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Abstract

Matrilin-2 (Matn2) is a multidomain adaptor protein which plays a role in the assembly of extracellular matrix (ECM). It is
produced by oval cells during stem cell-driven liver regeneration. In our study, the impact of Matn2 on
hepatocarcinogenesis was investigated in Matn2-/- mice comparing them with wild-type (WT) mice in a diethylnitrosamine
(DEN) model. The liver tissue was analyzed macroscopically, histologically and immunohistochemically, at protein level by
Proteome Profiler Arrays and Western blot analysis. Matn2-/- mice exhibited higher susceptibility to hepatocarcinogenesis
compared to wild-type mice. In the liver of Matn2-/- mice, spontaneous microscopic tumor foci were detected without DEN
treatment. After 15 mg/g body weight DEN treatment, the liver of Matn2-/- mice contained macroscopic tumors of both
larger number and size than the WT liver. In contrast with the WT liver, spontaneous phosphorylation of EGFR, Erk1/2 GSK-
3a/b and retinoblastoma protein (p-Rb), decrease in p21/CIP1 level, and increase in b-Catenin protein expression were
detected in Matn2-/- livers. Focal Ki-67 positivity of these samples provided additional support to our presumption that the
lack of Matn2 drives the liver into a pro-proliferatory state, making it prone to tumor development. This enhanced
proliferative capacity was further increased in the tumor nodules of DEN-treated Matn2-/- livers. Our study suggests that
Matn2 functions as a tumor suppressor in hepatocarcinogenesis, and in this process activation of EGFR together with that of
Erk1/2, as well as inactivation of GSK-3b, play strategic roles.
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Introduction

Matrilins are non-collagenous glycoproteins implicated in the

organization of extracellular matrix (ECM) [1]. They can form

homo-oligomers and assemble into filamentous networks, which

are either connected to or independent of collagen fibrils. As

matrilins can interact via their von Willebrand factor type A

(vWFA) domains with various ECM components including

proteoglycans and collagens, they are proposed to fulfill a bridging

function in the ECM assembly of various tissues [2]. The matrilin

family consists of four members (matrilin-1, -2, -3, -4). Matrilin-2

(Matn2) is the largest member with a minimum Mr of 104300 of

the secreted monomer [3]. It is encoded by a gene spanning over

100 kb and transcribed from two promoters [4]. The Matn2

monomer is composed of two von Willebrand factor A-like

domains, 10 epidermal growth factor-like modules, one unique

sequence, and one coiled-coil domain [3]. Via the coiled-coil

domain, Matn2 assembles into oligomers and can be detected as a

mixture of monomers, dimers, trimers, and tetramers in tissue

extracts and in the medium of cultured cells [5]. Matn2 can bind

to fibrillar collagens, fibronectin and laminin-nidogen-1 complex

[6]. Mann et al. found that integrin a1b1 does not play a major

role in cellular interactions with matrilins. In the case of Matn2 a

weak binding signal with soluble integrin a1b1 was seen, while the

integrin a2b1 ectodomains did not show any binding [7].

However, the interaction between matrilins and integrins is

comparatively weak, matrilins promote only weak cell attachment,

and fail to trigger the formation of focal adhesions. It is not clear

whether this weak interaction with integrins can activate signal

transduction and induce gene expression [7,8].

The matrilin-2 gene (Matn2) is expressed in a great variety of

tissues, but at highly variable levels [3,5]. The gene is transcribed

and the protein is secreted by several established osteoblast,

fibroblast, myoblast and epithelial cell lines. Matn2 mRNA and

protein is also produced by hepatic oval cells, but not by

hepatocytes [9]. In an experimental model of rat liver regener-

ation, Matn2 was deposited in the basement membrane zone

around the tubules formed by oval cells, suggesting an important

role for the protein in liver regeneration [9].

Furthermore, Matn2 is expressed in certain tumors. Sporadic

pilocytic astrocytoma, a pediatric brain tumor, is characterized by
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elevated MATN2 mRNA and protein level [10]. We also recently

reported increased MATN2 expression both at mRNA and protein

levels in human liver cirrhosis and liver cancer [11]. While in

normal human liver MATN2 is located in the walls of portal

vessels, in hepatocellular carcinoma (HCC) it is intensively

detected in the tumor vessels. However, it remains unknown

how MATN2 contributes to tumor formation.

Targeted disruption of Matn2 in transgenic mice did not cause

obvious phenotypic alterations [12]. Matn2-/- mice are viable,

fertile and histological analyses did not reveal any obvious

alterations in the architecture of mutant tissues at various

embryonic and postnatal stages. However, no information is

available about the consequences of Matn2 deficiency on tumor

formation. To address this question here we investigated the role

of Matn2 in vivo using an experimental mouse model of

hepatocarcinogenesis. In Matn2-deficient livers we could demon-

strate spontaneous appearance of tumorous foci, as well as

markedly increased tumor formation upon diethylnitrosamine

(DEN) treatment. Furthermore, we uncovered several alterations

in signaling pathways likely to be involved in the pathomechanism

of tumor formation.

