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The recent discovery of the existence of an intramitochondrial cAMP signaling machinery 

(soluble adenylyl cyclase (sAC) and a cAMP phosphodiesterase) has been followed by the 

direct demonstration that in HeLa and CHO cells as well as in cardiomyocytes a rise in cAMP 

can be triggered by an increase in HCO3
-
 and Ca

2+
 in the matrix, acting synergically. 

Intramitochondrial cAMP rise is paralleled by a significant increase of the matrix level of 

ATP. On the contrary, no consensus exists as to the target(s) of cAMP in the mitochondrial 

matrix. Moreover, the possible functional effects of this cAMP increase are still largely 

unexplored. In the present manuscript we report on our experiments revealing that sAC is 

expressed in the mitochondria of adrenocortical cells. Mitochondrial Ca
2+

 signal activates the 

cyclase whereas knockout or inhibition of sAC attenuates the Ca
2+

 - induced production of 

aldosterone. These data which provide the first evidence for a cell-specific functional role of 

mitochondrial cAMP, may also be clinically relevant in elucidating the progress of various 

cardiovascular, renal and inflammatory diseases. 
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ABSTRACT  

 

Glomerulosa cells secrete aldosterone in response to the Ca
2+

 - mediated agonists angiotensin II, 

K
+
 and the cAMP – mediated agonist corticotrophin. A recently recognized interaction between 

Ca
2+

 and cAMP is the Ca
2+

 - induced cAMP formation in the mitochondrial matrix. Here we 

describe that soluble adenylyl cyclase (sAC) is expressed in H295R adrenocortical cells. 

Mitochondrial cAMP formation, monitored with a mitochondria-targeted fluorescent sensor 

(4mtH30), is enhanced by HCO3
-
 and the Ca

2+
 mobilizing agonist angiotensin II. The effect of 

angiotensin II is inhibited by 2-OHE, an inhibitor of sAC and by RNA interference of sAC 

whereas is enhanced by an inhibitor of phosphodiesterase PDE2A. Heterologous expression of 

the Ca
2+

 binding protein S100G within the mitochondrial matrix attenuates the agonist – induced 

mitochondrial cAMP formation. Inhibition and knockdown of sAC significantly reduce 

angiotensin II – induced aldosterone production. These data provide the first evidence for a cell-

specific functional role of mitochondrial cAMP.  

 

 

1. Introduction 

 

Cyclic AMP and Ca
2+

 are the two most common second messengers in eukaryotic cells and 

they control a variety of cellular functions as diverse as secretion, contraction, cell movement and 

death. These two messengers may act synergistically, as observed e.g. in cardiac myocytes, 

whereas their action may be antagonistic in other tissues, as in smooth muscle cells (Bolton et al., 

1999;Schaub and Kunz, 1986;Sperelakis, 1990). In aldosterone producing adrenal glomerulosa 

cells angiotensin II and extracellular K
+ 

concentration control aldosterone secretion via Ca
2+
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signaling whereas the action of corticotrophin (ACTH) is mediated by cAMP (Spät and Hunyady, 

2004). Under acute stimulatory conditions the site of action is, in both cases, the Steroidogenic 

Acute Regulatory Protein (StAR) (reviewed in (Hattangady et al., 2011;Spät et al., 2004)) that 

facilitates the cholesterol transport to the cholesterol side chain cleaving enzyme (cytochrome 

P450scc), located on the inner mitochondrial membrane. In addition, Ca
2+

 exerts 

intramitochondrial action(s) as well. By activating mitochondrial dehydrogenases (McCormack et 

al., 1990), elevation of mitochondrial matrix [Ca
2+

] enhances the formation of reduced pyridine 

nucleotides in rat (Pralong et al., 1992;Pralong et al., 1994;Rohács et al., 1997) and human (Spät 

et al., 2012) glomerulosa cells and stimulates aldosterone secretion in cells from both species 

(Spät et al., 2012;Wiederkehr et al., 2011).  

