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Distinct effects of folate pathway genes MTHFR and
MTHFD1L on ruminative response style: a potential risk
mechanism for depression
N Eszlari1,2, D Kovacs1,2, P Petschner1,2, D Pap1,2, X Gonda1,2,3, R Elliott4,5, IM Anderson4,5, JFW Deakin4,5,6, G Bagdy1,2 and
G Juhasz1,2,4,5,7

Alterations in the folate pathway have been related to both major depression and cognitive inflexibility; however, they have not
been investigated in the genetic background of ruminative response style, which is a form of perseverative cognition and a risk
factor for depression. In the present study, we explored the association of rumination (measured by the Ruminative Responses
Scale) with polymorphisms of two distinct folate pathway genes, MTHFR rs1801133 (C677T) and MTHFD1L rs11754661, in a
combined European white sample from Budapest, Hungary (n= 895) and Manchester, United Kingdom (n= 1309). Post hoc analysis
investigated whether the association could be replicated in each of the two samples, and the relationship between folate pathway
genes, rumination, lifetime depression and Brief Symptom Inventory depression score. Despite its functional effect on folate
metabolism, the MTHFR rs1801133 showed no effect on rumination. However, the A allele of MTHFD1L rs11754661 was significantly
associated with greater rumination, and this effect was replicated in both the Budapest and Manchester samples. In addition,
rumination completely mediated the effects of MTHFD1L rs11754661 on depression phenotypes. These findings suggest that the
MTHFD1L gene, and thus the C1-THF synthase enzyme of the folate pathway localized in mitochondria, has an important effect on
the pathophysiology of depression through rumination, and maybe via this cognitive intermediate phenotype on other mental and
physical disorders. Further research should unravel whether the reversible metabolic effect of MTHFD1L is responsible for increased
rumination or other long-term effects on brain development.
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INTRODUCTION
Major depressive disorder is an etiologically heterogeneous
condition,1 in which a core and specific feature is depressive
rumination.2

Ruminative response style, which is sometimes referred as
depressive rumination, can be defined in several ways.3 In a
broader sense, it is a form of cognitive inflexibility or perseverative
cognition that prolongs the negative effect of everyday life
stressors.4,5 In addition, it may involve an impairment of the top-
down cortical control on mnemonic processes, resulting in
unwanted and uncontrollable dwelling on intrusive memories.6

Ruminative response style in association with depression is
perceived as thinking repeatedly and passively about one’s
feelings and problems related to distress and depressed mood,
thus exacerbating and prolonging depression.7 Indeed, it has been
demonstrated that ruminative response style predicts the onset
and level of future depression.7,8 These facts suggest that
ruminative response style or shortly rumination (as it is generally
addressed) is a potential intermediate phenotype for depression.
Rumination is a moderately heritable trait with a 20–40%

heritability rate based on twin studies.9,10 Most importantly,
phenotypic correlation between depressed mood and rumination

appears to be explained mainly by shared genetic factors.9,10 Thus,
genetic risk factors for rumination are likely to share a
pathophysiological role in the development of depression;
however, hypothesis-free genome-wide association studies with
rumination have not yet been reported. Using a candidate gene
approach, both dopaminergic and serotonergic genes have been
implicated in rumination (DRD2 (ref. 11) COMT (ref. 12) and
serotonin transporter SLC6A4 (ref. 13)), and also extensively
investigated in relation to cognitive flexibility and response
inhibition (for review see Logue and Gould14). In addition, genes
related to neuronal and synaptic plasticity (KCNJ6 (ref. 15), CREB1
(refs. 15,16) and BDNF (refs. 13,16) and stress response (NR3C2 (ref.
17)) showed significant associations with rumination.
Altered folate function and the linked one-carbon cycle have

