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1. Abbreviations: 

 

a: alveus 

ABC: avidin-biotin-horseradish peroxidase complex 

ACSF: artificial cerebrospinal fluid 

BSA: bovine serum-albumin 

CA: Cornu Ammonis 

CB1-R: Type 1 cannabinoid receptor 

CCK: cholecystokinin 

CR: calretinin 

DAB: 3,3’-diaminobenzidine-4HCl 

deg: degeneration 

EEG: electroencephalogram 

ff: fimbria fornix 

GABA: γ-amino-butric-acid 

GD: gyrus dentatus 

h: hilus 

HSP72: Heat shock protein 72 

KO: knock-out 

NeuN: Neuronal Nuclear antigen 

NGS: Normal goat serum 

PB: phosphate buffer 

Pilo: Pilocarpine 

s.g.: stratum granulosum 
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s.lm.: stratum lacunosum-moleculare 

s.m.: stratum moleculare 

s.o.: stratum oriens 

s.p.: stratum pyramidale 

s.r.: stratum radiatum 

SE: status epilepticus 

str.: stratum 

TB: TRIS buffer 

TBS: Physiological saline buffered with TRIS 

TLE: Temporal Lobe Epilepsy 

WT: wild type 
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2. Introduction 

 

2.1. Temporal Lobe Epilepsy 

 

According to the definition of WHO epilepsy is a chronic neurological disorder with 

various etiologies that affects people of all ages and is characterized by recurrent seizures. 

Approximately 5 million people have epilepsy worldwide (1-3% of the population 

(Corsellis & Meldrum, 1976; Houser, 1990). Seizures can vary from the briefest lapses of 

attention or muscle jerks, to severe and prolonged convulsions (i.e. violent and involuntary 

contractions, or a series of contractions, of the muscles). Seizures can also vary in 

frequency, from less than one per year to several per day.  

Epilepsy is one of the world's oldest recognized diseases. Fear, misunderstanding, 

discrimination and social stigma have surrounded epilepsy for centuries. In many countries 

this condition has a great impact and can impact on the quality of life for people with the 

disorder and their families. Moreover, it increases a person's risk of premature death by 

about two to three times compared to the general population. 

One seizure does not necessarily indicate epilepsy (up to 10% of people worldwide 

have one seizure during their lifetimes), thus, epilepsy is defined by two or more 

spontaneously recurrent seizures (Halász & Rajna, 1990). At the neuronal network level it 

manifests as states of pathological hyperexcitability and hypersynchronous activity. 

Imbalanced synaptic input may cause excessive neuronal activity, eventually leading to 

neuronal death and synaptic reorganization (Engel, 1996; Green, 1991; McNamara, 1999).  

Characteristics of seizures vary and depend on where in the brain the disturbance 

first starts, and how far it spreads later on. Temporary symptoms can occur, such as loss of 

awareness or consciousness, and disturbances of movement, sensation (including vision, 

hearing and taste), mood or mental function. 
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Epilepsy syndromes used to be classified based on the classification system 

accepted by the International League Against Epilepsy (ILAE) in 1989. This classification 

was based on seizure phenomenology and EEG alterations, it differentiated localized 

(partial) and generalized forms, and moreover, based on their origin genetic, symptomatic 

and cryptogenic forms were distinguished as well. However, the development of numerous 

techniques (electrophysiological techniques, Magnetic resonance imaging (MRI)) and the 

improvement of our knowledge regarding genetics (mapping of the human genome and 

uncovering the genetic origin of certain epilepsies) have pointed out the need for a new 

classification (Berg & Cross, 2010).  

According to the most widely accepted concept, the reasons for epilepsies are genes 

(Salzmann et al, 2008) disposing the network to generate epilepsy under certain 

circumstances. This notion is strengthened by the fact that epileptic patients often have a 

history of accidents, febrile seizures, or perinatal disorders (Rocca et al, 1987a; Rocca et al, 

1987b). These events do not trigger epilepsy by them selves; however, they may increase 

the risk of generating seizures in certain people. Thus, most probably the interaction of the 

entire genome and environmental factors is responsible for this disease. 

In adulthood the most common form is Temporal Lobe Epilepsy. The epileptogenic 

area is mostly found in the hippocampus and quite frequently hippocampal sclerosis occurs. 

Though recently a high variety of antiepileptic drugs have been available a 

significant number of patients are pharmacoresistant (cannot be cured with medication). In 

case of therapy resistant patients with severe clinical consequences where the epileptic 

focus can be precisely localized epilepsy surgery is a possible solution (Falconer & Taylor, 

1968; Spencer & Spencer, 1994). The aim of the surgery is blocking seizures by lesioning 

the epileptogenic focus. 85% of partial epilepsies originate from the temporal lobe, thus the 

surgery most often carried out is anterior temporal lobectomy. After surgery, global 

cognitive decline can rarely be seen, however certain special functions (like memory) may 

be modestly impaired. Still, in most cases the quality of life improves following the surgery.  
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2.2. Anatomy of the mouse hippocampus 

The hippocampus is a part of the filogenetically most ancient cortical region, the 

archicortex. It has a major role in learning and memory and their modifications by 

emotions. In case of its injury processing of new information may be impaired. 

It is a curved elaboration of the edge of cerebral cortex in the floor of the inferior horn of 

the lateral ventricle; a functional component of the limbic system. The hippocampal 

formation can be divided into two regions: the cornu Ammonis (CA) and the dentate gyrus 

(DG), forming two U-shaped semicircles. Based on the morphology, distribution and 

connectivity of principal cells, the cornu Ammonis can be divided into CA1, CA2 and CA3 

(a,b,c) regions (Duvernoy, 1998; Nó, 1934; Seress, 1988) (Figs 1 and 2). These regions 

(except CA3c) form typical layers: the somata of pyramidal cells are located in str. 

(stratum) pyramidale. Their basal dendrites can be found in str. oriens, whereas, their apical 

dendrites localize in str. radiatum and arborize in sr. lacunosum-moleculare (Cajal; Cajal, 

1968). The axons of pyramidal cells can be seen in str. oriens and run in the alveus; in the 

CA3 region axons form recurrent collaterals as well, innervating each other. In the CA3 the 

region between str. pyramidale and str. radiatum, where mossy fibers terminate is termed 

str. lucidum (Cajal; Cajal, 1968). In the dentate gyrus granule cell are located in str. 

granulosum, while their dendrites can be found in str. moleculare. Under the densely 

packed layer of granule cells the hilus can be seen, where mossy cells are the principal 

cells. 

 The human hippocampus differs from rodent hippocampus in certain connectivity 

patterns; however, the cellular structure is rather similar. 

In the hippocampal formation the network of principal cells form a so called 

trisynaptic loop (Amaral DG, 1990). The perforant path, this glutamatergic pathway 

originates from the entorhinal cortex, and synapses with apical dendrites of CA1 and CA3 

pyramidal cells in str. lacunosum-moleculare, and the dendrites of granule cells in the outer 

part of str. moleculare (first synapse). Axons of the granule cells (mossy fibers) form 
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synapses with CA3 dendrites on special complex spines, so called, thorny excrescences in 

str. lucidum (second synapse). Axons of CA3 pyramidal cells innervate apical dendrites of 

CA1 pyramidal cells in str. radiatum (third synapse). In addition CA3 pyramidal cells 

strongly innervate each other forming recurrent collaterals. CA1 pyramidal cells project to 

the subiculum (Amaral et al, 1991), finally subicular pyramidal cells send axons to the 

entorhinal cortex  (Other fibers lave the hippocampus via fimbria hippocampi). 

 

2.3. Cell types of the hippocampus 

The two types of neurons that can be found in the hippocampus are principal and 

non-principal cells. Principal cells are glutamatergic, pyramidal cells of the cornu 

Ammonis, whereas, in the dentate gyrus they are granule and mossy cells. Axons of CA1 

pyramidal cells project to the subiculum, and these subicular cells innervate the entorhinal 

cortex forming the main output of the hippocampus. The vast majority of non-principal 

cells are interneurons with local axonal arborisation (Freund & Buzsaki, 1996). 

Though, interneurons form a small portion of hippocampal cells, functionally they 

are quite important. One single interneuron by its extended axonal tree may innervate 

numerous pyramidal cells, thus they have a significant role in modifying the firing 

properties of pyramidal cells.  

The functional classification of interneurons is based on their input and output 

characteristics which can be identified with tracing studies. In addition, interneurons can be 

categorized based on their neurochemical marker content 

(calcium binding proteins, neuropeptides, transmitter receptor-content or neurotroph 

factors)  According to most studies, these cells can be classified into three major groups; 

-Perisomatic targeting interneurons 

-Dendritic targeting interneurons 

-Interneuron specific interneurons 
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The first two populations target mostly principal cells, perisomatic targeting interneurons 

(basket and axo-axonic cells) (Halasy et al, 1996; Handelmann et al, 1981; Katsumaru et al, 

1988; Kosaka et al, 1987; Kosaka et al, 1985; Li et al, 1992) innervate the perisomatic 

region, thus, they may control the output of principal cells, whereas dendritic targeting 

interneurons innervate dendrites, therefore, they can modulate synaptic plasticity and 

dendritic electrogenesis (Arai et al, 1995; Freund & Buzsaki, 1996; Gulyas et al, 1992; 

Gulyas et al, 1993; Halasy et al, 1996; Han et al, 1993; Kawaguchi & Hama, 1988; McBain 

et al, 1994; Miles et al, 1996). 

The third population selectively targets interneurons (Freund & Buzsaki, 1996; Gulyas et 

al, 1996) 

 

2.3.1. Perisomatic targeting interneurons 

Interneurons containing the calcium-binding protein parvalbumin (PV) are either 

perisomatic targeting interneurons (Kosaka et al, 1987) with two distinct subpopulations: 

basket cells innervating the soma and proximal dendrites and axo-axonic cells innervating 

the axon-initial segments of principal cells (Katsumaru et al, 1988; Kosaka et al, 1987) . 

Another basket cell type is known which does not contain parvalbumin, instead, another 

calcium-binding protein, cholecystokinin (CCK) can be found in it. (Acsady et al, 1996a; 

Gulyas et al, 1991)  

 

2.3.2. Dendritic targeting interneurons 

Dendritic targeting interneurons form a more heterogeneous class compared to perisomatic 

targeting interneurons. In the dentate gyrus we may distinguish HICAP cells (HIlar 

Commissural-Associational Pathway-related), where the soma is located in the hilus and 

the axon in the inner part of str.moleculare, where the input from the commissural and 

perforant pathways arrive (Freund & Buzsaki, 1996; Han et al, 1993; Sik et al, 1997). Other 

groups are HIPP (HIlar Perforant Path-associated) and MOPP 

(MOlecular layer Perforant Path-associated) cells, where the soma is located in the hilus 

(HIPP) or in str. moleculare (MOPP) and they innervate the outer part of stratum 

moleculare where the input from the perforant path can be found (Hampson & Deadwyler, 
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1992; Sik et al, 1997). HIPP cells can be identified based on their neurochemical marker-

content, by containing somatostatin and neuropeptid Y (Katona et al, 1999a; Sik et al, 

1997). In addition, certain hilar interneurons innervate CA1 and CA3 regions (Buckmaster 

& Schwartzkroin, 1995; Sik et al, 1997). In the cornu Ammonis O-LM (oriens-lacunosum-

moleculare targeting cells) can be found as well with their soma in str. oriens and axons in 

stratum lacunosum-molaculare (Cajal, 1968; Nó, 1934). Most probably, these cells have a 

function similar to HIPP cells by providing feedback-inhibition, since in case of both cell 

types, the somata and dendrites are located at the output region of principal cells, moreover, 

they project to the same layer of the entorhinal cortex (Gulyas et al, 1993; McBain et al, 

1994; Sik et al, 1995). Moreover, both O-LM cells and HIPP cells contain somatostatin 

(SOM) and occasionally neuropeptid Y as well (Katona et al, 1999a; Sik et al, 1995) 

Trilaminar and bistratified cells innervate the more proximal dendritic regions of principal 

cells. Trilaminar cells innervate strata oriens, pyramidale and radiatum, whereas, 

bistratified cells send axons only to strata oriens and radiatum (Halasy et al, 1996; Miles et 

al, 1996; Sik et al, 1995) their somata can be found in the same regions. Dendritic targeting 

interneurons can be classified according to their neurochemical marker content as well; 

bistratified cells were shown to be either calbindin-containing (CB)(Sik et al, 1995) or 

parvalbumin-containing (Klausberger et al, 2004), whereas numerous other interneurons 

contained Calbindin (Gulyas & Freund, 1996; Sloviter, 1989; Toth & Freund, 1992)or 

CB1-R (Katona et al, 1999b).  

Additionally other interneurons can be distinguished with soma, dendrites and axons 

located in str. radiatum (Cajal, 1968; Gulyas et al, 1993; Kawaguchi & Hama, 1988; Miles 

et al, 1996 or in str. lacunosum-moleculare (Nó, 1934 #3164)]. Finally back-projection 

interunerons located at the border of str. oriens and the alveus of CA1 are dendritic 

targeting interneurons as well, besides their local axonal arbor, they project back to 

CA3/hilus (Sik et al, 1995; Sik et al, 1994).  

   

2.3.3. Interneuron-selective (IS) interneurons 

These interneurons exclusively innervate other interneurons. Based on their connectivity 

and morphology, they maybe divided into three groups.  
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IS-1 cells can be found in all hippocampal regions and contain calretinin (CR) 

(dendro-dendritic connections are quite frequent between these cells). Their somata are 

often located in the proximal dendritic region of principal cells. These cells innervate 

interneurons in the str. radiatum and dentate gyrus (Acsady et al, 1996b; Gulyas et al, 

1996). 

