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Introduction

Networks are all around us. Our friendships, human societies, the Internet, econom-

ical and ecological systems – and of course, our bodies themselves – are all composed

of different networks. The concept of networks is an abstract model for describing

complex systems, based on the idea that complex systems become more understand-

able if we analyze the system based on its individual elements and their interactions

rather than trying to analyze the whole system as a ”black box”.

The immense knowledge acquired in different fields by network science could be

fruitfully exploited in the life sciences observing the deluge of data in the last 10-15

years. In fact, most research topics in the life sciences are concerned with observing

complex biological systems, thus gaining a deep understanding of the innate behavior

of such systems is a crucial task.

In order to create a network model capable of giving strong predictions on the

behavior of the observed system, it is essential to ”turn on” the system, to have a

dynamic, time-dependent model of the network besides the connectivity information

itself.

Systems theory (or the theory of signals and systems) defines a system as a

physically interconnected set of elements capable of producing an output signal in

response to an input signal. A signal in this context could be any time-variant

physical variable having the ability to transmit information.

Such a system could have one or more inputs, one or more outputs and may

also include state variables, which contain the ”memories” of the system enabling

it to respond differently to the same input at different cases taking previous inputs

into account. Inputs could affect both the state variables or the outputs directly,

while state variables could affect each other or the outputs.

The presented systems theory approach is readily transferrable to the area of

networks. The states of individual nodes could be mapped to state variables, while

the outside perturbations affecting the network could be mapped to inputs. The
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resulting time series data of arbitrarily selected interesting nodes may become the

outputs.

There is another interesting area of research in dynamical systems theory which

could be exploited in network analyses. A complex system without any inputs

cannot have any arbitrary combination of state variables in equilibrium. Left alone,

the state of the system will evolve to one of its steady states, called attractors in

systems theory. A complex system – even one having a lot of attractors – still has

far less attractors than the possible number of state variable combinations.

The first notion of attractors in biology could be attributed to Waddington,

described by the ”epigenetic landscape” in the 1957 book The Nature of the Genes

(Figure 1). This attractor-based description of biological systems was only regarded

as an interesting fact until Kauffman had shown in his seminal articles that biological

systems by design tend to have a small number of attractors.

At that time, however, systems-level information in biology was scarce. Kauff-

man himself suggested that there could be 1 million different human genes. After

sequencing most of the human genome in 2001 and publishing the complete sequence

in 2003 in parallel with the exponential growth of data storage and computational

speed, systems-level experiments in biology only became feasible in the mid-2000s.

The first attractor search experiment was conducted in 2006 by Fauré et al.

In their 10-node model of the cell cycle, only two steady states were found, one

quiescent and one proliferating. In the following years, attractors of other signaling

networks were also described. The network of T-LGL leukemia was investigated in

two separate papers, so I chose this network for the verification of my algorithms

due to the large amount of previous analyses.

It was also previously shown in literature that attractors of signaling systems

correspond to possible physiological or pathological states of the system. Cancer-

related dysregulations and other complex diseases were also suggested to correspond
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Figure 1: The 1957 image of Waddington representing the process of cell differenti-
ation. The ball rolling down the ”epigenetic landscape” symbolizes the states of the
system during differentiation. The four valleys at the bottom represent the possible
steady states, that is, the attractors of the differentiation process.

to changes in the attractor structure. This makes it feasible to think about cellular

systems as working near their attractors in the general case.

Aims

1. In line with one of the most important targets of network science, the first

aim of my work was analysing the dynamics of biological networks. In order

to achieve this goal, I have created a fast, general dynamic network analysis

software.

2. The second aim of my work was extending the software with a module capable

of identifying the dynamic attractor structure of the networks. The attrac-

tor search module was successfully tested on multiple – including biological –

networks, with and without noise.

3. The third aim of my work was creating a ”designer” module for the software en-

abling the rational design of interventions which, when applied to the network
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in a given starting state, could transfer the network to a given target state.

This module was tested on signaling networks describing the connections of

proteins implicated in certain types of cancer. The designed interventions

could later serve as drug targets for combinatorial, or even personalized cancer

treatments.