long been implicated in the pathogenesis of depression and also
in cognitive inflexibility or perseverative cognition, yet their
possible role in rumination has not been investigated. More
specifically, folate is necessary to the catabolism of homocysteine,
and folate deficiency and elevated homocysteine are related to
both depression and inflexible cognition.18–20 These metabolic
changes are also associated with altered brain monoamine
metabolism and impaired neuronal plasticity.19,20
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The most investigated genetic variant of the folate pathway is
the MTHFR C677T (rs1801133) polymorphism, which leads to an
alanine (C allele) to valine (T allele) substitution in the 5,10-
methylenetetrahydrofolate reductase (MTHFR) protein. The MTHFR
677 T allele codes a thermolabile and less active enzyme, which is
associated with decreased folate and increased homocysteine
levels.21 Despite its strong metabolic impact, this polymorphism
has shown conflicting results in genetic association studies of
inflexible cognition,19,22 major depression1,23 and other neurop-
sychiatric disorders, such as Alzheimer’s disease (AD),24 bipolar
disorder and schizophrenia.23

Three studies reported that the A allele of a polymorphism
(rs11754661) in another gene involved in folate metabolism,
MTHFD1L, showed a genome-wide significant association with
late-onset AD,25–27 although one study was negative.28 MTHFD1L
encodes the human mitochondrial monofunctional 10-formyl-
tetrahydrofolate synthetase (C1-THF synthase) enzyme.29 The A
allele, similar to the MTHFR 677 T allele, is associated with
increased homocysteine concentrations.30 In addition, this
enzyme is obligatory for the production of mitochondrial formate,
the essential substrate for cytoplasmic purine and thymidylate
biosynthesis, methionine biosynthesis and amino-acid
metabolism.29,31 Although the direct link between rumination
and AD is as yet only hypothetical,32 the association of the
MTHFD1L gene with age-related cognitive decline, together with
its pivotal role in normal neuronal development,31,33,34 suggests
that it could be relevant in cognitive processes throughout the life.
In the present study, we investigated the association of

ruminative response style with MTHFR rs1801133 and MTHFD1L
rs11754661. We hypothesized that genetic variants in the folate
pathway are associated with rumination, which is a cognitive risk
factor for depression. In addition, we examined the relationship
between folate pathway genes, rumination and depression
phenotypes.

MATERIALS AND METHODS
This study was part of the European Union-funded NewMood study (New
Molecules in Mood Disorders, Sixth Framework Program of the EU, LSHM-
CT-2004-503474), which was carried out in accordance with the Declara-
tion of Helsinki and approved by local Ethics Committees (North
Manchester Local Research Ethics Committee, Manchester, UK; Scientific
and Research Ethics Committee of the Medical Research Council, Budapest,
Hungary).

Participants
Participants aged 18–60 years were recruited through general practices
and advertisements from Budapest, Hungary, and through general
practices, advertisements and a website from Greater Manchester, UK.
All participants provided written informed consent. N=2204 subjects
(n=895 from Budapest and n=1309 from Manchester) provided informa-
tion about gender, age and rumination by filling out the NewMood
questionnaire pack (in English or Hungarian, as appropriate)16 and were
successfully genotyped for MTHFR rs1801133 by providing DNA with a
genetic saliva sampling kit. MTHFD1L rs11754661 was successfully
genotyped in 2120 subjects among those who provided information
about gender, age and rumination (n=862 from Budapest and n= 1258
from Manchester). All subjects were of European white ethnic origin, and
had no relatives participating in the study.

Phenotypic assessment
We used the 10-item Ruminative Responses Scale to measure rumination,8

and calculated rumination score as a continuous weighted score: the sum
of item scores divided by the number of items completed. The NewMood
questionnaire pack also included measures of two distinct depression
phenotypes. Current depressive symptoms were measured by the
depression items plus the additional items of the Brief Symptom Inventory
(BSI),35 using a weighted score (see above, at rumination). Reported
lifetime depression was derived from the background questionnaire and

had been validated in a subpopulation with face-to-face diagnostic
interviews.16

Genotyping
For genotyping we collected buccal mucosa cells and extracted genomic
DNA according to a validated method.36 The two single-nucleotide
polymorphisms (SNPs), MTHFR rs1801133 and MTHFD1L rs11754661, were
genotyped with the Sequenom MassARRAY technology (Sequenom, San
Diego, CA, USA, www.sequenom.com). All laboratory work was blinded
with regard to phenotype and performed under the ISO 9001:2000 quality-
management requirements.