IS-2 cells were shown to be VIP-positive, with somata and dendrites in str. lacunosum-

moleculare, axons in str. radiatum (Acsady et al, 1996a; Acsady et al, 1996b). 

IS-3 cells contain VIP as well, however, their axons innervate interneurons in str. oriens 

and in the hilus (Acsady et al, 1996a; Acsady et al, 1996b).  

In the rodent hippocampus an additional interneuron group was identified projecting to the 

septum, the so-called (Gulyas et al, 2003; Jinno & Kosaka, 2002), HS (hippocampo-septal) 

cells, with local and projecting axons  innervating GABAergic interneurons (Gulyas et al, 

2003). These interneurons mostly contain SOM and CB, moreover, spiny, CR-positive 

interneurons are part of this group as well (Gulyas et al, 2003; Gulyas et al, 1992). 
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CA1 pyramidal cell

CA3 pyramidal cell

Mossy cell

Granule cell

 

Figure 1: Schematic of human hippocampal formation.  

Dentate gyrus and Cornu Ammonis, the two parts of the hippocampal formation, form two 

U-shaped curves looping into each other. The Cornu Ammonis can be further divided to 

four subregions: CA1, CA2, CA3 and CA3c (Lorente de Nó, 1934, Seress, 1988). These 

subregions can be separated by the morphology and connectivity of principal cells 

(pyramidal cells and mossy cells) found there. Granule cells forming stratum granulosum 

are the principal cells of the Dentate Gyrus, above this area, stratum moleculare can be 

found, whereas under it the hilus. The region enclosing the hilus and the CA3c is often 

mentioned as the endfolium. Abbreviations: CA: Cornu Ammonis, a: alveus, s.p.: stratum 

pyramidale, s.r.: stratum radiatum, s.lm.: stratum lacunosum-moleculare, ff: fimbria fornix, 

Figure by Lucia Wittner (PhD thesis 2004) 
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Figure 2: Schematic of rodent hippocampal formation 

Similar to the human hippocampus, the rodent hippocampal formation contains two U 

shaped regions, the Cornu Ammonis and the Dentate Gyrus. The Cornu Ammonis can be 

divided to CA1, CA2 (not significant in mice), CA3 and CA3c (indicated as CA4 in the 

figure) subregions. Densely packed granule cells form stratum granulosum in the Dentate 

Gyrus, with their dendrites in stratum moleculare above, and the hilus underneath them. 
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Figure by Ramon y Cajal (arrows in CA str. oriens point to the opposite direction of real 

projection). 

2.4. Animal models of epilepsy 

Numerous existing animal models demonstrate features typical for human epilepsy. In these 

models either genetic alterations can be seen, or an acute lesion induces seizures which are 

followed by a silent period and later by spontaneously occurring recurrent seizures. 

-genetic models  

A significant proportion of epilepsies have a genetic component. Thus genetic models can 

provide valuable information regarding the mechanisms underlying neuronal 

hyperexcitability. The seizure predisposition in these animal models is inherited by the 

disfunction of certain ion channels, neurotransmitter or neuromodulatory systems. 

For example, in the model of genetic absence epilepsy spontaneous seizures occur with age 

in animals, characterized by motor arrest and head drops that are correlated with 

generalized spike-wave on the electroencephalogram (EEG). The seizure generating 

mechanism appears to be located in the lateral thalamic nuclei (Crunelli & Leresche, 2002; 

Fisher, 1989; Polack & Charpier, 2006). 

-kindling models 

In the kindling models the development of seizures and epilepsy are acquired by repeated 

stimulation of the brain (either by electric or chemical stimuli). The stimuli is set at a 

subthreshold level, however after a certain time, the threshold lowers and acute seizures 

begin (McNamara, 1986). After the first seizure no further stimulation is required, since a 

seizure increases the likelihood that more (recurrent) seizures will occur. (Seizures beget 

seizures) (Brown & Stone, 1973; Lothman et al, 1989; Sutula & Steward, 1986) 

-excitatory amino acid analogs 
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The overexcitation of cells is considered a basic feature of epilepsy. Increase of glutamate 

release has an important role in causing this overexcitation. Thus by adding additional 

glutamate or aspartate analogues it is possible to exert toxic effects on the nervous system 

under certain conditions (Brown & Stone, 1973). 

-substances altering the function of ion channels 

In epileptic specimens changes in the number and/or function of ion channels can often be 

seen leading to abnormal extra and intracellular ion concentrations and thus impaired 

membrane potential. Consequently, by altering the function of ion channels it is possible to 

mimic abnormal ion concentrations and cause seizure activity (Karnup & Stelzer, 2001; 

Panuccio et al, 2010). This model is suitable to study the acute phase of epilepsy 

exclusively, since neither network reorganization nor recurrent seizures occur. 

-substances altering the concentration of chations or anions 

Similarly to the previous model, the ion balance and thus the membrane potential can be 

manipulated by changing ion concentrations themselves. Thus, by increasing or decreasing 

chations and/or anions, the balance of excitation and inhibition can be altered effectively 

(Gutnick et al, 1982; Heinemann et al, 1986)  

In the current studies alterations were examined in pilocarpine induced epilepsy model. 

Pilocarpine is cholinergic agonist acting on each type of muscarinic acetylcholine receptors 

(Turski et al, 1986). By activating these receptors it induces status epilepticus (acute 

seizures) which is followed by a seizures-free latent phase and finally the chronic phase 

where spontaneously emerging seizures occur (Turski et al, 1984).  
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2.5. The endocannabinoid system 

 

Physiological and psychological effects of compounds deriving from the plant 

Cannabis Sativa have been known since the ancient times. The main psychoactive molecule, 

the terpenoid derivative 9-tetrahydrocannabinol (Northcutt) (Gaoni & Mechoulam, 1971) 

was described in the 60s, however the site of activation remained hidden. Finally in 1990 

the CB1 cannabinoid receptor was cloned from rat brain by Matsuda and co (Felder et al, 

1992; Matsuda et al, 1990) and three years later its immune-system counterpart, the CB2 

receptor as well (Munro et al, 1993). These findings enlightened the mechanisms of action 

of THC, and a search began for the brain-derived cannabinoid ligands. 

 The first ligand described was N-arachidonoyl ethanolamide (anandamide)(Devane 

et al, 1992), the second 2-arachidonoyl-glycerol (2-AG) (Mechoulam et al, 1995; Sugiura et 

al, 1995), both extracted from animal tissue (Pertwee, 1997)  Even though anandamide was 

the endocannabinoid described first (Devane et al, 1992), it seems more possible that 2-AG 

is the one effectively activating the receptor (Sugiura et al, 2006). After identified these two 

ligands, their synthesizing and degrading enzymes were described as well. Synthesizing (or 

metabolic) enzyme for anandamide is N-acyl phosphatidylethanolamine phospholipase D 

(NAPE-PLD) (Okamoto et al, 2004), whereas diacylgycerol lipase- α (DGL-α) (Bisogno et 

al, 2003) for 2-AG. For degrading anandamide, the enzime is fatty acid amide hydrolase 

(FAAH) (Egertova et al, 1998), and monoacylglycerol lipase (mice) (Dinh et al, 2002) for 

2-AG. 

Activation of the endocannabinoid system is involved in numerous physiological 

functions like food intake, pain sensation and memory formation. In the brain, the 

endocannabinoid system is responsible for retrograde synaptic signaling via CB1-R (Type 1 

cannabinoid receptor) (Freund et al, 2003; Mackie, 2008; Mackie & Stella, 2006). 

Endocannabinoids are released from the postsynaptic neurons in an activity-dependent 

manner, and bind to presynaptic CB1-Rs, thereby suppressing transmitter release from 

presynaptic terminals (both in excitatory and inhibitory synapses) (Hajos et al, 2000; Hajos 

et al, 2001; Kathmann et al, 1999; Katona et al, 1999b; Mackie, 2005; Misner & Sullivan, 

1999; Ohno-Shosaku et al, 2002; Sullivan, 1999; Varma et al, 2001). 
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In addition to its physiological roles, this system was found to be affected in 

pathological processes as well. Controversial data were published regarding the effects of 

cannabinoids in epilepsy. On one hand, in an animal model of TLE (temporal lobe 

epilepsy), CB1-R agonists displayed anti-epileptic effects (Wallace et al, 2003), in addition, 

CB1-Rs on glutamatergic axon terminals were shown to mediate anticonvulsant effect, by 

attenuating glutamate release (Azad et al, 2003; Monory et al, 2006). On the other hand, 

proconvulsive effects of CB1-R agonists were described as well (Gordon & Devinsky, 

2001; Keeler & Reifler, 1967; Lutz, 2004). Moreover, a CB1-R antagonist was shown to 

prevent the long-term increase in seizure susceptibility when applied in a certain time-

window (Chen et al, 2007; Echegoyen et al, 2009).  

Human studies showed that recurrent seizures may lead to an adverse reorganization 

of the endocannabinoid system and to the impairment of its protective effect (Goffin et al, 

2011; Ludanyi et al, 2008) which may be accomplished by the downregulation of CB1-Rs 

located at excitatory synapses occurring in the inner molecular layer of the dentate stratum 

moleculare (Ludanyi et al, 2008).  

Since more numerous CB1-R-positive asymmetric synapses can be found in the 

hippocampus compared to stained symmetric synapses, previous ultrastructural studies 

have not demonstrated, what happens to inhibition regulated by the endocannabinoid 

system at the ultrastructural level. Moreover, the target distribution of CB1-R-positive 

terminals was not examined either. 

Regarding CB1-Rs located at inhibitory synapses, results are restricted to animal 

models and are contradictory reporting both up and downregulation of the receptor 

(Falenski et al, 2009; Wyeth et al); (Wallace et al, 2003).  
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3. Aims 

 

In the present study we wished to uncover anatomical changes affecting the 

endocannabinoid system in patients with TLE and in pilocarpine treated mice. We focused 

on two phases of epilepsy in the mouse model (acute and chronic) and to the chronic phase 

in human TLE, since robust and controversial changes occur at early and later time points 

post epileptogenesis. (the acute phase obviously cannot be studied in human samples) 

The imbalanced ratio of dendritic and perisomatic inhibition has long been regarded as an 

important feature linked to epilepsy (Magloczky & Freund, 2005; Wittner et al, 2005) , 

causing cell death and hippocampal reorganization. Increased excitation was shown to 

originate from mossy fiber sprouting (Houser et al, 1990; Sutula et al, 1989a) and an 

increased input from the supramammilary nucleus (Abdulla & Campbell, 1993; Magloczky 

et al, 1994; Magloczky et al, 2000). Although a decreased inhibition was proposed to be 

associated to the strong excitation, several studies show, that increased inhibition occurs, 

leading to hyperexcitability through several mechanisms (hypersynchronization, excitatory 

GABA, etc) (Bernard et al, 2000; Cossart et al, 2001; Karlocai et al, 2011; Wittner et al, 

2005; Zhang et al, 2009). The mechanism leading to hypersynchronization can vary; most 

often the reorganization of excitatory or inhibitory fibers is one of them. Sprouting can 

often be characterized by changes in target distribution, increase in fiber density or the 

number of terminals, leading to altered transmitter release. Cannabinoids act as retrograde 

transmitters, decreasing transmitter release when activating their receptors, thus they are in 

the position of effectively regulating network activity. Several studies have examined 

functional and anatomical changes; however no detailed investigation was carried out to 

quantify the exact changes in number and target distribution of CB1-R-positive fibers. 

In the present set of experiments we wished to examine the following issues: 

• The correlation between pathological changes and CB1-R distribution in human 

TLE samples (chronic phase) and in the acute, latent and chronic phases of 

pilocarpine induced epilepsy.  
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• Alterations in the target distribution of CB1-R-positive elements in epileptic mice 

and human patients.  

• The correlation between behavioral signs of acute seizures and later emerging cell 

death and reorganization in the epileptic mice.  

• The difference of the seizure susceptibility in CB1-R knock out animals compared 

to controls.  

• We assumed that by understanding the dynamics of changes in CB1-R expression 

during different phases of epilepsy we could suggest whether CB1-R agonists or 

antagonists would be suitable candidates for antiepileptic treatment. 
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4. Materials and methods 

 

4.1. The pilocarpine model of epilepsy 

Animals were kept under standard conditions with 12 h dark-light cycle; food and 

water were supplied ad libitum. Experiments were performed according to the guidelines of 

the Institutional Ethical Codex & the Hungarian Act of Animal Care & Experimentation 

(1998, XXVIII, Section 243 ⁄ 1998), The Animal Care and Experimentation Committee of 

the Institute of Experimental Medicine of Hungarian Academy of Sciences and the Animal 

Health and Food Control Station, Budapest, has approved the experimental design under 

the number of 2303/003/FŐV/2006. The experiments are in accordance with 86/609/EEC/2 

Directives of European Community, which is in full agreement with the regulation of 

animal experiments in the European Union. All efforts were made to reduce the number of 

animals used and to minimize pain and suffering. For this animal model 20-30 g male CD1 

mice (Harlan, Italy) and CB1-R knock-out CD1 mice were used (Ledent et al, 1999). 

Animals were assigned to control and experimental groups. Age-matched control mice 

were injected with physiological saline (12 animals, 0.1 ml/30g) or scopolamine (12 

animals 5 mg/kg). Since no difference was found between the two control groups, during 

the following experiments, control mice were injected with physiological saline. 