Methods

The analyses have been performed with a newly developed C++ program called

Turbine, since there is no software currently available with similar capabilities.

The core of the program is a fast network simulator having the ability to calculate

1000 integration steps in 30 seconds on a network having 10 million nodes and links

combined. Simulations of smaller networks only takes a fraction of a second.

By realizing that the behavior of such smaller networks could be simulated in

less than a second, it became feasible to run an ensemble of simulations iteratively

on a single network, enabling to perform new and useful analysis methods.

If we execute a set of simulations by randomly changing the initial state, we get

an attractor search tool, capable of mapping the steady states of the system.

Turbine supports attractor search, and can also recognize limit cycle and some

limit torus type steady states as well as fixed points, while using any type of con-

tinuous or discrete dynamics and also with the application of external constant or

periodic perturbations.

If we not just randomly change the parameters of the simulation, but assign a

governing artificial intelligence algorithm with this task, another new set of methods

become available. A good example of this is the intervention design workflow of

Turbine. Intervention design is capable of finding a near-minimal set of interventions,

which, when applied to the network in a given undesirable ”diseased” state, will

transfer the system to a given, more desirable ”healthy” state. The program uses a

genetic algorithm for this purpose (Figure 2).
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A B C D E
Initial population Fitness function Selection Cross-over Mutation

Figure 2: The steps of a genetic algorithm. From our population (A), we
select pairs of parents using their fitness function, which describes the prob-
lem condition to solve (B). The selected parents (C) give rise to a new gener-
ation of offspring candidates using cross-over (D). The new generation is final-
ized by optionally applying mutations in the genome of some elements of the
new population (E). The population in the case of Turbine are sets of inter-
ventions, and the fitness values are calculated by simulation. Original figure:
http://project.mit.bme.hu/mi_almanach/books/aima/ch04s03

Results

General modeling

The first model created in the course of development was a generic dynamic model

based on the idea of communicating vessels. This dynamic model can give a general,

coarse approximation of the behavior of a network concerning perturbations if a spe-

cific model is not available due to the type of the network or data constraints. The

literature suggests that changes in free protein concentrations can be described with

similar exponentially declining functions as the ones given by the communicating

vessels model. Using this model, I have defined a new type of centrality measure

ranking the relative importance of the nodes in the network. A lot of such central-

ity measures are available, I named this dynamic-based new measure ”perturbation

centrality”.

Protein structure network analysis. The first experiments were conducted on

the E. coli metionil-tRNA synthethase (MetRS) networks desribed by Ghosh and

Vishveshwara in 2007. I created the protein structure network from the original PDB
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files using the RINerator software and calculated the perturbation centrality values

for all nodes (amino acid residues). Afterwards, I have subtracted the perturbation

centrality values of the nodes of the closed (tRNA-binding) conformation from the

perturbation centralities of the corresponding nodes of the open conformation, and

analyzed the top 20% of the resulting values. The most important points were

grouped in two spots, one near the Met-binding active center, the other near the

tRNA anticodon loop. This way, the perturbation centrality values successfully

identified the two most important functional spots of the protein. Noteworthily, the

tRNA was not included in the simulation itself, so the amino acid conformations of

the protein itself may have changed during the transition in a manner that facilitates

communication between the important spots in the closed conformation.

Protein-protein interaction network analysis. I have conducted the next ex-

periment on another type of undirected network, the protein-protein interaction

network of budding yeast (S. cerevisiae). For this experiment, I used differently

stressed versions of the yeast protein-protein interaction network as described in the

2011 article of Mihalik and Csermely. After calculating the perturbation central-

ity values, I have compared the differences of the perturbation centrality values in

the different stress types to the perturbation centralities measured in the resting

network.

