (E) Percentage of CD31 immunoreactive area was
assessed by computer-assisted whole-slide quantification after heat induced epitope retrieval (HIER) at 98uC, HIER at 127u and enzymatic epitope
retrieval (EER) with Hyaluronidase and Pronase in five representative osteosarcoma samples (OS). Error bars indicate interobserver variability. (F) Only
seven out of the 20 tested osteosarcoma samples showed FOXP3 immunoreactive cells after standard heat induced epitope retrieval at 98uC (not
shown). Density of FOXP3-immunoreactive cells (numbers/0.1 mm2) was determined in these seven sections by whole-slide quantification after HIER
at 98uC and for HIER at 127uC. Error bars indicates interobserver variability. OS = osteosarcoma sample. (G) Percentage of evaluable slides after
standard and optimized immunohistochemical staining for CD31 and FOXP3.
doi:10.1371/journal.pone.0090727.g001

Figure 2. Correlation of common vessel quantification methods in osteosarcoma. Correlation of vessel quantification derived by total
CD31-immunoreactive area and micro vessel density (A), respectively total CD31- immunoreactive area and Chalkley count (B) within 120 predefined
spots with 0.26 mm2 area/spot in 20 representative osteosarcoma sample; r indicates Pearson correlation coefficient.
doi:10.1371/journal.pone.0090727.g002
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and antigen quantification in formalin-fixed and paraffin-embed-

ded samples from osteosarcoma biopsies. Two major difficulties of

osteosarcoma specimens need to be considered in particular: tissue

decalcification and tumor heterogeneity. Analysis of the tumor

microenvironment might not only allow identification of param-

eters critical for osteosarcoma prognosis. The presented algorithm

might also be applicable to other tumor entities with a similar

heterogeneous distribution of microenvironmental antigens.

When we applied recommended staining protocols for osteo-

sarcoma specimens [26,29–31,37], we could verify that the applied

methods for antigen retrieval and detection greatly influence the

reliability of immunohistochemical quantification in osteosarcoma.

Systematic evaluation of staining procedures for major immuno-

vascular biomarkers (CD31, FOXP3 and CD8) revealed that

standard staining protocols did not allow consistent antigen

detection. Conventional detection of CD31+ micro vessels was

Figure 3. Effect of heterogeneous vessel distribution on vessel quantification in osteosarcoma. Representative whole-slide scans of
formalin-fixed and paraffin-embedded osteosarcoma samples with homogeneously scattered (A,C,E) and hot spot distributed intratumor
vascularization (B,D,F) Quantification of tumor vascularization was either performed by hot spot analysis within three circular hot spots with
0.26 mm2 area/hot spot (C and D) or whole-slide analysis of CD31-immunoreactive area (E and F). CD31 immunoreactivity is shown in red. By digital
image analysis detected CD31-immunoreactive area is annotated in green (automated mark-up image). Indicated values represent the percentage of
immunoreactive area within the analyzed regions (three hot spots in C and D, whole slide in E and F). Inserts show a 5-fold (C), respectively 8-fold (D)
magnification of indicated regions. Sections were counterstained by hematoxylin.
doi:10.1371/journal.pone.0090727.g003

Figure 4. Correlation of hot spot analysis and whole slide analysis of immunovascular markers in osteosarcoma. (A) Correlation
between hot spot and whole slide analyses of CD31-immunoreactive area (in %) of 20 representative osteosarcoma samples. Circles filled in red
represent the two specimens shown in Figure 3. Pearson correlation coefficient is indicated by r, n.s. = not significant. (B) Correlation between hot
spot and whole slide analyses of FOXP3 cell density (cells per 0.1 mm2) of 20 representative osteosarcoma samples. Pearson correlation coefficient is
indicated by r and significance by p. (C) Representative osteosarcoma sample with homogeneously scattered distribution of FOXP3 immunoreactive
cells. Immunoreactive cells show red nuclear staining. Section was counterstained by hematoxylin. Insert shows 2.2 fold magnification of indicated
area. (D) Representative osteosarcoma sample with homogeneous hot spot distribution of CD8 immunoreactive cells. Immunoreactive cells show red
cell surface staining. Section was counterstained by hematoxylin. Insert shows 2.2 fold magnification of indicated area.
doi:10.1371/journal.pone.0090727.g004
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false negative in 35% out of 120 high grade central osteosarcoma

specimens, and was false negative for FOXP3 positive cells in 65%

out of a representative group of 20 osteosarcoma samples.