Experimental mice were injected with intraperitoneal Pilocarpine hydrochloride 

(340 mg/kg, Sigma) to induce status epilepticus (SE). Scopolamine methyl nitrate (5 mg/kg, 

Sigma) was injected 30 minutes in advance to prevent peripheral cholinergic effects of 

pilocarpine. No benzodiazepine treatment was used to stop seizures. By omitting 

antiepileptic drugs we were able to examine seizure-induced changes 2 hours post SE, 

without further alteration of the GABAergic function by additional drugs. 

Animals were observed for two hours after the pilocarpine injection, and the 

behavioral signs of seizures were monitored and scored. At every 5 minutes or when 

behavioral changes occurred a score was determined. Acute seizures started 5-15 minutes 

after the pilocarpine administration (post pilo). Seizures were classified by using the 

modified Racine’s scale (Racine, 1972) (1-5), animals were separated into “weak” and 

“strong” groups according to their seizure activity (Magloczky et al). Seizure activity was 
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defined for every animal by using the maximal value of Racine -scale reached more than 

once. 

In the weak group mice developed only a few mild seizures characterized by few 

ictal seizure period in the EEG accompanied with startling and shaking, whereas in the 

strong group the seizures were frequent and EEG showed several ictal seizure periods 

behaviorally represented by intense motor symptoms including jaw movements, salivation, 

and forelimb clonus with rearing and tonic-clonic seizures (Magloczky et al; Racine, 1972; 

Turski et al, 1984).  

Acute phase was examined 2 hours after pilocarpine injection. The period examined 

1-3 days after the injection was regarded as the latent phase. At day three mass cell loss was 

observed, therefore this time point was considered as the end of the latent phase. EEG 

recordings were carried out 1 month after pilocarpine treatment in the chronic phase, at this 

time point recurrent seizures occurred in most of the strong epileptic animals. 

We examined the expression pattern of CB1-Rs in the hippocampus at different 

survival times: 2 hours after the treatment in the acute phase, 1 and 3 days after the 

treatment in the latent phase and 1-2 months after the treatment in the chronic phase.  

 

4.2. In vivo electrophysiology 

We proved the occurrence of recurrent electrographic seizures with EEG recordings 

in the chronic phase. Mice were anesthetized with a 1-1.5 % halothane-air mixture 

(Narcotan, Leciva, Praha, Czech Republic) and secured in a stereotaxic frame (David Kopf, 

900 USA, equipped with a SUPERTECH Ltd. made mouse adaptor HU).  

Five holes were drilled into the skull above the frontal and parietal lobe bilaterally 

and above the cerebellum (reference). Stainless steel wire electrodes (MEDWIRE SST1 ) 

were placed on the skull and covered with conductive paste (Ten20, USA) to decrease the 

impedance. The electrodes and the connector were embedded in dental acrylic cement (GS, 

Japan). This way the electrodes were firmly implanted to the skull but the dura was not 

pierced. The EEG activity was recorded by a Grass EEG 8B model (Grass Instruments, 

Quincy, MA, USA), filtered at 1 Hz to 70 Hz and amplified. Data were recorded with a 

CED 1401 system using SPIKE2 v2.1 software (Cambridge Electronic Design Limited, 
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Cambridge, UK). Sampling rate was 500 Hz , amplification 20 µV/mm, filter: LP: 70Hz, 

HP: 1Hz.  

Recordings were made for 3 days, in the morning (9 AM) and in the afternoon 

(4PM) for 1.5 hours. The behavior of the animal was observed during EEG recording. To 

answer the question whether animals had different diurnal and nocturnal epileptic activity, 

24-hour continuous EEG monitoring was also carried out in 4 animals (2 controls, 2 

chronically epileptic mice). 

 

4.3. Analysis of the EEG recordings 

All EEG recordings were evaluated by three independent and experienced 

researchers to determine the occurrence of seizures or interictal spikes (Litt et al, 2001). 

EEG recordings were carried out in 16 mice (6 controls, 4 weak and 6 strong epileptic) in 

the chronic phase. In 4 animals (2 controls, 2 chronically epileptic ones) 24-hours EEG 

monitoring was carried out. 

Epileptic activity was considered as interictal burst when the amplitude of 

occasionally appearing EEG spike activity was three times higher than the normal resting 

control EEG waves. The ictal EEG was determined so that the appearance of large 

amplitude EEG spikes was continuous and that activity pattern lasted for at least 5 seconds. 

Occasionally, an increase of frequency and decrease of amplitude of large spikes were seen 

prior to the ictal event. That phase was considered as interictal activity. Data were analyzed 

with SPIKE2 v2.1 software (Cambridge Electronic Design Limited, Cambridge, UK). 

 

4.4. Slice preparation 

Two hours after pilocarpine injection, control and “strong” epileptic mice (two of 

each) were deeply anesthetized with isoflurane (Abbott Labs, USA) After decapitation, the 

brain was quickly removed and placed into ice-cold artificial CSF containing (in mM): 

sucrose, 252; KCl, 2.5; NaHCO3, 26; CaCl2, 0.5; MgCl2, 5; NaH2PO4, 1.25; glucose, 10, 

and bubbled with 95% O2 and 5% CO2 (carbogen gas). We prepared 400- µm-thick coronal 

slices using a Leica (Nussloch, Germany) VT1000S microtome. Slices containing the 

hippocampal formation were trimmed from other brain regions. 2 slices of each animal 
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were immediately transferred to fixative containing 0.05% glutaraldehyde (TAAB, UK), 

4% paraformaldehyde (TAAB, UK) and 15% picric acid in 0.1 M phosphate buffer (PB) , 

whereas other slices were kept in an interface-type holding chamber at room temperature 

for 2 hours, before fixation. After overnight fixation, CB1-immunostaining was carried out. 

 

4.5. Tissue preparation for morphological examination 

Animals were sacrificed at different survival times including 2 hours (n=22), 1 day, 

3 days (n=48), 1 month and 2 months (n=105) after pilocarpine administration. Mice were 

perfused under equithesine anesthesia (chlornembutal 0.3 mL ⁄ 100 g), first with 

physiological saline (1 min) and then with a fixative containing 0.05% glutaraldehyde 

(TAAB, UK), 4% paraformaldehyde (TAAB, UK) and 15% picric acid in 0.1 M phosphate 

buffer (PB) for 30 min.  

 

4.6. Human tissue 

Hippocampal samples were obtained from patients (n=34) with therapy-resistant 

temporal lobe epilepsy. The seizure focus was identified by multimodal studies including 

video-EEG monitoring, MRI, single photon emission computed tomography and/or 

positron emission tomography. Patients with intractable temporal lobe epilepsy underwent 

surgery in the National Institute of Neuroscience in Budapest, Hungary within the 

framework of the Hungarian epilepsy Surgery Program. A written informed consent for the 

study was obtained from every patient before surgery. Standard anterior temporal 

lobectomies were performed (Spencer and Spencer, 1985); the anterior third of the 

temporal lobe was removed together with the temporomedial structures. The study was 

approved by the ethics committee at the Regional and Institutional Committee of Science 

and Research Ethics of Scientific Council of Health (TUKEB 5-1/1996, further extended in 

2005) and performed in accordance with the Declaration of Helsinki. 

Four control post-mortem human hippocampi were used in this study, courtesy of 

the Lenhossék program. Control brain tissue was obtained from 53-65 years old subjects 2-

4 hours post mortem delays. None of the control subjects had any record of neurological 
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disorders. Brains were removed 2 hours after death, the dissection was performed in the 

Forensic Pathology Department of the Semmelweis University Medical School.  

After surgical removal, the epileptic tissue was immediately dissected to 3-4 mm thick 

blocks, and immersed into a fixative containing 4% paraformaldehyde, 0.1% 

glutaraldehyde and 0.2% picric acid in 0.1 M PB (pH=7,2-7,4) (Magloczky et al, 1997). 

Fixative was changed every 30 minutes to a fresh solution during constant agitation for 6 h, 

and the blocks were then post-fixed overnight, in the same fixative without glutaraldehyde. 

In case of control samples the procedure was similar. 

 

 

4.7. Immunocytochemistry 

Brains were removed from the skull and 60 µm thick vibrotome sections were cut 

from the blocks. Following washing in PB (6x 10 minutes), sections were cryoprotected in 

30% sucrose for 1–2 days, followed by freezing three times over liquid nitrogen. Sections 

were processed for immunostaining with the use of two different antibodies against CB1-

Rs (shall be described ). Other antibodies used in the study were Neuronal Specific Nuclear 

Protein (NeuN) and Heat Shock protein 72 (HSP72) as follows. Sections were transferred 

to Tris-buffered saline (TBS, pH 7.4), then endogenous peroxidase was blocked by 1% 

H2O2 in TBS for 10 min. TBS was used for all the washes (3x10 min between each step) 

and dilution of the antisera. Non-specific immunostaining was blocked by 5% normal goat 

serum, 0.1g/ml glycine, 0.1g/ml lysine. A polyclonal guinea pig antibody against CB1-R 

(1:1000), monoclonal mouse antibody against NeuN (1:4000 Chemicon) and a monoclonal 

mouse antibody against HSP72 (1:800, Calbiochem) were used for 2 days at 4oC. The 

specificity of the antibody has been thoroughly tested by the manufacturer and in our 

laboratory using CB1 knock out mice (Katona et al, 2006). For visualization of 

immunopositive elements, biotinylated anti-guinea pig or anti-mouse immunoglobulin G 

(IgG) (1:250, Vector, 2 hours) was applied as secondary antiserum followed by avidin-

biotinylated horseradish peroxidase complex (ABC; 1:250, Vector, 1.5 hours). The 

immunoperoxidase reaction was developed by 3,3’-diaminobenzidine tetrahydrochloride 

(DAB; Sigma) as a chromogen dissolved in TRIS buffer (TB, pH 7.6). Sections were then 
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treated with 1% OsO4 in PB (40 min) and dehydrated in ethanol (1% uranyl acetate was 

added at the 70% ethanol stage for 40 min) and mounted in Durcupan (ACM, Fluka). The 

control sections were processed in the same way. For immunogold staining against CB1-R, 

the sections were blocked in a solution containing 5% normal goat serum, 0.1g/ml glycine 

and 0.1g/ml lysine (GE Healthcare UK Limited). Incubation in anti-CB1 guinea pig 

antiserum (1:1000, 2 days) was followed by a second blocking step with 5% normal goat 

serum, 0.1g/ml glycine, 1g/ml lysine and 0.1% fish gelatin. Secondary antiserum was ultra 

small gold conjugated goat anti-guinea pig (1:50, overnight incubation, Aurion). Gold 

labeling was intensified using the R-Gent silver intensification kit (Aurion, Wageningen, 

The Netherlands). Sections were then osmicated (0.5% OsO4, 30 min, 4 oC), dehydrated 

and embedded in Durcupan. The control hippocampi were processed in the same way. 

After light microscopic examination, areas of interest were re-embedded and 

sectioned for electron microscopy. Ultrathin serial sections were collected on Formvar-

coated single slot grids, stained with lead citrate, and examined with a Hitachi 7100 

electron microscope. 

 

4.8. CB1-R antibodies 

In the first set of experiments (human and mouse target distribution) our antibody 

against CB1-R (from Prof. Ken Mackie) visualized CB1-Rs only on terminals forming 

symmetric synapses.  Our alternative CB1-R antibody. (from Prof. M. Watanabe, Hokkaido 

University, Sapporo, Japan) (described by Fukudome (Fukudome et al, 2004)) (Fig. 3) 

stained both symmetric and asymmetric synapses formed by terminals positive for CB1-Rs. 

This antibody was used in the detailed investigation of CB1-R expression in the pilocarpine 

model of epilepsy in mice (second part of the study).  
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Figure 3: Lack of CB1-R staining in knock out animals 

Staining was carried out with the antibody staining CB1R-positive terminals giving 

symmetric and the ones giving asymmetric synapses as well. In wild type animals (A) CB1-

R staining was found in all hippocampal regions as shall be described later. In contrast, in 

CB1-R knock out animals (B) no specific staining was found, only light background 

staining occurred in the somatic regions. Lack of staining indicates the specificity of the 

antibody. Scale: 200 µm 
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4.9. Gallyas silver impregnation 

In the mouse tissue degenerated neuronal elements were visualized with the staining 

procedure of Gallyas et al. (Gallyas et al, 1980). The steps of this staining are the 

following: 2x5min in the pretreating solution (2% NaOH and 2.5% NH4OH), 10 min in the 

impregnating solution (0–0.8% NaOH, 2.5% NH4OH, 0.5% AgNO3), 3x5 min in washing 

solution (0.5% Na2CO3 and 0.01% NH4NO3 in 30% ethanol), 1 min in developing solution 

(0.4–0.6% formaldehyde and 0.01% citric acid in 10% ethanol, pH 5.0 –5.5), 3x10 min 

wash in 0.5% acetic acid. Afterwards sections were mounted on gelatin-coated slides, 

dehydrated in xylene and covered with XAM neutral medium (BDH, Poole, UK). 

 

4.10. Nissl staining 

Cell loss could be visualized with Cresyil violet staining as well. Sections were 

mounted in chrome-gelatine and air-dried on slides. Afterwards the following steps were 

carried out: 2 mins in xylene, 3 mins in ethanol abs., 3 mins in 90% ethanol, 3 mins in 70% 

ethanol, 3 mins in 50% ethanol, 5 mins in cresyle violet (1% in tap water), rinse in 70% 

ethanol, rinse in 70% ethanol+drops of acetic acid for fixation, rinse in 90% ethanol, 3 mins 

in ethanol abs., 2x3 mins of xylene, and mounting with DePeX (SERVA Electrophoresis 

GmbH, Heidelberg, Germay) finally. 