The resulting cell functions were in good agreement with known yeast stress

responses. In all types of stress, the proteins with the largest increase of perturba-

tion centralities were significantly enriched in the GO terms ”response to stimulus”,

”carbohydrate metabolism”, ”trehalose metabolic process”, ”glycogen metabolic pro-

cess”, and in heat shock and osmotic stress, the term ”response to stress” was also

significantly enriched. This suggested change of the carbohydrate metabolism in

stress is already described in the literature. Most of the enriched terms of proteins

having the largest decrease of perturbation centrality values corresponded to the

down-regulation of protein translation and ribosome synthesis, which are also well
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known stress responses in yeast. Based on these results, the perturbation centrality

measure also successfully identified important, known stress responses in yeast, so

the network-based importance measured by the perturbation centrality measure and

changes thereof seem to correlate well with the real-world functional importance of

the network elements.

Specific dynamics for signaling systems

It is naturally expected that much more accurate and important predictions could

be made about a network if we utilize a specific dynamic model, which more accu-

rately describes the behavior of the network. I chose the process of protein signaling

for this purpose, since there are multiple examples in the literature that even sim-

ple, relatively abstract models of signaling can result in accurate, experimentally

verifiable predictions.

For the next experiments, I have created two dynamic signaling models for Tur-

bine: a Boolean model akin to the one previously used in modeling T-LGL leukemia,

and one recreating the behavior of the human cancer signaling network of Fumiã and

Martins. I have tested both models on the corresponding networks found in the orig-

inal articles, and found that the Turbine models perfectly reproduced the original

results.

Verification on the T-LGL network. The T-LGL signaling network consists of

proteins implicated in the activation and activation-induced cell death of cytotoxic T

lymphocytes, containing full Boolean rulesets for each node describing the conditions

of activation and inactivation. The authors also identified both the attractors of the

system and possible interventions using a network simplification method in a follow-

up article, so this system was a clear target for the verification of the artificial

intelligence algorithms of Turbine.

In the resting T-LGL network Turbine found only a single, apoptotic attractor in

100,000 simulations. In agreement with the original article, by activating the IL15,
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Stimuli and PDGFR inputs, two other proliferating attractors (very similar to each

other) appeared corresponding to the LGL leukemic state.

Next, I have designed interventions using Turbine which could transfer the LGL

attractor to the apopototic attractor. 19 of the 20 single-target interventions found

matches the 19 consensus interventions described in the original article, the 20th

(CREB activation) is also presented as a high confidence intervention in the source

paper. Individual elements of the combination interventions found by Turbine also

appear in the source article as high-confidence intervention targets (sFas, TBET,

Fas, FLIP).

Thus, we can state that both the attractor search and the intervention design

tools of Turbine were capable of both reproducing the original results and give new

combinatorial targets, verifying the functionality of the new methods.

Effect of noise on attractors. Observing the wide range of individual, effective

treatments raises a suspicion that the presence of the proliferative attractors in

the network without any special dysregulations may only be an interesting effect

and actual leukemic conditions may be different. This notion is supported by the

literature, where mutations of the Fas pathway were implicated in T-LGL leukemia.

We know that no method of communication is perfect, errors and artifacts always

happen under real-world conditions. My hypothesis was that the important attrac-

tors of the system need to have good noise tolerance, so the important attractors

should be large enough to resist the effects of system noise, otherwise the system

could easily transfer to a pathological attractor.

I have conducted these experiments on a signaling network consisting of proteins

implicated in cancer where a continuous dynamic model could be applied. I have

used the only microenvironment where two types of attractors are present, a phys-

iological and a pathological one. In this environment, the cell is under genotoxic

stress, with abundant growth factors and nutrients, without TNF-α, and in nor-

moxia. The physiological response in this case is apoptosis, while the pathological
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Figure 3: The attractors of the cancer signaling network and their transition prob-
abilities under different amounts of noise. Using a high or medium level of noise
(Panels A and B) only the largest, apoptotic attractor (A) was stable, while in low-
noise condition (Panel C), the stable proliferating attractor (S) was also stable. The
natural noise condition is likely most similar to the medium noise level (Panel B).

one is proliferation. In my experiments with Turbine, I have found two separate

proliferating attractors. In the attractor called ”stable proliferating” only the cyclins

and the related proteins showed a cyclic change of activity levels, while in the ”un-

stable proliferating” attractor, other unrelated proteins also changed their activity

levels during the cell cycle.