Statistical analyses
PLINK v1.07 (http://pngu.mgh.harvard.edu/purcell/plink/) was used to
calculate Hardy–Weinberg equilibrium for MTHFR rs1801133 and MTHFD1L
rs11754661, and to build linear regression models for rumination score as
an outcome variable. MTHFR rs1801133 or MTHFD1L rs11754661,
respectively, and age, gender and population (Budapest or Manchester)
were the predictor variables in all regression equations. With rs1801133,
additive, dominant and recessive models were run in the combined
sample. However, with rs11754661, we did not run the recessive model
because of the low number of those homozygous for the minor allele.
Bonferroni-corrected two-tailed P⩽ 0.010 was used as a significance
threshold, and P⩽ 0.020 as a trend threshold, for the main analysis. As
post hoc analysis, we investigated the significant effects separately in the
Budapest and Manchester samples to test possible replications. In addition,
we ran post hoc regression analyses similarly to the ones described above,
for lifetime depression and current depression score. Furthermore, we
tested the mediating role of depression phenotypes on rumination or the
mediating role of rumination on depression phenotypes by including the
mediating phenotype(s) as covariate(s) to test shared explained variance
by the genes and these phenotypes. For post hoc statistical testing two-
tailed P⩽ 0.05 threshold was used. We applied the parametric statistical
methods based on the central limit theorem, as we have large samples
(n4200).37 Descriptive statistics for the combined and separate samples
were calculated with IBM SPSS 20.0 (IBM, Armonk, NY, USA) for Windows.
We used Quanto for power calculations (http://biostats.usc.edu/Quanto.
html), and OpenMeta[Analyst] for meta-analyses of genetic effects in the
separate Budapest and Manchester samples (http://www.cebm.brown.edu/
open_meta/download.html). To enhance the speed of the PLINK analysis,
individually written R-scripts were used.38

RESULTS
The minor allele is T for MTHFR rs1801133 and A for MTHFD1L
rs11754661. Both SNPs were in Hardy–Weinberg equilibrium in
Budapest, Manchester and in the combined sample. For
rs1801133, P-values are as follows: P= 0.384 in Budapest,
P= 0.670 in Manchester and P= 0.852 in the combined sample.
For rs11754661, P= 1 in Budapest, P= 0.064 in Manchester and
P= 0.112 in the combined sample. Description of total sample and
for Budapest and Manchester separately is given in Table 1. As we
can see in Table 1, the Budapest and Manchester samples differ
significantly in age, rs11754661 genotype frequencies, rumination
and both depression phenotypes, which makes it reasonable to
include population as a predictor variable in the regression
equations.
In our combined sample MTHFR rs1801133 did not show any