Although ACTH and angiotensin II act synergistically on aldosterone secretion (Spät et al., 

2004), surprisingly angiotensin II, through the activation of the inhibitory G-protein, Gi (Enyedi 

et al., 1986;Hausdorff et al., 1987;Lu et al., 1996;Maturana et al., 1999;Rocco et al., 1990), 

reduces basal and ACTH-induced cAMP production (Bell et al., 1981){Marie, 1983 7799 

/id}(Begeot et al., 1987;Marie and Jard, 1983;Woodcock and Johnston, 1984) (but see Baukal et 

al., 1994;Burnay et al., 1998)). The recent discovery in HeLa cells and cardiac myocytes that 

agonist - induced mitochondrial Ca
2+

 signals can induce the formation of cAMP and ATP within 

the mitochondrial matrix (Di Benedetto et al., 2013) may offer an explanation for this apparent 

paradox. Indeed an increase of cAMP in a small compartment, e.g. mitochondria (that represent  

25 % of the cytoplasmic volume in glomerulosa cells (Nussdorfer, 1980)), may be masked by the 

decrease of total intracellular cAMP. Accordingly we decided to investigate whether 

mitochondrial cAMP is modulated by angiotensin II-induced mitochondrial Ca
2+

 increases in 

adrenocortical cells and, more decisively, if mitochondrial cAMP can influence the secretion of 
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steroid hormones. Here we take advantage of a fluorescent cAMP sensor selectively targeted to 

the mitochondrial matrix (4mtH30) and show that in an adrenocortical cell line, H295R cells 

(Bird et al., 1993;Rainey et al., 1994), not only angiotensin II - induced Ca
2+ 

release from the 

endoplasmic reticulum results in a significant increase of mt-cAMP formation, but also that the 

mt-cAMP increase contributes to hormone production.  

 

 

2. Materials and methods 

 

2.1 Materials 

 

OPTI-MEM, Lipofectamine 2000, RNAiMax, Fluo-4 AM, Rhod-2 AM, SNARF AM and 

MitoTracker Deep Red were purchased from Life Technologies (Paisley, UK). siRNA for 

silencing sAC (MR2, (Di Benedetto et al., 2013)) and Control siRNA (Universal Negative 

Control, SIC001) were obtained from Sigma-Aldrich (St. Louis, MO, USA). UltroSer G was 

from Bio Sepra (Cergy-Saint-Christophe, France). Coat-A-Count RIA kit was purchased from 

Siemens Health Care Diagnostic (Deerfield, IL).  

S100G cDNA, fused to a mitochondrial targeting sequence and cloned into an adenovirus 

vector under the control of the tetON promoter (mitoS100G) was prepared by Dr. A. Wiederkehr 

(Geneva, Switzerland). H30 was from K. Jalink’s lab (Ponsioen et al., 2004), 4mt-H30 and 

mtAlphi were constructed by the authors (G.D. & T.P.) as described (Cano Abad et al., 2013). 

 Primary antibodies were purchased as follows: anti-soluble adenylyl cyclase (R21.002) 

was from CEP Biotech (Tamarac, FL), monoclonal anti--actin (A5316) was from Sigma-
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Aldrich, anti-COX IV (sc-69359) was from Santa Cruz (Dallas, TX). The secondary antibody 

(goat anti-mouse IgG horseradish peroxidase conjugate, R-05071-500) was purchased from 

Advansta (Menlo Park, CA). Other chemicals were obtained from Sigma-Aldrich.  

 

2.2 Cell culture and transfection 

 

H295R cells (CRL-2128, ATCC, Manassas, VA) were cultured in DMEM/Ham’s F12 (1:1 

v/v) containing 1% ITS
+
, 2% UltroSer G, 100 U/ml penicillin and 100 µg/ml streptomycin. One 

day before aldosterone experiments the concentration of Ultroser G was reduced to 0.5 %.  

