
CHARACTERIZING CEREBRAL SMALL 

VESSEL DISEASE WITH A FOCUS ON CADASIL 

AS A GENETIC MODEL 

-AN MRI BASED APPROACH 
 

PhD Thesis 

 

 

Dr. Bence Barna Gunda 

 

 
Semmelweis University 

János Szentágothai School of Neurosciences 

 

 
 

               

Supervisor:   Dániel Bereczki MD, DSc 

Consultant:   Hugues Chabriat MD, PhD  

 

Reviewers:  László Oláh MD, PhD 

Péter Barsi MD, PhD 

 

Head of Examination Committee: László Tringer MD, DSc 

 

Members of Examination Committee: Zoltán Benyó MD, DSc  

 Attila Valikovics MD, PhD  

  

 

 

Budapest, 2012 

 

DOI: 10.14753/SE.2013.1797



2 
 

Content 

Abbreviations .......................................................................................................................................... 3 

1. Introduction ......................................................................................................................................... 5 

1.1. Cerebral small vessel disease ....................................................................................................... 5 

1.2. Magnetic resonance imaging of cerebral small vessel disease ..................................................... 7 

1.2.1. Lacunar infarcts ..................................................................................................................... 8 

1.2.2. White matter lesions ............................................................................................................ 14 

1.2.3. Cerebral microbleeds ........................................................................................................... 18 

1.2.4. Brain atrophy ....................................................................................................................... 20 

1.2.5. Summary ............................................................................................................................. 22 

1.3. CADASIL and other hereditary small vessel diseases of the brain ............................................ 24 

1.3.1. CADASIL as a model disease ............................................................................................. 24 

1.3.2. Other hereditary small vessel diseases of the brain ............................................................. 26 

2. Purpose .............................................................................................................................................. 28 

2.1. Effects of gender on the phenotype of CADASIL (Study 1)...................................................... 28 

2.2. Whole brain ADC histogram in CADASIL (Study 2) ............................................................... 29 

3. Methods ............................................................................................................................................. 30 

3.1. Subjects ...................................................................................................................................... 30 

3.2. Clinical evaluation ...................................................................................................................... 30 

3.3. MRI ............................................................................................................................................ 30 

3.4. Image processing and analysis ................................................................................................... 31 

3.5. Statistical methods ...................................................................................................................... 32 

4. Results ............................................................................................................................................... 33 

4.1. Gender related differences .......................................................................................................... 33 

4.2. Diffusion histograms .................................................................................................................. 39 

5. Discussion ......................................................................................................................................... 49 

5.1. Gender effects in CADASIL ...................................................................................................... 49 

5.2. ADC histogram in CADASIL .................................................................................................... 52 

6. Conclusions ....................................................................................................................................... 55 

7. Summary ........................................................................................................................................... 56 

8. Összefoglalás ..................................................................................................................................... 57 

References ............................................................................................................................................. 59 

Publications ........................................................................................................................................... 77 

Acknowledgements ............................................................................................................................... 78 

DOI: 10.14753/SE.2013.1797



3 
 

Abbreviations 
 

ADC: apparent diffusion coefficient 

ADEM: acute disseminated encephalomyelitis  

CADASIL: Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and     

Leukoencephalopathy 

CARASIL: Cerebral Autosomal Recessive Arteriopathy with Subcortical Infarcts and 

Leukoencephalopathy 

cMB: cerebral microbleeds 

CNS: central nervous system 

CRV: Cerebroretinal vasculopathy 

CSF: cerebrospinal fluid 

CST: corticospinal tract 

cSVD: cerebral small vessel disease 

CT: computed tomography 

DWI: diffusion weighted imaging   

DTI: diffusion tensor imaging 

FLAIR: fluid attenuation inversion recovery 

HERNS: Hereditary endotheliopathy with retinopathy nephropathy and stroke 

HG: histogram 

HVR: Hereditary vascular retinopathy 

LI: lacunar infarct 

MA: migraine with aura 

MELAS: mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke 
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MD: mean diffusivity 

MRI: magnetic resonance imaging 

PADMAL: Pontine autosomal dominant microangiopathy and leukoencephalopathy 

PML: progressive multifocal leukoencephalopathy 

PRES: posterior reversible encephalopathy syndrome 

PWI: perfusion weighted imaging 

PXE: Pseudoxanthoma elasticum 

ROI: region of interest 

RVCL: Retinal vasculopathy with cerebral leukodystrophy 

SSPE: Subacute sclerosing panencephalitis 

VRS: Virchow-Robin spaces 

WMH: white matter hyperintensities 
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1. Introduction 
 

1.1. Cerebral small vessel disease   

Cerebral small vessel disease (cSVD) is a spectrum of clinical and imaging 

abnormalities linked to the pathology of small penetrating arteries and arterioles in the brain 

irrigating subcortical structures 
1
. Accumulating data suggest that cSVD is the most prevalent 

neurological disorder in the ageing society of the developed world 
2, 3

. The prevalence of its 

seemingly asymptomatic manifestations –silent brain infarcts- increases with age from 

approximately 6-7% at 60 years to 28% at 80 years of age according to a recent review 
4
. In 

another study lacunar infarcts were found in 23% of all subjects over 65 years, and in 43% of 

subjects over 80 years of age 
5
. Its acute, symptomatic manifestations –lacunar strokes- 

account for approximately 20% of all ischemic strokes 
6-8

. Thus improved management of 

cSVD based on better understanding of the disease is of great importance. 

 cSVD is characterised by the arteriolosclerosis and/or microatheromatosis of small 

calibre (50-500 μm) cerebral arterial vessels caused by various pathologies 
1
. Its most 

common, sporadic, form is related to age and vascular risk factors including hypertension and 

diabetes in particular. Inherited forms are increasingly recognised with CADASIL (Cerebral 

Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy) being 

the most prevalent genetic cSVD 
9, 10

.  Inflammatory, infective and immunologically mediated 

forms are usually part of systemic diseases of diverse origin characterised by central nervous 

system vasculitis 
11

. Cerebral amyloid angiopathy (CAA) –a pathological hallmark of 

Alzheimer’s disease- affects small vessels both cortically and subcortically and may also lead 

to ischemic changes, although it is particularly associated with recurrent lobar haemorrhages 

11
. In this thesis I will only focus on the most common and well-studied age and vascular risk 

factor related form of cSVD and CADASIL. 

cSVD predominantly affects perforating end-arteries branching usually 

perpendicularly from a large parent artery. These penetrating arteries irrigate the so called 

perforator areas including the basal ganglia and internal capsule (lenticulostriate arteries from 

the anterior cerebral artery (ACA) A1 segment and middle cerebral artery (MCA) M1 

segment), the thalamus (thalamoperforators from the posterior cerebral artery (PCA) and 

posterior communicating artery (PCoA)), the pons (pontine perforators from the basilar artery 
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(BA)) and the hemispheric deep white matter -centrum semiovale (perforators from the 

cortical, leptomeningeal arteries) 
12-15

. 

The pathological changes in cSVD lead to luminal narrowing, decreased 

autoregulation and vasoreactivity, and vessel wall damage in the cerebral microvessels 

resulting in their i. gradual stenosis, ii. sudden occlusion, iii. leakage or iv. rupture. As a 

consequence the subcortical brain tissue suffers from i.: diffuse chronic hypoperfusion and 

ischemia leading to the progressive disintegration of cerebral white matter 
16

; ii.: acute 

localised ischemia resulting in lacunar infarcts 
17

; iii.: blood extravasation seen as microbleeds 

18
; and iv.: acute major haemorrhages 

11, 19
. In an advanced state of the disease cerebral 

atrophy invariably occurs as a remote and/or diffuse consequence of vascular lesion burden 
20

.  

The pathogenesis of cSVD manifestations is summarized in Figure 1 
21

.  

The gradual ischemic tissue damage clinically manifests in i. progressive cognitive 

impairment mainly affecting executive function in the earliest stages and later leading to 

dementia of subcortical type; and ii. disability characterized by gait disturbances and other 

motor impairments, pseudobulbar palsies, urinary incontinence etc. Acute focal ischemia 

presents –if it involves main sensorimotor pathways- with the so-called lacunar syndromes. 

Cerebral microbleeds are usually asymptomatic and their clinical significance is yet to be 

determined. 
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Figure 1: Pathogenesis of cSVD manifestations. Abbreviations can be found in the text. 

risk factors: age, hypertension, diabetes… genetic factors: e.g.CADASIL 
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1.2. Magnetic resonance imaging of cerebral small vessel disease  

Magnetic resonance imaging (MRI) is the most appropriate tool to assess cSVD. Since 

the cerebral microvasculature cannot be currently visualized in vivo, the consequent 

parenchymal lesions (lacunar infarcts, white matter lesions, microbleeds and atrophy) have 

been adopted as markers of cSVD 
11

. Here I will summarize recent knowledge about the MRI 

characteristics of cSVD (without discussing the issue of major haemorrhages).  

 

1.2.1. Lacunar infarcts 

Definition 

According to the “lacunar hypothesis” first proposed by Fisher small subcortical 

infarcts of a diameter less than 15 mm –called lacunar infarcts (LI)- result from the sudden 

occlusion of penetrating arteries due to cSVD in typical locations -the perforator areas (see 

above) 
17

. Infarcts of this type have been linked to particular clinical syndromes with a 

relatively good prognosis called the lacunar syndromes, most frequent of which are the 

classical ones:  pure motor stroke, pure sensory stroke, ataxic hemiparesis, dysarthria-clumsy 

hand syndrome and sensorimotor stroke.  The concept of lacunar stroke that entered stroke 

classifications was based on postmortem and CT based studies both with considerable 

limitations. The pathological studies were limited by the low mortality of lacunar strokes and 

by the anatomical changes occurring in the chronic stage and/or during fixation. CT has a low 

sensitivity to detect small infarcts in certain locations (posterior fossa, cortex) and in the acute 

stage and cannot differentiate between fresh and old lesions. The advent of MRI and 

especially its newer techniques such as diffusion weighted imaging (DWI), perfusion 

weighted imaging (PWI) and diffusion tensor imaging (DTI) has slightly modified our 

understanding of LIs 
21, 22

. 