Moreover, false low staining for CD31 and FOXP3 was detected

in the vast majority of analyzed osteosarcoma samples. Conflicting

results in previous studies of osteosarcoma vascularization [30–

34,37] and the lack of publications demonstrating FOXP3 positive

Treg in human osteosarcoma might arise from this issue. Different

decalcification conditions including formic acid decalcification or

EDTA did not affect antigen detection (data not shown).

The presented protocols established during our study for cell

surface antigens (CD31, CD8) and intracellular/nuclear antigens

like FOXP3 might be also used for other antigens in formalin-fixed

and paraffin-embedded osteosarcoma samples and probably other

tumors.

However, we cannot rule out that detection of other antigens

and application of other immunostaining protocols might depend

on specific decalcification conditions. Recommended decalcifica-

tion solutions still vary depending on the specific sample. Whereas

bone tumor specimens are reported to frequently require 10%

formic acid or even stronger acids [42], small biopsies with little

mineralized bone fragments or bone-marrow trephines are

suggested to be decalcified in EDTA [43]. Given an ongoing

controversy on antigen stability during decalcification, standard-

ized decalcification in osteosarcoma immunohistochemistry is

warranted.

From an idealistic view, a biopsy should be representative for a

tumor and immunohistochemical work up should allow quantita-

tive detection of all detectable antigens and should include the

whole tissue specimen. In this regard, there is an ongoing

discussion about representativeness of a biopsy in heterogeneous

tumors like osteosarcoma and correct quantification strategies of

immunostained samples. At first, it still remains unknown for the

surgeon before taking a biopsy which area of a heterogeneous

tumor hosts the most responsible cells for clinical outcome. Even, if

the surgeon would know this area he has to consider the future

resection approach when taking the biopsy and must avoid tumor

cell spreading, i.e. due to hematoma. Given these limitations, also

open biopsies remain a compromise between biopsy representa-

tiveness and success of the subsequent limb salvage tumor

resection. Similarly, current quantification methods are limited

by under- or overestimation of correct antigen numbers and by

limitations of time-consuming quantification strategies [17].

Conventional immunohistochemistry can only derive estimated

values for true antigen density and distribution from a given tumor

specimen. Correlations of such estimated values with clinical

outcome are frequently performed to gain novel predictors for

clinical course and prognosis. As a requirement for this approach,

it is assumed that the quantified area represents the whole

specimen. However, in heterogeneous tumor samples such

representative areas need to be much larger for reliable analysis

compared to homogeneous tumors. Further requirements for

correct correlations include high reproducibility, low interobserver

variability, traceability of the obtained results and time and cost

efficiency for a possible routine application [17,44].

Conventional quantification of vascularization includes different

methods like hot spot analysis of micro vessel density, vessel lumen,

perimeter, total stained area or whole-slide analysis, which have all

been demonstrated to allow more or less reproducible vessel

quantification [8,17,23,45,46]. Eligibility for above mentioned

requirements strongly depends on the investigated tissue. The

majority of available data on tumor vascularization emerged from

carcinoma tumor entities [8,17,41,46] with homogeneous hot spot

distribution of vessels and moderate intervessel variability [17,47].

In homogeneous carcinomas quantification of 3–5 selected

vascular hot spots for micro vessel density or Chalkley counts

allows consistent correlations with clinical outcome in a time and

cost efficient fashion and is therefore considered as the gold

standard for intra tumor vessel quantification in carcinomas

[8,17,28]. However, limited applicability of hot spot analysis in

tumors without homogenous vessel distributions is well known and

has been highlighted for sarcomas in current consensus reports on

vessel quantification [17,47]. In our effort to characterize the

immunovascular microenvironment of 120 osteosarcoma speci-

mens, we confirmed the limitation of hot spot derived quantifi-

cation in such heterogeneous tissue. No significant correlation

between whole-slide analysis and hot spot analysis was found in a

representative cohort of 20 osteosarcomas from the total group of

120 osteosarcoma samples. When we reanalyzed sections with

similar vascularization values as determined by hot spot analysis,

whole-slide analysis revealed broad heterogeneity of vasculariza-

tion and retrieved dissimilar results (data not shown). We therefore

concluded that selected hot spots were not representative for the

whole section in osteosarcoma. In general, hot spot analysis might

still be considered useful for clinically relevant characteristics of the

entire tumor: The original idea of hot spot analysis in tumor

vascularization was based on the assumption that the vascular

density within vascular hot spots represents tumor clones with the

highest angiogenic capacity and therefore determines the proba-

bility of haematogenic metastasis and survival [17]. However,

three major issues need to be considered. First, increasing numbers

of hot spots with high angiogenic capacity within a given tumor

area could increase the chance of metastasis. Second, hot spot

regions with high vascularization are in fact much more variable in

size than standardized hot spot areas, angiogenic capacity might

be further misjudged from hot spot analysis. Third, high numbers

of less intense vascularized areas within heterogeneous sections

could outweigh reduced vascularization in hot spots and therefore

alter the risk of metastasis. In contrast to hot spot analysis, these

issues are considered in whole-slide analysis.

