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Beyond Structural Equation Modeling: model properties and 
effect size from a Bayesian viewpoint. An example of complex 
phenotype - genotype associations in depression

Despite the rapid evolution of measurement technologies in biomedicine and genetics, most 
of the recent studies aiming to explore the genetic background of multifactorial diseases 
were only moderately successful. One of the causes of this phenomenon is that the bottle-
neck of genetic research is no longer the measurement process related to various laboratory 
technologies, but rather the analysis and interpretation of results. The commonly applied 
univariate methods are inadequate for exploring complex dependency patterns of multifac-
torial diseases which includes nearly all common diseases, such as depression, hypertension, 
and asthma. A comprehensive investigation requires multivariate modeling methods that 
enable the analysis of interactions between factors, and allow a more detailed interpretation 
of studies measuring complex phenotype descriptors. In this paper we discuss various aspects 
of multivariate modeling through a case study analyzing the effect of the single nucleotide 
polymorphism rs6295 in the HTR1A gene on depression and impulsivity. We overview basic 
concepts related to multivariate modeling and compare the properties of two investigated 
modeling techniques: Structural Equation Modeling and Bayesian network based learning 
algorithms. The resulting models demonstrate the advantages of the Bayesian approach in 
terms of model properties and effect size as it allows coherent handling of the weakly sig-
nificant effect of rs6295. Results also confirm the mediating role of impulsivity between the 
SNP rs6295 of HTR1A and depression.
(Neuropsychopharmacol Hung 2012; 14(4): 273-284; doi: 10.5706/nph201212009)
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IntroductIon

After a wide-spread use in social sciences (Spirtes et 
al., 2000) the application of graphical models became 
increasingly popular in the fields of biomedicine and 
genomics, when the need for modeling potentially 
complex dependency structures between genomic, 
environmental, and clinical factors and disease state 
indicators emerged. In case of depression, the influ-
ence of genetic factors on the total risk of developing 
the illness is estimated between 30-40% (Bagdy, 2011). 
The majority of the risk is attributed to non-genetic 
factors such as the social-economic state, family back-
ground and negative life events (Wray et al., 2012).

Despite this known fact, the majority of Genome-
wide association studies (GWAS) applied a single 
target – simple phenotype approach which neglected 
the complex background of multifactorial diseases 
(Sullivan et al., 2009; Consortium, 2012; McMahon 
et al., 2010; Shyn et al., 2011). The applied univariate 
statistical methods (e.g. pairwise association tests) 
were simple and computationally efficient. However, 
the interpretation of the results was problematic in 
many cases due to the strict thresholds on signifi-
cance levels which were used to account for multiple 
hypothesis testing.

A more comprehensive investigation of depression 
requires multivariate methods enabling the analysis 
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of interactions between factors, e.g. the relevance of 
genetic factors with respect to negative life events 
and the severity of depression. Such methods allow 
a finer interpretation of studies measuring complex 
phenotype descriptors e.g. various scores measuring 
impulsivity or other personality traits.

In this paper we investigate different aspects of 
modeling the effect of the single nucleotide poly-
morphism rs6295 in the HTR1A gene on depression, 
measured by the Zung self-rating depression scale 
(ZSDS), and impulsivity (Benko et al., 2010). After 
an overview on the basic concepts related to multi-
variate modeling, we provide a brief comparison of 
Bayesian statistics and traditional hypothesis testing. 
In Section 2 we describe the analyzed data set and the 
main characteristics of the two investigated modeling 
techniques: Structural Equation Modeling (SEM) and 
Bayesian network-based learning algorithms. In Sec-
tion 3 corresponding results of HTR1A – impulsivity 

– depression models are presented. Finally, in Section 
4 we compare the properties of SEM and Bayesian 
network-based learning methods, and discuss the 
advantages of multivariate modeling.

An overview on multivariate modeling :  
predictive versus system-based modeling

Multivariate methods can be divided into two main 
classes: conditional modeling-based methods (mod-
eling the dependency of an outcome1) and systems-
based modeling methods (modeling the complete 
system of dependencies of multiple factors2). The 
conditional modeling approach, e.g. logistic regres-
sion, aims to identify highly predictive factors without 
the explicit commitment to the exploration of their 
possible roles in the causal mechanisms (depend-
ency patterns) concerning a target. Although this 
approach allows the analysis of interactions, e.g. add-
ing interaction terms to a logistic regression model, 
it does not provide a detailed characterization of the 
relationships involved in the model. For example, 
stress is a major factor that influences several aspects 
of depressive disorders through different mediating 
factors. Given a depression-related data set the signifi-
cance of stress can be identified by using conditional 
modeling. However, the nature of the relationship 
between depression and stress (denoted as Y and X0 

in Figure 1a), e.g. whether it is a direct dependency 
relationship or a transitive relationship mediated by 
other factors, will remain hidden or confounded. This 
can be a significant drawback in exploratory analysis, 
particularly when the causal role of factors is not 
well known.