significant effect on rumination (Table 2). Considering the effect of
MTHFD1L rs11754661 on rumination, with age, gender and
population as covariates in the regression equations, the A allele
showed a significant positive association with rumination score in
the combined sample, both in additive and dominant models
(Table 2). These findings remained significant after Bonferroni
correction for multiple testing. Post hoc analysis showed that the
effect of the A allele remained statistically significant at a nominal
(uncorrected) level in the Budapest and Manchester samples
separately (Table 3). To visualize and meta-analyze these
associations, standardized residuals were calculated for rumina-
tion score (separately in Budapest and Manchester and in the
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combined sample), by partialling out variance accounted for by
age, gender and population (this latter only in the combined
sample). The means (with s.e.'s) of these residuals are represented
according to the rs11754661 genotype in Figure 1. A marked
difference in rumination can be seen between A carriers and those
with the GG genotype in Budapest (Figure 1a), Manchester
(Figure 1b) and also in the combined sample (Figure 1c). We
entered the means and s.d.'s of these standardized residuals of
Budapest (0.31 ± 0.930 in A carriers and − 0.03 ± 1.001 in the GG
group) and Manchester (0.16 ± 1.066 in A carriers and
− 0.02 ± 0.988 in the GG group) into OpenMeta[Analyst] to
calculate a combined mean difference between genotypes, in a
continuous random-effects model. The combined mean difference
and its s.e. is significant: 0.246 ± 0.079 (P= 0.002), underpinning
our significant linear regression results in Budapest, Manchester
and the combined sample (Tables 2 and 3). No significant
between-study heterogeneity exists (tau2 = 0.002; Q= 1.235;
P= 0.267; I2 = 19%), pointing out the validity of conducting a
mega-analysis for the rs11754661 effect in the combined sample
(Table 2).
Similarly, we ran a meta-analysis for the combined mean

difference between MTHFR rs1801133 T carriers and those with CC
genotype. The means (and their s.d.'s) of the standardized residual
for rumination score are as follows: − 0.04 ± 0.993 in T carriers in
Budapest, 0.05 ± 1.006 in the CC group in Budapest; and
− 0.03 ± 1.002 in T carriers in Manchester, 0.05 ± 0.995 in the CC
group in Manchester. A continuous random-effects model yielded
a combined mean difference (and its s.e.) of − 0.084 ± 0.043
(P= 0.051), underpinning the result of the dominant model among
linear regressions in that T carriers nominally tend to ruminate less
than the CC group (Table 2). As in the case of rs11754661, the
unsignificant heterogeneity test results between Budapest and
Manchester (tau2o0.001; Q= 0.013; P= 0.909; I2 = 0%) also vali-
date mega-analysis of the rs1801133 effect on rumination in the
combined sample (Table 2).
We ran post hoc analyses in the combined sample to unravel

whether the association between rs11754661 and rumination is

mediated by depression phenotypes. Rumination shows a
significant positive association with both of our depression
phenotypes: Pearson correlation coefficient r= 0.581 (N= 2117;
Po0.001) for BSI depression score and t=− 22.022 (N= 2120;
Po0.001) for lifetime depression (mean rumination score is
1.909 ± 0.014 in those who did not and 2.429 ± 0.019 in those who
did report lifetime depression). The MTHFD1L rs11754661 A allele
also associates positively (either significantly or as a trend) to both
depression phenotypes. Namely, for BSI depression score, its
β= 0.098; t= 1.695; P= 0.090 in an additive, and β= 0.118; t= 1.897;
P= 0.058 in a dominant PLINK linear regression model. For lifetime
depression, its odds ratio (OR) = 1.354; t= 2.173; P= 0.030 in an
additive, and OR= 1.405; t= 2.271; P= 0.023 in a dominant PLINK
logistic regression model. N= 2117 in BSI depression and N= 2120
in lifetime depression models; and age, gender and population
were covariates in all PLINK analyses. Because of their positive
associations (either significantly or as a trend) with both the
predictor rs11754661 A allele and the outcome rumination, we
could include these two depression phenotypes as covariates
(besides age, gender and population) in the linear regression
equations described above. For the results see Table 2. Including
the two depression phenotypes does not abolish the significant
effect of MTHFD1L rs11754661 on rumination, but diminishes its
effect size (beta) in either an additive or a dominant model (for
comparisons also see Table 2). This suggests that depression is
only partly responsible for the risk the A allele conveys for
rumination.
On the other hand, rumination entirely explains the variance

rs11754661 shares with each of the depression phenotypes.
Including rumination as an additional predictor in the PLINK
regression analyses discussed above, the effect of rs11754661 on
depression is no longer statistically significant or a trend in the
combined sample: β=− 0.001; t=− 0.018; P= 0.986 in the additive,
β= 0.010; t= 0.193; P= 0.847 in the dominant model for BSI
depression score, and OR= 1.198; t= 1.189; P= 0.234 in the
additive, OR = 1.235; t= 1.301; P= 0.193 in the dominant model
for lifetime depression.