 

Conventional MRI 

Because of their small size visualizing LIs is much more problematic than that of 

larger territorial infarcts. Compared to CT conventional MRI sequences such as T1 weighted, 

T2 weighted imaging (T1/2WI) have a better spatial resolution, can image the posterior fossa 

without artifacts and have a better signal/noise ratio. LIs in the chronic stage appear as fluid 
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filled cavities: hypointensities (black holes) on T1WI and hyperintensities on T2WI isointense 

with CSF.  More recent LIs can be seen as hyperintensities on T2WI corresponding to brain 

tissue with increased water content (oedema). The widely used T2 based fluid attenuation 

inversion recovery (FLAIR) sequence that nulls the hyperintense signal of free water (mainly 

CSF) has some advantages over the T2WI. FLAIR is more sensitive in the detection of small, 

recent infarcts in the proximity of CSF spaces like those in the cortex or next to the ventricles.  

It can better estimate the age of LIs, because
 
the signal of bulk water in chronic infarcts 

(cavitations) is nulled as well, whereas the increased
 
bound water content of acute infarcts 

(solid tissue) is hyperintense 
23

. Acute lesions on FLAIR give a relatively stable high signal 

for several weeks as opposed to the fluctuations in intensity seen on T2W images 
24, 25

 

(Figure 2). However very early ischaemia within the first few hours especially in the lacunar 

dimension cannot be seen on any of the conventional MR sequences, because the signal 

abnormality only appears 3-4 hours after symptom onset 
26

. 

 

DWI 

 Acute stage imaging has been facilitated by the introduction of diffusion weighted 

imaging (DWI) that shows intracellular cytotoxic oedema resulting from  critical cerebral 

ischaemia within the first few minutes after stroke onset  
27

. The energy failure of brain cells, 

through the dysfunction of Na/K ATPase and consequent Na influx, results in the 

accumulation of intracellular bound water leading to a reduced diffusion of free water. This 

appears as marked hypointensity on the apparent diffusion coefficient (ADC) map which 

translates into high DWI signal 
28-30

.  In the case of cortical ischemia the reduced ADC returns 

to normal in 5-10 days (pseudo-normalisation) 
25, 31

, while it stays low for a considerably 

longer period in subcortical disease. Consequently the hyperintensity due to diffusion 

restriction is also visible for longer 
32

. Later the ADC increases indicating vasogenic oedema 

and finally tissue disintegration/necrosis in the chronic stage 
33

. However the lesion appearing 

hyperintense on DWI may remain visible further on as the developing T2 lesion is also seen 

as high signal (T2 shine through). Therefore DWI and ADC map images have to be 

interpreted together to judge the age of an ischaemic infarct 
34, 35

. The sensitivity of this 

sequence within 6 hours of symptom onset is of 95% and its specificity is of practically 100% 

for territorial infarcts 
36

. Although understandably less for small subcortical infarcts, it is still 
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the only reliable tool to visualise hyperacute LIs making it indispensable for acute phase 

therapy decisions (Figure 2). 

 

 

A            B  

Figure 2. Subacute lacunar infarct in the posterior limb of the left internal capsule in a 

hypertensive patient on axial FLAIR (A) and DWI trace (B) image. 

 

DTI  

 A great proportion of LIs occur along the course of motor pathways whose affection 

well correlates with the severity of clinical symptoms and mainly determines prognosis. The 

extent of damage to these pathways can be judged by the MR diffusion tensor imaging (DTI) 

that is capable of visualizing white matter tracts 
37

. This imaging method is based on the 

principle that cell membranes constrain the diffusion of water molecules which therefore 

diffuse longitudinally along axons in the white matter. By measuring diffusion from several 

directions the net orientation of axons in a voxel of white matter can be determined as a 3 

dimensional vector –a „tensor”.  From these vectors virtual projections of fibres can be 

generated and displayed as maps of white matter anatomy e.g. in a colour-coded way where 

different colours stand for different directions, and colour brightness for the degree of 

anisotropy (colour-coded directional image) 
38, 39

. Fiber tracking is a further development that 

enables examiners to visualize fibers passing through a certain region of interest (ROI) or 
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linking two ROIs thus delineating functional systems such as the corticospinal tract (CST). 

This method has been used to specifically localize small infarcts with regard to the functional 

pathway of the CST with good topographical accuracy 
40-42

 . Nevertheless, only a limited 

number of such tractography studies have been published to date, and few techniques have 

been assessed for their ability to track through lesions which disrupt tracts. 

 

Size criterion 

 The size of LIs according to the classical definition is less than 15 mm –a rather 

arbitrary criterion based on early autopsy studies representing a healed, chronic state 
17

. Since 

then we know that LIs in the acute stage can be significantly larger later undergoing shrinkage 

by about half their original size 
43

. Furthermore surprisingly large infarcts can be caused by 

single perforator occlusion due to anatomic variations of the branching pattern of the 

lenticulostriate arteries. More or even all of the penetrating arteries may arise from one 

common stem 
14, 44

. Therefore the size criterion for LIs can lead to stroke type 

misclassification and should be reconsidered 
45

.  

 

Differentiation of underlying mechanisms  

Apart from cSVD small subcortical infarcts may be caused by emboli of arterial or 

cardiac origin or critical hypoperfusion in watershed areas due to stenosing large artery 

disease (LAD). As determining stroke subtype is crucial for further management it is 

important to make an early etiological diagnosis. Acute lesion patterns on DWI help us to 

differentiate between the underlying pathomechanisms 
46

.  The co-existence of a small 

striatocapsular and one or more distal small cortical lesions points to an embolus originally 

stuck in the M1 segment obstructing the orifices of the lenticulostriate arteries and later on 

fragmented and washed further up into one or more small cortical branches of the MCA 
47, 48

. 

This scenario is also possible in the posterior circulation -although much less frequently- with 

the picture of a small brainstem lesion together with a PCA territory thalamic or cortical 

infarct. Multiple small subcortical lesions in the same vascular territory are associated with 

LAD (arterio-arterial embolism), whereas those in different territories/bilaterally suggest a 

proximal embolic origin (heart or aortic arch) 
49

. In the latter case it is not clear whether they 

result from repeated embolism or a single embolic shower 
46

.  
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It has also been proposed that multiple small infarcts may also be due to cSVD 

affecting several vessels contemporaneously 
50

. As mentioned earlier subcortical lesions can 

remain hyperintense on DWI for much longer than cortical ones. Thus several lesions in 

diffferent vascular territories could arise contemporaneously (i.e.  within a few weeks of each 

other) but not simultaneously and all appear hyperintense on DWI falsely raising the 

suspicion of an embolic origin.  In addition the small perforators arising perpendicularly from 

large vessels seem hardly accessible for fast moving emboli from an anatomical point of view. 

Therefore the purely embolic origin of multiple small subcortical DWI lesions in multiple 

vascular territories remains debated.  

Partial borderzone infarcts in the watershed of superficial and deep perforators of the 

MCA and/or ACA may also appear similar to LIs. They can be seen as a single small lesion or 

a chain of them (rosary-like pattern) in the centrum semiovale alongside and slightly above 

the lateral ventricle. The demonstration of ipsilateral carotid artery disease and consequent 

hypoperfusion shown by a perfusion deficit on perfusion weighted imaging (PWI) far 

exceeding the lesion area leads to diagnosis 
51

,
 52

. 

 

Differentiation from other small cerebral lesions 

LIs –especially when occurring without overt clinical symptoms, as incidential 

findings- may be difficult to distinguish from other hyperintense focal abnormalities on T2 

weighted images. Studies correlating these lesions on in vivo and postmortem MR images 

with brain autopsy findings have identified the following pathologies: silent LIs, dilated 

Virchow-Robin spaces (VRS), foci of demyelination 
53

 due to incidental multiple sclerosis 
54

 

or insufficient circulation 
55

 
56

, gliosis, minute cysts and ventricular diverticuli 
57, 58

. 

Distinction between an infarct, a focal gliosis and a plaque of demyelination is usually 

impossible on entirely imaging grounds, while the relationship of a diverticulum or cyst to the 

ventricles and their round shape are differential features 
58

.  

VRSs are small perivascular spaces surrounding cerebral perforating arteries along 

their way through the parenchyma serving as drainage pathways for the cerebral interstitial 

fluid 
59

. They are small (<1 mm) CSF isointense foci round shaped in cross section or linear in 

longitudinal section and run perpendicular to the brain surface 
60-62

. Dilated VRSs that can 

resemble lacunes and appear as an irregular or ectatic focal expansion of the otherwise regular 
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and smooth VRSs 
62

. They are still generally smaller than lacunes usually not exceeding 3 

mm in diameter 
63

, whereas lacunes are larger and wedge shaped 
61, 62

. Dilated VRSs have 

been associated with ageing 
64

, hypertension 
65

, widespread white matter lesions 
66

, sporadic 

cSVD 
67

 
63

, CADASIL 
68

, reduced cognitive function 
66

, and vascular dementia 
67, 69

. However 

their real clinical significance is a subject of controversy. It is generally accepted that dilated 

VRSs are related to brain shrinkage around perforating vessels thus representing brain atrophy 

70
. In this perspective they can both be regarded as common ageing phenomenon or as a 

marker of various pathologies. The distinction between normal and pathologically dilated 

VRSs can be made by judging the appearance of the adjacent brain tissue and the clinical 

context 
62

. 

 

Silent cerebral infarcts 

With the increasing use of MRI and the improving image quality an increasing number 

of patients are found to harbour small cerebral infarcts without any apparent stroke-like 

symptoms. It has now become clear that LIs only cause clinically evident stroke if they hit 

main sensorimotor pathways or occur in deep, subcortical nuclei. However the majority of 

them fall outside of these strategic locations and thus remain silent. Studies have shown that 

in the general population the prevalence of silent infarcts is fivefold higher than that of stroke, 

and they can be present in more than one fourth of people over 60 years of age 
71-74

. They 

have approximately the same risk factors as symptomatic lacunes with hypertension being the 

most important 
73, 74

; and their presence more than doubles the risk of subsequent vascular 

events, cognitive impairment and dementia 
4, 75

. The extent of asymptomatic small vessel 

disease at the time of index stroke has a significant prognostic value for all outcomes 
43, 75

. 