On the other hand, systems-based modeling meth-
ods share the common goal of identifying dependency 
relationships between variables such as phenotypes, 
genetic features, and environmental aspects. This 
dependency pattern can be visualized by a directed 
graph, in which variables are represented by nodes, 
dependency relationships are represented by directed 
edges. Assuming additional conditions this graph 
may coincide with the causal model which describes 
mechanisms governing the analyzed domain, i.e. the 
factors influencing the incidence and severity of the 
disease. Figure 1b shows a hypothetical dependency 
structure demonstrating the possible relationship 
types centered on a selected target: direct causes,  
direct effects, interactions and transitive relation-
ships. Assuming depression state as the target Y, direct 
causes (denoted as X6 and X7 using green nodes) are 
factors that trigger a depressive state or influence 
its severity. Coping skill for example may serve as a 
direct cause as it determines the handling of nega-
tive life events. Direct effects (denoted as X9, X10 and 
X11 using orange nodes) are factors directly affected 
by the presence of a depressive state. Remarkable 
examples are mood (as negative change of mood), 
activity (as decreased mental activity) and anxiety (as 
increased level of anxiety). Contrary to these direct 
relationships, interacting factors (denoted as X4, X5 
using teal blue nodes) have a mediated relationship 
with the target. In this case serotonin level can be 
considered as an interacting factor (X4) with depres-
sion (Y) via processing of sad emotions (X9). This 
can be interpreted in the following way: a decreased 
level of serotonin can be caused by alterations in the 
metabolism of serotonin that is independent of de-
pression (e.g. drug treatment with Reserpin), how-
ever via altered sad emotion processing the change 
in serotonin level is related to depression. Transitive 
relationships are also indirect with respect to the tar-
get, i.e. in the model there is directed path between 
the target and the factor, but the factor is not adjacent. 
The direct relationships and interactions form the 
strongly relevant set of factors with respect to the 
target. The mechanisms described by the strongly 
relevant set shields the target from the direct influence 
of other factors. Therefore, the identification of this 
set provides valuable information on the structurally 

1 Besides “outcome”, the terms “output”, “target”, and “dependent” 
(variable) are also used in the literature.
2 Besides “factor”, the terms “input”, “predictor” and somewhat mislead-
ingly “independent” (variable) are also used in the literature.
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encoded aspects of relevance. However, transitive 
relationships can also be important, because they 
might be more accessible in terms of measurement. 
Another aspect of transitive relationships is that some 
of them are strong enough to be detected by asso-
ciation tests. Particularly, a root cause or a common 
effect (denoted by X0 and Xn respectively) may be a 
valuable source for diagnosis. In case of modeling 
depression stress can be considered as a root cause 
(X0), affecting several factors on multiple paths, and 
suicide as a common effect (Xn) influenced by several 
depression-related factors.

Bayesian versus frequentist (traditional)  
statistical approach

The main problem with systems-based modeling 
methods is that the identification of a complete 
model based on a given data set is statistically and 
computationally not feasible in most practical cases, 
mostly due to insufficient sample size. There are two 
straightforward approaches to this problem: (1) in-
vestigate how well the model fits the data given a fixed 
model structure, or (2) learn probable models from 
data and draw conclusions based on them. Struc-
tural Equation Modeling (SEM) methodology uses 
this former approach and relies on expert knowledge 
to create a model. In contrast, the latter approach 
applies a Bayesian viewpoint concerning multiple 
possible models. That is, instead of selecting one par-
ticular model, the distribution of possible models is 
investigated, i.e. the probability of various models is 
assessed. By using a technique called ‘model aver-
aging’ the relevant part of models can be identified.  
In this approach, a factor that is present in most pos-
sible models, (e.g. in 92%) will have a high ‘posterior 
probability’ (0.92). Consequently, if a factor appears 
in some (60%) or in only a few (8%) models then its 
posterior probability is respectively lower (e.g. 0.6 
and 0.08). Table 1 summarizes the main differences 
between the frequentist (including hypothesis testing) 
and the Bayesian paradigms. One of the most impor-
tant differences is that the Bayesian approach provides 
a hypothesis free exploration of the domain, whereas 
a general initial hypothesis is needed in the frequen-
tist case. This initial hypothesis typically assumes a 
worst case model contrary to the Bayesian approach, 
which allows averaging over models for a given data 
set by using informative3 or uninformative priors4. 
A further practical difference is related to the method 
of model validation. In case of the frequentist frame-
work a null hypothesis is rejected if the significance 