Materials and Methods

1. Animals and treatment
Inactivation of Matn2 in embryonic stem cells and generation of

inbred (129/SV) mouse strains have been described elsewhere

[12]. Matn2+/2 heterozygotes were mated to generate Matn2+/+

(wild-type, WT) and Matn2-/- homozygotes for tumorigenesis.

Fifteen-day old male WT and Matn2-/- mice were injected

intraperitoneally with DEN at a dose of 15 mg/g body weight.

Each group, including WT and Matn2-/- untreated controls as well

as DEN-treated mice, consisted of $10 animals. Mice were

terminated 10 months after DEN exposure by cervical dislocation

in ether anesthesia. At termination, body weight and liver weight

of the animals were measured and the number of macroscopically

detectable tumors was counted.

All animal experiments were conducted according to the ethical

standards of the Animal Health Care and Control Institute

Csongrád County, Hungary. The protocol was approved by the

Committee of the Animal Health Care and Control Institute

Csongrád County, Hungary (permit No. XVI/03047-2/2008).

2. RNA extraction, reverse transcription and RT-PCR
RNA was isolated from frozen livers. After homogenization in

liquid nitrogen the total RNA was isolated using the RNeasy Mini

Kit (Qiagen, Hilden, Germany), according to the protocol

provided by the manufacturer. The yield and purity of the

isolated RNA was estimated by the ND-1000 spectrophotometer

(NanoDrop Technologies, Wilmington, Delaware, USA). The

integrity and size distribution of the total RNA was analyzed using

Experion Automated Electrophoresis Station (Bio-Rad, Hercules,

CA, USA).

cDNAs were generated from 1 mg of total RNA by M-MLV

Reverse Transcriptase kit (Invitrogen by Life Technologies,

Carlsbad, California, USA) following the instructions of the

supplier. Real-time PCR (RT-PCR) was performed by ABI Prism

7000 Sequence Detection System (Applied Biosystems by Life

Technologies, Welterstadt, Germany), using ABI Taqman Gene

Expression Assays for b-actin (assay ID: Mm00607939_s1), Matn2

(assay ID: Mm01166023_m1) according to the manufacturer’s

protocol, mouse b-actin was used as endogenous control. All

samples were run in duplicates in a 20 ml reaction volume with

50 ng of cDNA. Results were obtained as threshold cycle (CT)

values. Expression levels were calculated by using the 22DC
T

method.

3. Phospho-MAPK and Phospho-RTK antibody arrays
For phosphoprotein antibody arrays and Western blot analysis

proteins were isolated from frozen liver tissues. After homogeni-

zation in liquid nitrogen 1 ml of lysis buffer (20 mM TRIS

pH 7.5, 2 mM EDTA, 150 mM NaCl, 1% Triton-X100, 0.5%

Protease Inhibitor Cocktail (Sigma, St. Louis, MO,USA)) was

added to the samples. After incubation for 30 min on ice, samples

were centrifuged at 13000 rpm for 20 min. Supernatants were

saved and protein concentrations were measured according to

Bradford et al [13].

The activities of phospho-mitogen-activated protein kinase

(phospho-MAPK) and phospho-receptor tyrosine kinase (phos-

pho-RTK) were assessed by their relative levels of phosphorylation

using the Proteome Profiler Array (R&D Systems, Minneapolis,

MN, USA) according to the manufacturer’s instructions. The same

liver protein samples were used for Western blot. Pooled samples

of three livers from the same experimental group were homog-

enized in lysis buffer (described above) and adjusted to 300 mg

protein/250 ml lysate. Signals were developed by incubating the

membrane in SuperSignal West Pico Chemiluminescent Substrate

Kit (Thermo Fisher Scientific Inc., Waltham, MA USA), and

visualized on a Kodak Image Station 4000MM Digital Imaging

System.

4. Western blot analysis
Thirty mg of total proteins were mixed with loading buffer

containing b-mercaptoethanol and were incubated at 95uC for

5 min. Pooled samples of three from the same experimental group

were loaded onto a 10% polyacrylamide gel and were run for

30 min at 200 V on a Mini Protean vertical electrophoresis

equipment (Bio-Rad, Hercules, CA, USA). Proteins were trans-

ferred to polyvinylidene fluoride (PVDF) membrane (Millipore,

Billerica, MA, USA) by blotting overnight at 100 mA. Ponceau

staining was applied to determine the efficiency of blotting.

