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The scaffold protein Tks4 is 
required for the differentiation of 
mesenchymal stromal cells (MSCs) 
into adipogenic and osteogenic 
lineages
Metta Dülk1,*, Gyöngyi Kudlik1,*, Anna Fekete1, Dávid Ernszt2,3, Krisztián Kvell2,3, 
Judit E. Pongrácz2,3, Balázs L. Merő1, Bálint Szeder1, László Radnai1, Miklós Geiszt4,5, 
Dalma E. Csécsy1, Tamás Kovács1, Ferenc Uher6, Árpád Lányi7, Virag Vas1 & László Buday1,8

The commitment steps of mesenchymal stromal cells (MSCs) to adipogenic and other lineages have 
been widely studied but not fully understood. Therefore, it is critical to understand which molecules 
contribute to the conversion of stem cells into differentiated cells. The scaffold protein Tks4 plays 
a role in podosome formation, EGFR signaling and ROS production. Dysfunction of Tks4 causes 
a hereditary disease called Frank-ter Haar syndrome with a variety of defects concerning certain 
mesenchymal tissues (bone, fat and cartilage) throughout embryogenic and postnatal development. 
In this study, we aimed to analyze how the mutation of Tks4 affects the differentiation potential of 
multipotent bone marrow MSCs (BM-MSCs). We generated a Tks4 knock-out mouse strain on C57Bl/6 
background, and characterized BM-MSCs isolated from wild type and Tks4−/− mice to evaluate their 
differentiation. Tks4−/− BM-MSCs had reduced ability to differentiate into osteogenic and adipogenic 
lineages compared to wild type. Studying the expression profile of a panel of lipid-regulated genes 
during adipogenic induction revealed that the expression of adipogenic transcription factors, genes 
responsible for lipid droplet formation, sterol and fatty acid metabolism was delayed or reduced in 
Tks4−/− BM-MSCs. Taken together, these results establish a novel function for Tks4 in the regulation of 
MSC differentiation.

Frank-ter Haar syndrome (FTHS, OMIM:249420), is a rare genetic disorder associated with skeletal defects, 
craniofacial anomalies, cardiovascular abnormalities and, in some cases, reduced lipoid tissue1,2. The majority of 
FTHS patients die in infancy or in early childhood due to cardiovascular symptoms or respiratory infections3. The 
most common underlying genetic defects in FTHS have been recently identified through homozygosity mapping 
studies in patients, identifying homozygous mutations in the SH3PXD2B gene on chromosome 5q35.13. The 
analysis of patients detected 4 different intragenic mutations, and one complete deletion of SH3PXD23. A novel 
mutation in FTHS patients has also been described as the deletion of exon 13 of the SH3PXD2B gene4. Recently, 
two new homozygous loss-of-function mutations were identified in the SH3PXD2B gene in patients with Borrone 
dermato-cardio-skeletal syndrome (BDSC syndrome) which is a FTHS related genetic disease5.
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The protein product of the SH3PXD2B gene is known as Tks4 (tyrosine kinase substrate with 4 SH3 domains)6, 
a scaffold protein. Upon phosphorylation by Src kinase, it has the ability to interact with signaling molecules to 
regulate the actin cytoskeleton7. Tks4 was also shown to play an important role in the formation of podosomes8, 
production of reactive oxygen species (ROS) by tumor cells9, and also involved in EGFR signaling10,11. Although 
we have some knowledge of the possible function of Tks4, the detailed mechanism of how Tks4 impacts FTHS 
affected tissues is less clear.

Mesenchymal stromal cells (MSCs) as multipotent adult stem cells are able to form multiple cell types of 
mesenchymal origin, e.g. adipocytes and osteoblasts12,13, therefore it is tempting to speculate that Tks4 may affect 
osteogenesis and lipogenesis of MSCs. Moreover, there are some hints for the possible role of Tks4 in MSC biol-
ogy. For example, membrane type-1 matrix metalloproteinase (MT1-MMP), which is a binding partner of Tks4, 
is known to play a role in MSCs differentiation and trafficking14. Moreover, it has been described that Tks4 is 
involved in ROS production and ROS modulates several signaling pathways regulating MSC differentiation15. 
Therefore, we hypothesized that Tks4 may play a role in the process necessary for MSC differentiation and one 
of the underlying mechanisms causing the FTHS phenotype could be the impaired stem cell functions of Tks4 
deficient MSCs.

Here we present a novel Tks4−/− mouse strain on C57Bl/6 background with the complete loss of Tks4 pro-
tein. The adult Tks4 deficient mice have reduced fat tissue mass and altered craniofacial and skeletal bones. We 
compared the phenotype and differentiation potential of BM-MSCs (bone marrow mesenchymal stromal cells) 
isolated from Tks4−/− and wild type mice. Our data demonstrate that in the absence of Tks4, adipogenic and oste-
ogenic differentiation of BM-MSCs is impaired; therefore, we concluded that Tks4 is necessary for the adipogenic 
and osteogenic mesenchymal differentiation pathways.