level corresponding to a computed statistic is lower 
than an arbitrary threshold. In contrast, the posterior 
probabilities of the Bayesian framework provide a 
direct measure of relevance for a given hypothesis 
related to a corresponding model structure. That is, 
instead of discarding potentially useful information, 
Bayesian methods provide means for aggregating and 
interpreting weakly significant results.

Bayesian network-based learning algorithms 
such as Bayesian network-based Bayesian Multilevel 
Analysis of relevance (BN-BMLA) (Antal et al., 2008; 
Antal, 2010) follow this Bayesian principle and allow 
the identification of strongly relevant factors.

MaterIals and Methods

Subjects

1139 unrelated Hungarian volunteers were recruited 
for the study. Subjects whose DNA sample was not 
successfully genotyped and subjects with missing 
questionnaire data were excluded from all statisti-
cal tests. Finally 953 subjects remained, 655 women 
(68.7%) and 298 men (31.3%). The participants were 
aged 18–60 years, the mean age was 31.309±10.688 
years. Participants were recruited from universities, 
general practices, and a community-based population. 
The inclusion of subjects was unrelated to any positive 
psychiatric anamnesis. Each subject was given an oral 
and written summary of the goals and procedures of 
the project. Before entering the study a formal written 
consent was given by each of the subjects. All subjects 
were Hungarian and of Caucasian origin. The study 
protocol (Lazary et al., 2008) was approved by the 
Central Ethics Committee in charge of genetic studies 
with human subjects.

Measured factors

Background information was obtained from all par-
ticipants using an adapted questionnaire originally de-
veloped by the Epidemiology Unit at the University of 
Manchester. The self-rating questionnaire collected de-
tailed information about socioeconomic background, 
and medical history including personal and family 
psychiatric history. The depressive state of subjects 
was measured by ZSDS score (Zung, 1965), denoted  

3 Using informative priors (a priori probabilities) for models means 
that some models are judged more probable a priori than others. 
4 In case of uninformative priors there is no distinction between the 
a priori probability of models. 
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Figure 1: (a) illustration of the conditional modeling approach ignoring structural properties, (b) illustration of systems-based modeling 
displaying possible structural relationship types. Y denotes the target, whereas X0, X1, …, Xn refer to various measured factors. Relationship 
types are shown with different colors (1b): X0 – common cause (purple), Xn – common effect (yellow), X6,X7 – direct cause (green), X9-X11 
– direct effect (orange), X4,X5 – interaction term (teal blue), X1-X3,X8,X12 – other elements (light blue). Nodes that are direct causes, direct 
effects or interaction terms form a set of strongly relevant set of factors (depicted graphically as a red ring), which statistically isolates the 
target from other factors.

Figure 1a Figure 1b

Frequentist Bayesian

Prior knowledge General model structure Several possible models with prior probabilities

Hypothesis Null hypothesis N/A

Model validation Indirect (proving by refutation) Direct

Method of evaluation Model selection (build your own model) Model averaging

Score Likelihood ratio test Bayes factor

Result p-value (reject or accept null hypothesis) Posterior probabilities

Variance Confidence interval Credible region

Basis of decision Significance level Optimal decision based on expected utility

Problems Multiple testing problem Computational

Table 1  The comparison of traditional (frequentist) and Bayesian approaches based on modeling properties. Prior knowledge – the type of 
a priori information used, Hypothesis –requires a preliminary (null) hypothesis, Model validation – the way of validation, Method of evaluation 
– the way of treating results, Score – the score used for the evaluation of models, Result – the output of modeling, Variance – a measure 
by which variance is defined, Basis of decision – the base of deciding on a final model, Problems – specific problems of the approach. N/A 
stands for not applicable.
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later as Zung Total. Analyzed factors included the 
second-order factors of the Barratt Impulsiveness 
Scale (BIS-11) which are non-planning, motor and 
cognitive impulsiveness scores (Patton et al., 1995), 
recent negative life events (Brugha et al., 1990; Caspi 
et al., 2003), childhood adversity score (Juhasz et al., 
2011; Gatt et al., 2009), gender (Kendler et al., 2002; 
Kendler et al., 2006; 2011), and the genotype informa-
tion of rs6295 in gene HTR1A. The HTR1A gene is 
located on the long arm of chromosome 5 (5q11.2–13)
(Kobilka et al., 1987) and rs6295 C(-1019)G is a func-
tional polymorphism in the promoter region of the 
gene (Wu et al., 1999). Previous studies indicate that 
the rs6295 polymorphism of the HTR1A gene is as-
sociated with several psychiatric disorders (Mekli et 
al., 2011), and also with personality traits, such as im-
pulsivity (Benko et al., 2010). Other polymorphisms 
of the gene HTR1A were also investigated in studies 
related to aggression and impulsivity (Nanasi et al., 
2011; Varga et al., 2011).