Membranes were blocked with 3% (w/v) non-fat dry milk (Bio-

Rad) in TBS for 1 hour followed by incubation with the primary

antibodies (p53, b-Catenin, glycogen synthase kinase 3 beta (GSK-

3b), p-GSK-3a/b, p-c-Myc, extracellular signal-regulated kinases

1/2 (Erk1/2), p-Erk1/2, cyclin-dependent kinase inhibitor 1 (p21/

CIP1), phospho-retinoblastoma (p-Rb), diluted 1:500-1:1000) at

4uC for 16 hours. Beta-actin served as loading control. Mem-

branes were washed 5 times with TBS containing 0.5% (v/v)

Tween20, then were incubated with appropriate secondary

antibodies conjugated with HRP enzyme for 1 hour. Afterwards

membranes were washed as before and signals were visualized

with SuperSignal West Pico Chemiluminescent Substrate Kit

(Thermo Fisher Scientific Inc.). Band densities were determined by

Kodak Image Station 4000MM Digital Imaging System. Antibody

data are provided in Supporting Information (Table S1).

5. Histological and immunohistochemical analysis
Liver samples were either frozen for further processing or fixed

in 10% formaldehyde and embedded in paraffin for histological

analysis. Paraffin sections were dewaxed in xylene and stained with

hematoxylin and eosin (HE). Stained sections were used for

histological diagnosis.

Immunofluorescence staining was performed on methanol-

acetone-fixed 10-mm cryosections. Nonspecific binding was

blocked first with 10% (w/v) normal donkey or goat serum in

phosphate buffered saline (PBS) for 1 h. The specimens were

incubated at 4uC overnight with primary antibodies (Matn2,
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laminin, b-Catenin, GSK-3b, p-GSK-3a/b, p-c-Myc diluted

1:200-1:400). After washing in PBS, sections stained for b-Catenin,

GSK-3b, p-GSK-3a/b and p-c-Myc were incubated with Alexa

Fluor 555 donkey anti-rabbit IgG secondary antibody (Invitrogen

by Life Technologies) for 30 min at room temperature in a dark

chamber. Nuclei were stained with 1 mg/ml 49,6-diamidino-2-

phenylindole (DAPI) in PBS for 5 min. Sections stained for Matn2

and laminin were washed and incubated with a combination of

Cy3-conjugated donkey anti-goat IgG and Cy2-conjugated

donkey anti-rabbit IgG antibodies, respectively (Jackson Immu-

noResearch Laboratories Inc., West Grove, PA, USA). Pictures

were taken by Nikon Eclipse E600 microscope with the help of

Lucia Cytogenetics version 1.5.6 program or Bio-Rad MRC 1024

confocal laser microscope.

The antigen retrieval on the deparaffinized tissue sections was

performed by Target Retrieval Solution (Dako, Glostrup, Den-

mark) in a pressure cooker under maximal pressure for 3 minutes,

followed by proteinase K (0.5 mg/ml) digestion for 10 minutes. To

inhibit endogenous peroxidases, samples were treated with 10%

H2O2 in methanol for 30 minutes at room temperature. Normal

serum was applied to block any nonspecific binding, and the slides

were incubated with primary antibodies raised against specific

proteins (p53, p-Erk1/2, p21/CIP1, Ki-67, p-Rb diluted 1:75-

1:500) at 4uC overnight. Subsequently, the slides were incubated

for 30 minutes with biotinylated goat anti-rabbit IgG secondary

antibody at room temperature. A detailed list of the antibodies

used in this study is presented in Supporting Information (Table

S1). Signal amplification was made by avidin-biotin complex

(ABC) (Vector Laboratories, Burlingame, CA USA) in a dilution of

1:50 for 30 min at room temperature. The signal was detected

with 3,3-diaminobenzidine tetrahydrochloride (DAB) substrate

chromogen solution (Dako) followed by counterstaining with

hematoxylin. Pictures were taken by MRC-1024 confocal laser

scanning microscope (Hemel Hempstead, UK), Nikon Eclipse

E600 fluorescent microscope (Tokyo, Japan), and Olympus BX50

(Tokyo, Japan) microscope.

6. Determination of Ki-67 index
After immunostaining of Ki-67 in liver sections of 5-5 animals,

the number of immunopositive cells was counted in 10 fields of

each slide at a magnification of 2006by Olympus BX50 (Tokyo,

Japan) microscope.

7. Calculation of tumor volume
To determine the tumor volume of livers, HE stained sections

were scanned by Panoramic Scan (3D Histech Ltd., Budapest,

Hungary). The length and width of tumors in each section were

determined with the help of Panoramic viewer program (3D

Histech Ltd.) Tumor volume was calculated as V = (a2*b*p)/6

where ‘a’ refers to width (mm) and ‘b’ stands for length (mm).

8. Statistical analysis
All statistical analyses were made with Graphpad Prism 4.03

software (Graphpad Software Inc.). Data were tested for normal

distribution by D’Agostino & Pearson’s omnibus normality test.

Significance of changes in WT control vs. WT DEN, WT control

vs. Matn2-/- control, WT DEN vs. Matn2-/- DEN and Matn2-/-

control vs. Matn2-/- DEN were tested by non-parametric tests

(Mann-Whitney) and Students’ t-tests depending on the distribu-

tion of the data. The independent experimental sets were then

compared for reproducibility. Only reproducible significant

changes were considered as ’’significant’’. Significance was

declared at the standard p,0.05 level.