Cells (2.5 - 4*10
4
 H295R) were plated onto 25-mm diameter circular glass coverslips on day 

1. For FRET experiments the cells were transfected on day 2 with 3 g 4mtH30 or 1.6 g H30 

DNA (per coverslip) using Lipofectamine 2000 in OPTI-MEM. FRET measurements were 

performed on day 5 (4mtH30) or day 4 (H30). For silencing sAC, on day 3 the cells were 

transfected with 100 pmol MR2 siRNA (Di Benedetto et al., 2013) or 100 pmol contrRNA using 

lipofectamin RNAiMax in OPTI-MEM. The experiments were conducted on day 5. In Western 

blot studies cell lysis was performed 2 days after transfection with control or siRNA. For 

aldosterone measurements see subsection 2.7.  

For binding Ca
2+ 

in the mitochondrial matrix 3*10
4
 cells were plated and infected 1 day later 

with Ad-mitoS100G (60 IFU/cell) together with 30 IFU/cell of Ad-tetON. Previous 

immunocytochemical examination revealed the expression of S100G in 63% of the cells 

(Wiederkehr et al., 2011). 

 

2.3 Immunoblotting 
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Cell lysis, SDS-PAGE and immunoblotting were performed as described (Fülöp et al., 2011) 

with the following modifications. Cell lysis was performed with protease-completed RIPA buffer. 

PMSF was used at a concentration of 1 mM. 10 % SDS-PAGE was used.  

 

2.4 Confocal microscopy 

A Zeiss LSM710 confocal laser scanning microscope (operated with ZEN 11.0 software) and 

a 63*/1.3 oil immersion objective (Plan-Apochromat, Zeiss) were used. Subcellular localisation 

of cAMP sensors (H30 or 4mt-H30) was examined in cells preloaded with MitoTracker Deep 

Red (MTDR). Applying multitrack mode the YFP component of the sensor was excited at 514 

nm, emitted light was measured between 640 and 740 nm whereas MTDR was excited at 633 nm 

and monitored at 640-740 nm. The images were deconvoluted using ImageJ 1.6.0.  

For monitoring cytosolic Ca
2+

 signals and mitochondrial pH the cells were preloaded with 

Fluo-4 or transfected with mtAlphi, the applied excitation wavelength was 488 nm, the emitted 

light was monitored between 500-550 nm. For monitoring cytosolic pH the cells were preloaded 

with SNARF AM, the dye was excited at 488 and the intensity of 612-699 nm emitted light was 

divided with that of the 560-600 nm light.  

The optical slice was 4 m in the cytosolic measurements and 1.5 m in the mitochondrial 

ones. As exception, H30 localisation examinations 0.8 or 1 µm optical slice was applied. Image 

acquisition frequency was 0.1 Hz. In all kinetic studies fluorescence intensity was normalized to 

the average 60-s intensity measured before stimulation (Fo).  

 

2.5 Measurements with fluorescent wide-field microscopy 
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cAMP level in the mitochondrial matrix and in the cytosol were monitored by means of 

FRET, using 4mt-H30 and H30, respectively. These measurements as well as those of 

mitochondrial [Ca
2+

] were performed on an inverted microscope (Axio Observer D1, Zeiss) 

equipped with a 40x1.4 Plan-Apochromat oil immersion objective (Zeiss) and a Cascade II 

camera (Photometrics). Excitation wavelengths were set by a random access monochromator 

connected to a xenon arc lamp (DeltaRAM, Photon Technology International). For ratiometric 

FRET measurements of H30 or 4mt-H30 excitation wavelength of 435 nm was selected along 

with a Dual-View emission splitting system (505dcxr, 480/30 and 535/30; Photometrics) 

enabling the acquisition of simultaneous donor (eCFP) and raw FRET emissions. For measuring 

eYFP an excitation wavelength of 500 nm was used, the light passed a 500-nm dichroic filter and 

emission was measured at 535/30 nm. (YFP image was used off-line for masking the chosen cells 

(ROIs).) FRET signals were evaluated with Metamorph Offline Version 7.7.0.0. 