These findings have led to a modified understanding of cerebrovascular disease according to 

which strokes and TIAs –i.e. overt clinical symptoms- are only the tip of the iceberg of cSVD 

manifestations 
21, 22

. Silent infarcts are the underwater majority. It has not yet been evaluated 

though – and remains doubtful at present- whether the same diagnostic workup and risk factor 

management would be justifiable upon finding a silent infarct as for a clinical stroke. 

Although by definition silent infarcts lack clinically overt stroke symptoms they progressively 

lead to less evident cognitive dysfunction, general physical disability and depression.  

Therefore these infarcts should be referred to as “covert” rather than “silent” 
4, 76

.  
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1.2.2. White matter lesions 

Definition 

 White matter lesions seen in elderly patients and those with arterial hypertension are 

usually bilateral and more or less symmetrical areas of increased signal on T2 and FLAIR 

images (hence the name: white matter hyperintensities, WMH) located in the hemispheric 

deep white matter and the pons (Figure 3). The term “leukoaraiosis” meaning rarefaction of 

white matter is a description from the CT era of the same phenomenon 
77

. WMHs are 

generally regarded as a consequence of ischemic brain tissue disintegration due to cSVD. 

Pathological studies found varying degrees of tissue damage appearing as WMH: from 

selective loss of myelin, to loss of myelin, axons and oligodendroglia consistent with 

incomplete infarcts, to near complete infarcts with astrogliosis 
78-81

. 

 

Differential diagnosis 

Multifocal or diffuse white matter lesions resembling those caused by cSVD can be 

found in a wide range of central nervous system (CNS) pathologies. These are summarized in 

Table 1. Their differential diagnosis is based on the complex evaluation of patient history, 

clinical context, other diagnostic tests and some differences in MRI appearance. Some of 

these WMHs are also ischemic in origin such as those caused by hypoperfusion 1. in 

watershed areas due to large artery stenosis, or 2. in different vascular territories due to 

various types of CNS vasculitis.  These latter can occur either as an isolated CNS affection 

(primary CNS vasculitis), or as part of a systemic disease (SLE, Sjörgen syndrome, Behcet 

disease, antiphospholipid syndrome, sarcoidosis etc.) Others are a consequence of multifocal 

demyelination in multiple sclerosis (MS) and its variants or in osmotic demyelination 

syndrome (formerly known as central pontine/extrapontine myelinolysis). As opposed to 

cSVD MS is characterized by ovoid-shaped lesions perpendicular to the ventricles (Dawson 

fingers), frequently found in the corpus callosum, some of which may enhance contrast 

material. Plaques may also be located in the optic nerves, cerebellum and spinal cord. WMH 

caused by transient vasogenic edema resulting from endothelial injury due to various complex
 

conditions (preeclampsia/eclampsia, severe hypertension, allogenic bone marrow 

transplantation,
 
organ transplantation, autoimmune diseases and high dose chemotherapy) has 

been termed as Posterior reversible encephalopathy syndrome (PRES). The typical pattern of 
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WMH in PRES resembles the watershed zones with a parietal and occipital (posterior) 

predominance. The subcortical white matter but also the cortex is involved to varying degrees 

and the lesions always regress 
82

. White matter lesions of unclear nature can be seen in some 

infective diseases /postinfective conditions such as HIV, Lyme-disease or Syphilis related 

encephalopathies, Progressive multifocal leukoencephalopathy (PML), Subacute sclerosing 

panencephalitis (SSPE) or Acute disseminated encephalomyelitis (ADEM); and metabolic 

disorders like leukodystrophies, phenylketonuria and mitochondrial diseases (MELAS) 
83, 84

.  

 

Table 1. CNS pathologies causing multiple/diffuse white matter lesions. Abbreviations can be 

found in the text. 

 

 

 

 

 

 

 

 

 

 

 

Evaluation with conventional MRI 

 The severity of white matter damage on T2 and FLAIR images can be assessed 

semiquantitatively by various visual rating scales (proposed by Fazekas
85

, Schmidt 
86

, 

Scheltens 
87

, Wahlund 
88

 and others) that take into account the location, pattern and extension 

of WMH 
89

. The mostly used Fazekas-scale which evaluates WMH in two distinct locations: 

periventricular and deep subcortical white matter is presented in Table 2. The mildest forms 

Ischemia 

 Watershed hypoperfusion in large artery stenosis 

 Primary CNS vasculitis 

 Secondary CNS vasculitis (SLE, Sjörgen syndrome, Behcet disease, 

antiphospholipid syndrome, sarcoidosis etc.) 

Demyelination 

 Multiple sclerosis and variants 

 Osmotic demyelination syndrome 

Endothelial dysfunction 

 PRES  

Unclear origin 

 Infective/postinfective: HIV-, Lyme-, Syphilis- encephalopathy, PML, 

SSPE, ADEM 

 Metabolic: leukodystrophies, phenylketonuria, MELAS 
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are seen as smooth periventricular and punctuate deep WMH, whereas irregular 

periventricular, early confluent and confluent deep WMH represent an increasing severity of 

tissue damage. Furthermore the three dimensional extension of WMH can be quantified by 

volumetric evaluation 
90, 91

. WMH volumetry is more reproducible and more sensitive for 

lesion progression than visual scales 
92

. However the severity of white matter lesions as 

assessed by any of the above methods showed only moderate correlations with the clinical 

status represented by scores of disability and cognitive impairment 
93-95

. 

 

Table 2. Fazekas visual rating scale for WMH (0-6 points) 
85

 

 periventricular deep subcortical 

0 absence no or a single punctate lesion 

1 „caps” or pencil-thin lining multiple punctate lesions 

2 smooth „halo” beginning confluency of lesions 

3 irregular PVH extending into deep WM large confluent lesions 

 

Evaluation with non-conventional MRI 

The whole spectrum of microscopic brain tissue changes due to cSVD appears 

uniformly as WMH on conventional MR sequences. In order to obtain information on the 

degree of underlying tissue damage, non-conventional MRI techniques have been developed 

such as T1- and T2 relaxation time mapping, magnetisation transfer imaging (MTR) and 

diffusion tensor imaging (DTI) 
96, 97

. This latter technique, that measures the degree and 

orientation of tissue water diffusivity, has been widely used in various cerebral diseases and 

conditions including cSVD 
98

. As diffusivity partly depends on the density of cells in a given 

tissue volume (cell membranes and intracellular particles restrict water diffusion), the increase 

in diffusivity (as measured by a non-oriented derivate of the tensor, the mean diffusivity, MD) 

is proportional to the degree of ultrastructural tissue disintegration 
99, 100

. Region of interest 

(ROI) based measurements detected increased MD inside but also outside of WMH, in the 

normal appearing white and subcortical grey matter 
101, 102

. DTI can thus show tissue damage 

„invisible” for conventional MRI. In diffuse cerebral pathologies however -such as cSVD - a 

global, quantitative approach of whole brain diffusion histograms is more informative about 

the overall disease severity than a ROI analysis. Accordingly, MD histogram parameters have 

been reported to correlate more with clinical scores than WMH visual rating scales and 

volumetric data in cSVD both cross sectionally and longitudinally. Furthermore they were 
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more sensitive than clinical scales in detecting change over time 
103-108

. In a study described 

further on in this thesis we obtained data indicating that the much simpler, quicker and widely 

available diffusion weighted imaging (DWI) derived apparent diffusion coefficient (ADC) 

can be used similarly to DTI derived MD to quantify brain damage due to cSVD (findings of 

Gunda et al. to be published) (Figure 3 and 4). Therefore these quantitative MRI techniques 

seem to be a promising tool in the quantified monitoring of cSVD and could possibly act as 

surrogate markers in future therapeutic trials. 

  

 

Figure 3. Diffuse white matter lesions in a 70 year-old hypertensive patient on axial FLAIR 

image (upper row) and ADC map (lower row). Note the increased diffusion (ADC) 

corresponding to areas of WMH (FLAIR). 
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Figure 4. ADC histogram of the patient on Figure 3 (green line) compared to a normal 

control (dashed blue line), diffusivity thresholded at 180x10 
-5 

mm
2
/s. 

 

1.2.3. Cerebral microbleeds 

Definition 

Gradient echo (or T2* weighted) imaging is a sequence highly sensitive of blood. 

With its increasing use the number of visible haemorrhagic brain lesions has grown 

considerably and even millimetre-sized bleedings in the parenchyma have become detectable.  

Cerebral microbleeds (cMB) appear as small (<5 mm), homogenous, rounded foci of low 

signal intensity on T2* images 
109

 (Figure 5).  The signal loss is caused by hemosiderin –a 

paramagnetic blood degradation product that remains in macrophages for several years after 

haemorrhage indicating previous blood extravasation 
110

.  Thus the age of cMBs cannot be 

determined by MRI but the total haemorrhage burden can be assessed. Cerebral microbleeds 

appear larger on T2* images than the real tissue lesions due to the “blooming effect” of the 

MR signal 
111

. The few studies relating cMBs on MRI to histopathological findings revealed 

focal hemosiderin deposits from the rupture of small vessels showing evidence of 

arteriolosclerosis or occasionally amyloid angiopathy clearly indicating an underlying small 

vessel pathology 
18, 112

.  
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CMBs need to be distinguished from other causes of focal signal loss on T2* images. 

These include: flow voids of small arteries in cross-section that can be followed on 

consecutive/neighbouring slices; the usually symmetrical calcifications or iron deposits in the 

globi pallidi that appear hyperdense on CT; type IV cavernous malformations and capillary 

teleangiectasias; foci of hypointensity compatible with hemorrhagic shear injury in head 

trauma, and even artefacts of metallic materials released from mechanical heart valves 
113, 114

. 

Etiological differentiation of signal loss is based on the location, number and distribution of 

lesions, associated imaging findings and patient history. 

 

Epidemiology 

 CMBs have been found in various patient populations as well as healthy elderly. Their 

occurrence was the most frequent in patients with intracerebral haemorrhage (ICH) and 

lacunar infarcts (due to hereditary or sporadic cSVD), less so in ischemic stroke patients of 

other subtypes. The most comprehensive review on cMB published in 2007 pooled data from 

comparable studies and found the overall prevalence of cMBs to be 5% among healthy adults; 

34% in ischemic stroke patients; and 60% in patients with ICH.  The prevalence according to 

ischemic stroke subtype was 54% in lacunar-, 36% in atherothrombotic - and 19% in 

cardioembolic stroke. 38% of CADASIL patients had cMB. CMBs were more prevalent 

among patients with recurrent than first-ever stroke (44 vs 23% for ischemic and 83 vs 52% 

for haemorrhagic stroke) 
115

.  