Figure 1. Immunolocalization of Matn2 in the liver of young mice (A). Matn2 immunostaining is most intense around the portal blood
vessels (arrowhead) on a frozen section of a 40-day old WT mouse liver. Matn2 partially colocalizes with laminin; however, in several structures Matn2
staining is more intense (arrowheads). There is no immunosignal in the matching area in the liver of a Matn2-/- mice. Bar, 0.1 mm. Representative
histological stain of WT control, WT DEN-treated, Matn2-/- control and Matn2-/- DEN-treated mouse livers (B). Scale bars represent
0.1 mm.
doi:10.1371/journal.pone.0093469.g001
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Results

1. Lack of Matn2 increases the proliferative capacity of
liver cells

In the livers of young WT mice, Matn2 protein was clearly

detected around the portal blood vessels, showing partial

colocalization with laminin. No reaction was detectable in the

livers of Matn2-/- mice, confirming the knockout phenotype of

these animals (Figure 1A).

Without any experimental challenge, neoplastic foci appeared

in livers of Matn2-/- mice at the age of 10 months as seen in HE

sections (Figure 1B). To confirm their proliferative capacity Ki-67

immunostaining was applied (Figure 2A), which showed a

scattered pattern of positive cells in Matn2-/- liver sections but

not in the WT livers. In knockout samples an average of 4.1 Ki-67

positive cells were counted per field compared to 0.7 in WT (p,

0.001) (Figure 2B).

Next, p21/CIP1, a potent CDK inhibitor, and retinoblastoma

(Rb) protein, two key regulatory molecule of the G1 cell cycle

checkpoint were examined in whole liver homogenates. Western

blot analysis revealed a ,50% decrease in p21/CIP1 protein

levels in Matn2-/- livers compared to WT samples (p,0.001)

(Figure 2C, 2D). In parallel, phosphorylation of Rb at T780 was

found to be significantly increased by 70% in Matn2-/- samples

(p,0.001) (Figure 2C, 2D). In a good agreement with Western

blot results, immunostaining of p21/CIP1 showed lower number

of hepatocytes with positive nuclear reaction in Matn2-/- animals

than in the WT (Figure 2A). Moreover, nuclei of Matn2-/- control

livers reacted with phospho-Rb antibody, whereas the reaction

was absent from WT livers (Figure 2A).

To specify the signal transduction pathways involved in the

activation of cell cycle, a phospho-MAPK array was applied

(Figure S1) and validated by Western blots. Erk1/2, a member of

the Ras/MAPK pathway, was spontaneously phosphorylated in

Matn2-/- control livers as revealed by Western blot (Figure 3A/1,

3B). Immunostaining localized these activated cells into the

hepatic foci (Figure 4).

Western blot indicated the outstanding role of GSK-3 proteins,

too, in the activation of Matn2-/- hepatocytes. Both GSK-3 a and b
exhibited higher phosphorylation levels at the classical inhibitory

sites Ser9 and 21, respectively, in knockout livers compared to the

WT (Figure 3A/2, 3B). In the case of p-GSK-3b a highly

significant 9-fold elevation was observed, while the total amount of

the protein did not show any notable change. Immunostaining of

phospho-GSKs and total GSK-3b confirmed the results obtained

by Western blot (Figure 4, 3A/2, 3B).

The amount of b-catenin, one of the key signaling molecules in

the Wnt pathway, increased to 138% in untreated Matn2-/- mice

compared to WT (Figure 3A/1, 3B). In parallel, fluorescent

immunostaining revealed its translocation from the membrane to

the cytoplasm of hepatocytes (Figure 4).

Figure 2. Representative immunohistochemical stains of WT control, WT DEN-treated, Matn2-/- control and Matn2-/- DEN-treated
mouse livers (A). Scale bars represent 0.1 mm and 0.001 mm (insets) for paraffin-embedded samples. Changes in cell cycle regulation. Ki-67
proliferation index (B). In knockout samples an average of 4.1 Ki-67 positive cells were counted per field of view compared to 0.7 in WT (p,0.001) (B).
Results are expressed as mean 6 SD. Representative Western blots of cell cycle regulatory proteins (C) in WT control, WT DEN-treated,
Matn2-/- control and Matn2-/- DEN-treated mouse livers. Diagrams of band intensities expressed as values normalized to b-Actin loading control
(D). Data are expressed as mean 6 SD, n = 3.
doi:10.1371/journal.pone.0093469.g002
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As GSK-3a/b is able to phosphorylate and thus inactivate c-

Myc, this important proto-oncogene was also included in our

investigation [14]. Indeed, phosphorylation of c-Myc at Thr58

residue was markedly lower in untreated Matn2-/- livers than in the

corresponding WT ones (30% vs. 100%) (Figure 3A/1, 3B),

probably reflecting impaired GSK-3b activity.