Since binding of cAMP to the sensor reduced FRET intensity, cAMP - induced fluorescence 

was computed as 100 * (Ro - R)/ Ro and expressed as ΔR/Ro (%), where R was the ratio of 

background-subtracted fluorescence intensity of raw FRET and eCFP, Ro was the mean ratio of 

the 100-sec period prior to stimulation. With regard to the often instable base-line, 4mtH30 signal 

was regarded as increased cAMP level if the integrated fluorescence intensity within at least a 

100-sec period during the 5-min post-stimulation period was significantly greater (p < 0.05) than 

a similar period preceding the stimulation. Due to this restriction the number of responding cells 

may have been underestimated. 

Rhod excitation wavelength 550 nm was applied. The emitted light passed as 570-nm 

dichroic mirror and was measured with a 610/50 filter. The expressed emission values (F) were 

normalized to the mean F value of the 100-sec period prior to stimulation.  
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2.6 Superfusion 

 

Microscopic experiments were carried at room temperature. Following a preincubation for 30 

min (in the absence or presence of any inhibitor) the coverslips were superfused with a modified 

Krebs-Ringer solution containing 140 mM Na
+
, 4.5 mM K

+
, 1.2 mM Ca

2+
, 0.5 mM Mg

2+
, 5 mM 

Hepes and 2 mM HCO3

 (pH 7.4). The flow rate was ~ 1ml/min. The solutions were applied with 

a solenoid valve-equipped, gravity-driven superfusion system, terminating at ~2 mm from the 

selected cells.  

 

2.7 Aldosterone production  

 

Cells (150 - 300 thousand/well) were plated in a 24-well culture dish (day 1). On day 3 the 

UltroSer G content of the culture medium was reduced to 0.1 %. On day 4, after a 30-min 

preincubation in serum-free medium that contained 2-OHE or solvent, the cells were incubated at 

37
o
 for 2 hours in a similar medium, with or without angiotensin II. When the cells were 

transfected with control or siRNA on day 2, UltroSer G content was reduced on day 4 and final 

incubation, as detailed above, took place in day 5. 

Aldosterone and protein content of the supernatant were determined with Coat-A-Count RIA 

kit and Bradford assay, respectively.  

 

2.8 Statistics 
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Means + S.E.M. are shown. With the exception of cytosolic pH measurements all the 

experiments were performed on cells derived from at least two different cell passages. For 

estimating significance of differences, Student’s unpaired t-test, sign test, chi-square test or 

factorial ANOVA was used, as appropriate. Data were analyzed with Statistica 9. 

 

 

 

3. Results 

 

3.1 Expression of soluble adenylyl cyclase in H295R cells 

A specific antibody against sAC (Zippin et al., 2003) revealed an approximately 50 kDa 

protein band in Western-blots of total lysates from both HeLa and H295R cells. When comparing 

samples of identical protein mass the average density of the sAC band in H295R cells attained 60 

+ 9 % of that in HeLa cells (n=5). Two days after transfecting H295R cells with a specific siRNA 

the density of the sAC band (related to that of actin) was reduced to 74 + 18 % of that of control 

siRNA-transfected cells (n=3, Fig. 1). After permeabilizing the cells with digitonin (25 µg/ml, 5 

min, 4
o
C) the majority of immunoreactive sAC (related to the mitochondrial marker COX-IV) 

remained in the particulate fraction (n=3, data not shown). 

 

3.2 Mitochondrial cAMP as measured with 4mtH30 in H295R cells 

 

The cAMP sensor 4mtH30 consists of 4 copies of human COX VIII targeting sequence fused 

to the N terminus of the cAMP sensor H30. The latter contains, between ECFP and EYFP, the 

whole Epac1 protein, rendered catalytically inactive with two mutations in the Rap1 binding 
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domain and deprived of the membrane-targeting DEP domain (Ponsioen et al., 2004). Confocal 

microscopy revealed that in H295R cells, 3 days after transfection, 4mtH30 shows, as previously 

described in other cells, an excellent colocalization with the classical mitochondrial marker 

Mitotracker Deep Red (Fig. 2). 

 Cyclic AMP binding to H30 reduces the efficacy of FRET between CFP and YFP. 