 

Clinical significance 

CMBs were found to be associated with age, hypertension, other manifestations of 

cSVD (lacunar infarcts and WML), previous ischemic stroke and ICH, and an increased risk 

of recurrent lacunar infarct or ICH in those with lacunar infarct or ICH 
115

. These findings 

further emphasize the common pathophysiological basis for cMB, LI, WML and ICH. Studies 

have shown that the anatomical distribution of ICHs is similar to that of cMBs in individual 

patients, but it is not the pre-existing cMBs that evolve into major haemorrhages 
116

. Similarly 

several cases have been reported where patients with cMBs developed major haemorrhage 

after thrombolysis or antiplatelet therapy remote from the cMBs 
117

. Thus cMBs can be 

considered as markers of a diffuse, bleeding-prone microangiopathy. This raised the important 
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question whether patients with cMB are at an increased risk of ICH when treated with 

antiplatelet, anticoagulant or thrombolytic agents. For the time being there is no sufficient 

evidence to give a definite answer (some studies reported an increased risk, others not, all of 

them underpowered to draw firm conclusions) 
117-121

.  However some stroke centres already 

incorporate cMBs in their treatment decisions.  

In conclusion cMBs are markers of a haemorrhage-prone cSVD and predictors of 

recurrent vascular events (be it ischemic or haemorrhagic). At present they cannot be 

considered as a contraindication to antithrombotic or thrombolytic therapies, but may play a 

role in the individual stratification of haemorrhagic risk, and may be incorporated in the 

design of clinical trials of anticoagulation/antiaggregation drugs. 

 

 

Figure 5. Multiple cMBs in a 48 year-old hypertensive patient on axial T2* image. 

 

1.2.4. Brain atrophy 

 Brain atrophy is best evaluated on T1WI and appears as shrinkage of brain 

parenchyma with a reduction of cortical thickness and an increase of internal and external 

CSF spaces. It can be assessed by visually rating the degree of ventricular dilatation and 
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sulcal widening, by measuring the width of sulci or ventricles in a standard location, or by 

different three-dimensional volumetric methods that have now become the methods of choice.  

Brain atrophy is a common phenomenon in normal ageing that increases progressively 

beyond the age of 65 years 
122

. This process can be accelerated by numerous cerebral 

pathologies causing diffuse brain tissue loss such as degenerative diseases (like Alzheimer’s 

disease and other primary dementias) 
123

, demyelinating diseases (MS) 
124

 and 

cerebrovascular disorders (Figure 6).  In these latter conditions, the importance of brain 

atrophy has only recently been recognised.  A number of imaging studies using quantitative 

brain volumetry demonstrated atrophy in both focal and diffuse cerebrovascular diseases 
125-

128
. Brain atrophy correlated strongly with the clinical status and cognitive scores, and proved 

to be a sensitive marker of disease progression in cSVD 
106, 129, 130

. It is now widely accepted 

that purely subcortical cSVD can lead to cortical volume loss 
130, 131

. How subcortical 

ischemic damage leads to cortical atrophy is not fully elucidated, but the diffuse and/or 

remote effect of lacunar lesions and tissue microstructural changes through Wallerian 

degeneration, secondary axonal loss due to deinervation and local or remote neuronal 

apoptosis are possible mechanisms 
20, 125, 132, 133

.   

Brain atrophy is an aspecific finding and can be regarded as the final common 

pathway in the pathophysiology of various cerebral pathologies. As in degenerative diseases, 

atrophy is now recognized as a strong marker of disease progression in cSVD and thus could 

serve as a surrogate marker in future clinical trials similarly to whole brain diffusion 

histogram parameters 
134

. 
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Figure 6. Widespread WMH and diffuse brain atrophy in a 89 year-old hypertensive patient 

on axial FLAIR images. 

 

1.2.5. Summary 

New and continuously developing MRI sequences and postprocessing techniques have 

greatly helped to explore and better understand cSVD. Diffusion MRI methods have proved 

to be particularly useful in: i. visualizing hyperacute LIs thus guiding acute phase therapy and 

etiologic diagnosis (DWI); ii. detecting ultrastructural changes even in otherwise normal 

appearing WM, and quantifying the global burden of tissue damage in cSVD (whole brain 

DTI/DWI histogram measures). Brain atrophy –a phenomenon previously considered to be 

related to cortical disease- is now recognised as a marker of cSVD based on studies using 

volumetric measures. In the future an increasing use of quantitative MRI techniques (diffusion 

histograms, volumetry) can be expected as they are more sensitive to the full spectrum of 

cSVD expressions, and could provide surrogate markers for disease progression in future 

therapeutic trials for patients with cSVD. The utility of different MRI sequences in cSVD is 

summarized in Table 3. 
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Table 3. Utility of different MRI sequences in cSVD. Abbreviations can be found in the text. 

 

 

 

  

T1   

 cavitated, chronic LIs appear hypointens („black hole”) 

 good for evaluation of brain atrophy and cortical thickness, volumetry as 

surrogate marker 

T2  

 subacute LIs appear hyperintens (fluctuating); good visualisation of VRS 

 white matter damage appears as WMH; good for judging deep WMH 

FLAIR  

 (sub)acute LIs give more stable high signal; good for detection of 

periventricular LIs, differentiates acute (hyperintens) from chronic 

(hypointens) LIs 

 white matter damage appears as WMH; good for judging both deep and 

periventricular WMH 

T2*  

 cMBs appear as small, hypointense foci, marker of bleeding-prone 

microangiopathy 

DWI   

 the only method to visualize (hyper)acute LIs that give high signal on DWI, 

low signal on ADC; acute lesion patterns guide differential diagnosis 

 chronic LI gives low signal on DWI, ultrastructural tissue damage causes 

increased diffusivity (high signal on ADC map), whole brain ADC histogram 

as surrogate marker? 

DTI  

 localisation of LIs in relation to WM tracts (tractography) 

 ultrastructural tissue damage causes increased diffusivity (high signal on MD 

map), whole brain MD histogram as surrogate marker 
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1.3. CADASIL and other hereditary small vessel diseases of the brain  

 

1.3.1. CADASIL as a model disease 

CADASIL (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and 

Leukoencephalopathy) is a hereditary small vessel disease of the brain caused by mutations of 

the NOTCH 3 gene encoding a transmembrane receptor of vascular smooth muscle cells 
9
. It 

has recently gained great interest in vascular neurology as the most common heritable cause 

of stroke and vascular dementia in adults. This autosomal dominant cSVD –unlike the 

sporadic, hypertensive form- appears already in adult midlife in the absence of vascular risk 

factors with ischemic episodes and progressive dementia. Its first clinical manifestation can be 

migraine with aura, and is often associated with psychiatric disturbances. The MRI changes 

may precede symptoms by more than a decade 135
. Apart from the well known and above 

discussed radiologic manifestations of cSVD in general, CADASIL has a unique feature: 

WMH symmetrically involving the temporal poles and the external capsule 
136

, see Figure 7. 

This characteristic pattern can be considered specific to the disease and is an important point 

in differential diagnosis 
137-139

 The special importance of this disease lies in the fact that 

CADASIL provides a pure genetic model for cSVD without the confounding factors of 

comorbidities and advanced age. Thus insights into CADASIL may help us better understand 

the more common sporadic forms as well. 
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Figure 7. Characteristic MR changes on axial FLAIR images in a 54 year old CADASIL 

patient: A: WMH in the pons and temporal poles (large arrows). B: Enlarged Virchow-Robin 

spaces (short arrows), lacunar infarct in right thalamus (long arrow), WMH of the external 

capsule. C: Frontal, periventricular and external capsule WMH (large arrows). D: WMH in 

corona radiata (large arrows). 
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1.3.2. Other hereditary small vessel diseases of the brain  

Besides CADASIL an increasing number of different hereditary small vessel diseases 

of the brain are being described (see Table 4.). To date the causal genes of four disorders with 

predominantly cerebral but also extracerebral involvement have been identified 
140

. The 

autosomal recessive CARASIL (first described as Maeda syndrome in Japan 
141, 142

) 

characterized by spinal deformities and alopecia is associated with mutations in the serine-

protease HTRA 1 gene 
143

. Syndromes affecting cerebral, retinal and renal vessels to a 

variable extent such as HERNS (Hereditary endotheliopathy with retinopathy nephropathy 

and stroke) 
144

, CRV (Cerebroretinal vasculopathy) 
145

 and HVR (Hereditary vascular 

retinopathy) 
146

 that were previously reported independently are now recognized as different 

phenotypes of the autosomal dominant Retinal vasculopathy with cerebral leukodystrophy 

(RVCL). It is caused by mutations in the TREX 1 gene encoding an exonuclease implied in 

the maintenance of vascular integrity 
147

. Mutations in the COL4A1 gene encoding type IV 

collagen a1 chain, a component of basement membranes in various organs, have been found 

to be responsible for an autosomal dominant cSVD along with a whole spectrum of widely 

variable manifestations in the eyes, kidneys and muscles 
148

. The most frequent phenotype in 

adults is characterized by subcortical intracerebral hemorrhages, diffuse cSVD and retinal 

arteriolar changes. HANAC syndrome (hereditary angiopathy with nephropathy, aneurysm 

and cramps) -a distinct phenotype- is dominated by systemic manifestations: hematuria, renal 

cysts, muscle cramps with elevated creatine-kinase and frequently bilateral aneurysms of the 

intracranial carotid artery 
149

. Connective tissue changes are prominent in PXE 

(Pseudoxanthoma elasticum) associated with mutations in the ABCC 6 gene 
150

. 