Statistical analysis by systems-based multivariate 
modeling

The traditional univariate approach towards assessing 
the significance of measured factors is to use pairwise 
association tests, such as the χ2 test for testing statis-
tical dependency. In this case, if one is interested in 
describing the relationships of a selected target, e.g. 
in our case the ZSDS score, then each factor has to 
be tested against the null hypothesis of independence 
with respect to the selected target. When the com-
puted score of the statistic is above a certain thresh-
old related to a chosen significance level, e.g. α=0.05 
typically, then the null hypothesis is rejected and the 
investigated pair is found dependent. 

A more sophisticated approach is to use a multi-
variate modeling scheme such as regression, decision 
tree, or systems-based methods e.g. SEM or Bayesian 
network-based learning algorithms. SEM is centered 
on evaluating a chosen hypothesis embodied in a 
special graph containing observed and potentially 
unobserved (latent) variables (Rózsa et al., 2006). The 
model is assessed in terms of how well it fits the data 
set. Given a well-founded hypothesis the refined tools 
of SEM may provide a thorough validation.

In case of a known causal structure SEM provides 
a straightforward way of defining cause-effect rela-
tionships (Pearl, 2000). The causal structure is encod-
ed by a directed graph which contains the variables of 
interest as nodes, and relationships are represented 
by edges between them, directed from cause to effect. 

The causal structure created using SEM can be translated into 
a set of structural equations that define these relationships for 
each variable Xi. The aim of a structural equation is to define 
the mechanism that assigns a certain value xi for variable Xi 
given a value configuration (pai) of its direct causes PAi and an 
error term ei, which represents errors due to omitted factors. 
Note that in the causal graph structure PAi are the parents of 
Xi. The equation is stated in a standard linear equation form 
in most practical cases. 

xi = Σαikxk + ei,        i = 1, ...n ,
                     k<i

where parameter αik is nonzero in all cases where Xk is in PAi, i.e. 
it is a direct cause of Xi. This in turn enables the exact computa-
tion of a direct causal effect of an arbitrary variable Xi on any 
other variable Xj. If there are multiple causal pathways between 
Xi and Xj then a total causal effect can also be computed.

On the other hand, Bayesian network-based methods 
apply a different approach that focuses on identifying 
relevant variables with respect to a selected target. 
This approach enables an initial hypothesis free ex-
ploration of the domain. 

A Bayesian network BN(G, θ) consists of a directed acyclic 
graph structure G and its parameterization θ, which repre-
sents the conditional probability distributions that describe 
the dependency relationships between the modeled variables. 
The structural properties of Bayesian networks, e.g. edges, 
subgraphs, provide a rich, graph-based language that encodes 
several aspects of dependency relationships. The strongly rel-
evant (Kohavi et al, , 1997) set of variables (see Figure 1a) for 
example can be identified by a special structural property 
centered on the target (Y)5. The importance of the strongly 
relevant set SRY of a target Y is that given SRY no further knowl-
edge can be gained from other variables on Y. In other words, 
if the goal is to identify the factors that influence Y, then it is 
enough to learn SRY from the data set D instead of the whole 
network structure. In terms of conditional probabilities the 
learning of structural property S from the data set D means 
the estimation of its a posteriori probability P(S|D), i.e. the 
strength with which the data confirms its existence. The dif-
ficulty with this a posteriori probability (‘posterior’) is that S 
as a structural property depends on a given structure G, that is

P(S | D) = Σ P(G | D)S(G),
                                      G 

where P(G|D) is an a posteriori probability of a structure G 
given data set D is the data set, and S(G) is 1 if S is present in 
G and 0 otherwise (Friedman et al, , 2003). In order to estimate 