Accordingly, upon binding, the fluorescence of CFP (emission 480 nm) increases and that of 

YFP (emission 540 nm) decreases and thus the ratio between the intensity of the light emitted at 

540 and 480 nm decreases proportionally to cAMP elevation. In order to test whether 

intramitochondrial cAMP level can be modulated by activation of matrix sAC, H295R cells, 

transfected with 4mtH30, were superfused with an isosmotic medium containing 50 mM HCO3
-
 

(as sAC is known to be activated by bicarbonate ions (Buck et al., 1999;Jaiswal and Conti, 

2003;Litvin et al., 2003;Steegborn et al., 2005)). An increase in the 480/540 ratio was observed in 

16 out of 20 cells. Noteworthy, in parallel, the measurement of matrix pH with mtAlphi (Cano 

Abad et al., 2004) revealed a net alkalinisation (n=20, Fig. 3). Given that pH alkalinization results 

in an increase of YFP fluorescence (Di Benedetto et al., 2013), the total rise of mt-cAMP is 

underestimated.  

 

3.3 Effect of angiotensin II on mitochondrial cAMP formation 

 

In preliminary experiments we examined the effect of 1 and 10 nM angiotensin II on the 

generation of mt-cAMP. The effect of 1 nM was recorded in 133 cells and an increase in mt-

cAMP was observed in 53 cells, whereas a small decrease was detected in 8 cases (p < 0.01).  

In the next series of experiments we studied the effects of 10 nM angiotensin II. First 

angiotensin - induced changes in cytosolic (Fluo-4) and mitochondrial (Rhod-2) [Ca
2+

] were 
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measured in the same cells. At the single cell level the cytosolic Ca
2+

 signals were variable, yet 

they were faithfully transferred to the mitochondrial matrix (Supplementary Fig. 1). The peptide 

brought about mt-cAMP elevation in 38 cells (Fig. 4), an inverse signal in 4 cells (increase vs. 

decrease: p < 0.0001) and no change was observed in 11 cells. The average ΔR/Ro ratio of a 100-

sec period increased by 2.28 + 0.23 % as compared with that of the 100-secretion pre-stimulation 

period (n=34). (Due to a decreasing ratio during the control period no response could be 

calculated in 4 cells). Eleven cells showed no cAMP response and 4 cells showed a decrease. The 

difference between the number of cells with a positive or reverse signal was highly significant 

(p<0.0001). Given that the percentage of responding cells in the 10 nM angiotensin II group was 

significantly higher than in the 1 nM group (p = 0.0001), in subsequent experiments we focused 

on the effects of 10 nM angiotensin II.  

 Considering the variance of cAMP rises in different cells and different preparations both 

in terms of amplitude and kinetics, the most reliable parameter to compare different conditions 

appeared to be the percentage of responsive cells. This parameter was, unless otherwise 

indicated, used in evaluating the following experiments. In the experiments presented in 

Supplementary Fig. 2 and Fig. 5, cells were stimulated with 10 nM angiotensin II in the presence 

or absence of the sAC inhibitor 2-OHE (20 M) (Steegborn et al., 2005). Supplementary Fig. 1 

demonstrates that the drug did not modify either the cytosolic or mitochondrial Ca
2+

 response to 

angiotensin II; however, at the same dose, 2-OHE reduced the percentage of cells showing mt-

cAMP increase to angiotensin II by 34 % (p = 0.0135, Fig. 5A). The specificity of the inhibitor 

was confirmed by silencing sAC with MR2, a specific siRNA for the sAC gene (Di Benedetto et 

al., 2013); in this latter case the percentage of responding cells decreased by 67 % (p = 0.006, 

Fig. 5B). Next we examined the effect of EHNA (erythro-9-(2-hydroxyl-3-nonyl)adenine), an 
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inhibitor of the mitochondrial matrix cAMP phosphodiesterase PDE2A (Acin-Perez et al. 2011), 

on angiotensin II – induced changes in 4mtH30 FRET. Although there was no significant change 

in the percentage of responsive cells, the peak amplitude of the response was significantly higher 

in the presence of 10 µM EHNA (p = 0.007, Fig. 5D). 