The exact genetic background of other cSVDs remains to be elucidated. These include 

Hereditary infantile hemiparesis already manifesting in early childhood 
151

 as well as other 

autosomal dominant hereditary cSVDs corresponding to the formal criteria of “Cerebral 

Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy” 

without mutations in the NOTCH 3 gene. These conditions such as Hereditary small vessel 

disease of the brain 
152

, Hereditary multi-infarct dementia 
153, 154

, or SAE (Subcortical 

angiopathic encephalopathy also known as PADMAL i.e. Pontine autosomal dominant 

microangiopathy and leukoencephalopathy) 
155, 156

 could be termed as CADASIL type 2, 3, 

etc. in the future. 
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Table 4: Hereditary small vessel diseases of the brain (Abbreviations can be found in the 

text) 

disease clinical features genetics 

CADASIL migraine with aura, stroke, apathy, 

dementia 

NOTCH 3 on 

chromosome 

19q12 

CARASIL  

 

stroke, dementia, kyphosis, lumbal disc 

herniation, bone deformities, alopecia 

HTRA 1 on 

chromosome 

10q26 

 

 

 

RVCL 

 

 

 

HERNS 

 

 

stroke, renal disease, retinopathy, 

pseudotumors 

TREX 1 on 

chromosome 

3p21 

CRV 

 

 

stroke, dementia, migraine, retinal 

capillary occlusions, blindness, 

pseudotumors, renal disease 

 

HVR retinal microangiopathia, blindness, 

migraine, Raynaud phenomenon 

 

 

COL4A1-related 

diseases 

subcortical intracerebral hemorrhages, 

ischemic stroke, retinal arteriolar 

changes, hematuria, renal cysts, muscle 

cramps, intracranial aneurysms 

COL4A1 on 

chromosome 

13q34 

PXE  

 

skin and connective tissue abnormalities, 

stroke, blindness 

ABCC 6 on 

chromosome 

16p13 

Hereditary infantile 

hemiparesis 

infantile hemiparesis, retinal 

hemorrhages, migraine with aura 

unknown 

 

Hereditary small vessel 

disease of the brain 

stroke, memory loss unknown 

 

Hereditary multi-infarct 

dementia  

stroke, cerebellar symptoms, dementia unknown 

 

PADMAL (or SAE) stroke, dysarthria, dementia unknown 

 

 

_________________________________________________ 

 

In the remaining part of this thesis I will present two studies performed in the world’s 

largest cohort of CADASIL patients from the Lariboisière Hospital in Paris where the disease 

was identified, and the term CADASIL coined. The first one (Study 1) aimed to evaluate 

gender related differences in the clinical and MRI characteristics of the disease. It has recently 

been published 
157

. The second study (Study 2) investigated the possible role of a DWI 

derived quantitative MRI method in disease monitoring.  
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2. Purpose 
 

2.1. Effects of gender on the phenotype of CADASIL (Study 1) 

In the general population, migraine, cerebrovascular diseases and vascular dementia 

differ in many aspects between men and women. The prevalence of migraine appears to be 3-

4 times higher in women than in men.
158-161

 In women, migraine is further influenced by the 

different stages of the reproductive life (menarche, pregnancy, menopause) or by the exposure 

to exogenous sex hormones such as contraception.
162

 In contrast, the age-adjusted prevalence 

and incidence of stroke are respectively 30 and 40% higher in men than in women. 
163

 A 

similar trend for male sex is observed for the prevalence and incidence of vascular 

dementia.
164, 165

 Accumulating evidence suggests that these differences may be related to 

female hormones that can both modify the excitability of the cortex 
166, 167

 and exert major 

neuroprotective effects.
168, 169

 

CADASIL is considered as a model of “pure” subcortical ischemic vascular dementia 

and as a typical cause of secondary migraine with aura of vascular origin. Although some 

differences were previously reported between men and women in CADASIL 
170

, the exact 

role of gender in determining the phenotype of the disorder has not been specifically 

investigated. 

In the present study, we evaluated the gender effect on the clinical and neuroimaging 

manifestations of CADASIL in a large cohort of CADASIL patients.  
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2.2. Whole brain ADC histogram in CADASIL (Study 2) 

Unlike the conventional T1 and T2-weighted MR sequences, diffusion MRI is an 

imaging method that provides key information about the microstructural integrity of the 

cerebral tissue 
99

. Alterations of diffusion tensor imaging (DTI) metrics (mean diffusivity –

MD and fractional anisotropy –FA) were observed both inside and outside areas of increased 

signal on T2-weighted or FLAIR images in various white-matter disorders 
102, 171-175

. In 

conditions with diffuse tissue lesions -such as multiple sclerosis, hypertension related cSVD, 

CADASIL or even in dementia or aging- a global, quantitative approach based on whole brain 

histograms of diffusion was found to be more informative about overall disease severity than 

using predefined regions of interest (ROI). Various DTI histogram parameters (mean value, 

median value, peak location, peak height, kurtosis, skewness) have been reported to correlate 

with clinical scores in these conditions both in cross-sectional and longitudinal studies. 

Moreover they were more sensitive than clinical scales in detecting change over time 
96, 103, 

106-108, 176-181
. In CADASIL, MD measured with DTI over the whole brain has been found to 

vary before any significant clinical change during follow up and to predict disease 

progression. DTI measures were then proposed as potential adjunct outcome measures in 

future therapeutic trials in CADASIL or in other cSVD 
103-105, 129, 182

. The effects of sequences, 

scanners on DTI measures has been evaluated cross-sectionally in a small number of healthy 

volunteers 
183, 184

 

Measures of ADC over the whole brain from diffusion weighted imaging (DWI) 

commonly used in stroke patients without the use of much operator dependent post-

processing may be an alternative method to obtain diffusion histograms. The main advantage 

of this approach would be the wide availability, simplicity and rapidity of the method suitable 

for everyday clinical use. The main drawback for longitudinal follow up studies with this 

method would be the variability related to the imaging-reimaging sessions, update of MRI 

sequences and changes of scanners.  

In the present study, we aimed to evaluate whether ADC histograms obtained in a 

clinical setting would be suitable for follow up studies in cSVD as CADASIL. For this 

purpose, data from a large cohort of CADASIL patients with a follow up of 3 years were 

analyzed. The longitudinal evaluation of data is underway. 
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3. Methods 
 

3.1. Subjects 

A total of 313 CADASIL patients having a typical mutation of the Notch3 gene were 

included in Study 1.  They were recruited from a large prospective cohort of patients 

investigated in Lariboisière Hospital in Paris (n=191) and the Ludwig Maximilians 

University’s Neurology Clinic in Munich (n=122). The study was approved by an 

independent ethics committee at both centers; all patients gave a written informed consent to 

participate. 348 patients from the same cohort were included in Study 2. 

3.2. Clinical evaluation 

All subjects underwent a detailed neurological
 

examination during the 2 hours 

preceding MRI examination, including
 
a Mini-Mental State Examination (MMSE), Mattis 

Dementia Rating Scale and modified Rankin scale (mRS). Clinical and demographic
 
data 

were collected including age, sex, cardiovascular risk factors (CVRF) including hypertension
 

(defined as diagnosis of hypertension or taking antihypertensive
 
drugs), diabetes

 
(1997 World 

Health Organization criteria), hypercholesterolemia
 
(diagnosis of hypercholesterolemia or 

taking lipid-lowering
 
drugs), smoking habits and alcohol intake, history of migraine with aura 

(MA) (IHS diagnostic criteria), stroke, TIA, psychiatric symptoms including depression, 

apathy (based on Neuropsychiatric Inventory assessment applied in 132 patients only), 

seizures, gait and balance problems, hearing loss, urinary incontinence and presence of 

dementia (DSM IV criteria). Patients in Study 2 had follow-up examinations with an interval 

of 18 months over a period of 3 years. 

3.3. MRI 

The imaging protocol has already been detailed previously. 
20

 Briefly, MRI was 

performed on a 1.5-T system (Vision;
 
Siemens [Munich] or Signa General Electric Medical 

Systems [Paris] with continuous updates [GE Signa 08, 09, Excite 11, 12, 14]).
 
Three 

dimensional and millimetric T1-weighted MRI and FLAIR, T2*-weighted gradient echo, 

proton density
 
and

 
diffusion-weighted images of 5 mm thickness were obtained over the entire 

brain in axial planes. The parameters of diffusion-weighted imaging
 
are as follows:

 
Siemens: 

TR/TE 5100/137 ms, slice thickness 5 mm, interslice
 
gap 1.5 mm, 128x128; b-value = 1000;  
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General Electric: TR/TE 8200/83 ms, slice thickness
 
5.5 mm, interslice gap 1.5 mm, 128x128; 

b value = 1000 s/mm
2
.  

To obtain ADC maps, diffusion-weighted imaging (DWI) scans were acquired
 
in the 

X, Y, and Z directions and then averaged to make ADC
 
measurements largely independent of 

the effects of anisotropic
 
diffusion. Apparent diffusion coefficient values were then calculated 

for each voxel
 
to generate ADCxyz maps.  

In a subset of patients Diffusion tensor imaging was also performed on GE Signa in 23 

directions (B 0 and B = 700 in 23 directions; TR: 7500, TE: 98.8, EC: 1/1, bandwidth : 

91Khz, thickness =5.5mm, 23 slices, matrix: 128*128, 1Nex). Eigen-vectors were obtained 

from all 23 directions for each voxel and eigen values were used for calculation of mean 

diffusivity (MD = Trace/23). 

3.4. Image processing and analysis 

Image processing and analysis for Study 1 have been previously reported by 

Viswanathan et al.
185

 A dedicated software (Brainvisa) was used to determine the global brain 

volume from T1-weighted MR images after exclusion of CSF containing voxels in addition to 

the the volume of the intracranial cavity assessed on proton density images. Brain 

parenchymal fraction (BPF) was defined as the ratio of total brain tissue volume to the total 

intracranial cavity volume: BPF = (brain tissue volume/intracranial cavity volume) x 100. The 

volume of WMHs was obtained on FLAIR images, that of lacunar lesions on T1 scans. The 

total volume of WMH and that of lacunes were normalized to the intracranial cavity in each 

patient: normalized volume=( total volume / intracranial cavity volume) x 100. The number of 

microbleeds (MB) on T2* sequences was also recorded in each patient. 

For Study 2 MD and ADCxyz were first calculated over the whole volume of the brain. 