Table 1. Description of the population samples

Budapest Manchester Budapest+Manchester Difference between Budapest and Manchester

Gender
Female (%) 624 (69.7%) 916 (70%) 1540 (69.9%) Χ2= 0.017; P= 0.897
Male (%) 271 (30.3%) 393 (30%) 664 (30.1%)

Age (mean± s.e.m.) 31.26 (0.355) 34.04 (0.284) 32.91 (0.224) t=− 6.153; Po0.001

MTHFR rs1801133
TT (%) 122 (13.6%) 154 (11.8%) 276 (12.5%) Χ2= 1.717; P= 0.424
TC (%) 400 (44.7%) 602 (46%) 1002 (45.5%)
CC (%) 373 (41.7%) 553 (42.2%) 926 (42%)

MTHFD1L rs11754661
AA (%) 1 (0.1%) 10 (0.8%) 11 (0.5%) Χ2= 9.914; P= 0.007
GA (%) 75 (8.7%) 148 (11.8%) 223 (10.5%)
GG (%) 786 (91.2%) 1100 (87.4%) 1886 (89%)

Rumination score (mean± s.
e.m.)

1.94 (0.016) 2.25 (0.017) 2.13 (0.012) t=− 13.104; Po0.001

BSI depression score
(mean± s.e.m.)

0.56 (0.023) 1.07 (0.028) 0.86 (0.020) t=− 13.954; Po0.001

Lifetime depression
Reported (%) 192 (21.5%) 734 (56.1%) 926 (42%) Χ2= 261.521; Po0.001
Not reported (%) 703 (78.5%) 575 (43.9%) 1278 (58%)

Abbreviations: BSI, Brief Symptom Inventory; MTHFR, 5,10-methylenetetrahydrofolate reductase. The Manchester sample shows significantly higher mean age,
rumination score and BSI depression score, and higher frequencies of reported lifetime depression and of the MTHFD1L rs11754661 A allele than the Budapest
sample.
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With regard to the post hoc mediation analyses in the Budapest
and Manchester samples separately (with age and gender as
covariates in all models), in spite of the apparently replicable
association with rumination, rs11754661 does not show a
significant association with any of the depression phenotypes in
Manchester (for BSI depression score, β= 0.085; t= 1.088; P= 0.277
in an additive, and β= 0.107; t= 1.252; P= 0.211 in a dominant
model, and for lifetime depression, OR= 1.230; t= 1.276; P= 0.202
in an additive, and OR= 1.289; t= 1.426; P= 0.154 in a dominant
model). However, we could implement the mediation analyses in
the Budapest sample, as rs11754661 associates either significantly
or as a trend to both depression phenotypes there (for BSI
depression score, β= 0.141; t= 1.734; P= 0.083 in an additive, and
β= 0.151; t= 1.813; P= 0.070 in a dominant model, and for lifetime
depression, OR= 1.775; t= 2.226; P= 0.026 in an additive, and
OR= 1.737; t= 2.088; P= 0.037 in a dominant model), and because
rumination shows a significant positive association with both
depression phenotypes (Pearson r= 0.536; Po0.001 for BSI
depression score; and t=− 9.603; Po0.001 for lifetime depression,
with a mean rumination score of 1.866 ± 0.017 in those who did
not, and of 2.226 ± 0.035 in those who did report lifetime
depression). In the mediation analyses in Budapest, we could
replicate our findings seen in the combined sample. The two
depression phenotypes as predictors diminish but do not abolish
the effect of rs11754661 on rumination (β= 0.094; t= 2.051;
P= 0.041 in the additive, and β= 0.090; t= 1.921; P= 0.055 in the
dominant model; for comparisons see Table 3), whereas rumina-
tion as a predictor entirely abolishes the effect of rs11754661 on
both depression phenotypes (for BSI depression score, β= 0.014;
t= 0.210; P= 0.834 in the additive, and β= 0.025; t= 0.361;
P= 0.719 in the dominant model, and for lifetime depression,