5 This structural property is based on the graphical model and it is 
called Markov blanket graph of Y. The factors represented by its nodes 
form a Markov blanket set of Y, which has a special statistical property 
of isolating all other factors from Y (Pearl, 2000). Furthermore, all ele-
ments of this set are strongly relevant (Kohavi et al., 1997) with respect 
to Y. For the sake of simplicity, we refer to this set in the remainder of 
the paper as the strongly relevant set of variables. 
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P(G|D) the essential element of Bayesian learning is applied, 
the Bayes rule:

P(G | D)    P(D | G)P(G)

This means that the posterior P(G|D) can be estimated by 
the term P(D|G) which is the marginal likelihood of the data 
given structure G, and the term P(G) the prior probability 
of a structure G. Note that in practical cases a uniform prior 
over structures is used, i.e. P(G) is the same for all possible 
structures. Given a number of conditions (Cooper et al, , 1992) 
the marginal likelihood is efficiently computable. However, the 
computation of the posterior is computationally intractable 
due to the astronomically high number of possible structures 
(which is super-exponential in the number of variables). There-
fore, in order to estimate the posteriors, various approximation 
methods have to be applied, e.g. Markov chain Monte Carlo 
simulation (Liu, 2001).

Furthermore, the Bayesian network-based framework 
allowed the creation of a new Bayesian, multivari-
ate, structure-related effect size measure (Hullam et 
al, , 2012), the Bayesian relevant set-based odds ratio 
(BRS-OR). 

This measure is a result of a hybrid approach that averages over 
parameters and structures. In order to compute BRS-OR(X, Y, 
SY) related to a specific target Y, the corresponding relevant 
sets SY (sets of relevant variables with respect to the target Y) 
are required. For each set SYi, based on the members of the set, 
a Bayesian odds ratio is estimated RS-OR(X, Y, SYi) and then 
it is weighted according to the joint posterior of the set p(SYi). 
Finally, BRS-OR is computed by aggregating the odds ratios 
related to each relevant set. Odds ratios related to sets with 
high posteriors of relevance may dominate the aggregate odds 
ratio of BRS-OR, whereas sets with low posteriors may have a 
negligible effect. In case the overall posterior of investigated 
sets is low, then the BRS-OR is bound to be close to 1. 

results and dIscussIon

Using traditional univariate association tests in or-
der to create a model of the relationships between 
the variables is generally insufficient, because it fails 
to identify higher order interactions of factors and 
other synergistic effects. Furthermore, it provides no 
validation for the model itself. Table 2 summarizes 
the uncorrected p-values for a selected number of 
association tests. These results indicate that rs6295 is 
associated with the BIS Cognitive score only, whereas 
Zung score is associated with all factors. 

The advantage of such an approach is its statisti-
cal robustness (e.g. low sample size, noise tolerance), 
low computational requirements, and ease of inter-
pretation, however the drawbacks are numerous as 

well. First of all, as more and more factors are tested,  
the significance level has to be corrected (i.e. lowered) 
to cope with multiple hypothesis testing. In case of 
such a small model, this may not be a strict limitation, 
in case of GWAS studies however, in which thousands 
or even more factors are measured, this feature alone 
may prohibit the successful analysis of results. 

A further disadvantage is that the interactions 
among the variables are not taken into consideration 
which prevents the analysis of complex phenotype 
descriptors, i.e. assessing the joint role of measured 
phenotypes. The use of linear or logistic regression 
may alleviate some of these concerns, although the 
strict rules of correction for multiple hypotheses test-
ing also have to be applied.

A SEM structure was created based on expert 
knowledge to validate the hypothesis on the effect of 
rs6295 on impulsivity measured by BIS scores and 
depression measured by the Zung score. The observa-
tion that there is no apparent statistical dependency 
between rs6295 and the Zung score was also included 
into the model. Apart from the original variables 
in the data set an endogenous non-observed vari-
able BIS was added to the model, representing the 
aggregated BIS score. Figure 2 displays the result-
ing model with omitted error terms, although cor-
relation through error terms is indicated by dashed 
lines. Model weights of relationships are summa-
rized in Table 3. These results indicate a relatively 
strong relationship between Zung total and factors 
recent negative life events (0.8) and childhood ad-
versity (0.7). In contrast, the path coefficient be-
tween Zung and the joint BIS score is only moderate 
(0.54). Furthermore, the correlation of rs6295 with 
BIS Cognitive score via error terms is only -0.08.  
Although the individual evaluation of relationships is  
a possibility, the strength of SEM is the evaluation of 
the multivariate model.