 In order to confirm that angiotensin II - induced mt-cAMP response was induced by 

increased mitochondrial [Ca
2+

], mitochondrial Ca
2+

 peaks were attenuated with heterologously 

expressed mitoS100G, a mitochondria-targeted Ca
2+

 binding protein. S100G was fused to a 

mitochondrial targeting sequence and cloned into an adenovirus vector under the control of 

doxycycline (DOX) - inducible tetOn promoter (Wiederkehr et al., 2011). In DOX-negative 

control cells 9 out of 14 cells showed angiotensin II - induced mt-cAMP increase whereas only 3 

out of 12 cells showed similar response after DOX-dependent infection. The difference between 

the two groups was significant (p = 0.045, Fig. 5C). 

 

3.4 Role of mitochondrial cAMP in the control of aldosterone production 

 

We next investigated whether mt-cAMP plays any role in steroid hormone secretion, the 

specific function of adrenocortical cells. H295R cells were exposed for 2 hours to angiotensin II, 

applied at maximal (1 nM) or supramaximal concentration (10 nM) and their aldosterone 

production was measured. Angiotensin II evoked a mean 2.7 fold increase in aldosterone 

secretion whereas the increase in 2-OHE treated cells was reduced to 1.5 fold on average (Fig. 

6A). Statistical analysis after pooling the 1 and 10 nM data showed that the effect of 2-OHE was 

highly significant (p = 10
-6

) and, more importantly, the negative interaction of the agonist and the 

enzyme inhibitor was also highly significant (p = 10
-6

). 
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The observation obtained with pharmacological inhibition of sAC has been confirmed by 

transfection with siRNA. The 2-hour hormone production was examined 3 days after transfection 

with MR2. As shown in Fig. 6B aldosterone secretion in siRNA-transfected cells was 

significantly smaller than in control RNA-transfected cells (p = 0.002) and, more importantly, the 

extent of stimulation was reduced from an average of 1.61 to 1.47, reflecting a significant 

negative interaction of gene silencing with the agonist (p = 0.041). 

 sAc is localized both in the cytosol (Braun and Dods, 1975;Jaiswal and Conti, 2001) and 

in the mitochondrial matrix (Acin-Perez et al., 2009). The question then arises as to whether the 

effects of sAC inhibition on aldosterone production depend on mt-sAC or cytosolic sAC or both. 

In order to distinguish among these possibilities cells were transfected with H30, the cytosolic 

version of the cAMP sensor. The probe, as expected, was selectively localized in the cytosol and 

excluded from mitochondria (Supplementary 3 A and B). 10 nM angiotensin II induced a clear 

cytosolic cAMP rise in 16 out of 22 cells (Fig. S2C) in controls, the average ΔR/Ro of a 100-sec 

stimulation period in the responding control cells showed a 3.93 + 0.45 % increase. The sAC 

inhibitor 2-OHE failed to influence this cytosolic cAMP response: 12 out of the 16 examined 2-

OHE-treated cells responded to angiotensin with cAMP signal, the average ΔR/Ro showed a 3.85 

+ 0.35 % increase (Supplementary Fig. 3D).  

This observation demonstrates that angiotensin II is capable of increasing cytosolic cAMP 

level by activating a 2-OHE insensitive AC. In addition, superfusion with 50 mM bicarbonate 

(that induces an increase in mt-cAMP) is associated with a drop in cAMP level in the cytosol (n = 

12 out of 16 cells, Fig. S2E). This drop is probably only apparent as bicarbonate induces an 

alkalinization of cytosolic pH, similar in amplitude to that caused in the mitochondrial matrix 

(not shown). We thus conclude that in H295R cells: i) the activity of sAC in the cytosol is 
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negligible and ii) inhibition of angiotensin II-induced aldosterone production by 2-OHE depends 

on its inhibition of mitochondrial sAC. 