OR= 1.471; t= 1.425; P= 0.154 in the additive, and OR= 1.443;
t= 1.322; P= 0.186 in the dominant model).
The discrepancy in the detected effect of rs11754661 on

rumination and the non-detected one of rs1801133 cannot be
attributed to decreased power. Assuming an R2 = 1% and under a
dominant model (mean rumination score is 2.13 and its s.d. is 0.58
in case of both SNPs), the power to detect an rs11754661 main
effect on rumination (n= 2120) is 99.6%, whereas the power of
rs1801133 (n= 2204) is 99.7%. In addition, rs1801133 has no effect
on either depression phenotypes in the combined sample (BSI
depression: β= 0.004; t= 0.135; P= 0.892 in an additive, β= 0.012;
t= 0.305; P= 0.761 in a dominant, β=− 0.010; t=− 0.177; P= 0.859
in a recessive model; lifetime depression: OR= 1.029; t= 0.407;
P= 0.684 in an additive, OR = 1.047; t= 0.482; P= 0.630 in a
dominant, OR = 1.016; t= 0.113; P= 0.910 in a recessive model),
suggesting that its lack of effect on ruminative response style is
not spurious.

DISCUSSION
Among polymorphisms of folate pathway genes, the widely
investigated MTHFR rs1801133 is not associated with ruminative
response style in our large combined European white sample,
whereas the AD genome-wide marker MTHFD1L rs11754661 A
allele represents a risk for higher ruminative response style. This
association is replicated separately in the Budapest and Manche-
ster cohorts. Moreover, this association is only partly mediated by
current depression score and lifetime depression, but ruminative
response style fully explains the variance that MTHFD1L
rs11754661 shares with these depression phenotypes.

Table 3. Linear regression models of MTHFD1L rs11754661 for rumination score as an outcome variable, separately in Budapest and Manchester

Budapest Manchester

Predictor variable N Beta s.e. t P Predictor variable N Beta s.e. t P

Additive MTHFD1L rs11754661 862 0.158 0.054 2.915 0.004 MTHFD1L rs11754661 1258 0.095 0.046 2.049 0.041
Age 862 − 0.004 0.002 − 2.417 0.016 Age 1258 − 0.008 0.002 − 4.693 o0.001
Gender 862 0.220 0.034 6.409 o0.001 Gender 1258 0.311 0.037 8.456 o0.001

Dominant MTHFD1L rs11754661 862 0.157 0.055 2.828 0.005 MTHFD1L rs11754661 1258 0.107 0.050 2.120 0.034
Age 862 − 0.004 0.002 − 2.395 0.017 Age 1258 − 0.008 0.002 − 4.700 o0.001
Gender 862 0.220 0.034 6.419 o0.001 Gender 1258 0.310 0.037 8.437 o0.001

PLINK linear regression equations were constructed with the predictor variables displayed in the rows. Additive and dominant models were run, separately in
Budapest and Manchester; all with A as the minor allele. (Recessive models have not been run because of low number in AA groups.) Significant findings for
MTHFD1L rs11754661 as a predictor variable are marked with bold.