Next, I have conducted a series of experiments where the three different attractors

were set as starting states, and applied a different amount of pink noise to them,

1000 times for each attractor and noise level (small: 5 steps of 0.001 units, medium:

10 steps of 0.1 units, large: 30 steps of 0.4 units). After running the simulations,

I checked if the resulting steady state is in a different attractor than the starting

point. The results are shown on Panels A, B and C of Figure 3, where A marks the

apoptotic attractor, S the stable proliferating, and I the unstable proliferating one.

The physiological apoptotic attractor was considerably stable due to its size, only

the large noise levels were enough to cause a transfer to the stable proliferating state

in 0.9% of the cases. The unstable proliferating attractor was unstable even using

the lowest noise level and was mostly transferred in the direction of the apoptotic
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attractor (98.6%), and in a small part towards the stable proliferating attractor

(1.2%). The stable proliferating attractor proved to be stable under the low noise

condition, but was often transferred in the direction of the apoptotic attractor under

higher noise levels (36.2%). Thus, if the physiological attractors are also much larger

than the pathological attractors in the general case, the natural noise could help the

regulation of signaling. The results are also consistent with the hypothesis that

knowledge of the largest attractors of a system could be enough to describe its

behavior, since smaller attractors seem to be unstable at natural noise levels.

Identifying driver mutations. While the identification of attractors and the

analysis of the data of attractor states could prove to be valuable in research, in my

case the goal of finding attractors was to find full state descriptions of the system

that could become logical start and target states for the intervention design process

and thus allow predicting specific interventions.

However, the landscape of a cell suffering from mutations is likely different from

the landscape of the healthy cell. It was proposed that the cancerous attractors may

not be available or present in a normal cell, and the mutations change the landscape

in a way that these ”disease attractors” become available.

This assumption has a lot of merit. A coding mutation, when it changes the

activity level of a protein is a continuous perturbation, so it is able to change the

attractor landscape of a cell.

The significant resistance encountered in tumors led me to the next hypothesis,

that the important, driver mutations of a tumor may change the attractor landscape

of a cell in a way that the pathologically proliferating attractor becomes much larger

than the physiological attractor, at which point the previously helpful noise becomes

a hindrance, as it now makes leaving the proliferating attractor as difficult as it made

leaving the physiological attractor difficult in a healthy cell.

Thus, as a next step, I tried to identify mutations or combinations thereof in the

Fumiã and Martins network where the proliferating attractor became significantly
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Table 1: Mutation sets leading to a dominant proliferating attractor; off means
a loss-of-function, on means a constitutive activation-type mutation. The function
loss of P53, ATM/ATR and NF-κB were all individually enough to make the prolif-
erating attractor dominant. NF-κB was not shown, because the ”quasi-proliferative”
attractor obtained with an NF-κB function loss has a different cyclin activation se-
quence than the consensus proliferating activation sequence described in the original
article.

Number Mutations
#1 P53 off
#2 BCL-2 on , PTEN off
#3 S-NAIL on , CHK1/2 off
#4 ATM/ATR off
#5 CHK1/2 off , PTEN off
#6 BCL-2 on , AKT on
#7 E-CADH off , CHK1/2 off
#8 PTEN off , IKK on
#9 AKT on , CHK1/2 off
#10 PTEN off , BAX off
#11 CHK1/2 off , AKT on
#12 AKT on , E-CADH off
#13 AKT on , BAX off

larger than the apoptotic one, or those, where the apoptotic one even disappeared

completely. I have identified 13 such mutation sets as shown in Table 1.

The results are promising. P53 is a well-known tumor suppressor, while the

mutations of ATM/ATR, PTEN, AKT, BCL-2, BAX, CHK1/2 and IKK with a

mutation type corresponding to the ones found in Table 1 have all been described in

tumor development in the literature. This makes it very likely that the pathological

processes leading to tumor formation could be described meaningfully using attractor

landscapes.