 

4. Discussion  

 

The recent discovery of the existence of an autonomous intramitochondrial cAMP signaling 

machinery (composed by a sAC isoform and a cAMP degrading mechanism sensitive to both 

IBMX and EHNA, a PDE2 specific inhibitor (Acin-Perez et al., 2009)) has been followed by the 

direct demonstration that in HeLa and CHO cells as well as in cardiomyocytes a rise in cAMP 

can be triggered by an increase in HCO3
-
 and Ca

2+
 in the matrix, acting synergically (Di 

Benedetto et al., 2013). Intramitochondrial cAMP rise is paralleled by a significant increase of 

the matrix level of ATP (Acin-Perez et al., 2009;Di Benedetto et al., 2013). On the contrary, no 

consensus exists as to the target(s) of cAMP in the mitochondrial matrix (see for example (Acin-

Perez et al., 2009;Di Benedetto et al., 2013;Lefkimmiatis et al., 2013)). Moreover, and most 

importantly, the possible functional effects of this cAMP increase are still largely unexplored.  

In the present paper we have investigated whether the matrix cAMP signaling toolkit is 

expressed also in other differentiated cell types and whether functions other than ATP production 

can be modulated by the cAMP concentration in the matrix. To this end we used an 

adrenocortical cell line, H295R cells (Bird et al., 1993;Rainey et al., 1994), a model system 

widely employed to investigate the function of glomerulosa cell, especially the agonist dependent 

production of aldosterone.  

  In lysates of these cells a protein band of approximately 50 kDa, corresponding to the 

truncated, fully active form of sAC (Buck et al., 1999), was detected by immunoblotting with 

anti-sAC antibody. The density of this band (related to actin) was reduced by a specific sAC 
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siRNA. In cells transfected with the mitochondrial targeted cAMP sensor 4mtH30 superfusion 

with bicarbonate, a known activator of sAC (Buck et al., 1999;Jaiswal et al., 2003;Litvin et al., 

2003;Steegborn et al., 2005) resulted in increased mt-cAMP level in 80 % of the cells.  

 It has been demonstrated that sAC in vitro is activated not only by bicarbonate but also by 

Ca
2+ 

(reviewed in (Di Benedetto et al., 2014) (Valsecchi et al., 2014). Depending on its 

concentration, Ca
2+

 increases the Vmax (Jaiswal et al., 2003) and substrate affinity (Litvin et al., 

2003) of the enzyme. We have also shown that sAC in live cells can be activated by an increase 

in mitochondrial matrix Ca
2+

 concentration (Di Benedetto et al., 2013). We and other groups have 

previously shown that the peptide angiotensin II induces an important (often oscillatory) 

cytosolic Ca
2+

 increase that is rapidly transferred to the mitochondrial matrix of glomerulosa cells 

(Brandenburger et al., 1996;Lalevee et al., 2003;Spät et al., 2004;Spät and Pitter, 2004); under the 

same conditions angiotensin II causes a reduction of mitochondrial pyridine nucleotides (Pralong 

et al., 1992;Pralong et al., 1994;Rohács et al., 1997) and a potentiation of cytosolic Ca
2+

 - evoked 

aldosterone production (Wiederkehr et al., 2011). As predicted, angiotensin II induces an increase 

in mt-cAMP. The cAMP response was smaller than previously reported (Di Benedetto et al., 

2013), a phenomenon that may be accounted for by two factors: i) expression level of sAC 

(related to total protein content) in H295R cells was only about half of that measured in e.g. HeLa 

cells and, ii) agonist – induced mitochondrial Ca
2+

 signals (measured with similar technique) are 

smaller in H295R cells than in other cell lines (e.g. HeLa (Fülöp et al., 2011)). Moreover, when 

mitochondrial Ca
2+

 signaling was attenuated by expression of mitoS100G, a Ca
2+

 binding protein 

targeted into the mitochondrial matrix (Wiederkehr et al., 2011), the percentage of cells showing 

a mt-cAMP response was significantly reduced. Finally, confirming the role played by sAC, the 

increase in the matrix cAMP generation is markedly attenuated by the sAC inhibitor 2-OHE and 

by specific siRNA and accentuated by EHNA, a specific inhibitor of phosphodiesterase PDE2A.  
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The mitochondria targeted Ca
2+

 binding protein S100G which attenuates exclusively the 

mitochondrial Ca
2+

 signal (Wiederkehr et al., 2011), interfered with the mitochondrial cAMP 

response to angiotensin II. The mitochondrial cAMP sensor 4mtH30 and the cytosolic sensor 