Figure 1. Means (and its s.e.'s) of standardized residuals for rumination score, according to the rs11754661 genotype. General linear models
were created for rumination score as an outcome variable, separately in Budapest, Manchester (with age and gender as covariates) and in the
combined sample (with age, gender and population as covariates). Standardized residuals of these models were then displayed according to
the MTHFD1L rs11754661 genotype, thus representing the variance of rumination not accounted for by age, gender and population. A carriers
show higher rumination than those with GG genotype in Budapest (a), Manchester (b) and also in the combined sample (c).
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That there is an effect of the MTHFD1L variant but not of the
MTHFR is in line with findings of the genome-wide mega-analysis
on major depressive disorder by Ripke and colleagues,39 where
the index SNP of the MTHFD1L gene (SNP with the highest
significance) showed a more significant association (rs563440;
P= 0.004) with major depression than the index SNP from MTHFR
(rs17037425; P= 0.079).

Discrepancy in the effects of MTHFR and MTHFD1L
There may be several interrelated reasons for the discrepancy in
the effects of MTHFD1L and MTHFR. First, the two enzymes have
distinct biochemical roles (see Figure 2 and refs. 29,40,41).
Specifically, MTHFD1L could enhance both the 10-formyl-THF
generation and, by producing formate for the cytoplasm, the
synthesis of S-adenosylmethionine (SAM). 10-formyl-THF genera-
tion is protective for mitochondria,22 whereas SAM is an important
methyl donor in epigenetic regulation processes related to
memory, learning, cognition and behavior,18 and is also crucial
in the synthesis of dopamine, serotonin and noradrenaline in the
brain.41 In contrast, MTHFR can support only one of these two
directions, namely 10-formyl-THF generation or SAM synthesis, at
the expense of the other one.22,42

A second source of the discrepancy could be the distinct
subcellular localization of the two enzymes.29,40 As the protein C1-
THF synthase coded by MTHFD1L is localized in mitochondria,
whereas the MTHFR protein coded by MTHFR is present in the
cytoplasm, we can conclude that the folate pathway in the
mitochondria is essential in rumination and other cognitive
processes. Furthermore, mitochondrial dysfunction has been
associated with depression earlier.43,44

A third reason for the discrepancy could be the distinct
sensitivity of these enzymes to other factors, such as environ-
mental effects. For example, it has been demonstrated that the
effects of MTHFR rs1801133 genotype on the plasma homo-
cysteine level,30,45 DNA methylation level42 and cognitive
performance22 are modulated by the folate status, namely this
polymorphism has stronger effect in case of low level of folate
compared with high level of folate. In contrast, the MTHFD1L gene
has pleiotropic effects on the plasma homocysteine level and
markers of genome-wide DNA methylation after controlling for
nutrient status.30 Future research should reveal whether the effect

of MTHFD1L rs11754661 on ruminative response style depends on
the folate status.

Pathophysiological specificity of ruminative response style?
We found MTHFD1L rs11754661 more consistently associated with
ruminative response style than with our two depression pheno-
types, as rs11754661 does not predict depression in the
Manchester sample. Moreover, in Budapest, and in the combined
sample, the association of the MTHFD1L variant and ruminative
response style is only partly mediated by depression, but
completely accounts for the effect that the MTHFD1L variant
exerts on depression. These findings correspond well with two
reviews stating that rumination confers a risk not specifically for
depression, but, for several psychopathologies, alterations in
mental and physical health.3,7 Taken together these observations,
the MTHFD1L gene and thus the folate pathway may be important
in the pathophysiology of other health conditions related to
ruminative response style.
Regarding psychiatric disorders, the latest pathway-based

genome-wide association studies by the Psychiatric Genomic
Consortium46 found that methylation pathways, inclusive of the
SAM-dependent methyltransferase activity, are among the most
important in the common background of major depression, bipolar
depression and schizophrenia. Interestingly, the 'one-carbon pool
by folate' pathway, which contains theMTHFR and MTHFD1L genes,
was nominally significant for bipolar disorder, showed a trend for
major depressive disorder and was not significant for schizo-
phrenia, suggesting that this pathway has distinct effect on mood
disorders, probably through a common intermediate phenotype,
such as ruminative response style. However, our positive findings
with distinctive role of MTHFR and MTHFD1L polymorphisms still
underline the importance of not only the pathway-, but also the
gene- or polymorphism-based approach.
Taking into account non-psychiatric disorders, cardiovascular

diseases could also be potential targets of future investigations
because rumination, denoting a cognitive perseveration on
distress, yields a prolonged stress response and slower cardiovas-
cular recovery, and thus a risk for cardiovascular disease.4,5 In
addition, cardiovascular diseases share a pattern of alterations in
the key one-carbon cycle components (levels of, for example,
folate, homocysteine and the universal methyl donor SAM) with
psychiatric disorders.18