In summary, in untreated Matn2-/- livers GSK-3a/b becomes

inactivated by phosphorylation and hence fails to phosphorylate c-

Myc and b-catenin, thereby rescuing them from degradation. As a

consequence, b-catenin translocates and accumulates in the

cytoplasm, and c-Myc is allowed to act as a transcription factor

in the nucleus (Figure 4).

To identify potential transmembrane receptors that may

transmit the altered signal from the extracellular matrix into the

cells, a phospho-RTK array was carried out. The amount of active

epidermal growth factor receptor (EGFR) was slightly higher in

Matn2-/- control livers than in WT samples (Figure 5A, 5B).

Differences between the Matn2-/- and WT control groups with

regard to signaling are summarized in Table 1.

2. Ablation of Matn2 results in enhanced tumor
formation in experimental hepatocarcinogenesis

To address the role of Matn2 in tumorgenesis, HCC in Matn2-/-

and WT mice was induced by administering a single dose of DEN.

DEN-exposed WT and Matn2-/- mice were compared to mock-

injected littermates 10 months after treatment. DEN treatment

induced macroscopic tumors in 78% of WT mice, whereas tumor

frequency was 100% in the liver of Matn2-/- animals. A higher

number of macroscopic tumors developed in Matn2-/- livers, with

an average number of 23 tumors/liver in contrast with 4 counted

in WT livers (p,0.01, Figure 6B). Moreover, not only the number

but also the size of tumors was significantly larger in the livers

lacking Matn2, (mean tumor volumes, 248 mm3 vs. 43 mm3, p,

0.01) (Figure 6A, 6C).

a. Events of hepatocarcinogenesis in the presence of

Matn2. In WT animals, DEN treatment initiated HCC

formation with molecular changes already known from earlier

studies of hepatocarcinogenesis. In DEN-provoked livers 15%

Figure 3. Representative Western blots of intracellular regulatory proteins in WT control, WT DEN-treated, Matn2-/- control and Matn2-/-

DEN-treated mouse livers (A/1, A/2). Results of densitometrical analysis of band intensities expressed as values normalized to b-Actin loading control
(B). Data are expressed as mean 6 SD, n = 3.
doi:10.1371/journal.pone.0093469.g003
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higher matrilin-2 mRNA level was detected than that of untreated

control livers (p,0.05) (Figure S2).

Whereas no immunopositivity for Ki-67 was detected in

untreated WT liver sections, the reaction in DEN-exposed WT

livers revealed a high number of immunopositive cells with an

average count of 49/field (p,0.001 vs. WT control) (see

Figure 2B). These cells were localized to the tumorous areas

reflecting high proliferative activity. A marked ,1.5-fold induction

was detected in the levels of p21/CIP1(p,0.001), as well as a 2.3-

Figure 4. Representative immunofluorescence and immunohistochemical stains of WT control, WT DEN-treated, Matn2-/- control
and Matn2-/- DEN-treated mouse livers. Scale bars represent 0.1 mm and 0.001 mm (insets) for paraffin-embedded samples and 0.05 mm for
frozen tissue sections.
doi:10.1371/journal.pone.0093469.g004

Figure 5. Results of Phospho-RTK antibody array. Picture of RTK array membrane (A). Densitometry of phosphorylation signals in WT control
(dark gray bars) and WT DEN-treated (white bars) samples, compared to control (black bars) and Matn2-/- DEN-treated (light gray bars) samples (B).
Data are expressed as mean 6 SD, n = 3.
doi:10.1371/journal.pone.0093469.g005

Matrilin-2 in Hepatocarcinogenesis
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fold increase in the amount of phospho-Rb (T780) (p,0.001) in

WT DEN samples compared to WT control ones.

DEN treatment caused a ,1.5-fold elevation of total Erk1/2

proteins compared to the untreated WT animals. Moreover,

phosphorylation of these proteins was also significantly higher after

DEN treatment than in controls, as seen both by immunostaining

and Western blot (Figure 4, 3A/1, 3B).

The inactive phosphorylated forms of GSK-3a/b were

increased in tumor-bearing livers. Compared to the normal livers

a 60% elevation for a and 80% for b was measured by

densitometry of Western blots (Figure 3B). In parallel, total

GSK-3b showed a 2-fold increment in WT DEN samples

(Figure 3B). Immunohistochemical studies confirmed these obser-

vations, too (Figure 4).

Compared to WT controls, inhibition of GSK activity resulted

in 1.56 higher amount of b-catenin and 70% less c-Myc

phosphorylation in WT DEN liver homogenates, as revealed by

Western blots (Figure 3B). Immunostaining of b-catenin demon-

strated its translocation from the cell membrane and accumulation

Table 1. Differences between WT control and Matn2-/- control group compared to WT control.