 

 

4.11. Determination of principal cell loss in epileptic mice 

In the chronic phase, the severity of the acute seizures (using the Racine-scale, 

seizures from 1 to 5) was correlated with the cell-loss found in CA1, CA3 and hilus.  Cell 

loss was determined in case of a large number of animals using a well defined 

semiquantitative scale by two independent examiners as shown previously (Magloczky & 

Freund, 1993; Magloczky & Freund, 1995; Wittner et al, 2005). Each region was classified 

as type 1-3 according to the severity of cell death (type1: cell-loss under 10 %, type2: cell-

loss between 10% and 50%, type3: cell-loss above 50%) (Fig.4). Pearson correlation was 

used to calculate the relationship between cell-loss and seizure strength. Seizure strength 

was defined for every animal by using the highest number of Racine scale reached during 
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acute seizures. This number, representative for each animal was correlated with the severity 

of cell death (types 1-3) in each subregion. 

 

 

 

 

 

Figure 4: NeuN-staining shows different types of cell loss in the epileptic hippocampus 

Based on the severity of principal cell loss, distinct regions were classified as type 1, 2 or 3. 

In case of type 1 (A) cell loss is quite mild, with only few missing cells (<10% of principal 

cells are missing in the given region).  Type 2 (B) indicated cell loss in patches, affecting 

more numerous cells (11-50% of principal cells are missing in the given region). Type 3 

(C) indicates sclerosis in the given region with more than 51% of principal cells missing. 

Scale: 50 µm
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4.12. Quantitative electron microscopic analysis 

4.12.1. Ratio and number of symmetric and asymmetric synapses 

Electron microscopic analysis was carried out in the dentate gyrus, since this area is 

affected by seizure induced changes, however granule cells are well-preserved even in case 

of robust sclerosis in the CA1 (Houser & Esclapez, 1996; Peng & Houser, 2005) therefore 

it is possible to examine the surviving elements which may not be the case in CA1. 

The quantity of symmetric and asymmetric synapses established by CB1-R-positive 

axon terminals was examined throughout the str. moleculare of 3 control, 3 chronic 

epileptic and 3 acute epileptic hippocampi. Serial sections were made from the blocks 

reembedded from stratum moleculare and examined in the electron microscope. CB1-R 

stained terminals were analyzed in every 10th section in order, following the rules of 

systematic random sampling, to avoid sampling of the same axon terminals. Photographs 

were taken of all terminals in a given area, and the ratio of immunostained symmetric 

versus asymmetric synapses was determined.  

To quantify the exact changes in the number of stained terminals in the chronic and 

acute phase, we further examined the str. moleculare. The number of CB1-R 

immunostained terminals forming symmetric and asymmetric synapses was calculated, 

both in control and in epileptic samples and normalized. The studied areas were measured 

with NIH ImageJ (U.S. National Institutes of Health, Bethesda, MD) program and were 

normalized to unit area (40 000 µm2).   

To assess any changes occurring in the density of CB1-Rs per terminals, the number 

of gold particles located in the membrane of axon terminals was counted and normalized to 

a unit length of the terminal’s perimeter (perimeter length was measured with NIH ImageJ, 

number of particles was normalized to 1 µm). Significance was tested using Mann-Whitney 

U-test (Statistica 6.0). 

 

4.13. Target distribution of CB1-R-positive terminals forming symmetric synapses 

In the human and mouse tissue target distribution of CB1-R immunopositive 

elements was studied in the stratum moleculare of the dentate gyrus in control and sclerotic 

subjects, since in sclerotic samples the highest fiber density can be observed in this area. 
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Both in controls (N=105, two subjects) and in epileptic patients (N=175, three sclerotic 

subjects) the postsynaptic target of CB1-immunopositive terminals establishing symmetric 

synapses were examined (photographed and quantified) at the electron microscopic level. 

 

 

5. Results 

 

5.1. Reorganization of CB1 receptor expressing GABAergic fibers in temporal lobe 

epileptic patients 

 The expression pattern of CB1-receptors associated with inhibitory synapses was 

studied by immunocytochemistry in epileptic hippocampal tissue derived from intractable 

TLE patients (N=44). A previous study by Ludanyi et al. has demonstrated a decrease of 

CB1-Rs associated with asymmetric synapses, thus, we examined changes affecting the 

number of CB1-R-positive symmetric synapses. 

 In the hippocampi of human TLE patients the pattern of cell loss was analyzed by 

light microscope in sections immunostained for different neurochemical markers labeling 

principal and non-principal cells (Magloczky & Freund, 2005; Toth et al, 2010; Wittner et 

al, 2005). Based on anatomical alteration observed in the hippocampus patients could be 

classified into different groups. 

 

5.1.1. Pathological classification of the epileptic samples 

All patients examined in the present study had therapy resistant epilepsy of temporal 

lobe origin. The patients had different degrees of hippocampal atrophy and/or sclerosis. All 

the examined sections derived from the anterior part of the hippocampal body. Similarly to 

our previous studies (Clemens et al, 2007; Toth et al, 2010; Wittner et al, 2005; Wittner et 

al, 2002) and other results (de Lanerolle et al, 2003), patients with epilepsy were classified 

based on principal cell loss and interneuronal changes examined at the light microscopic 

level as follows.  

(i) Epileptic Type 1 (mild) (n = 6): similar to control, no considerable cell loss in 

the CA1 region, pyramidal cells present, layers are visible and intact, their borders are 
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clearly identified. There is a slight loss in certain interneuron types, mostly in the hilus and 

the stratum oriens of the CA1 region.  

(ii) Epileptic Type 2 (patchy) (n = 16): pyramidal cell loss in patches in the CA1 

pyramidal cell layer but the CA1 region is not atrophic. Interneuron loss is more 

pronounced.  

(iii) Epileptic Type 3 (sclerotic) (n = 22): the CA1 region is shrunken, atrophic, more 

than 90% of principal cells are missing. Only the stratum lacunosum-moleculare is present 

as a distinct layer in the CA1 region, the others could not be separated from each other due 

to the lack of pyramidal cells and their dendrites and the shrinkage of the tissue. This 

remaining part should contain the layers identified in the control as stratum oriens, stratum 

pyramidale and stratum radiatum. Mossy fiber sprouting and considerable changes in the 

distribution and morphology of interneurons (not shown) can be observed in the samples of 

this group.  

The number, morphology and distribution of cells were similar in patients in the 

same pathological group, but differed between the groups. The control samples with short 

(2–4 h) post-mortem delay were similar to each other and differed from the epileptic 

groups. 

Therefore, we concluded that the differences found between control and epileptic tissues in 

the present study are likely to be caused by epilepsy. (Toth et al, 2010; Toth et al, 2007; 

Wittner et al, 2005). 

In the present study the distribution and localization of CB1-immunoreactive 

elements was studied in controls, in non-sclerotic (Type 1 and Type 2) and sclerotic cases 

(Type 3) 

 

 

5.1.2. Distribution of CB1-R-stained inhibitory synapses in control human hippocampus 

In the following set of experiments the antibody used to visualize CB1-Rs stained 

receptors found in symmetric synapses, but did not stain receptors located at asymmetric 

synapses. 
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Immunostaining revealed numerous CB1-positive cell bodies of interneurons 

scattered in all hippocampal subfields, these cells have been shown to express the 

neuropeptide CCK (Katona et al, 1999b) and were either perisomatic or dendritic targeting 

interneurons (Freund & Buzsaki, 1996). Parts of interneuron dendrites were stained, and a 

dense meshwork of CB1-immunoreactive axons covered the entire hippocampal formation. 

The strongest axonal labeling was found in stratum moleculare of the dentate gyrus, mostly 

in the inner part of str. moleculare. Strong staining appeared also in stratum pyramidale of 

CA1-CA3 containing numerous axon terminals forming basket –like structures surrounding 

pyramidal cells (Katona et al, 2000). In contrast no labeling occurred in the neuropil in the 

hilus and str. lucidum, moreover, granule cells were immunonegative. 

 

5.1.3. Distribution of CB1-Rs in epileptic human hippocampus 

In the non-sclerotic cases, the distribution of CB1 receptors in the dentate gyrus did 

not show any major changes compared to the normal post mortem controls. In contrast, a 

strong increase in CB1 receptor immunostaining was found in the dentate gyrus of epileptic 

patients with CA1 sclerosis, similar to what we have seen in the mouse model. 

Immunopositive interneuron somata were preserved both in the dentate gyrus and in the 

CA1 area. The density of immunostained fibers increased in the dentate molecular layer 

(Fig. 5) and became inhomogeneous in the hilus forming dense arrays of boutons around 

the surviving mossy cells and interneurons.  
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Figure 5. Distribution of CB1-R associated with symmetric synapses at light and 

electron microscopic level in human dentate gyrus  

 A) Low power light micrograph showing the distribution of CB1-positive profiles in the 

control human dentate gyrus. Granule cells are always negative for CB1. B) Tissue from 

sclerotic epileptic patients remarkably differs from controls. The density and staining 

intensity of CB1-positive fibers is considerably increased in the stratum moleculare. C) 

Density of CB1 receptor immunopositive fibers in control (N=3) and sclerotic epileptic 

patients (N=10) revealed by confocal laeser scanning microscope. The intensity of CB1 

receptor staining is elevated in epileptic samples. The difference between control and 

epileptic samples was highly significant (p<0,05; Student t test). D) A CB1-R-positive 

terminal from the stratum moleculare of an epileptic patient labeled by immunogold 

technique establishes symmetric synapse on a dendrite. All of the terminals stained by this 

CB1 antibody established symmetric synapses. Scales: A,B:50 µm; D:0,5 µm 
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5.1.4. Qualitative analysis of immunopositive fiber density in human sclerotic tissue  

Qualitative analysis revealed an increased density of immunostained axonal 

meshworks in the sclerotic stratum moleculare compared to the control or non-sclerotic 

cases. To quantify this increase, sections with fluorescent immunostaining were processed 

in 3 control and 10 sclerotic cases, and the density of immunolabeling was measured by 

confocal laser scanning microscopy. The results showed that the density of fibers had 

significantly increased in epileptic cases (type 3) (Fig. 5).  

 

5.1.5. Ultrastructural analysis of CB1-R distribution in control and sclerotic human 

tissue 

Electron microscopic examination confirmed that the antibody used in this study 

visualized CB1-Rs only on terminals giving symmetric synapses (Fig. 5, 6). The cellular 

and subcellular localization of CB1-Rs was similar in the epileptic and control cases. CB1-

R-positive terminals form synapses mostly on dendrites and less frequently on spines and 

somata of granule cells in control and epileptic samples. However, we wished to uncover 

any potential changes occurring in the target distribution of CB1-R containing terminals in 

epileptic the tissue. 

 

5.1.6. Target distribution of CB1-immunopositive elements in human TLE 

Target distribution of CB1-immunopositive elements was studied in the stratum 

moleculare of the dentate gyrus in control and sclerotic TLE subjects, where the highest 

fiber density was observed. Examination of immunogold terminals showed that CB1 

receptors were localized in the membrane, outside the synaptic active zone in epileptic 

patients, as it was shown previously in the control human hippocampus (Katona et al, 2000) 

(Graph 1). Both in controls (N=105, two subjects) and in epileptic patients (N=175, three 

subjects) the CB1-immunopositive terminals established symmetric synapses mostly on 

dendrites (75 v.72,5 %, spines 13,2 v. 15,5 %, and cell bodies 11,8 v. 13 %, in control and 

epileptic subjects, respectively). 

Therefore, we can conclude that the target distribution was not changed, although the 

density of fibers has been elevated greatly. 
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Graph 1: Target distribution of CB1-R-positive terminals establishing symmetric 

synapses in human TLE samnples 

The ratio of CB1-R-positive fibers synapsing on distinct neuronal elements does not change 

in the epileptic tissue compared to controls. 

 

A previous study by Ludanyi et al (Ludanyi et al, 2008) has demonstrated a 

downregulation of CB1-Rs linked to asymmetric synapses, whereas, our results show an 

upregulation in CB1-Rs related to symmetric synapses. These results are quite surprising 

and indicate that epileptic reorganization affects CB1-R-positive excitatory and inhibitory 

networks in a different way. To understand the time course of the dynamics of CB1-R 

expression, we established an animal model of TLE (pilocarpine model, we shall describe it 
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later) showing similar pathological changes to human TLE.  First we characterized changes 

affecting CB1-Rs linked to symmetric synapses and studied alterations in the target 

distribution of immunopositive terminals in the mouse model with the same antibody as we 

used for human tissue (Antibody staining CB1-R-containing terminals establishing 

symmetric synapses).   

 

5.2. Changes of CB1-receptor immunostained inhibitory fibers in a model of temporal 

lobe epilepsy 

 Similar to human TLE tissue, upregulation of CB1-Rs linked to symmetric synapses 

could be seen in the mouse model as well (using the same antibody as in case of human 

tissue). The expression pattern of CB1-Rs in the hippocampi of both strong and weak CD1 

mice was studied at a survival time of 4-8 weeks (chronic phase). 