Histograms were obtained using a bin width equal to 0.1 x 10
-4

 mm
2
/s and normalized over 

the number of voxels to correct for individual differences in brain size. The mean value, peak 

location and peak height of diffusion histograms were used for analysis. 

Histograms derived from MD maps and obtained after CSF removal using a cutoff 

value of diffusion at 18 x 10
-4

 mm
2
/s were used as the reference method for analysis of the 

parameters derived from ADCxyz histograms. 
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To select the ADCxyz histogram parameter best suited for clinical studies, correlations 

between parameters derived from MD histograms and those derived from ADCxyz histograms 

were first analyzed before and after removal of voxels containing CSF using the cutoff value 

of 18 x 10
-4

 mm
2
/s.  Thereafter, correlations between parameters derived from MD and 

ADCxyz histograms were evaluated before and after the manual removal of artifacts at the 

bone-air interface by an experienced neurologist; and before and after exclusion of the top and 

bottom 3 slices (containing the most artifacts and peripheral CSF). 

The parameter derived from ADCxyz histograms that best correlated with the reference 

method and was most independent from segmentation was chosen for subsequent analysis. A 

mixed-effects model was used to evaluate the effects of technical updates or change of 

scanners as seen in a clinical setting on diffusion parameters. Finally, the ability of parameters 

derived from ADCxyz histograms to predict the clinical course of CADASIL during the 

follow-up study was analyzed taking into account these potential limitations. 

3.5. Statistical methods 

In order to investigate the relationship between clinical manifestations, cognitive 

scores and MRI parameters between men and women in Study 1, we used the Student’s t tests 

or Wilcoxon tests for categorical variables and ANCOVA for continuous variables. The 

comparison between men and women was performed after adjustments for age, history of 

cardiovascular disease, hypertension, diabetes, and education level according to the parameter 

under investigation. Comparisons were also made between women and men over or under the 

median age of the population (which corresponds approximately to the usual age of 

menopause) to investigate a potential hormonal influence. P values ≤0.05 were considered 

statistically significant. 

In Study 2 correlations between the different parameters were evaluated by linear 

regression analysis and Bland-Altmann plots using JMP 8 software. A mixed-effects model 

was used to assess the magnitude of MRI scanner effect in the adjusted analysis of DWI 

parameters and clinical scores. 
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4. Results 
 

4.1. Gender related differences 

The clinical and MRI data from 313 patients (172 women and 141 men) whose mean 

age was 51 ± 11.4 years (women: 50.4 ± 12.2 years ; men = 51.8 ± 10.3 years) were analyzed. 

No significant difference was detected for the main cardiovascular risk factors (hypertension 

(22.6 in men vs 19.8% in women), diabetes (3.1 vs 1.5%), hypercholesterolemia (40.3 vs 

43.0%), current smoking (25.2 vs 19.4%) and for any cardiovascular risk factor (79.7 vs 

87.2%), with the exception of alcohol consumption (men: 79.1%;women: 49.7%, p<0.001).  

The frequency of the main clinical manifestations of the disorder according to gender 

are presented in Table 5. The prevalence of MA was higher in women than in men.  This 

female predominance was significant only in subjects under 51 years of age. Conversely, 

stroke events were more prevalent in men. This difference was also significant only in 

subjects aged less than 51 years.  

In contrast the prevalence of TIA, age at first stroke and number of stroke events did 

not differ according to gender. We found no significant difference between men and women 

in the prevalence of dementia, psychiatric symptoms including depression, seizures, gait and 

balance problems, hearing loss and urinary incontinence. In contrast, apathy was found to be 

twice more prevalent in the male group, a difference significant both before and after 51 

years. 
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Table 5: Main clinical manifestations according to gender   

 

A: Prevalence (%) in the entire cohort 

 Women Men P* 

migraine with aura 44.2 31.2 0.02 

stroke 57.6 74.5 0.003 

TIAs 38.1 29.5 0.14 

age at first stroke (year; mean, SD) 49.2 (10.5) 48.2 (9.9) 0.30 

multiple stroke events (in stroke patients) 52.0 55.2 0,35 

psychiatric symptoms 47.7 44.0 0.48 

apathy 26.1 57.1 0.0001 

dementia 10.5 15.6 0.20 

*adjusted for age, history of cardiovascular disease, hypertension and diabetes where 

appropriate 

 

B: Prevalence (%)  in subgroups  of patients according to age more or less than 51 years  

 ≤ 51 years > 51 years 

Women Men P* Women Men P* 

migraine with aura  53.6 35.4 0.03 35.2 27.6 0.30 

TIA  33.3 23.9 0.36 40.6 33.9 0.44 

stroke  40.5 70.8 0.0002 73.9 77.6 0.64 

Age at first stroke  

(year; mean, SD) 

39.1 

(0.8) 

39.2 (0.7) 0.91 55.2 (0.7) 54.0 (0.7) 0.17 

psychiatric symptoms  40.8 41.5 0.90 54.6 46.1 0.28 

apathy  3.3 44.8 0.0002 43.6 67.7 0.04 

dementia  2.4 6.2 0.40 18.2 23.7 0.39 

*adjusted for history of cardiovascular disease, hypertension and diabetes where appropriate 
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The characteristics of MA in the two groups are presented in Table 6. In women, MA 

started at an earlier age (under 30 years in the majority of migraineurs) than in men.  More 

women than men experienced visual and aphasic auras. The prevalence of sensory and motor 

auras as well as the frequency of migraine episodes, duration of aura and of headache and 

presence of triggering factors did not differ according to gender. 
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Table 6: Characteristics of migraine with aura according to gender 

 

 Women Men P 

age onset of MA  (%) 

<30 years  

30-40 years 

 >40 years  

 

63.2 

26.3 

10.5 

 

34.1 

43.2 

22.7 

 

0.008 

Visual aura  (%) 94.7 79.6 0.01 

Sensory aura (%) 76.1 67.8 0.26 

Aphasic aura (%) 71.1 52.3 0.04 

Motor aura (%)  21.1 22.7 0.83 

Triggering factors (%) 28.9 29.6 0.94 

duration of aura  

< 20 min                                                  

20-60 min 

1-4 h 

> 4 h 

no data 

 

26.3 

60.5 

6.6 

1.3 

5.3 

 

34.1 

47.7 

11.4 

2.3 

4.6 

 

0.67 

 duration of headache during MA 

 < 4 h  

 4-24 h 

1-3 days 

> 3 days 

no data 

 

30.8 

43.1 

16.9 

0 

9.2 

 

26.3 

42.1 

18.4 

2.6 

10.5 

 

0.74 

frequency of MA attacks 

>1/month 

< 1 /month to  1/3months 

<1 /3 months  to 1/2 years   

<1/2 years  

 

26.3 

15.8 

39.5 

18.4 

 

15.9 

34.1 

24.1 

15.9 

 

0.12 
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 The comparison of baseline clinical scores between women and men is summarized in 

Table 7. Men were found to be more disabled than women with higher Rankin and NIHSS 

scores. There was no significant difference in global scores of cognitive performances 

(MMSE, Mattis), but men did worse in Mattis initiation test mainly evaluating executive 

functions. These differences were significant only in subjects over 51 years of age. 

 

Table 7: Main clinical scores according to gender  

A: in the entire cohort 

Scores  

(mean, SD) 

Women Men P* 

Rankin  0.91 (1.4) 1.24 (1.5) 0.02 

NIHSS  0.82 (1.7) 1.70 (3.1) 0.002 

MMSE  25.6 (4.4) 25.5 (4.5) 0.76 

Mattis DRS  132.5 (18.3) 130.3 (17.8) 0.25 

Mattis initiation  33.4 (6.4) 31.9 (7.3) 0.04 

*adjusted for age and education level  

 

B: in subgroups  of patients according to age more or less than 51 years 

Scores  

(mean, SD) 

< 51 years > 51 years 

Women Men P* Women Men P* 

Rankin  0.38 (0.17) 0.41 (0.18) 0.85 1.35 (0.30) 2.01 (0.29) 0.009 

NIHSS  0.77 (0.41) 1.07 (0.45) 0.39 1.1 (0.5) 2.4 (0.5) 0.004 

MMSE  27.9 (0.5) 28.0 (0.6) 0.91 24.8 (1.0) 24.2 (1.0) 0.51 

Mattis DRS  138.2 (2.2) 137.2 (2.4) 0.57 129.9 (4.1) 125.6 (3.9) 0.21 

Mattis initiation  35.3 (0.8) 34.5 (0.9) 0.23 32.5 (1.5) 29.9 (1.5) 0.05 

*adjusted for education level  

The comparison of MRI parameters according to gender is summarized in Table 8. 

The brain parenchymal fraction was significantly lower in men, suggesting higher brain 
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atrophy in men compared to women. This finding was observed independently of age 

stratification. The volume of lacunar infarcts was 50% larger in men than in women but this 

difference did not reach statistical significance although the mean difference was 75% in 

subjects younger than 51 years. In contrast, the volume of WMH and number of MB did not 

differ between men and women. 

 

Table 8: MRI parameters according to gender 

A: in the entire cohort 

MRI parameters 

(mean, SD) 

Women Men P* 

WMH volume  0.071 (0.05) 0.074 (0.05) 0.71 

Lacunar volume  2.4x10
-4

 (5x10
-4

 ) 3.5x10
-4

 (6x10
-4

) 0.08 

Number of microbleeds  3.01 (12.6) 3.48 (14.2) 0.78 

BPF  86.7 (5.9) 83.6 (6.7) <0.0001 

*adjusted for age 

 

B: in subgroups  of patients according to age more or less than 51 years 

MRI parameters 

(mean, SD) 

< 51 years > 51 years 

Women Men P Women Men P 

WMH volume  0.050 (0.04) 0.052 (0.04) 0.76 0.091 (0.05) 0.099 (0.05) 0.40 

Lacunar volume  1.6x10
-4

 

(4 x10
-4

) 

2.8 x10
-4

 

(5 x10
-4

) 

0.09 

3.3 x10
-4

 

(6 x10
-4

) 

4.2 x10
-4

 

(6 x10
-4

) 

0.42 

Number of microbleeds  0.79 (4.8) 0.81 (2.2) 0.96 5.53 (17.4) 5.97 (19.4) 0.89 

BPF  89.5 (4.3) 86.4 (5.3) 0.0003 83.7 (6.0) 81.0 (6.9) 0.01 
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4.2. Diffusion histograms 

280 patients who underwent both DTI and DWI imaging were included in the first 

comparative part of our second study. 249 patients had DWI images with correction of 

artefacts and all patients (348) had DWI images with removal of top-bottom slices. The 

multivariate analysis included all patients (348) in the cohort.   