Figure 2 also shows some of the model metrics 
measuring the fitting of model to the data. CMIN is a 
Chi-square statistic which compares the tested model 
and also the independence model (i.e. the model con-
taining no edges) with the complete model (i.e. the 
model which contains all the possible edges between 
variables). CMIN/DF is the relative chi-square which 
shows the change of fitness of the model with respect 
to the number of excluded edges. In case of our model 
the CMIN/DF is 1.215 which can be considered ac-
ceptable, as it is below the frequently chosen thresh-
old of 2 (which indicates that too many edges were 
discarded). Other goodness of fit measures, such as 
Normed Fit Index (NFI) or the Comparative Fit Index 
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Figure 2: A hypothetical SEM model of the effect of rs6295 on depression and impulsivity. Observed and non-observed factors are 
represented by rectangular and circular nodes respectively. Causal relationships between factors are denoted by edges directed from cause 
to effect, corresponding regression weights are also indicated. Error terms are omitted, whereas correlation between factors through error 
terms are indicated by dashed edges, related correlation coefficients are underlined. The box on the right hand side displays model fitting 
metrics. CMIN/DF denotes the relative chi-square, CFI denotes the Comparative Fit Index and RMSEA stands for the Root Mean Square 
Error of Approximation.

Association tests (p-value) BIS Cognitive BIS Non-planning BIS Motor Zung Total

Gender 0.517 0.408 0.681 3.44E-08

Recent negative life events 8.09E-08 0.017 0.001 3.08E-05

Childhood adversity 0.013 2.76E-05 0.010 4.79E-07

rs6295_htr1a 0.005 0.116 0.820 0.131

Zung Total 2.4E-10 3.17E-14 0.009 -

Table 2  Association tests of factors related to modeling the effect of rs6295 on depression and impulsivity. Significant p-values (p<0.05) 
are shown in bold font.

Standardized regression weights

A→B Estimate A→B Estimate

BIS   →     Recent negative life events 0.18 BIS                                                →   Zung Total 0.54

BIS   →     BIS Nonplanning 0.61 Gender                                        →   Zung Total 0.20

BIS   →     BIS Motor 0.80 Childhood adversity               →   Zung Total 0.07

BIS   →     BIS Cognitive 0.57 Recent negative life events  →   Zung Total 0.08

Table 3  Standardized regression weights related to the relationships of the hypothetical SEM model. Relationships are represented as 
cause(A)→effect(B) pairs, and BIS denotes the aggregate BIS score.
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for strong relevance. In contrast, both the posteriors 
of rs6295 (0.011) and of recent negative life events 
(0.005) are low which means that neither rs6295 nor 
recent negative life events have a direct influence on  
Zung Total. 

However, when strong relevance with respect to 
BIS scores is considered, the factor recent negative life 
events has a high posterior (0.997), whereas gender 
(0.056) and childhood adversity (0.057) appear to 
be non-relevant in this case. Remarkably, rs6295 ap-
pears slightly relevant with respect to the BIS scores. 
Although its posterior is moderately low (0.247),  
it is considerably higher than the posteriors of non-
relevant factors. A possible explanation of this phe-
nomenon is that, as a genetic factor it may have several 
unobserved mediating factors along the causal chain 
that influence its effect. Phenotypic factors in contrast, 
may have a more direct, non-mediated effect on the 
measured phenotypic descriptors, such as BIS scores 
in this case. This notion is also reflected in terms 
of effect size measures (e.g. odds ratios) as relevant 
phenotypic factors generally have higher odds ratios 
than relevant genetic factors. 

(CFI), compare the tested model to the independence 
model. CFI is the difference between noncentral chi-
squares of two models divided by the chi-square for 
the independence model. Within the range from 0 to 
1 a value higher than .95 indicates good fit. Therefore, 
the CFI= 0.996 is appropriate. The Root Mean Square 
Error of Approximation (RMSEA) estimates decrease 
of fit compared to the complete model. RMSEA of .05 
or less indicates good fit just as in the case of our data 
set (RMSEA=0.015).

Besides the SEM model, Bayesian network-based 
algorithms were used to learn the strongly relevant 
sets of key targets (Zung Total, BIS Motor, BIS Cog-
nitive and BIS Nonplanning). The probability of 
strong relevance for each of the factors is detailed in  
Table 4. Corresponding strongly relevant subgraphs 
(factors and their relationships) are shown in Figure  
3a and 3b. Figure 3a displays the relevant factors 
with respect to Zung Total, whereas Figure 3b dis-
plays relevant factors with respect to the joint set 
of BIS scores. In case of Zung Total apart from all 
BIS scores, the factors gender (1.0) and childhood 
adversity (0.938) have an extremely high posterior 

Figure 3  Strongly relevant set of variables identified by a Bayesian network-based learning algorithm BN-BMLA. 3a (left): strongly relevant 
set of Zung Total, 3b (right): joint strongly relevant set of BIS Cognitive, Motor and Nonplanning. Nodes represent factors and edges represent 
dependency relationships between them. (The directedness of the edges is omitted.)