In control samples numerous immunostained cell bodies were seen (previously 

shown to be CCK-positive (Katona, 1999 #3054) and could be either dendritic or 

perisomatic targeting interneurons (Freund & Buzsaki, 1996)). The most intense staining of 

CB1-positive fibers was found in the molecular layer of the dentate gyrus (DG), in stratum 

pyramidale of the cornu Ammonis (CA), and in the subiculum. In contrast, faint labeling 

was observed in the strata radiatum and granulosum (Fig. 3). CB1-immunostaining showed 

no change in the hippocampi of weak animals compared to controls. In the sclerotic 

samples CB1-R-positive cell bodies were preserved, however, the general CB1-

immunostaining was much stronger throughout the hippocampus. The most striking 

difference was found in the strata moleculare and granulosum of the DG (Fig. 6), in the 

strata pyramidale and radiatum of the CA1.) 
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Figure 6: Demonstration of CB1-Rs at light and electron microscopic level in mice  

CB1 immunostaining in the dentate gyrus of a control (A, B, C) and a “strong” epileptic (D, 

E, F) mouse. In control samples (A,B), dense staining of CB1-positive fibers can be found 

in the molecular layer of the DG. In the stratum moleculare of sclerotic animals (D, E) the 

intensity of CB1 immunostaining is elevated. The most frequent postsynaptic targets of 

CB1 receptor-positive terminals establishing symmetric synapses (arrows) are cell bodies 

(C) and dendrites (F) Scales: A,D: 200 µm; B,E: 50 µm; C,F:1 µm. 

 

 

5.2.1. Target distribution of CB1-immunopositive elements in sclerotic mouse tissue 

Quantification of CB1-immunopositive element’s target distribution was carried out 

in the mouse model as well to examine whether the unchanged target distribution is human 

specific or not. Stratum moleculare of the dentate gyrus was studied in control and sclerotic 

animals, since the highest fiber density was observed in this area. Similar to controls and 

human tissue, CB1 receptors were localized in the membrane, outside the synaptic active 

zone (Nyiri et al, 2005). Both in controls (N=53) and sclerotic cases (N=48) the target 
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distribution of CB1-R immunopositive fibers was examined. Stained terminals established 

symmetric synapses mostly on dendrites (77.4 v.77.1%, spines 22.6 v.20.8% and cell 

bodies 0 v. 2.1 %) (Graph 2). Thus, target distribution was not changed, similar to the 

human tissue. 
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Graph 2: Target distribution of CB1-R-positive terminals establishing symmetric 

synapses in mouse TLE samples 

The ratio of CB1-R-positive fibers synapsing on distinct neuronal elements does not change 

in the epileptic tissue compared to controls. 

 

As the next step we carried out a more detailed investigation to reveal changes in 

the receptor protein expression in different phases of pilocarpine induced epilepsy (acute, 

latent and chronic). For this set of experiments we used an antibody staining CB1-R-

positive symmetric and asymmetric synapses as well (see materials and methods). 
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5.3. Description of the pilocarpine model of epilepsy 

 

5.3.1. The pattern of cell loss in pilocarpine induced epilepsy  

To clarify the alterations of the hippocampal circuits on the pilocarpine model of 

epilepsy using CD1 mice, we carried out detailed investigation. Based on the behavioral 

signs during the acute seizures, animals were classified as “weak” or “strong” epileptic 

using the modified Racine scale (Magloczky et al, 2010; Racine, 1972; Turski et al, 1984). 

Animals showing seizure severity from Racine 1 to Racine 4 (shaking, chewing, nodding, 

forelimb clonus, rearing but no tonic-clonic seizures) were assigned to the weak group. 

However, in the strong group all animals showed tonic-clonic seizures (Racine 5) with 

other less severe seizure manifestations (Fig. 7). We examined the cell loss pattern in the 

hippocampi at different survival times using NeuN-immunostaining (Fig. 8), GluR2/3-

immunostaining (Fig. 9) Nissl staining (Fig. 10). Since cell loss observed was similar in 

case of all three staining further on in the study, NeuN staining was used to determine cell-

loss. 

In the acute phase (2 hours after the treatment) cell loss was not observed neither in 

the weak nor in the strong animals, nor did signs of hippocampal reorganization occur (data 

not shown). 

In the latent phase, (1-3 days post-pilocarpine) loss of sensitive interneurons 

(calretinin positive) and few principal cells could already be seen in the CA1 and CA3 

regions (3 days) (not shown). Three days post pilocarpine, cell loss was usually patchy in 

the CA1-3; occasionally pyramidal cells disappeared in long segments of areas.    

In the chronic phase, patchy cell loss was found infrequently in “weak” animals, but 

none of their hippocampi showed sclerosis (Fig. 8B, 9B, 10B). In contrast, hippocampi of 

the “strong” mice showed sclerosis in most cases (70%) meaning that CA1 and CA3 

regions were shrunken, atrophic and more than half of the cells were missing from the CA1 

region. Loss of vulnerable interneurons was also observed in all regions (Fig. 7) (Fig. 8C, 

9c, 10C). In our model calretinin-containing cells were used as a marker to monitor early 

cell death, since these cells were the most sensitive to epileptic insult (not shown) 

(Magloczky & Freund, 2005; Toth et al, 2010) . 
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Based on the severity of cell death, the degree of damage affecting different 

subregions (CA1, CA3, dentate gyrus) was classified as type 1 (mild cell loss), type 2 

(patchy cell loss) and type 3 (sclerotic), defined according to the following semiquantitative 

scale: type 1, up to 10% of the cells are damaged; type 2, 11-50% of the cells are missing; 

type 3: more than 50% of the cells are missing. CA1 and CA3 were considered sclerotic 

when cell loss exceeded 50 %, especially when strata oriens, pyramidale and radiatum 

could not be separated any more (Magloczky & Freund, 1993; Magloczky & Freund, 1995) 

(Fig 4).  

Statistical analysis revealed a significant correlation (Pearson correlation) between 

the degree of cell-loss and seizure strength in Racine scale values (p<0.05) (105 animals) 

(Fig. 7). Thus, behavioral signs of the acute seizures could be used to predict the degree of 

cell loss in the chronic phase.  
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Figure 8:  Pathological changes in pilocarpine induced epilepsy with NeuN 

immunostaining 

Light micrographs of control (A) and epileptic (B, C) animals immunostained for NeuN. 

Animals survived for 1 month after pilocarpine treatment. Compared to control mice (A), in 

non-sclerotic „weak” animals (B) only mild, restricted changes are seen in the hippocampus 

occasionally. In the sclerotic hippocampi of “strong” animals (C) a characteristic pattern of 

neuronal damage appears. The principal cell loss is over 50% (sclerosis) mostly in CA1 and 

CA3 (arrows) and in the hilus. Scale: 200µm 
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Figure 9:  Pathological changes in pilocarpine induced epilepsy with GluR2/3 

immunostaining 

Light micrographs of control (A) and epileptic (B, C) animals immunostained for GluR2/3. 

Animals were sacrificed in the chronic phase of epilepsy (1 month post pilo). Compared to 

control mice (A), in non-sclerotic „weak” animals (B) no mass cell loss occurs. In the 

sclerotic hippocampi of “strong” animals (C) however, robust cell loss (principal cell loss 

above 50%) appears affecting the CA1, CA3 regions (arrows) and the hilus. Scale: 200µm 
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Figure 10:  Anatomical changes in pilocarpine induced epilepsy with Nissl staining 

Light micrographs of control (A) and epileptic (B, C) animals with Nissl staining. Animals 

were sacrificed 1 month after pilocarpine treatment. In control (A) and non-sclerotic 

„weak” animals (B) no considerable difference can be seen. In contrast, the hippocampi of 

“strong” animals (C) shows typical signs of sclerosis, robust neuronal damage appears 

affecting the CA1 (white arrows), however, less severe cell loss occurs in the hilus. Scale: 

200µm 
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5.3.2. In vivo electrophysiological recordings 

To prove the appearance of epileptic activity and recurrent seizures, EEG recordings 

were carried out in 16 mice (6 controls, 4 weakly and 6 strongly epileptic) in the chronic 

phase. On the basis of these recordings, the EEG activity of pilocarpine treated mice 

differed from controls (Graph 3, Figs. 11,12,13) considerably. Strong synchronization and 

numerous interictal spikes were seen separately or in clusters. In members of the weak 

group (Fig. 12) recurrent seizures were rarely seen (in 1 mouse out of 4), while interictal 

spikes (incidence 2.2±2.26Hz, amplitude 581±160 µV) occurred in all cases. In members of 

the strong group recurrent seizures appeared (ictal spikes with a frequency of 5.9±2.3Hz, 

amplitude 546±112 µV) in nearly every animal (5 out of 6) (Fig 13). Thus, the occurrence 

of recurrent seizures in the chronic phase showed strong association with the severity of 

acute seizures (Graph 3).  

One month after pilocarpine injection in 4 animals (2 controls, 2 strong) 24 hours 

long EEG monitoring was carried out to investigate nocturnal epileptic activity. We 

observed seizure activity in the EEG represented by spikes in all animals. No animals 

showed exclusively nocturnal seizures, but they performed recurrent seizures during the 

whole day. Seizure incidence was the highest in the afternoon compared to other periods of 

the day.  
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Graph 3: Correlation of cell loss and the existence of recurrent seizures 

In pilocarpine treated animals recurrent seizures occurred in most strong animals. After 

perfusion and immunostaining these animals turned out to be sclerotic. In contrast, in 

pilocarpine treated animals not showing recurrent seizures sclerosis was rarely found, 

suggesting a link between sclerosis and the occurrence of recurrent seizures. 
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Figure 11:  Properties of EEG recording from control mice 

 In the EEG recordings of control animals no ictal or interictal activity occurs, animals were 

sleeping quite often during the recording. Higher and lower amplitude activity was seen 

consecutively.  

 

 

 

 

Figure 12:  Physiological changes in non-sclerotic animals in pilocarpine induced 

epilepsy 

The EEG recording of “weak” animals 1 month after pilocarpine treatment differs from 

control EEGs. In case of these animals interictal spikes (arrows) occur frequently, however 

ictal events were hardly ever seen. 
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Figure 13:  Physiological changes in pilocarpine induced epilepsy 

 Animals survived for 1 month after pilocarpine treatment. Compared to the EEG 

recordings of control animals in strong mice an increased activity appears. In these animals 

recurrent seizures are observed in most cases, both interictal and ictal (arrows) activity 

appears. An increase in frequency and decline in amplitude can be seen immediately 

preceding and after the seizures. 
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5.3.3. Anatomical changes in the acute phase of epilepsy (2 hours) 

We examined potential changes with several markers that may indicate the presence 

of very early cell loss (CR), degeneration (Gallyas) or excitotoxic damage (HSP72). 

However, none of the mentioned markers pointed out cell loss in any cases, thus we 

concluded, that degeneration and mass cell loss is not a direct consequence of acute 

seizures themselves. 

 

5.3.4. Morphological changes in the latent phase of epilepsy (1, 3 days post pilo) 

To examine whether morphological differences between animals with strong or 

weak seizures occur at an early time point, immunostaining against Heat Shock Protein 72 

(HSP72) was carried out to visualize cells suffering from excitotoxic damage, since this 

protein confirms the emergence of abnormal proteins due to various damaging effects (Gass 

et al, 1995; Lowenstein et al, 1990; Magloczky & Freund, 1995).  

In control hippocampi (Fig. 14A) immunostained cells were never seen, light background 

staining appeared occasionally in the layers of principal cells.  

However, in the acute phase of epilepsy (2 hours after injection) no significant 

alteration was observed with HSP72 immunostaining, the hippocampi of both weak and 

strong animals were control-like (data not shown). 

In the latent phase positive cells were not seen in weak epileptic animals (Fig. 14B), 

however, in members of the strong group robust changes occurred 1 day after the induction 

of the seizures (Fig. 14C). Principal cells with Golgi-like HSP72-staining appeared 

occasionally in mossy cells of the hilus (Fig. 15A) in some granule cells in the dentate 

gyrus (Fig. 15B, D) and in the str. pyramidale of the CA3 (Fig. 15C). Occasionally few 

immunopositive cells were seen in the CA1 str. pyramidale as well (not shown).  
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Figure 14:  Demonstration of excitotoxic insult 1 day after pilocarpine treatment 

In animals of the “weak” group (B) HSP72-immunostaining is control-like (A), only a 

slight increase in background-staining can be seen, but no stained cells with processes 

appear. Although there are no morphological signs of neuronal degeneration at this early 

stage in the hippocampi of “strong” epileptic animals (C), the vulnerable cells as well as the 

resistant granule cells start to express HSP72, and are stained in a Golgi-like manner. Faint 

homogeneous staining of CA1 pyramidal cells can also be seen. Scale: 200µm 
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Figure 15:  HSP72 expression of distinct cell types 1 day after pilocarpine treatment 

In strong animals 1 day after status epilepticus, Mossy cells of the hilus (A) express HSP72 

in the soma and processes. Similar Golgi-like staining can be seen in numerous granule 

cells (B, D). Even though, mass principal cell loss is not observed, several CA3 pyramidal 

cells express the protein. Scale: 50µm 
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Three days after pilocarpine treatment weak samples displayed the same appearance seen in 

controls (Fig. 16A, B), with a modest increase in background staining. In contrast, in the 

hippocampi of strongly epileptic animals a marked increase in HSP72 expression was 

found in CA1 pyramidal cells (Fig. 16C, 17C), and in the mossy cells of the hilus (Fig. 17 

A, C). Three days post pilocarpine fewer granule cells were stained compared to samples 1 

day after pilocarpine (Fig. 17B), yet granule cells did not degenerate, indicating that cells 

expressing HSP72 may survive the insult. 
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Figure 16: Degeneration of hippocampal cells 3 days post pilocarpine  

In the control (A) tissue no HSP72-positive elements can be seen, only a light background 

staining appears. Similarly, in the hippocampi of weak animals (B) only a slight increase in 

background-staining occurs. In contrast, in tissue from the strong animals, HSP72 is 

heavily expressed in a large population of pyramidal cells (C) and in some mossy cells, 

indicating that they were exposed to excitotoxic insult. Scale: 200 µm 
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Figure 17: Degeneration of principal cells and interneurons days 3 post pilocarpine  

3 days after pilocarpine injection Golgi-like stained mossy cells (A, B) appeared in the 

hilus with numerous stained processes (dendrites, spines, and thorny excrescences). Some 

granule cells (C) appeared to be positive as well, but less in number than in samples 1 day 

after the treatment. In addition, granule cells did not degenerate, which indicates, that 

HSP72-expression does not signal irreversible damage. In the CA1 region numerous 

principal cells (D) expressed HSP72 in a Golgi-like manner. Scale: 50 µm 
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These results prove that cellular differences can be seen between animals with 

different acute behavior; validating our classification into “weak” and “strong” groups. 