Therapeutic implications
There is some evidence that methylfolate47 and SAM41 supple-
mentations are effective in the treatment of major depression;
however, the evidence that folate augments the efficacy of
conventional antidepressant medication is mixed and includes a
recent large negative study.48,49 Our present results and previous
genetic association studies may shed light on these contradictory
findings. First, not the entire folate pathway is associated with
depression39,46 and treatment response,49 but elements with
stronger influence on methylation processes30 have more
consistent effects. Alterations in the DNA and histone methyla-
tions, which translate environmental exposures to specific gene
expression patterns and are major factors in the regulation of
brain development and synaptic plasticity, may cause long-term
increased risk for depression,50 which is difficult to reverse by
supplementation therapy. Second, ruminative response style, a
trait-like risk factor for several psychiatric and physical disorders,
represents an intermediate phenotype between MTHFD1L poly-
morphism and depression. Thus, methylfolate and SAM supple-
mentations may be more effective in those with high ruminative
response style, as an augmentation of targeted psychotherapies,51

although this hypothesis has not been tested yet.

Figure 2. Distinct roles of enzymes MTHFD1L and MTHFR in the
folate-related one-carbon cycle. MTHFD1L: mitochondrial mono-
functional C1-tetrahydrofolate synthase enzyme; MTHFD1: cytoplas-
mic trifunctional C1-tetrahydrofolate synthase enzyme; MTHFR: 5,10-
methylenetetrahydrofolate reductase enzyme; SAM: S-adenosyl-
methionine (a methyl donor in numerous reactions). The arrows
represent different reactions or a flow between the mitochondrion
and cytoplasm (as appropriate), and the most important enzymes
(with bold) and substrates are represented.
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Limitations
Our study is cross-sectional and cannot address the time course of
an association between MTHFD1L rs11754661 and either rumina-
tive response style or depression. In addition, it cannot account
directly for reporting bias for past depressive episodes; however,
we measured depression in two ways, one of which is current
depression, allowing some confidence that reporting bias does
not explain the association. Moreover, determining the prece-
dence of rumination or lifetime depression episodes would be of
crucial importance in our study, as we operationalized rumination
specifically as ruminative response style, anchoring it to an answer
to sadness or depressed mood. However, narrowing the concept
of rumination like this makes it easier to interpret our findings. Our
lifetime depression measure was not based on face-to-face
diagnostic interviews, but had been validated in a subsample. In
addition, further research covering the whole genes with
haplotype tags or sequencing these regions is required to confirm
the findings about the effects of single SNPs.

Conclusions and implications for future research
In conclusion, we have identified the MTHFD1L rs11754661 A allele
as a genetic risk factor for ruminative response style, and this
association may convey pathophysiological implications for not
only depression but also other mental and physical disorders. This
association, which replicated in two independent European white
samples, enriches our knowledge about the genetic architecture
of ruminative response style. In addition, the folate pathway can
be linked to most of the previously described genetic risk factors
for rumination. Therefore, future research is needed to shed light
on the particular ways in which MTHFD1L rs11754661 might affect
rumination, for example, via homocysteine levels, synaptic
plasticity, methylation patterns of relevant genes and
methylation-related dynamics of monoamine metabolism. It will
also be crucial to determine whether MTHFD1L acts at specific
points in neural development when the tendency to ruminate is
established.
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