Figure 3a Figure 3b
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Another aspect of these results is that they indicate 
a relationship between rs6295 and impulsivity, but 
show no signs of a direct relationship between rs6295 
and depression. Rather, it is more possible that such 
a relationship is mediated by several factors beside 
impulsivity.

In order to further characterize the relationships 
of rs6295 we investigated various effect size meas-
ures. Apart from the traditional odds ratio which is 
structure independent, we applied a new Bayesian 
multivariate structure-related effect size measure 
(Hullam et al., 2012), the Bayesian relevant set based 
odds ratio (BRS-OR). 

We used BN-BMLA to assess the possible sets of 
relevant variables. Both the traditional odds ratio and 

the BRS-OR related to rs6295 with respect to Zung 
total score and BIS Cognitive score is shown in Table 5.

Odds ratios of rs6295 with respect to BIS Cogni-
tive score confirm the relationship between rs6295 
and impulsivity. BRS-OR takes the structural proper-
ties (i.e. structural uncertainty) into account (recall 
that the posterior of rs6295 with respect to BIS was 
0.247) and displays a correctional effect towards the 
neutral odds ratio (1). For example in case of rs6295 
0 (CC) vs. 2 (GG) with respect to BIS Cognitive score 
0 vs. 1 the traditional odds ratio (OR) is 1.969, and 
the Bayesian odds ratio (BRS-OR) is 1.230 which is 
still remarkable.

In case of Zung total the correctional effect is even 
more apparent, since the structural uncertainty is 

Strong relevance BIS-Multitarget Zung Total

Gender 0.056 1.000

Recent negative life events 0.997 0.005

Childhood adversity 0.057 0.938

 rs6295_htr1a 0.247 0.011

 BIS Nonplanning n/a 1.000

 BIS Motor n/a 1.000

 BIS Cognitive n/a 1.000

 Zung total 1.000 n/a

Table 4  Posterior probability of strong relevance for targets BIS Cognitive, Motor and Nonplaning and for target Zung total. Notable 
posteriors are displayed in bold font. BIS multitarget denotes the joint targets of  BIS Cognitive, Motor and Nonplaning

Odds ratios

rs6295_htr1a

0 (CC) vs. 1 (GC) 0 (CC) vs. 2 (GG)

OR CI-L CI-U RS-OR BRS-
OR OR CI-L CI-U RS-OR BRS-

OR

Zung(0) vs. Zung(1) 0.818 0.575 1.164 0.817 0.999 0.895 0.601 1.333 0.895 0.999

Zung(0) vs. Zung(2) 0.627 0.342 1.150 0.626 0.997 0.358 0.156 0.821 0.358 0.995

BIS(0) vs. BIS(1) 1.245 0.796 1.946 1.246 1.058 1.969 1.211 3.200 1.971 1.230

BIS(0) vs. BIS(2) 1.770 1.116 2.809 1.775 1.184 2.011 1.200 3.370 2.016 1.241

Table 5  Effect size measures related to rs6295 with respect to Zung total and BIS Cognitive score. OR denotes the standard odds ratio, 
CI-L and CI-U denote the lower and the upper bounds of the 95% confidence interval of OR, RS-OR denotes an intermediate, unweighted 
Bayesian relevant set-based odds ratio, BRS-OR denotes the Bayesian relevant set-based odds ratio. Both Zung and BIS Cognitive scores 
were binned to three categories denoted as Zung(0), Zung(1), Zung(2), and BIS(0), BIS(1), BIS(2) respectively.
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considerably high, i.e. the posterior for strong rel-
evance of rs6295 with respect to Zung total is very 
low (0.011). The remarkably small odds ratios in case 
of Zung total category 0 vs. 2 (0.627 and 0.358 for 
rs6295 0 vs.1 and 0 vs. 2 respectively) are probably 
due to a sample size issue, as the number of patients 
having a high Zung score (category 2) is less than 
6.3% of the total population. Bayesian odds ratios 
are close to 1 in all four cases related to Zung total 
which indicates that rs6295 has no direct effect on 
Zung total. This also supports the notion that the 
relationship between rs6295 and depression is more 
complex and possibly mediated by impulsivity and 
other factors not observed in this study. 

conclusIon

Both of the discussed systems-based modeling tech-
niques provided a set of valuable tools enabling a rich 
interpretation of the results and a thorough explora-
tion of the domain. The applied approach of SEM 
and Bayesian network-based learning algorithms was 
rather different which consequently lead to different 
strengths and weaknesses. 