Irreversibly damaged cells were visualized with Gallyas silver impregnation (Fig. 18, 19) 

during this reaction silver binds to abnormal proteins; therefore, irreversibly damaged cells 

accumulate silver granules, in contrast to other living cells with red/orange staining. 

One day after pilocarpine injection no visual changes could be seen in weak animals 

compared to controls (Fig. 18A, B). In the strong animals most regions of the hippocampus 

appeared to be control-like, however, a dark silver deposit was present in hilar neurons 

undergoing argyrophilic degeneration (Fig. 18C, D) and occasionally in stratum oriens of 

the CA1 (Fig, 18E) or CA3 (Fig. 18F) pyramidal cells.  
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Three days after pilocarpine administration, Gallyas-staining was control-like in 

weak animals (Fig. 19A, B); however, in strong animals cell-loss was quite severe 

compared to that in animals 1 day after pilocarpine injection (Fig. 19C). Silver 

accumulation appeared in additional subregions; besides stratum oriens, numerous 

degenerated, shrinked cells or dendrites were present in strata pyramidale and radiatum of 

the CA1 (Fig. 19D) and CA3 (Fig. 19E) moreover, several degenerating somata and  

dendrites appeared in the hilus (Fig 19F). 
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5.4. Analysis of CB1-R distribution in different phases of pilocarpine-induced epilepsy 

 

5.4.1. Distribution of CB1 receptors in control tissue 

In control samples intense CB1-R immunostaining was found throughout the 

hippocampus (Fig. 20A). Immunopositive cell bodies of interneurons were seen in all 

hippocampal subfields, mostly in strata radiatum and lacunosum-moleculare of CA1 and 

CA3, as well as at the border of the hilus and in the inner molecular layer of the dentate 

gyrus. These cells are known to be CCK-positive as well (Katona et al, 1999b) and are 

dendritic or perisomatic targeting interneurons (Freund & Buzsaki, 1996). Intense staining 

of CB1-R-positive fibers was found in stratum pyramidale of the cornu Ammonis (Fig. 20 

B, C) and in the molecular layer of the dentate gyrus (DG) (Fig. 20C). The most intense 

staining appeared in the inner third of str. moleculare where the terminals of mossy cells 

can be found (these terminals express great amount of CB1-R protein). In contrast, less 

dense labeling was observed in the strata lucidum (Fig. 20C) and granulosum (Fig. 20D) 

(Haller et al, 2007; Katona et al, 2006; Matyas et al, 2004)  
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Figure 20: Distribution of CB1-Rs in control hippocampus 

In control tissue CB1 receptors were found throughout the hippocampus (A). Pyramidal 

layers of CA1 (B), CA3a (C) and the inner molecular layer of str. moleculare (D) were 

strongly labeled due to intensely stained terminals. Less intense staining was found in 

dendritic regions like strata oriens, radiatum and lacunosum-moleculare, and pyramidal 

layer of CA3 b and c. In contrast, very light staining occurred in str. lucidum (C) and str. 

granulosum D). Scale: A: 200µm, B, C, D: 50 µm. 
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At the electron microscopic level numerous immunopositive axon terminals were found 

forming symmetric or asymmetric synapses. Immunogold particles indicating the presence 

of CB1-Rs was located predominantly perisynaptically and presynaptically (typically in 

terminals) as described earlier (Katona et al, 1999a; Nyiri et al, 2005).  

 

5.4.2. Distribution of CB1 receptors in the acute phase of epilepsy (2 hours) 

In the acute phase, epileptic hippocampi from members of the weak group showed 

control-like phenotype: no major changes were seen in the distribution and density of 

immunolabelled elements. Compared to controls (Fig. 21A, C), in tissue from the strong 

group a robust decrease in immunopositivity was observed throughout the hippocampus, 

namely, the dense axonal meshwork seen in the strata moleculare, radiatum and oriens of 

controls was substantially reduced (Fig. 21B, D). Moreover, CB1-R immunopositive 

boutons forming baskets in the principal cell layers could hardly be seen at light 

microscopic level (Fig. 21B). In this phase a global downregulation of the protein appeared. 
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Figure 21: Changes of CB1-R-staining in the acute phase 

In control samples intense staining of CB1-R-positive fibers can be seen in CA1 stratum 

pyramidale and radiatum (A) and in the molecular layer of the dentate gyrus (C).  

In the acute phase of epilepsy (2 hours after pilocarpine injection) the hippocampi of 

strongly epileptic animals show decrease of CB1-R staining (B, D) compared to controls (A, 

C). The change is more remarkable in CA1 than in the DG, where the faint diffuse staining 

of the inner str. moleculare is hardly affected. Scale: 50 µm 
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5.4.3. Reversible changes in CB1-R expression in acute slices (2 hours post pilo) 

To investigate the electrophysiological correlates of our anatomical findings 

observed in acute phase, we planned to record the effects of CB1–R activation on 

hippocampal function. In vitro slices were prepared from the hippocampi of control and 

strongly epileptic animals. As a first step, immunostaining for CB1-Rs was carried out on 

the slices at two time points: immediately fixed after the slice cut and after 2 hours of 

incubation in an interface-type holding chamber. Surprisingly, we observed that after 2 

hours of incubation, slices from strongly epileptic animals showed control-like distribution 

of CB1-Rs (Fig. 22A, C, and D). However, when slices from the same animals were 

immediately fixed after cutting, a similar decrease in CB1-R distribution was found as seen 

in perfusion fixed animals (compared to controls) (Fig. 22B).  
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Figure 22: Reversible changes in CB1-R-staining in slice preparation (acute phase)  

In CA1 region of surviving brain slices 2 hours post pilocarpine a massive decrease is seen 

in CB1-R staining in strongly epileptic animals (B) compared to scopolamine treated 

controls (A) as it was seen in perfusion-fixed epileptic animals. In contrast, the slices from 

the same animals which were incubated in ACSF for an additional 2 hours the CB1-R 

staining in the epileptic tissue (D) did not differ from control slices (C). Scale: 50 µm 
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These data suggest that under our circumstances the consequences of the acute 

phase on hippocampal CB1-R function cannot be studied using in vitro slice preparations, 

since the changes in CB1-R distributions after acute seizures recovers within the incubation 

time that has to precede recording.  

Since functional consequences of CB1-R decrease could not be established with in 

vitro methods, we studied the seizures of animals a priori, lacking CB1-Rs (CB1-R knock-

out animals).  

 

5.4.4. Increased mortality after seizures in CB1 KO animals 

We addressed the question how seizure susceptibility changes in CB1-R knock out 

mice, therefore 22 controls were examined, 22 CB1-R knock out animals and 21 wild type 

littermates were injected with pilocarpine in a different set of experiments. CB1-R KO 

animals received very intense seizures (typical for strong epileptic animals) they were more 

susceptible to epilepsy as only 3 animals had mild seizures out of 22 and all 19 animals 

showing strong seizures died in 15 minutes (Graph 4).         
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Graph 4: Seizure severity and survival rates displayed by of KO and wild type 

animals 

Graph showing the number of animals as a function of seizure strength demonstrates that 

knock out animals had more severe seizures compared to wild types and never survived 

tonic-clonic (Racine 5) seizures. 

 

 

                                                                                                                                                                                                                        

Mice receiving only mild or no seizures (members of the weak group), survived and were 

sacrificed in the chronic phase. These animals showed no signs of pathological alterations, 

NeuN and Gallyas labeling was similar to the staining in weak wild type littermates (not 

shown).  

These results demonstrate a protective role of CB1-R activation in epilepsy (during 

strong seizures) as it has been shown previously (Bhaskaran & Smith, 2010; Guggenhuber 

et al, 2011; Monory et al, 2006).  
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5.4.5. Ultrastructural changes of CB1-R expression in the acute phase of epilepsy 

At the electron microscopic level degenerating profiles were observed occasionally 

throughout the hippocampus.  They were mostly oedemic dendritic profiles, axon terminals 

and spines; however, they were not selectively CB1-R-positive.  

To quantify the changes of CB1-R expression, systematic random sampling was 

carried out in the str. moleculare of the dentate gyrus. We could not take advantage of 

dissector method, since one cannot obtain accurate counts in a reasonable time when 

structures of interest form a very small fraction (da Costa et al, 2009) as it is the case in this 

study. Moreover, we wished to minimize alterations caused by the sprouting of positive or 

non-positive fibers in the examined area, therefore, we have examined a large area 

(>40.000 µm2) in a single plane.  

 A total of 298 terminals were digitized (169 of control tissue, 129 of strong 

epileptic tissue) and analyzed. First we compared the ratio of immunolabelled axon 

terminals establishing symmetric versus asymmetric synapses in the same sample of 298 

terminals (Graph 5, Fig. 23).  

The percentages of CB1–R immunopositive axon endings forming symmetric and 

asymmetric synapses found in acute epileptic samples were calculated and compared to the 

percentage observed in controls (Graph 5, Fig. 23). The analysis revealed no significant 

change in these ratios (control: 79.6 ± 7.6 % in case of asymmetric and 20.4 ± 7.6 % in case 

of symmetric synapses; strong epileptic: 80 ± 4 % in case of asymmetric and 20 ± 4 % in 

case of symmetric synapses, p>0.05; Mann-Whitney test) (Graph 5). To uncover changes 

in the overall number of stained terminals, we counted every stained terminal in the entire 

width of the reembedded part of str. moleculare, and normalized the results to unit area (40 

000 µm2). Compared to control tissue, a significant decrease was found in the number of 

labeled asymmetric and symmetric synapses (control asymmetric: 18.9 ± 2.3; symmetric: 6 

± 0.2; strong epileptic asymmetric: 11.8 ± 3.7, symmetric: 3.2 ± 0.7; p<0.05; Mann-

Whitney test) (Graph 6).  

In the next step we counted the number of gold particles in the membrane of CB1-

R-stained terminals and normalized it to the perimeter of the terminal membrane (particle 

/1 µm) to uncover any changes occurring on a smaller scale. No difference was found in the 
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normalized quantity of gold particles either in case of symmetric (control: 0.69±0.29, 

strong epileptic: 0.59±0.34) or in case of asymmetric synapses (control: 0.64±0.27, strong 

epileptic: 0.63± 0.33) (Graph 7). However, when measuring the perimeter of 

immunopositive terminals an increase occurred in case of symmetric synapses indicating 

swelling of these terminals (p<0.05; Mann-Whitney test) (control: 2±0.67 µm, strong 

epileptic: 2.63±0.87 µm).  

Nevertheless, no such difference was observed among stained terminals forming 

asymmetric synapses (control: 1.9±0.76 µm, strong epileptic: 2.12±0.9 µm).  

Taken together, the results imply that mechanism(s) other than axon terminal 

degeneration could account for the loss of CB1-R staining in the acute phase of epilepsy; 

though it may cause serious alterations in transmitter release. 

To understand further changes in CB1-R expression we examined other phases as well. 
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Figure 23: Ultrastructure of CB1-R-positive terminals in the acute phase of epilepsy 

 High power electron micrographs of CB1-R immunolabelled axon terminals from the str. 

moleculare of the DG of controls (A,C) and acute epileptic animals (2 hours) (B, D) post 

pilo. Our antibody labels both CB1-R-positive terminals giving symmetric (A, B) and 

asymmetric (C, D) synapses. Gold particles are located extrasynaptically. Scale: 200 nm.  

 

 

DOI: 10.14753/SE.2013.1784



 71 

Ratio of asymmetric and symmetric CB1-R-
positive synapses

0

50

100

Control Acute

%

asymmetric

symmetric

 

Graph 5:  Unchanged ratio of CB1-R-stained symmetric versus asymmetric synapses 

in the acute phase 

Graph shows no changes in the ratio of CB1-R immunopositive terminals establishing 

symmetric versus asymmetric synapses in control and epileptic tissue in str. moleculare of 

the DG. No difference was found in the ratio of immunopositive asymmetric versus 

symmetric synapses in the DG of strong animals in the acute phase.  
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Graph 6: Quantitative changes of CB1-R immunostained terminals in the acute phase 

of epilepsy 

Graph shows changes in the absolute number of symmetric versus asymmetric synapses in 

control and epileptic tissue. Significant decrease was found in the number of CB1-R 

immunostained asymmetric and symmetric synapses in the DG of strong animals in the 

acute phase, compared to controls. 

Statistics were calculated with Mann-Whitney test (p<0.05). 
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Graph 7: Quantitative changes of gold particles indicating the presence of CB1-Rs in 

the acute phase of epilepsy 

Changes occur in the normalized number of gold particles indicating the presence of CB1-

Rs in control and strong epileptic tissue. No difference appears in the mean density of gold 

particles in asymmetric or symmetric synapses in acute epileptic tissue compared to control 

tissue. Statistics were calculated with Mann-Whitney test (p<0.05). 