Total protein Phosphorylation Immunostaining Localization

EGFR - q - -

Erk1/2 qqq qqq qq cytoplasm, nucleus

GSK-3a/b q qq q cytoplasm

b-Catenin q - q cytoplasm

c-Myc - Q (inactivating) - cytoplasm, nucleus

p21/CIP1 Q - Q nucleus

Ki-67 - - q nucleus

Rb - q qq nucleus

doi:10.1371/journal.pone.0093469.t001

Figure 6. Results of DEN treatment in WT and Matn2-/- animals. Representative pictures of the macroscopic appearance of WT and Matn2-/-

DEN-treated mouse livers. 10 months after DEN exposure the number and size of macroscopic tumors were greater in Matn2-/- than in WT livers (A).
The number of tumors/animal (B) and the tumor volume (C) were significantly higher in Matn2-/- mice compared to WT mice after DEN-treatment
(n = 9 for WT DEN, n = 13 for Matn2-/- DEN, **p,0.01).
doi:10.1371/journal.pone.0093469.g006
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in the cytoplasm. A loss of p-c-Myc was also evident by

immunohistochemistry (Figure 4).

By phospho-RTK array, significantly higher phospho-EGFR

levels were detected in the homogenates from DEN-treated WT

wild-type animals compared to control ones (Figure 5A, 5B). No

changes in macrophage stimulating protein receptor (MSPR) and

platelet-derived growth factor receptor (PDGFR) phosphorylation

were seen.

Differences between WT control and WT DEN groups are

summarized in Table 2.

b. The lack of Matn2 causes changes similar to DEN

treatment in the liver of WT animals. Table 1 shows

molecular differences between untreated WT and Matn2-/-

animals; Table 2 summarizes differences between untreated and

DEN-treated WT mice. Comparison of these two tables reveals

remarkable similarities. For EGFR, Erk1/2, GSKs, b-Catenin, p-

c-Myc, Ki-67, and p-Rb, the direction and magnitude of changes

are nearly identical between WT control vs. Matn2-/- control and

WT control vs. WT DEN groups. Our data indicate that Matn2-/-

hepatocytes harbor alterations that make them prone to malignant

transformation even without hepatocarcinogenic challenge; in-

deed, Matn2-/- mice developed spontaneous foci in the liver. Only

a single protein, p21/CIP1, behaved differently in these compar-

isons. p21/CIP1 was induced upon DEN treatment in WT livers;

however, the lack of Matn2 seemed to interfere with the induction

of p21/CIP1.

c. Alterations in the liver of Matn2-deficient mice after

HCC induction. As mentioned previously, Matn2-deficient

mice were more sensitive to DEN treatment, displaying higher

number of tumors with significantly larger volume in their livers

compared to the WT DEN group (see Figure 6A–C). We also

described that Matn2-/- livers had an activated, pro-proliferatory

phenotype without any experimental challenge.

When compared to Matn2-/- control, 24.4 times more Ki-67

immunopositive cells were counted in sections of matrilin-2

deficient livers after DEN treatment (Figure 2B). In parallel, a

1.6-fold increase in p21/CIP1 levels was detected in Matn2-/- DEN

homogenates relative to Matn2-/- controls (p,0.01) (Figure 3C,

3D). Among the intracellular signaling molecules, a 1.5-fold

elevation in p-Erk1/2 and a 65% decrease in p-c-Myc levels were

observed by Western blot, and confirmed by immunostaining

(Figure 4, 3A/1, 3B). Furthermore, slightly lower levels of b-

Catenin and p-GSKa/b were detected (Figure 4, 3A/1, 3A/2,

3B), and phospho-EGFR displayed a 1.9-fold increase (Figure 5A,

5B) in Matn2-/- DEN samples as compared to Matn2-/- controls.

These molecular changes are summarized in Table 3.

As seen in Table 3, DEN treatment did not lead to robust

molecular alterations in Matn2-/- livers. The elevation of Ki-67 was

the most prominent, as the tumors developed upon HCC

induction had a high rate of cell division. In conclusion, since

the lack of Matn2 had already driven hepatocytes into an activated

state, DEN treatment caused only modest intensification of pro-

proliferative signaling.

When comparing groups of WT and Matn2-/- mice both treated

with DEN, higher proliferation rate was seen in Matn2-/- DEN

livers, as the average Ki-67-positive cell count was 49 in WT and

100 in Matn2-/- livers after DEN exposure (Figure 2B). In parallel,

46% less p21/CIP1 protein was present in DEN-treated Matn2-/-

livers as compared to DEN-treated WT (p,0.001) (Figure 2C,

2D). With regard to intracellular signaling molecules, p-GSK-3a/

Table 2. Differences between WT control and WT DEN group compared to WT control.

Total protein Phosphorylation Immunostaining Localization

EGFR - qqq - -

Erk1/2 qq qqq qqq cytoplasm, nucleus

GSK-3a/b qq q q cytoplasm

b-Catenin q - q cytoplasm

c-Myc - QQ - cytoplasm, nucleus

p21/CIP1 qq - qq nucleus

Ki-67 - - qqq nucleus

Rb - q q nucleus

doi:10.1371/journal.pone.0093469.t002

Table 3. Differences between Matn2-/- control and Matn2-/- DEN group compared to Matn2-/- control.