One of the main drawbacks of SEM is that it re-
quires an initial hypothesis which can be difficult to ob-
tain, especially in early stages of exploratory research. 
Since SEM is not equipped to learn models from data, 
one must rely on other methods or on the knowledge 
of an expert to construct models. Further disadvan-
tages of SEM include strong distributional assump-
tions regarding the variables, and also the number 
of variables in a model is limited (due to conver-
gence issues). The strength of SEM is accurate model  
evaluation which becomes apparent only if an appro-
priate model is constructed based on a priori knowl-
edge, or if the number of plausible models are limited. 

Despite the fact that the whole methodology of 
SEM was devised in order to quantitatively describe 
causal relationships and to assess effect strength, the 
constraints on its applicability prohibits its wide-
spread usage. In most gene association studies there 
is no a priori causal structure, or the number of pos-
sible a priori structures makes this approach infeasible. 

Bayesian network-based methods on the other 
hand, are based on learning from data. The aim of 
learning ranges from learning simple properties 
to the learning of complete models. This approach 
enables an initial hypothesis free exploration of the 
domain which can be a major advantage if models 
with reasonably high scores are found, but it can 
also be a drawback if there are thousands of similar  

models with low scores. Two distinctive advantages 
of Bayesian network-based methods is the possibility 
of exploring interactions and other more complex 
relationships between variables based on data, and 
the capability of handling complex phenotypic de-
scriptors, i.e. multiple target variables giving a rich 
description of the investigated disease. Furthermore, 
effect size measures can also be augmented by Baye-
sian methods providing a richer characterization of 
relationships and an automated correction for the 
presence of multiple predictors. In terms of flexibility, 
Bayesian network-based methods are the opposite of 
SEM methods. This flexibility however, comes at con-
siderable computational cost, and the interpretation 
of the output of Bayesian network-based methods is 
challenging in many cases.
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A multifaktoriális betegségek genetikai hátterét vizsgáló kutatások mindezideáig csak mérsé-
kelt sikerekkel jártak, annak ellenére, hogy a biomedicina és a genetika laboratóriumi módszerei 
óriási fejlődésen mentek keresztül. Ennek egyik oka lehet, hogy a genetikai vizsgálatok során 
gyűjtött hatalmas mennyiségű adat elemzése és az eredmények értelmezése nem tud lépést 
tartani a mérési technológiák fejlődésével. Az általánosan alkalmazott egyváltozós módsze-
rek nem megfelelőek a multifaktoriális betegségekre jellemző komplex függőségi minták 
feltárására, amely azonban elengedhetetlen a gyakori betegségek, mint például a depresszió, 
az asztma és a magasvérnyomás rizikófaktorainak megismeréséhez. Az átfogó vizsgálathoz 
többváltozós modellezési módszerek alkalmazása szükséges, amelyek lehetővé teszik a fak-
torok közötti interakciók elemzését, illetve komplex fenotípusok részletesebb értelmezését. 
A cikkben a többváltozós modellezés különböző aspektusait mutatjuk be a HTR1A génben 
található rs6295 egynukleotidos polimorfizmus depresszióra és impulzivitásra kifejtett hatásait 
vizsgálva. Ismertetjük a többváltozós modellezéshez kapcsolódó alapfogalmakat, és összeha-
sonlítjuk az általunk alkalmazott két modellezési technika, a strukturális egyenlet modellezés 
és a Bayes-háló alapú tanuló algoritmusok tulajdonságait.  Az eredményül kapott modellek  
a modell-tulajdonságok és a hatáserősségek alapján a bayesi megközelítés előnyeit mutatják, 
mivel ez a módszer lehetővé teszi az rs6295 gyengén szignifikáns hatásának koherens kezelését. 
Az eredmények megerősítik az impulzivitás közvetítő szerepét a HTR1A rs6295 polimorfizmus 
és a depresszió között. 

Kulcsszavak: Bayes-háló alapú tanuló algoritmus, strukturális egyenlet modellezés, hatáserős-
ség, többváltozós statisztikai módszerek, rendszeralapú modellezése, depresszió, impulzivitás

A strukturális egyenlet modellezés alternatívái: modell  
tulajdonságok és hatáserősség a bayesi nézőpontból. Komplex 
fenotípus-genotípus asszociációk vizsgálata depresszió esetén