H30 responded with opposite signals to bicarbonate. And importantly, the sAC inhibitor 2-OHE 

added with angiotensin II, attenuated the mt-cAMP signal, but had no effect on the cytosolic 

cAMP signal. These data indicate that under the present experimental conditions, 4mtH30 and 

H30 monitored specifically, and respectively, the mitochondrial and the cytosolic compartment. 

The final key question concerns the functional significance of the mt-cAMP formation. In 

order to address this point we examined the primary biological function of adrenocortical cells, 

namely hormone production. Pharmacological evidence support the notion that sAC - produced 

mt-cAMP plays a modulatory role on Ca
2+

 dependent aldosterone production. In fact, 2-OHE 

significantly reduced hormone production elicited by 1 or 10 nM angiotensin II. Most 

importantly, knockdown of the sAC also attenuated control and angiotensin II - induced 

aldosterone production.  

 The interaction of the ACTH - cAMP and angiotensin II - Ca
2+

 signaling systems in the 

control of aldosterone production has been thoroughly investigated in the past and conflicting 

results have been reported. The Tait group showed a K
+
 - evoked cAMP formation in rat 

glomerulosa cells (Hyatt et al., 1986). Several years later the expression of the Ca
2+

 - activable 

isoform 1 of adenylyl cyclase (AC1) was shown to be expressed in human glomerulosa and 

fasciculata cells (Cote et al., 2001) whereas another isoform (AC3), possibly activated by Ca
2+

, 

was found in human (Cote et al., 2001), rat (Nishimoto et al., 2013) and bovine (Burnay et al., 

1998) glomerulosa cells. On the contrary, a reduced cAMP formation was reported in angiotensin 

– stimulated rat glomerulosa (Bell et al., 1981;Woodcock et al., 1984) or bovine adrenocortical 

cells (Begeot et al., 1988;Marie et al., 1983). In our hands, in H295R cells, angiotensin II caused 
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a clear and reproducible increase in cytosolic cAMP. It is not easy to reconcile these apparently 

contradictory findings. It may be proposed that coexpression of various amounts of Ca
2+

-

activated and Ca
2+

-inhibited isoforms (AC5 and AC6, (human: (Cote et al., 2001), rat: (Shen et 

al., 1997)) is a species specific feature and may account for the different results obtained in 

different models. Our data provide evidence that the synergic action of Ca
2+

 and cAMP plays a 

role also within the mitochondrial matrix, regulating aldosterone biosynthesis. In mitochondria, 

however, the synthesis of cAMP depends on sAC that in turn is activated by Ca
2+

 and 

bicarbonate.  

 Summarizing the present observations, sAC is expressed in the mitochondria of 

adrenocortical cells. In addition to a possible activation of a transmembrane adenylyl cyclase by 

the cytosolic Ca
2+

 signal, the mitochondrial cyclase is activated by mitochondrial Ca
2+

 signal as 

well. Activation of sAC enhances the Ca
2+

 - induced production of aldosterone, a hormone 

controlling not only salt-water balance but also playing a significant role in the control of blood 

pressure as well as in the progress of various cardiovascular, renal and inflammatory diseases 

(Andersen, 2013;Briet and Schiffrin, 2010;Gomez-Sanchez, 2014;Tomaschitz et al., 2010). These 

data provide the first evidence that cAMP rise in mitochondria has a functional role. This 

observation has significance both for cell biology and endocrinology. 
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 HCO3
-
 activates mitochondrial adenylyl cyclase (sAC) in human adrenocortical cells 

 angiotensin II causes a mitochondrial [cAMP] rise in a [Ca
2+

]mito-dependent way 

 cAMP signal is reduced by siRNA for sAC, and enhanced by PDE2-inhibitor  

 inhibition of sAC attenuates  angiotensin II-induced aldosterone secretion 
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