Total protein Phosphorylation Immunostaining Localization

EGFR - q - -

Erk1/2 q q q = cytoplasm, nucleus

GSK-3a/b q Q = Q cytoplasm

b-Catenin Q - q cytoplasm

c-Myc - Q - cytoplasm, nucleus

p21/CIP1 q - q nucleus

Ki-67 - - qqq nucleus

Rb - = q = nucleus

doi:10.1371/journal.pone.0093469.t003
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b exhibited 2.4- vs. 3.8-fold increase, respectively, in Matn2-/- vs.

WT upon DEN treatment (Figure 3A/2, 3B) and, accordingly, in

Matn2-/- DEN the levels of p-c-Myc were only 37% of those

measured in WT DEN (Figure 3A/1, 3B). Conversely, the active

phospho-form of Erk2 was markedly, by 20%, higher in Matn2-/-

DEN relative to WT DEN (Figure 3A/1, 3B). However, the

amount of active p-EGFR in Matn2-/- DEN was as low as 45% of

that measured in WT DEN (Figure 5A, 5B).

Differences between WT DEN and Matn2-/- DEN groups are

summarized in Table 4. This comparison suggests that the

underlying mechanism behind the higher number and volume of

tumors experienced in DEN-treated Matn2-/- livers may involve

enhanced GSK-3b inactivation and hindered p21/CIP1 induc-

tion, leading to elevated proliferation rate indicated by Ki-67.

Discussion

Despite the relatively detailed data available on matrilin-2

structure and tissue expression, its function has not yet been

elucidated [3,5,15,16]. Matn2 is an ECM protein, which was

found to be expressed in the liver progenitor oval cells [9]. Only

one report implicated MATN2 in human HCC, but without

analysis of Matn2-related signaling [11]. In the current study a

functional analysis was applied using the well-established DEN-

induced HCC model [12]. The induction of macroscopic tumors

required 10 months in both WT and Matn2-/- mice. In matrilin-2-

deficient animals, however, significantly more, and more volumi-

nous tumor foci have developed. Furthermore, quite surprisingly,

sporadic microscopic tumor foci spontaneously appeared in the

liver of Matn2-/- mice without DEN treatment at age of 10 months.

This result evidenced that the lack of Matn2 triggers an activated

state in the liver, making it prone to tumor development. Our

observations suggest a protective role for Matn2 against liver

carcinogenesis. To explore the underlying mechanisms, activation

of key signal transduction proteins in Matn2-/- animals has been

investigated in more detail.

The most conspicuous finding in Matn2-/- livers was increased

phosphorylation of Erk1/2. Activation of the MAPK pathway

most likely was a critical event related to the absence of Matn2

from the ECM, and this might be one of the key alterations

responsible for the increased susceptibility of hepatocytes to cancer

development. In addition, inactivation of GSK-3a/b proteins was

revealed by Western blot. This implies that beside Erk1/2

activation the signal generated in the absence of Matn2 utilizes

the Wnt pathway and inactivates GSK-3b and -3a by phosphor-

ylation at Ser9 and Ser21 residues. Although it is mostly protein

kinase B (Akt protein) that inactivates GSK-3b [17], and phospho-

MAPK array in our study indicated slightly increased phosphor-

ylation of p38, pan Akt, and Akt3, we could not confirm this result

on Western blot. On the other hand Ding and coworkers

published that Erk1/2 is also capable of priming GSK-3b for

inactivation by phosphorylating it at the T43 residue [18].

Conversely, it has also been reported that inhibition of GSK-3b
significantly induces phosphorylation of Erk1/2 through PKCd
activation [19].

In accordance with the inactivation of GSK-3b we were able to

demonstrate an increase in b-catenin protein levels, and a decrease

in the inactivating phosphorylation of c-Myc at the Thr58 residue.

Suspension of GSK-3b-mediated inhibitory effects brings hepato-

cytes into a proliferative state [20]. Indeed, accelerated cell cycling

in untreated Matn2-/- mice was confirmed by immunostaining for

Ki-67. Whereas b-catenin in the WT control livers was confined to

the cell membrane, the protein accumulated in the cytoplasm in

Matn2-/-, but no nuclear localization was ascertained. Currently

we cannot explain why b-catenin failed to translocate to the

nucleus, since its localization is thought to be solely determined by

Figure 7. Schematic illustration of the predicted signaling
mechanisms in Matn2-/- mice. Molecules studied in this work are
labeled by asterisks. Empty boxes show upregulation and/or activation;
gray boxes indicate downregulation and/or inactivation of the protein.
doi:10.1371/journal.pone.0093469.g007

Table 4. Differences between WT DEN and Matn2-/- DEN group compared to WT DEN.