 

 

5.4.6. Distribution of CB1 receptors in the latent phase of epilepsy (1 and 3 days post 

pilo) 

One day after pilocarpine injection CB1-R levels were control-like both in weak and 

strong animals. Three days after pilocarpine injection upregulation of CB1-R 

immunoreactivity occurred in some animals of the strong group. There was a gradual 

recovery in CB1-R intensity 1 and 3 days post pilo. 3 days after SE principal cells began to 

degenerate and HSP72 staining was more extended referring to excitotoxic damage caused 
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by the initial seizures (Fig. 16,17). However, in the latent phase the decrease in the 

intensity of the receptor staining was not observed any longer. CB1-R staining proved to be 

control-like or moderately increased. 

 

5.4.7. Distribution of CB1 receptors in the chronic phase of epilepsy (1 and 2 months) in 

mice 

To study the long-term changes in CB1-R levels, their distribution was examined one 

month after pilocarpine injection, in the chronic phase. In general, similar alterations in 

CB1-R staining were found in these animals as we observed earlier with antibody 

recognizing only CB1-R at inhibitory terminals (Magloczky et al., 2010). In epileptic 

animals of the weak group the distribution of CB1-Rs was mostly control-like. In the 

sclerotic samples the general CB1-R immunostaining was enhanced throughout the 

hippocampus compared to controls (Fig. 24A,C). The density of immunostained fibers in 

CA1 increased heavily in surviving elements of strata pyramidale and radiatum (Fig. 24B). 

Similarly, in DG a dense CB1-R-positive axonal plexus was found in strata moleculare and 

granulosum (Fig. 24D). Immunopositive interneuron somata were present both in the 

dentate gyrus and in the CA1 and CA3 areas.  
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Figure 24: Changes in CB1-R-staining in the chronic phase  

CB1-R immunostaining in the hippocampi of control (A, C) and chronically epileptic, 

sclerotic mice (1 month post pilocarpine)(B, D). In the sclerotic samples the general CB1-R 

immunostaining is much stronger throughout the hippocampus. In the CA1 (A) a dense 

immunostained axonal plexus can be seen in the sclerotic CA1 region (layers cannot be 

distinguished) (B). In the dentate gyrus stained fibers establish more dense meshworks than 

in control tissue (D). Scales: A, C, D: 50 µm B: 20 µm
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5.4.8. Ultrastructural analysis of CB1-R distribution in the chronic phase (in mice) 

At the electron microscopic level, numerous glial elements and occasionally 

degenerating profiles were seen, changes that are typical for epileptic tissues (Corsellis & 

Meldrum, 1976), however glial elements did not seem to be positive for CB1-R staining 

(CB1-R-staining in glial elements was around detection threshold). The general 

ultrastructural features of CB1-R-positive elements were unchanged; nevertheless, the 

number of stained terminals increased significantly (p<0.05) (Fig. 25). Changes in the ratio 

of CB1-R-stained terminals establishing symmetric versus asymmetric synapses were 

analyzed (3 control and 3 strong epileptic mice, number of quantified terminals: 169 

controls, 178 strong epileptic). In epileptic animals the ratio was significantly changed; the 

mean percentage in control tissue was 79.6 ± 7.64% in case of asymmetric (Fig. 25D) and 

20.4 ± 7.6% in case of symmetric synapses (Fig.25B), in strong epileptic tissue 51.4 ± 

3.9% of the examined terminals proved to be asymmetric whereas 48.6 ± 3.9% was 

symmetric (Graph 8) (p<0.05; Mann-Whitney test). These results may suggest either a loss 

of stained asymmetric synapses or an increase of symmetric synapses, or both.  

To address this question, we used systematic random sampling as described above 

and digitized every stained terminal throughout the entire width of the reembedded part of 

str. moleculare, and normalized the results to unit area (40.000 µm2). Compared to control 

tissue a significant increase was found in the number of CB1-R-positive asymmetric and 

symmetric synapses (control asymmetric: 18.9 ± 2.3 symmetric: 6 ± 0.2; epileptic: 

asymmetric: 34.9 ± 10.9, symmetric: 32.3 ± 18.5, p<0.05; Mann-Whitney test), (Graph 9). 

During the analysis of immunogold-labeled axon terminals, we noticed an increase in the 

number of immunogold particles located at symmetric synapses in the hippocampi of 

chronically epileptic animals of the strong group (Fig. 25B) (Karlocai et al, 2011).  

 To quantify these changes, immunogold particles were counted in 3 control and 3 

strong epileptic animals in 302 (125 controls and 177 strong epileptic) terminals. The 

number of gold particles in the membrane of CB1-R stained axon terminals forming 

symmetric or asymmetric synapses was counted and normalized to unit perimeter of the 

axon terminal membrane (particle/1 µm). No difference was found between asymmetric 

synapses in control and epileptic tissue in the average quantity of gold particles (control: 
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0.64 ± 0.27, strong epileptic: 0.633 ± 0.46, p>0.05, Mann-Whitney test).  In contrast, the 

number of immunogold particles significantly increased in axon terminals forming 

symmetric synapses (control: 0.69 ± 0.29, strong epileptic: 0.99 ± 0.49, p<0.05, Mann-

Whitney test) (Graph 10). Furthermore, the perimeter of immunopositive terminals 

establishing symmetric synapses significantly increased in strong epileptic animals in the 

chronic phase (control: 1.99±0.67 µm, strong epileptic: 2.7±0.9 µm). No such change was 

observed in terminals establishing asymmetric synapses (control: 1.89±0.8 µm, strong 

epileptic: 2.22±0.93 µm). 
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Figure 25: Ultrastructure of CB1-R-positive terminals 

 High power electron micrographs of CB1-R immunolabelled axon terminals from the str. 

moleculare of the DG of controls (A,C) and chronic epileptic animals (1 month) (B, D) post 

pilo. Our antibody labels both CB1-R-positive terminals giving symmetric (A, B) and 

asymmetric (C, D) synapses. Gold particles are located extrasynaptically. In the chronic, 

strong tissue the number of gold particles on terminals forming symmetric synapses has 

increased (B). Scale: 200 nm.  
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Graph 8: Changes in the ratio of CB1-R immunostained terminals in the chronic 

phase of epilepsy 

Graph shows changes in the ratio of CB1-R immunopositive terminals establishing 

symmetric versus asymmetric synapses in control and chronic epileptic tissue in str. 

moleculare of the DG. Compared to controls, a significant increase can be seen in the ratio 

of CB1-R-stained symmetric versus asymmetric synapses in strong epileptic animals.  
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Graph 9: Quantitative changes of CB1-R immunostained terminals in the chronic 

phase of epilepsy 

Graph shows changes in the absolute number of symmetric versus asymmetric synapses in 

control and chronic epileptic tissue. In strong animals in the chronic phase, a significant 

increase was found in the number of immunostained terminals forming asymmetric and 

symmetric synapses. Statistics were calculated with Mann-Whitney test (p<0.05). 
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Graph 10: Quantitative changes in the number of gold particles in terminals (chronic 

phase of epilepsy) 

Graph shows changes in the normalized number of gold particles indicating the presence of 

CB1-R protein in control and epileptic tissue. No difference appears in the mean density of 

gold particles in epileptic tissue in case of asymmetric synapses. However, the number of 

gold particles located in symmetric terminals increase significantly in the epileptic tissue.  

Statistics were calculated with Mann-Whitney test (p<0.05). 
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In summary, we found that the ratio of stained symmetric versus asymmetric 

synapses was unchanged in the acute phase, whereas, it has significantly changed in the 

chronic phase. The number of immunolabelled axon terminals forming asymmetric and 

symmetric synapses was decreased in the acute and increased in the chronic phase. In 

addition, the number of gold particles indicating the presence of CB1-Rs was increased on 

terminals forming symmetric synapses but only in the chronic phase (no such difference 

occurred in case of asymmetric synapses). These results may indicate a transient decrease 

of the receptor function in the acute phase leading to abnormally high transmitter release. In 

contrast, the elevation of CB1-R density in the chronic phase, may secure the balance of 

transmitter release, acting as an extremely powerful circuit-breaker on GABAergic and 

glutamatergic transmission (Cinar et al, 2008). 
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6. Discussion 

 

Endocannabinoids as retrograde signal molecules are released by large intracellular 

Ca2+ transients, complex-spike burst-firing, and/or phospholipase C activation via 

metabotropic receptors in neurons (Freund et al, 2003; Kano et al, 2009). They bind to 

presynaptic CB1-Rs located on glutamatergic and GABAergic axon terminals, and thereby 

decrease transmitter release from excitatory and inhibitory boutons arriving primarily onto 

the same neurons (Hajos et al, 2000; Sullivan, 1999).  

In our model various aspects of epileptic cell loss and reorganization are similar to 

that seen in human TLE (Clemens et al, 2007; Leite & Cavalheiro, 1995; Magloczky et al, 

1997; Toth et al; Wittner et al, 2005; Wittner et al, 2001). On the basis of our results the 

strength of seizures in the acute phase can be used to predict future changes (e.g. cell loss) 

in the chronic phase. The vulnerability of cells differed between “weak” and “strong” 

groups, as indicated by HSP72-expression in the latent phase. The expression of CB1-Rs 

related to the GABAergic and glutamatergic axon terminals was strongly decreased without 

specific degeneration in the acute phase, but in the chronic phase a significant upregulation 

occurred in the number of immunostained terminals. In addition, a significant increase was 

seen in the number of CB1-Rs in a single terminal, but only in terminals forming 

symmetric synapses. In human tissue an upregulation was seen in CB1-R-positive terminals 

forming symmetric synapses similar to the mouse model. Despite quantitative changes in 

the number of stained terminals, the target distribution was not altered neither in human nor 

mice TLE. 

The question arises whether the different changes in the endocannabinoid-mediated 

reduction of GABA and glutamate release (Bragin et al, 2002; Freund & Hajos, 2003) 

contribute to seizure generation and maintenance, or should it rather be considered as a 

neuroprotective reaction (Guggenhuber et al, 2011; Monory et al, 2006). 

 

 

 

 

DOI: 10.14753/SE.2013.1784



 84 

6.1. Changes in the acute phase of epilepsy 

Earlier investigations of short term changes in the endocannabinoid system revealed 

a robust downregulation in the acute phase (Falenski et al, 2009; Wyeth et al). In these 

studies the loss of staining was explained by initial cell death or the degeneration of 

terminals. In contrast, in our samples mild degeneration was observed involving different 

profiles which were rarely CB1-R-positive; moreover, swelling was observed in case of 

immunostained terminals forming symmetric synapses. In addition, in our study the acute 

phase was examined 2 hours after pilocarpine injection. Previous studies examined the 

“acute” phase at e.g. 9 hours to 1 week post SE (Wyeth et al, 2010). We were able to 

examine the acute changes as early as 2 hours post SE since we did not use 

benzodiazepines to terminate seizures. This way we could demonstrate that acute changes 

of CB1-R distribution are independent of cell loss and likely the consequence of initial 

seizure activity. 

Furthermore, the decrease of CB1-Rs in acute slices proved to be a reversible 

change, since they were redistributed in the membranes in a short time after “ending the 

seizures”/sacrificing the animals. Therefore, in vitro electrophysiology may not suitable to 

examine functional changes in the acute phase. These examinations suggest the occurrence 

of internalization and recycling (Hsieh et al, 1999), or degradation shortly followed by de 

novo synthesis.  

Endocannabinoids are known to be synthesized in an activity-dependent manner 

(Freund et al, 2003; Lutz, 2002; Piomelli et al, 2007). In case of epileptic hyperexcitation 

an increase may occur in endocannabinoid levels as proposed previously and shown in 

kainic acid model of TLE (Cadas et al, 1996; Howlett, 2002; Katona & Freund, 2008; 

Lourenco et al, 2011; Lutz, 2004; Marsicano et al, 2003), thus CB1 receptors become 

strongly activated. Although CB1 receptor agonists are potent anticonvulsants both in 

animal models and human patients with TLE (Cunha et al, 1980; Monory et al, 2006; 

Wallace et al, 2003), their constant presence may cause internalization of the receptor 

(Coutts et al, 2001; Tappe-Theodor et al, 2007) or changes in conformation (forming homo-

or heterodimers) (Gomes et al, 2001; Rios et al, 2001) leading to proconvulsive effects 

(Gordon & Devinsky, 2001; Keeler & Reifler, 1967) (Fig. 26). Therefore, the controversial 
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effects of cannabinoid agonists may be explained by the timing of their application 

(Echegoyen et al, 2009). 

 

6.2. Changes in the chronic phase of epilepsy 

 In the chronic phase of epilepsy a massive increase of CB1-staining located both at 

symmetric and asymmetric synapses was found throughout the hippocampus (Fig. 26). Our 

results differ from that of Falenski et al (Falenski et al, 2007) and Wyeth et al.(Wyeth et al), 

since in these studies the loss of staining was sustained throughout the chronic phase as 

well, at least in certain hippocampal subregions. This discrepancy could be explained by 

differences between the models. In our study we examined sclerotic animals with a cell loss 

pattern similar to that seen in human TLE patients. In animal models described earlier 

(Falenski et al, 2007; Wyeth et al) different results were found depending on the model 

conditions (e.g. termination of seizures by benzodiazepines or severity of cell loss pattern 

which was less then 10% in certain studies). 

 

6.2.1. Sprouting of excitatory fibers 

Increased number of glutamatergic terminals with CB1-Rs was found in the 

hippocampi of sclerotic (strong epileptic) animals, most probably due to the sprouting of 

CB1-R expressing fibers. This highlights the importance of endocannabinoid mechanisms 

in reducing glutamate release during epilepsy (Aguado et al, 2006; Azad et al, 2003). 