Intervention design. After mapping the changed attractor landscapes caused by

the driver mutations, the next important question to answer was the possibility of

designing a specific intervention for the modified landscapes that can – during the

course of the treatment – move the network to an apoptotic state.
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Table 2: Mutation-specific interventions. The inh. mark means inhibition, act.
means activation of a given protein. The off and on means function loss or con-
stitutive activation type mutations of a given protein, respectively. Interventions
marked with italics were predicted to be toxic based on simulations using a healthy
cell model, while the ones marked with an asterisk shows that the intervention did
not result in a complete, steady apoptosis, only the cyclic on/off switching of the
caspase proteins.

Number Profile Interventions

#1 P53 off RTK inh. AND (JNK act. or TGF-β
act. or BAX act.)

#2 BCL-2 on , PTEN off AKT inh. AND (TGF-β act. or BAX
act. or JNK act.) *

#3 S-NAIL on , CHK1/2 off RTK inh.* or RAS inh.* or PI3K inh.*
or P53 act.

#4 ATM/ATR off P53 act.
#5 CHK1/2 off , PTEN off PDK1 inh. * or AKT inh. *
#6 BCL-2 on , AKT on N/A

#7 E-CADH off , CHK1/2 off AKT inh. * or PDK1 inh. * or RTK
inh. * or RAS inh. * or PI3K inh. *

#8 PTEN off , IKK on NF-κB inh. or BCL-2 inh.

#9 AKT on , CHK1/2 off P53 act. or (IKK inh. AND (VHL inh.
or P14 act. or ROS act.))*

#10 PTEN off , BAX off AKT inh. or PDK1 inh.
#11 CHK1/2 off , AKT on P53 act.
#12 AKT on , E-CADH off IKK inh. or NF-κB inh. or BCL-2 inh.
#13 AKT on , BAX off N/A

This experiment was conducted by setting the starting state of the network to the

largest attractor encountered in a given mutation profile, and any apoptotic state as

the target. Since we now had to modify the attractor landscape itself, the applied

perturbations were also constant changes in the activity levels of certain proteins.

The interventions designed for each of the mutation profiles are shown in Table

2. It is reassuring that a lot of results contain a receptor tyrosine kinase inhibi-

tion element (RTK inh.), since the first and the most widely used targeted cancer

therapy treatments are receptor tyrosine kinase inhibitors (cetuximab (Erbitux),

panitumumab (Vectibix): EGFR, sunitinib (Sutent): wide spectrum RTK inhibitor,
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sorafenib (Nexavar): VEGFR, PDGFR). Other frequently occurring intervention

targets have also been identified in the literature as promising treatment targets

such as inhibitors of BCL-2, PDK1, IKK, AKT, PI3K and NF-κB.

Designing for non-toxicity. While individual elements of interventions seem to

be supported by literature, the full intervention sets could be predicted to be toxic

in some cases (#1, which as the P53 loss case is crucially important, and also the

#2, #4 and #11 profiles; in the last two cases the toxicity could be attributed to

the direct activation of P53) when examining the effect of the treatment in a cell

without any mutations, in a microenvironment where only a single quiescent (non-

proliferating, non-apoptotic) attractor is present. The mentioned interventions also

move these cells into apoptosis, suggesting that the intervention is not specifically

targeting erroneously proliferating cells but will rather kill most affected cells.

Thus, the intervention design algorithm needed to be overhauled. I have extended

the algorithm in a way that each intervention candidate was simulated twice, one

on the erroneously proliferating cell, with apoptosis being the target state, and on a

resting cell without any mutation where an apoptotic or proliferating result incurred

a fitness penalty. Figure 3 shows the resulting intervention sets.