With the broad availability of computer-assisted antigen

quantification, whole-slide analysis might overcome the short-

comings of hot spots analysis. However selection of a vessel

quantification method requires careful attention:

Quantification of micro vessel density, vessel lumen or

perimeter depends on a reliable identification of single vessels

despite interruptions of endothelial lining by tissue tears or lack of

staining. Careful adjustment of various software settings is

mandatory and software settings cannot easily be adapted from

one specimen to another specimen. Furthermore, verification by

the investigator is highly time-consuming.

CD31-immunoreactive area appears to be a more robust and as

demonstrated above equivalent parameter. Adjustment of software

settings is limited to staining intensity threshold for each slide since

singular vessels have not to be identified. Results can easily be

verified by the investigator on automatically generated mark-up

images (see Fig 3C–F).

Furthermore, preliminary data supports the relevance of

optimized CD31 detection and whole-slide imaging for their use

as a potentially useful surrogate parameter for clinical outcome. In

a representative group of 20 osteosarcoma specimens, Kaplan-

Maier estimated survival was determined for samples with low,

intermediate or high CD31- immunoreactive area (Fig. S1).

Although the small cohort size of 20 patients and variations in

clinical follow-up periods certainly narrow the validity of statistical

interpretation, high CD31- immunoreactivity could be recognized

as a significantly worse outcome parameter in osteosarcoma

patients (p = 0,031). To test these preliminary findings, a large
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study cohort of more than 120 osteosarcoma samples will be

analyzed (unpublished data). In a pilot study, combined anti-

angiogenic therapy with endostatin and multidrug chemotherapy

showed potential to prevent the progression of metastases [48].

Given the heterogeneity of the vascular microenvironment,

subgrouping of osteosarcoma patients along above mentioned

CD31 data might serve as a biomarker to identify patients with

further benefit including increased survival.

In summary, whole-slide analysis of total immunoreactive area

but not hot spot analysis fulfills most requirements for reliable

quantification of heterogeneously distributed antigens like CD31

in osteosarcoma samples. In this line, we observed the lowest

interobserver variability in whole-slide analysis compared to other

quantification methods like hot spot analysis (data not shown).

In general, above discussed issues apply to all elements of the

immunovascular microenvironment in osteosarcoma. However, in

case of more homogeneous distributed antigens like FOXP3,

quantification by whole-slide analysis and hot spot analysis provide

comparable results, as shown by a significant correlation in a

representative cohort of 20 osteosarcoma specimens.

In this regard it should be considered that comparison of two or

more parameters is frequently required to reveal interdependen-

cies within the immunovascular microenvironment. Comparison

of hot spot data for one parameter with whole section data for the

other parameter should be avoided.

In case one parameter is distributed heterogeneously (i.e. CD31)

whereas the other is distributed rather homogenously (i.e.

FOXP3), whole-slide analysis should be preferred for both

parameters.

Conclusion

In our effort to establish a reliable quantification algorithm for

important immunovascular antigens in formalin-fixed and paraf-

fin-embedded osteosarcoma biopsies, we consider whole-slide

analysis and standardized antigen retrieval as indispensable

elements to overcome limitations due to decalcification and

heterogeneity of the tumor microenvironment in osteosarcoma.

Furthermore we defined optimal staining procedures for detection

of major immunovascular cell populations and their standardized

quantification by whole-slide analysis. The presented algorithm

might also serve for immunohistochemical analysis of other

heterogeneous tumor entities.

Supporting Information

Figure S1 Kaplan-Maier estimated survival of osteosar-
coma patients with low, intermediate or high CD31-
immunoreactive area in pretreatment biopsies. Kaplan-

Maier estimated survival of 20 osteosarcoma patients grouped for

CD31- immunoreactive area in pretreatment biopsies. Upper

dashed line: patients with low CD31- immunoreactive area (n = 5).

Dotted line: Patients with intermediate CD31- immunoreactive

area (n = 9). Lower dashed line: Patients with high CD31-

immunoreactive area (n = 6). Overall survival indicated in months.

Cumulative survival indicated in percent.

(TIF)
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