Recent findings show that the overexpression of CB1-Rs on glutamatergic synapses can 

protect against excitotoxic damage (Guggenhuber et al). Moreover, increased effects of 

CB1-R agonists and elevated levels of receptor protein were shown in the dentate gyrus of 

pilocarpine treated mice (Bhaskaran & Smith, 2010) (Fig. 26). 

Controversially, the innermost part of stratum moleculare was examined previously 

by Ludanyi et al. showing that a downregulation of CB1-Rs related to glutamatergic 

terminals occurs in the inner molecular layer of the dentate gyrus in human TLE patients 

(Houser, 1990; Ludanyi et al, 2008; Nadler et al, 1980; Sutula et al, 1989b). In the study of 

Ludanyi et al. the ratio of CB1-R stained asymmetric synapses was calculated by 

comparing the number of stained terminals to the number of unstained terminals in a given 
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area. However, intensive sprouting of excitatory axon terminals in the stratum moleculare 

occurs in the epileptic tissue as it has been described recently (Goffin et al, 2011) . The 

increased amount of CB1-R unstained terminals may explain the decreased ratio of CB1-R-

positive boutons found by Ludanyi et. al.. Another reason for this discrepancy can be the 

different method for quantification. In our study exclusively CB1-R-postive terminals were 

quantified in the entire width of str. moleculare.  

In addition, a recent study showed that an increased CB1-R availability could be 

observed in human TLE, which correlated negatively with the latency following the last 

seizure (Goffin et al, 2011; Ludanyi et al, 2008; Magloczky et al, 2010), therefore CB1-R 

expression seems to be regulated very dynamically, which may easily explain differences 

between the results. 

 

6.2.2. Sprouting of inhibitory fibers, changes in perisomatic inhibition 

In the chronic phase of epilepsy CB1-R-positive (and also CCK-positive) cell 

bodies were preserved in the dentate gyrus and in the CA1 area, despite the mass principal 

cell loss. Enhancement of the immunostained terminal density deriving from the surviving 

CB1-R-positive interneurons was associated with the degree of cell loss (Magloczky et al).  

In case of CB1-Rs located in terminals establishing symmetric synapses a strong 

increase in CB1-R-immunostaining was found both in the hippocampi of epileptic patients 

and in mice with CA1 sclerosis (Magloczky et al, 2010). Moreover, we found an increase 

of CB1-R level on single GABAergic terminals in parallel with an increase of terminal 

perimeter (Karlocai et al, 2011; Magloczky et al, 2010; Nusser et al, 1998; Wittner et al, 

2002). Results of Chen et al. (Chen et al, 2003) show a chronic increase of CB1-Rs on 

axons of cholecystokinin-containing inhibitory cells following febrile seizure-like events. 

Our previous study, showing the sprouting of CB1-R-expressing interneuronal fibers and 

the elevation of CB1-R levels both in a chronic model (pilocarpine) and in human patients 

highlights the involvement of the reorganized endocannabinoid system in the chronic phase 

of temporal lobe epilepsy (Katona et al, 1999b). In addition, the increase in the size of 

inhibitory terminals may have a role in altering the effect of inhibition as proposed 

previously (Chen et al, 2007). 
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Sprouting of CB1-R expressing neurons related to GABAergic fibers (mostly CCK-

containing cells) (Cohen et al, 2002; Cossart et al, 2005; Fujiwara-Tsukamoto et al, 2003; 

Stein & Nicoll, 2003; Szabadics et al, 2006; van den Pol et al, 1996; Woodin et al, 2003) 

may have controversial effects depending on the depolarizing or hyperpolarizing effect of 

GABA (Fig. 26). If GABA is hyperpolarizing, proconvulsant effects of CB1-Rs could 

occur, by reducing GABAergic inhibition (Chen et al, 2003; Cossart et al, 2001; 

Magloczky & Freund, 2005; Wittner et al, 2005; Wittner et al, 2001). However, in case of 

altered ion homeostasis, GABAA receptors may have depolarizing effects (Magloczky & 

Freund, 2005; Wittner et al, 2005), thus reduced GABA release would be anticonvulsive in 

a restricted area.  

GABA release causing hyperpolarization may be anticonvulsant as well, since 

enhanced perisomatic inhibition in chronic epilepsy was proposed to have a role in 

synchronizing seizure activity (Echegoyen et al, 2009). In addition, in epileptic tissue the 

axons of perisomatic targeting interneurons often sprout, suggesting an enhancement in this 

type of inhibition (Coutts et al, 2001). 

Consequently, the effect of altered CB1-R distribution may depend on the current 

network state and ion homeostasis. Reduced transmitter release may decrease seizure 

intensity in case of glutamate release, and also in case of GABA release, when GABA has a 

hypersynchronizing or depolarizing effect.  These scenarios, if they occur during epileptic 

seizures, may lead to an antiepileptic network effect of the increased density of CB1-Rs. 
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Figure 26: Changes in CB1-R-expression in different phases of TLE  

During the acute phase due to intense early seizures endocannabinoid levels increase, 

leading to receptor internalization Thus, transmitter release becomes increased which 

aggravates seizures. In contrast, during the chronic phase, compensatory mechanisms 

activate, more numerous CB1-cantaining terminals can be found, this way reducing the 

activity of the network. 

 

6.3. Preserved target distribution in human TLE and in the animal model of epilepsy 

Both in epileptic and human tissue we found an unchanged target distribution of 

CB1-R immunopositive elements. This result indicates that the reorganization of the 

endocannabinoid system affects only the density of receptors.  Thus, the target selectivity 

of CB1-R-expressing terminals follows a strict guideline; indicating, that an unchanged 

endocannabinoid-mediated decrease of transmitter release on distinct domains seems to be 

crucial in order to effectively decrease the abnormal transmitter release. The fact that the 

studied features of the endocannabinoid system were similarly changed or unchanged in 

human TLE and in the mouse model indicates that these alterations are strongly linked to 
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epileptic activity and reorganization. Thus, they may be considered changes widely 

occurring among species due to neuronal hyperexcitation. 

 

6.4. Therapeutic implications 

Previous studies by Echegoyen et al (Hsieh et al, 1999) showed that the application 

of SR141716, a CB1 receptor antagonist, in the early acute phase can prevent long term 

hyperactivity of the neuronal network. This raises the possibility of an antiepileptogenic 

therapy which may prevent the evolution of chronic seizures. The internalization of CB1-

Rs caused by the application of WIN55212 can be rescued by the application of the 

antagonist SR141716 (Jones et al; Pertwee, 2008) acutely. This mechanism most likely 

underlies results found in the study of Echegoyen. However timing is critical in case of 

adding antagonists since it should be applied immediately and promptly after seizure onset.  

Another possible therapy is the use of CB1-R agonists. The agonist causing the 

smallest internalization is THC (delta9-tetrahydrocannabinol) (Coutts et al, 2001; Hsieh et 

al, 1999) which is not used in therapy due to its addictive and hallucinogenic effects. 

Nevertheless, non-psychotropic analogs of tetrahirdocannabinol, like cannabidiol have 

antiepileptic properties as well (Guggenhuber et al, 2011), moreover they cause only little 

internalization (Falenski et al, 2007; Marsicano et al, 2003; Wyeth et al) and therefore, they 

might be suitable candidates (Echegoyen et al, 2009; Goffin et al, 2008; Naderi et al, 2008).  

However, one should take into account that various changes can be seen in different 

models of epilepsy (Goffin et al, 2011; Guggenhuber et al, 2011; Karlocai et al, 2011) and 

in epileptic patients the original therapeutic drugs may counteract with endocannabinoid 

ligands. Thus, additional studies are required targeting other members of the 

endocannabinoid system as potent targets of antiepileptic therapies.  
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7. Conclusions 

 

We showed that early seizures can determine the severity of future epileptic events. 

With the neurochemical marker HSP72 different mechanisms were shown to be activated in 

strong and weak animals leading to profound differences also in the chronic phase.  

In case of CB1-R-staining, robust changes were only found in animals with strong 

acute seizures. In animals with mild seizures and hardly any cell loss, CB1-R distribution 

was not altered considerably. However, it is important to consider that in human TLE 

patents sclerosis is the most common cell loss pattern; therefore, alterations in animals with 

similar cell loss are likely to be relevant in human TLE. 

 The death of CB1 KO animals with strong acute seizures suggest that CB1 

receptors may have a key role in the control of the first seizures, and thereby may prevent 

the seizures from reaching the “no-return” state. Thus, the decrease of CB1-Rs in animals 

with strong acute seizures may lead to elevation of glutamate release during acute seizures, 

as well as to the subsequent development of recurrent seizures, reorganization and cell loss. 

The increased density of CB1-Rs in the chronic phase may serve as a protective mechanism 

in most cases as confirmed in earlier studies.  

The unchanged target distribution of CB1-R-positive elements indicate that the 

increased endocannabinoid tone is necessary on all cellular domains,  thus; the greater input 

affects the somatic and dendritic regions as well. 
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8. Summary 

The endocannabinoid system plays a central role in retrograde synaptic 

communication and may control the spread of activity in an epileptic network. In human 

and mouse TLE samples the intensity of CB1-R-staining in inhibitory synapses was 

increased in sclerotic samples. Analysis of target distribution did not show any changes 

neither in case of epileptic human nor in case of epileptic mice. 

Using the pilocarpine model of temporal lobe epilepsy we examined the expression 

pattern of the Type 1 cannabinoid receptor (CB1-R) in the hippocampi of CD1 mice at 

survival times of 2 hours, 1 day, 3 days and 2 months (acute, latent and chronic phases). 

Based on the behavioral signs of the acute seizures, animals were classified as "weakly" or 

"strongly" epileptic using the modified Racine scale. Mice of the weak group had mild 

seizures, whereas seizures in the strong group were frequent with intense motor symptoms 

and the majority of these animals developed sclerosis in the chronic phase. 

In control samples the most intense staining of CB1-R-positive fibers was found in 

the molecular layer of the dentate gyrus and in str. pyramidale of the cornu Ammonis. In 

weak animals no significant changes were seen at any survival time compared to controls. 

In strong animals, however, in the acute phase, a massive reduction in CB1-R-stained 

terminals occurred in the hippocampus. At electron microscopic level the absolute number 

of immunostained terminals decreased in DG. However 2 hours after ending the seizures 

the CB1-R-staining recovered in in vitro slices. 

In the chronic phase, CB1-immunostaining in sclerotic samples was stronger 

throughout the hippocampus. Quantitative electron microscopic analysis showed an 

increase in the number of CB1-R-positive terminals in the dentate gyrus. Moreover, the 

number of immunogold particles significantly increased in GABAergic terminals.  

Our results suggest a proconvulsive downregulation of CB1 receptors in the acute 

phase most probably due to receptor internalization, followed by compensatory 

upregulation and sprouting in the chronic phase of epilepsy. In conclusion, the changes in 

CB1 receptor expression pattern revealed in this study are associated with the severity of 

hippocampal injury initiated by acute seizures that ultimately leads to sclerosis in the 

vulnerable regions in the chronic phase. 
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9. Összefoglalás 

Az endocannabinoid rendszer központi szerepet játszik a retrográd szinaptikus 

kommunikációban és képes befolyásolni az aktivitás terjedését egy epileptikus hálózatban. 

Jelen munkában temporális lebeny eredetű epilepsziás emberi és egér mintákban erősödést 

tapasztaltunk a gátló szinapszisokat érintő CB1-R festésben. A immunpozitív terminálisok 

célelemeinek vizsgálata nem mutatott változást epilepszia hatására sem az emberi, sem az 

egér hippokampuszban. 

Állat modellünkben (pilokarpin) elemeztük az 1-es típusú kannabonoid receptor 

expressziójának változását CD1-es hím egerek hippokampuszában 2 órával, 1-és 3 nappal, 

valamint 2 hónappal a pilokarpin kezelés után (akut, latens, krónikus fázis).  

Az akut rohamok során megfigyelt viselkedés alapján az állatokat “erősen” és 

“gyengén” epilepsziás csoportokra osztottuk a módosított Racine-skála segítségével. A 

gyenge csoport tagjai kevés és enyhébb rohamokat kaptak, míg az erős csoport tagjai 

gyakran mutattak tónusos-klónusos rohamokat. Ezen állatok a krónikus fázisban többnyire 

szklerotikusnak bizonyultak. Kontroll állatokban a legerősebb CB1-R festést a str. 

moleculareban és a str. pyramidaleban találtuk. Gyengén epilepsziás állatokban nem volt 

jelentős különbség a kontrollokhoz képest semelyik fázisben sem. Ezzel szemben az erős 

állatokban, az akut fázisban, jelentős csökkenés volt tapasztalható az egész 

hippokampuszban. Elektronmikroszkópos vizsgálatok kimutatták, hogy a CB1-R-pozitív 

terminálisok száma szignifikánsan lecsökken, ám 2 órával a rohamok vége után a festés 

fokozatosan visszatért kontroll-szerűvé in vitro szeltekben. 

A krónikus fázisban a CB1-R festés az egész hippokampuszban megerősödött. 

Kvantitatív elektronmikroszkópos vizsgálatunk kimutatta, hogy a CB1-R-pozitív 

terminálisok száma megnő a str. moleculare-ban. Ezen túl, a fehérjét jelölő arany szemcsék 

száma is megnőtt gátló terminálisok esetén.  

Eredményeinkből arra következthetünk, hogy a CB1-R-ok csökkenése egy 

prokonvulzív folyamat, melynek legvalószínűbb oka a receptor internalizáció.  A krónikus 

fázisban megjelenő növekedés és sarjadzás pedig egy kompenzációs folyamat eredménye 

lehet. Összességében a CB1-R expresszió változása a hippokampusz károsodásának 

mértékével arányos. 
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