 The mean, peak or height values of ADCxyz histograms were found to be 

strongly correlated with the corresponding value of MD histograms obtained with DTI. The 

correlation coefficients (R
2
) obtained in regression analysis for the mean, peak and height 

values were 0.964; 0.795 and 0.982 respectively with data obtained after CSF suppression, 

0.965;0.722 and 0.974 with data obtained without CSF suppression on the GE excite 11 

scanner (see Table 9).  These correlations were found to vary according to scanner update but 

were similarly tight with and without CSF suppression (see Figure 8). (after CSF suppression 

on GE signa 08: 0,951; 0,790; 0,916, signa 09: 0,875; 0,606; 0,769; without CSF suppression 

on GE signa 08: 0,978; 0,790; 0,945, signa 09: 0,773; 0,606; 0,781.) 

 

Table 9: Correlation coefficients for ADC/MD parameters 

 mean peak height 

with CSF suppression 0,964 0,795 0,982 

without CSF suppression 0,965 0,722 0,974 
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R

2
 = 0,951  R

2
 = 0,875  R

2
 = 0,898  R

2
 = 0,967 

 

Figure 8: Correlation of ADC-MD mean value on different scanners (GE updates) with CSF 

suppression 

 

The different parameters derived from ADCxyzhistograms obtained before and after 

CSF suppression were found strongly correlated. The correlation coefficients (R
2
) for the 

mean, peak and height values were 0.742;1 and 0.958 respectively on all GE scanners 

together (see Table 10 and Figure 9 )( signa 08: 0.676; 1; 0.955 ; signa 09: 0.574; 1; 0.938; 

excite 11: 0.690; 1; 0.960), and 0.775; 1; 0.917 on the Siemens scanner. The results confirmed 

that the peak value of histogram was not influenced by diffusion values in CSF. 
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A 

 

 

B 
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C 

Figure 9: Correlation of A mean, B peak and C height of ADC histogram with-without CSF 

suppression on all GE scanners 

 

The bland-Altmann plots showed that among the 3 parameters derived from diffusion 

histograms, the mean value derived from ADCxyz histograms after suppression of CSF had 

the tightest concordance with its referral measure obtained on DTI.  The Bland-Altmann plot 

was narrow, horizontal and zero-centred for M, more dispersed but also zero-centred for P 

(showing the discrete nature of these data caused by the bins) and narrow but with a negative 

slope starting from zero for H. The plot for M without CSF suppression was similar to the 

original but wider and was significantly above zero. All plots were within the 0,5 limit. See 

Figure 10. 
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A 

 

B 
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C 

 

D 

Figure 10: Bland-Altmann plots for A mean value with CSF suppression, B mean value, C 

peak value, D height of ADC/MD hsitograms on the same scanner (GE Excite 11 new) 
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The correlation of ADCxyz parameters with and without removal of artifacts resulted in the 

following coefficients (R
2
) for mean, peak and height values: 0.999; 0.996 and 0.997 on the 

GE and 0.998; 0.967; 0.997 on the Siemens scanner. The correlation coefficient (R
2
) for 

parameters obtained with and without removal of the top-bottom 3 slices was 0.998; 0.986 

and 0.997 on the GE and 0.993; 0.943 and 0.989 on the Siemens scanner (see Table 10). The 

Bland-Altmann plots also showed very tight concordance for the mean value, less for P (see 

Figure 11 and 12).  

 

Table 10: Correlation coefficients for ADC parameters 

 mean peak height 

with/without CSF suppression 0,742 1,0 0,958 

with/without artefact removal 0,998 0,967 0,997 

with/without top-bottom slices 0,993 0,943 0,989 
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A 

 

B 

Figure 11: Bland-Altmann plots for A mean and B peak value of ADC histograms with-

without artefacts on the Siemens scanner  
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A 

 

B 

Figure 12: Bland-Altmann plots for A mean and B peak value of ADC histograms with-

without top-bottom 3 slices on the Siemens scanner  
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The association between parameters derived from ADCxyz histograms and clinical 

scores including the scanner effect is presented in Table 11. The results show that the 

standard deviation of the random scanner effect is larger than the regression coefficient of 

fixed effects of clinical scores, age or sex on mean value of ADCxyz histograms.  

 

Table 11: Magnitude of MRI scanner effect in the adjusted analysis of DWI parameters and 

clinical scores. Circles surface is proportional to the number of patients evaluated by each 

scanner, and their vertical position reflects the random MRI scanner effect. The gray shaded 

area represents the expected effect of 95% of scanners. For purpose of comparison, the 

(fixed) effects of clinical score differences given in the right margin are displayed by dashed 

lines. 
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5. Discussion 
 

5.1. Gender effects in CADASIL 

There are two main findings in this large sample of CADASIL patients included in our 

first study: 1) before the usual age of menopause, MA appears to be more prevalent and stroke 

less prevalent in women than in men and this difference vanishes after the fifth decade, 2) in 

the whole population, men present with more apathy and higher degree of cerebral atrophy 

with a trend for a larger volume of subcortical infarcts. Moreover after the 5
th

 decade men 

have more executive dysfunction and disability than women. The larger prevalence of MA in 

CADASIL women is in line with data obtained in the general population showing a nearly 

twofold excess of MA in women compared to men. 
158-160, 186

 MA has been associated with 

high levels of circulating estrogen in women.
187

 In animal models, ovarian hormones were 

also previously shown to increase cortical excitability that promotes spreading depression 

(SD) most likely responsible for the aura symptoms in humans.
167, 188-191

 Experimental data 

recently showed that the susceptibility to cortical spreading depression is actually increased in 

CADASIL transgenic mice.
192

 In the present study, the differences in prevalence and 

presentation of aura symptoms according to gender suggest that the hormonal status may 

further modulate this susceptibility in CADASIL patients.  

 The results also showed a significant male predominance of stroke prevalence in 

CADASIL patients in accordance with epidemiological data showing a 45-55% age-adjusted 

male excess of ischemic stroke in the general population. 
163, 193

 This difference has been 

related to protective effects of oestrogens in women that can increase cerebral blood flow and 

vasoreactivity and show anti-inflammatory, antioxidant and anti-apoptotic properties in both 

animal models and human studies.
168, 169, 194, 195

 The observation of a significant difference 

only before the usual age of menopause in the CADASIL population is in agreement with this 

hormonal hypothesis.  Interestingly, in the present cohort, age at first stroke did not differ 

between men and women as previously reported in a smaller study.
170

 This is in contrast with 

the 4 years younger age at first ischemic stroke reported in men in the general population.
163, 

196
 The limited size of the sample may prevent the detection of such a small difference in 

CADASIL patients. However, together with the lack of difference in the number of stroke 

events, these data may also indicate that female individuals are at lower risk of stroke but that 

the history of ischemic events does not actually differ between men and women once the first 
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stroke event has occurred. The lack of difference in the prevalence of TIAs between men and 

women contrasts with the gender effect observed for completed stroke. The information 

collected during the study about TIAs are, however, more prone to biases. Particularly, 

isolated auras frequently reported in CADASIL patients can be misdiagnosed as TIAs and 

vice versa. Elsewhere, recall biases are presumably more frequent for transient clinical 

manifestations than for stroke events, particularly in the presence of cognitive impairment. 

 Finally, we observed that men had lower scores in tests of executive functions and 

presented with more severe disability during the course of the disease. These results are only 

significant after 51 years of age, i.e. after several decades of accumulation of subcortical 

ischemic lesions. These results are in line with the large male predominance in apathy –a 

common symptom in CADASIL- already reported in a subgroup of the present cohort.
197

 

Although some psychological differences between men and women may partly explain this 

difference, recent data suggest that apathy mainly results from the accumulation of subcortical 

ischemic lesions leading to regional frontal cortical atrophy in CADASIL.
198

 Accumulating 

evidence suggests that cerebral atrophy, the key marker of clinical severity in CADASIL, is 

related to the amount of subcortical ischemic lesion.
20

 In the present study, the difference in 

clinical severity according to gender may be related to the more severe cerebral atrophy with a 

trend for a larger volume of lacunar infarcts in men compared to women. Interestingly, in this 

large cohort, the difference in cerebral atrophy was detected even before the 5
th

 decade. The 

difference in vascular risk factors between sexes with only a small excess in alcohol intake in 

men is unlikely to be responsible for this difference. The neuroprotective role of female 

hormones may be involved in this gender-related difference.  

 

There are a number of limitations in the present study. The age limit of 51 years 

chosen for stratified analysis was chosen based on the median value of age in the studied 

population that corresponds to the usual age at menopause in the general population.  

However, there are no data suggesting that the reproductive life differs in CADASIL patients 

from that observed in the general population. We also cannot exclude some biases in the 

collection of clinical data such as recall biases in the older subjects or in the presence of 

cognitive impairment or related to difficulties in discriminating migrainous auras from TIAs. 

The data were cross-sectional and the differences observed between men and women will 

need further confirmation in prospective longitudinal studies. Finally, the hypothesis of a 

protective role of ovarian hormones was not based on hormonal evaluation in the present 
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study. In particular, our data in no way indicate that hormone replacement therapy would be 

useful for stroke prevention in CADASIL since such a treatment was found to be detrimental 

in two large randomized controlled trials.
199, 200

 The strengths of the study include the 

homogeneity of the population, the identical clinical and MRI protocol used in the two centers 

and the large population evaluated by trained physicians with expertise in both stroke and 

migraine. 
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5.2. ADC histogram in CADASIL  

The main findings of our second study so far are that 1- MD and ADC histogram 

parameters are highly correlated, 2- CSF suppression has practically no effect on this 

correlation, 3- image artefact removal has negligible effect on ADC parameters and 4- the 

magnitude of the random scanner effect is superior to that of clinical scores on ADC 

parameters. 