Total protein Phosphorylation Immunostaining Localization

EGFR - Q - -

Erk1/2 Q q = cytoplasm, nucleus

GSK-3a/b Q qq Q cytoplasm

b-Catenin Q - q cytoplasm

c-Myc - Q - cytoplasm, nucleus

p21/CIP1 QQ - Q nucleus

Ki-67 - - qq nucleus

Rb - Q = q nucleus

doi:10.1371/journal.pone.0093469.t004
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the availability and phosphorylation of its binding partners. This

aspect of the mechanism needs further investigation [21].

Beside the b-catenin-related mechanism, Jin et al. reported that

GSK-3b has a critical role in the phosphorylation-mediated

inactivation of the Cyclin-dependent kinase 4/CyclinD3 complex

(Cdk4/CyclinD3). This offers another approach how the inacti-

vation of GSK-3b may result in increased proliferation [22].

Our results regarding p21/CIP1 fit very well into the model

outlined. p21/CIP1 levels increased upon DEN-treatment in WT

mouse liver, which is in line with the available reports [23]. In

contrast, lack of Matn2 resulted in a decrease of p21/CIP1 levels

in the liver, and DEN induction failed to reverse this tendency.

This implies that a Matn2-facilitated signaling may be essential for

the upregulation of p21/CIP1 in DEN-induced liver carcinogen-

esis. Our results demonstrating the inactivation of GSK-3b and a

consequent decrease in the phosphorylation of c-Myc can explain

this finding, as c-Myc is known to induce AP4 which serves as an

inhibitory transcription factor of p21/CIP1 [24].

Erk1/2 activation in the context of DEN treatment has been

reported to increase the expression and stability of p21/CIP1 [25].

This stabilized p21/CIP1 might be at least partly functional,

resulting in relatively attenuated tumor formation in the DEN-

treated WT mouse liver. Indeed, we could observe p21/CIP1

upregulation in the liver of DEN-treated WT mice at the protein

level. Such upregulation upon DEN treatment was also seen in the

Matn2-/- animals; however, this induction failed to compensate for

the initially lower p21/CIP1 levels in Matn2-/-. Hence, the

absolute amount of p21/CIP1 remained lower in the DEN-

treated Matn2-/- mice, too. In Matn2-/- animals, activation of GSK-

3b/c-Myc/p21/CIP1 axis may result in transcriptional inhibition

of p21/CIP1 synthesis. The above-mentioned Erk1/2-mediated

stabilization of p21/CIP1 is also likely to be Matn2-dependent

[25]. Other mechanisms probably involved in p21/CIP1 protein

inactivation include calreticulin-induced inhibition of translation

[26], miR-106-induced inactivation, or degradation by the

proteasomal system [27].

Increased phosphorylation of Rb protein at Ser780 in Matn2-/-

indicates that, as a consequence to p21/CIP1 downregulation, Rb

becomes inactivated by a Cdk4/CyclinD3-mediated process [22].

In addition, Erk1/2 has been reported to associate with the Cdk4/

CyclinD1 complex and facilitate its function [28]. This facilitation

may also lead to increased p-Rb phosphorylation in the liver of

Matn2-/- mice, since the ablation of Matn2 was shown to be

associated with elevated Erk1/2 activity.

To find the link between altered ECM composition and

modified signaling, tyrosine kinase receptor phosphorylation was

assessed. This revealed increased phosphorylation of EGFR only.

Considering that Matn2 contains several EGF-like domains it can

be hypothesized that Matn2 as a decoy molecule may interfere

with the binding of the real EGF ligand to its receptor. This could

imply that the lack of Matn2 increases the binding capacity of

EGFR to its real ligand, resulting in increased activation.

However, this hypothesis requires further studies to prove. Also,

despite our efforts, integrin receptors possibly involved in

mediating the effects of Matn2 could not so far be identified.

Conclusion

This study provides evidence that Matn2 functions as a tumor

suppressor in hepatocarcinogenesis. Matn2-/- animals showed

increased susceptibility to cancer induction, and spontaneously

developed atypical microscopic foci in the liver. Ablation of Matn2

is thought to contribute to hepatocarcinogenesis through 1)

activation of the MAPK signaling pathway; 2) inactivation of

GSK-3b with consequent increase in the amount of b-catenin and

activation of c-Myc; and 3) lowered levels of p21/CIP1 and

consequent Rb phosphorylation by Cdk4/CyclinD complexes

(Figure 7).

Supporting Information

Figure S1 Phospho-MAPK antibody array to assess the
activity of downstream signal transduction pathways.
Densitometry of phosphorylation signals in WT control (dark grey

bars) and WT DEN-treated (white bars), compared to control

(black bars) and Matn2-/- DEN-treated samples (light grey bars).

(TIF)

Figure S2 Matn2 mRNA expression in wild type control
and DEN-exposed livers detected by real-time RT-PCR.
As seen, 1.15-times more Matn2 mRNA was detected in tumorous

samples (WT DEN) compared to control ones (WT control). Data

are expressed as mean 6 SD, n = 10; *p,0.05.

(TIF)

Table S1 Antibodies used in the present study.

(DOC)
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