An interesting observation is that multiple intervention sets contained von Hippel-

Lindau protein inhibition elements (VHL inh.). This is a counter-intuitive result,

since the loss of function of the VHL protein leads to the appearance of a certain

type of renal tumor in von Hippel-Lindau syndrome. However, on closer examina-

tion, it was revealed that these interventions were never required for the efficacy of

the intervention, but for protecting the healthy cell against its harmful effects. This

could mean that a temporary inhibition of the VHL protein could dampen the toxi-

city of targeted cancer treatments, or allow the utilization of compounds previously

abandoned on the grounds of their toxicity.
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Table 3: Non-toxic interventions. The inh. mark means inhibition, act. means
activation of a given protein. The off and on means function loss or constitutive
activation type mutations of a given protein, respectively. These intervention sets
do not harm healthy cells based on the simulation results while at the same time
they move the mutated cells into apoptosis.

Number Mutations Non-toxic intervention

#1 P53 off BCL-XL inh. AND VHL inh. AND
(PDK inh. or AKT inh. or PI3K inh.)

#2 BCL-2 off , PTEN off TGF-B act. AND P90 inh. AND
PDK1 inh.

#4 ATM/ATR off VHL inh. AND (RAS inh. or PHD
inh.)

#11 CHK1/2 off , AKT on BCL-2 inh. AND PHD inh. AND
SMADE2F inh.

Passenger mutations. When a malignant tumor becomes detectable, it already

contains many more mutations in addition to the drivers. The mutated genome

could contain passenger mutations which make the cell resistant to certain types

of targeted treatments. The best example for this is the constitutive activation

of the kRAS gene which renders the tumor extremely resistant to EGFR inhibitor

therapies.

Therefore, I examined the mutation profiles having a corresponding intervention

containing a receptor tyrosine kinase inhibition element (#1, #3, #7) to see if their

effectiveness is indeed lost when an additional RAS activating mutation is applied

to the cell.

Indeed, this was exactly what happened. All receptor tyrosine kinase based in-

tervention sets lost their apoptotic effect. However, intervention sets targeting other

pathways remained efficient, for example the inhibition of PI3K was still effective

with the added RAS mutation in the profiles #3 and #7, along with the PDK1 and

the AKT inhibition in the case of profile #7.

However, in the case of profile #1, all simple intervention sets contained RTK

inhibition. Hence, because the function loss of P53 happens in the majority of
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tumors, I chose to design a new intervention set for this special case (P53 off , RAS

on).

The simplest such intervention set contained three individual elements: the in-

hibition of RAF, activation of BAX and the inhibition of either PI3K or PDK. This

intervention set moves the mutated cell completely into apoptosis, but is also pre-

dicted to be toxic for healthy cells. It seems noteworthy to state that the first bRAF

inhibitor called Vemurafenib was launched to market in August 2011 with indication

for treating late-stage melanoma. The simplest non-toxic intervention for the P53

function loss, RAS activated case was predicted to have lower (but still significant)

efficacy, and was the same as the intervention set identified for the case without the

additional RAS mutation: BCL-XL inhibition, VHL inhibition and (for example)

AKT inhibition.

Conclusions

The most important results of my work can be summarized as follows:

• I have created a fast, generic network simulator software named Turbine, which

can efficiently simulate extremely large networks, while at the same time allows

performing higher-order analysis types such as attractor search and interven-

tion design on smaller networks.

• I have created a general dynamic model for Turbine, which I have termed

communicating vessels and a specific one for more accurate analysis of signaling

networks.

• I have used the aforementioned generic network to define a centrality mea-

sure which was able to highlight both tRNA binding spots on the E. coli

Met-tRNA synthetase enzyme unlike other widely used centrality measures. I

also demonstrated that the perturbation centrality values follow the ordered-
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unordered transition of protein secondary structure. The same measure was

also able to identify the most important stress reactions in the budding yeast.

• I have shown that the identification of only the largest attractors of a system

could be enough to describe their behavior, since small attractors are likely

unstable under noise levels observable in natural systems.

• I have demonstrated that many dysregulations common to tumors change the

attractor landscape of the signaling network in a way that the pathological

attractor becomes the largest one.

• Finally, after applying these dysregulations on the used signaling network, I

demonstrated that the intervention design tool is capable of rationally design-

ing intervention sets which shift the dysregulated cells into apoptosis, while at

the same time causing smaller or no harm to the healthy cells according to the

simulations.
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