5.2.1. Comparison of ADC histogram to reference method 

 DTI-derived whole brain MD histograms emerged as reliable and precise markers of 

disease severity in cerebral small vessel disease also capable of monitoring its progression 
103-

108, 178, 181
. Although some studies used routine DWI-derived ADC histograms providing 

highly significant results 
20

, the different diffusion MR techniques have not been directly 

compared so far. Our study showed an excellent correlation between the corresponding MD 

and ADC histogram parameters (both with and without CSF suppression) in CADASIL 

indicating that the much simpler routine DWI may replace DTI in monitoring cSVD.  The 

correlation was the most consistent for mean value so we would prefer this parameter to peak 

or height (either with or without CSF suppression). 

5.2.2. Effects of post-hoc modifications (postprocessing) 

 Since the aim of the use of diffusion MR histograms is to quantify diffuse 

ultrastructural brain tissue damage, there has been a considerable effort to exclude effects that 

may “contaminate” or bias results such as the partial volume effect due to increased 

peripheral CSF spaces in atrophy, or imaging artefacts at the bone-air interface. For this 

purpose several methods of CSF suppression have been proposed: diffusion thresholding 
20, 

104, 177
, fuzzy clustering-voxel based morphometry with varying degrees of cluster 

membership 
106, 184

, and FLAIR DWI 
184, 201

. We used a relatively low diffusivity threshold 

(18 x 10-4 mm2/s) after careful visual assessment of different threshold values (ranging from 

16 to 28 x 10-4 mm2/s) to exclude voxels containing CSF before histogram generation.  CSF 

suppression did not change significantly MD-ADC correlations and had no effect at all on 

peak ADC; however it introduced a greater inter-scanner variability for mean ADC.   

Removal of bone-air artefacts and problematic top-bottom slices had only a negligible effect 

on ADC parameters thus we consider them unnecessary. 

5.2.3. Scanner effect 
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 The effect of using different scanners and imaging sequences and imaging-reimaging 

on diffusion data has been evaluated previously on a small number of healthy volunteers 
183, 

184
. These studies showed that the inter-scanner variability is greater than the inter-sequence 

variability, but both are relatively low, because diffusivity is a physical and not an MR 

property and thus less affected by technical differences 
183

. Growing maximum b-values 

shifted the histograms to lower values, but scan-rescan results were not significantly different 

184
. However these studies could not assess the variability introduced by technical differences 

in proportion to the variability related to disease. In our study we found that the magnitude of 

the scanner effect on ADC histogram parameters was significantly superior to that of clinical 

scores. Therefore data from different scanners in multicentre studies or from updated 

machines during the follow-up of a given patient are not directly comparable. If in practice it 

is not possible to use the same scanners, a quantification of scanner effect by the use of 

phantoms or a group of patients is necessary for data normalisation.  

5.2.4. Utility of different ADC histogram parameters 

 Mean value, peak location and peak height of ADC histograms were evaluated. 

Kurtosis and skewness were highly correlated to peak height (analysis not shown) –all three 

parameters representing the form of the histogram curve-, and therefore left out from further 

evaluation.  

Mean value seems to be the most useful parameter from many points of view: It is a 

continuous and thus more precise parameter containing more data than the peak which is a 

discrete parameter due to the use of bins. It shows a tighter correlation with the corresponding 

MD parameter than peak, and this correlation is linear (same in the whole range of data) 

unlike for height (descending B-A plot). It has been reported to be more sensitive to change 

than clinical scores during disease progression and to correlate with clinical scores both cross-

sectionally and longitudinally more than the two other parameters 
104-107

. Moreover it is less 

influenced by the random scanner effect as demonstrated in our study.  

Atrophy has been shown to be a sensitive marker of global disease burden in 

CADASIL 
129

. Both atrophy –through partial volume effect from increased CSF- and tissue 

disintegration increase mean diffusivity, while peak diffusivity being independent of CSF 

segmentation is less sensitive to atrophy related changes. This might partly be the reason why 

peak showed weaker correlation with clinical scores than mean value.  Since partial volume 
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effect can be reduced otherwise (e.g. FLAIR DWI) we still prefer the use of mean value for its 

numerous advantages. 
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6. Conclusions 
 

Results from our first study strongly support that gender largely influences the clinical 

and MRI phenotype of CADASIL. As observed in the general population, we found that 

women present more MA than men and less severe disability during the course of the disease. 

This difference that may be related to the protective role of ovarian hormones would need 

confirmation in prospective studies and specific biological assessments. 

Whole brain ADC histogram parameters obtained from routine DWI without much 

postprocessing (CSF suppression, artefact removal) appear promising for monitoring diffuse 

small vessel disease such as CADASIL. However, given the significant random scanner effect 

on histogram parameters, the use of different scanners including technical updates may have 

major impact on the results and should be evaluated in a multicentre longitudinal trial.  
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7. Summary 

Cerebral small vessel disease is characterized by lacunar stroke syndromes, deep 

intracerebral hemorrhage and progressive vascular dementia due to the pathology of small 

penetrating arteries of the brain. Its sporadic form related to hypertension has a growing 

importance in the aging society. Hereditary, monogenic variants affecting young individuals –

such as CADASIL- are increasingly identified and serve as a pure genetic model of cSVD. 

New MRI techniques have greatly helped to explore cSVD. Diffusion MRI is useful in 

visualizing hyperacute LIs thus guiding acute phase therapy and etiologic diagnosis (DWI); 

and in detecting and quantifying the ultrastructural tissue damage (whole brain DTI 

histograms). Brain atrophy -a marker of cSVD- can be assessed with volumetric measures. 

These quantitative MRI techniques are more sensitive to the full spectrum of cSVD 

expressions and in detecting disease progression than other imaging parameters and clinical 

scores thus may provide surrogate markers for future therapeutic trials. 

Migraine, stroke and vascular dementia differ in many aspects between men and 

women in the general population. Our first study aimed to evaluate the effect of gender on the 

main clinical and neuroimaging characteristics of CADASIL as a model disease. We found 

that migraine with aura was more frequent in women and stroke more frequent in men before 

the usual age of menopause. This difference seemed to vanish afterwards but resulted in more 

severe cognitive impairment and cerebral atrophy in men at the late stage of the disease. The 

presumable role of ovarian hormones in these gender-related differences remains to be 

explored. 

DTI derived MD histogram metrics are already established markers of disease severity 

in cSVD in research settings. The aim of our second study was to evaluate whether ADC 

histograms from DWI used in routine clinical practice without significant postprocessing 

(CSF suppression, artefact removal), from different scanners can be used similarly to MD 

histograms in CADASIL. We found an excellent correlation between ADC and MD 

parameters. Correction of image artefacts did not alter ADC parameters significantly. In 

contrast, the magnitude of the scanner effect on ADC parameters was high and larger than 

that of clinical scores, sex and age. Therefore non-corrected ADC histogram parameters 

appear promising for assessing tissue damage in cSVD. However, given the important scanner 

effect, results from different scanners should be normalised to be comparable across centres 

and in individual patients. 
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8. Összefoglalás 
 

Az agyi kisérbetegséget (aKB) a subcorticalis struktúrákat ellátó kis perforáló artériák 

megbetegedése okozta lacunaris stroke-ok, mély agyállományi vérzések ill. progreszív 

vascularis dementia jellemzi. A főleg hypertóniához társuló sporadikus formája növekvő 

epidemiológiai jelentőséggel bír az öregedő társadalmakban. Öröklődő, monogénes, fiatal 

betegeket érintő formái közül a CADASIL a legismertebb, amelyet az aKB tiszta, genetikai 

modelljének tekintünk. Az új MR technikák sokat segítettek az aKB megismerésében. A 

diffúziós MR különösen is hasznos a lacunaris infarctusok kimutatásában a hyperacut 

szakban, ezáltal segítve a korai etiológiai diagnózist (DWI); ill. a diffúz szövetkárosodás 

detektálásában és kvantifikálásában (egész agy DTI hisztogramok). A volumetriás 

módszerekkel megítélhető agyi atrófia az aKB egyik fontos markereként ismert. Ezen 

kvantitatív MR technikák alkalmasak az aKB okozta strukturális elváltozások teljes 

spektrumának megítélésére, valamint más képalkotó paramétereknél és klinikai 

mérőskáláknál érzékenyebbek a betegség progressziójára. Ennélfogva jövőbeli klinikai 

vizsgálatokban szerepelhetnek surrogate markerként.  

A migrén, a stroke, ill. a vascularis dementia számos vonatkozásban eltér férfiak és 

nők között az általános népességben. Első vizsgálatunkban a CADASIL-ban mint 

modellbetegségben vizsgáltuk a nem hatását a betegség klinikai és MRI jellemzőire. Azt 

találtuk, hogy az aurás migrén gyakoribb volt nőkben a stroke pedig férfiakban a menopausa 

kora előtt. A különbség efölött a kor fölött eltűnni látszott, de a betegség későbbi stádiumában 

a férfiakban kifejezettebb kognitív deficitet és agyi atrófiát eredményezett. Feltettük, hogy 

ezen nemhez köthető különbségek kialakulásában az ovariális hormonoknak lehet szerepe. 

A DTI alapú MD hisztogram paraméterek az aKB-nek már elfogadott markerei 

kísérleti körülmények között. Második vizsgálatunk célja az volt, hogy kiderítsük: vajon az 

egyszerűbb, rutin klinikai gyakorlatban használt DWI alapú ADC hisztogramok jelentősebb 

képkorrekció nélkül (liquorszuppresszió, műtermék eltávolítás), figyelembe véve az MR 

gépek rendszeres technikai frissítéseit az MD hisztogramokhoz hasonlóan használhatók-e 

CADASIL-ban. Kimagasló korrelációt találtunk az MD és ADC hisztogram paraméterek 

között függetlenül a liquormaszkolástól. A képi műtermékek korrigálása az ADC hisztogram 

paramétereket érdemben nem változtatta meg. Ugyanakkor az MR gépek különbözősége igen 

nagy hatással volt a paraméterekre, amely meghaladta a klinikai állapot, a nem és a kor 
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hatását is. A korrigálatlan ADC hisztogram tehát alkalmasnak tűnik az aKB okozta 

szövetkárosodás megítélésére, azonban a különböző gépeken készült eredmények 

normalizálásra van szükség az összehasonlíthatóság céljából.  
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