Results and Discussion
Description of a novel Tks4 null mouse. Using homologous recombination with the targeting vector 
described in Fig. 1a, we have generated mutant mice in which the fifth and sixth coding exons of the SH3PXD2B 
gene were flanked by loxP sites and the puromycin resistance gene cassette was inserted into intron 4 adjacent 
to the floxed exons (Fig. 1a–c). Although Tks4−/− mice are viable and yielded the expected female-to-male ratio, 
they are infertile. The major observed phenotypic consequences of the genetic deletion of Tks4 scaffold pro-
tein were smaller size compared to the wild type (Fig. 1d), craniofacial abnormalities with wide anterior fon-
tanel and prominent eyes, (Fig. 1e,f) skeletal malformations as shortened long bones and kyphosis (Fig. 1g and 
Supplementary Table S1). MRI measurements showed that the adult Tks4 null mice develop lipodystrophy 
(Fig. 2a,b). Dissection of the mice showed highly reduced total fat weight and the separate fat pads of subcutane-
ous, gonadal, intestinal, and perirenal white adipose tissue also decreased in size in Tks4−/− mice compared to 
wild types (Fig. 2c,d). The phenotype of our Tks4−/− C57Bl/6 mice is similar to other Tks4−/− mice established 
in other mouse strains3,16 (Supplementary Table S1) and resembles the symptoms of FTHS patients2. To study 
the expression of Tks4 protein in wild type C57Bl/6 mice and confirm the lack of Tks4 protein in KO mice, we 
selected skeletal muscle, brain, heart, lung, spleen and white adipose tissue for Western blot examination (Fig. 2e). 
Tks4 protein was present in all wild type mouse tissue samples. High level of Tks4 expression was also measured 
in white adipose tissue. However, as expected, Tks4 was completely missing in the tissues isolated from KO mice.

Characterization of mesenchymal stromal cells of the Tks4-null mice. The major disease-affected 
tissues in FTHS patients and in Tks4−/− mice are bones, cartilage and fat tissue, all with mesenchymal origin. 
MSCs have the ability to differentiate into cells of mesenchymal lineage, but the involvement of Tks4 protein in 
the MSC differentiation process has not been tested so far.

Therefore, we studied the expression of Tks4 in BM-MSCs and the necessity of its presence in the BM-MSC 
differentiation process. First, we isolated MSCs from bone marrow of wild type and Tks4 mutant mice as 
described in previous reports17,18. The phenotype of fibroblastic, plastic adherent BM-MSCs was evaluated to 
confirm the identity of the cells by flow cytometry. Immunophenotyping showed that the Tks4−/− and wild type 
BM-MSC were negative for certain cell-surface antigens common to myeloid and lymphoid lineages, including 
CD45, F4/80; but were positive for markers used to describe mouse MSCs such as Sca-1 and CD44 and express 
CD73 and CD90. The cell surface antigen expression was similar in case of wild type and the Tks4−/− BM-MSCs 
and comparable to other mouse mesenchymal stromal cell lines19,20 (Supplementary Fig. S1). MSCs have not 
been tested so far for the presence of Tks4 protein; therefore, we checked the expression of Tks4 in all isolated 
BM-MSC lines. As shown in Fig. 3a, all three wild type MSCs expressed Tks4, whereas it was missing from 
Tks4−/− cells. To visualize Tks4 in BM-MSCs, wild type and Tks4−/− cells, we used immunofluorescence stain-
ing and microscopy. Figure 3b demonstrates that Tks4 displays a cytoplasmic expression pattern in wild type 
BM-MSCs, while it is missing from Tks4−/− cells. It is worth noting that the majority of wild type MSCs displays 
actin stress fibers while they are not present in a noticeable portion of Tks4−/− cells where F-actin appears rather 
around the cell periphery. This observation is in line with the fact that Tks4 is able to bind and recruit actin regu-
lators; therefore, actin filaments are differently distributed in the presence than in the absence of Tks46.

Tks4 is a potential regulator of the adipogenic and osteogenic differentiation of BM- 
MSCs. To test the BM-MSC multipotent capacity, these cells were first subjected to osteogenic differentiation 
condition. As seen in the Alizarin Red S-stained cultures (Fig. 3c), Tks4 mutant MSCs were not able to deposit 
calcium-containing minerals and remained elongated cells. In contrast, wild type MSCs readily differentiated 
into hydroxyapatite-depositing osteoblast cells. The photometric quantification of Alizarin Red S stain accumu-
lation in cultures of differentiated MSCs also confirmed the reduced ability of Tks4−/− MSCs to differentiate into 
osteogenic lineage (Fig. 3d,e). To characterize the differentiation defect of Tks4 KO BM-MSCs, we examined the 
expression of the main osteogenic transcription factors, RunX2 (66 kDa) and Osterix (54 kDa) by western blot 



www.nature.com/scientificreports/

3Scientific RepoRts | 6:34280 | DOI: 10.1038/srep34280

(Fig. 3f,g)21. RunX2 in wild type BM-MSCs was considerably upregulated during osteogenic differentiation, as 
expected22,23. By contrast, the expression of RunX2 in Tks4−/− BM-MSCs was lower and decreased throughout 
the differentiation process (Fig. 3f). As shown on Fig. 3g, Osterix was present during the differentiation of wild 
type MSCs, moreover the expressed Osterix protein became noticeably phosphorylated24. Meanwhile, the Tks4 
mutant MSCs displayed reduced Osterix expression and weak phosphorylation, indicating that the transactivator 
activity of the protein is not upregulated24.

The facts, that RunX2 and Osterix have decreased expression levels in the Tks4−/− MSCs compared to wild 
type support the conclusion that osteogenic differentiation of Tks4 mutant MSCs is impaired.

Next, we tested the adipogenic potential of Tks4−/− MSCs. BM-MSCs were kept in adipogenic medium 
(ADM) and the differentiated cells were detected by Oil red O staining. After 7 days of culture, the wild type 
MSCs developed lipid droplets in the cytoplasm but the Tks4 deficient MSCs did not show substantial lipid 
accumulation (Fig. 4a,b). These results revealed that the Tks4−/− MSCs were unable to undergo the adipogenic 
differentiation as efficiently as the wild type MSCs.

In the following experiments, we focused on adipogenic differentiation and further studied the functional 
relationship between Tks4 and MSC differentiation. As a starting point, we confirmed the expression of wild type 
Tks4 protein during adipogenic differentiation. Along the course of adipogenic induction of wild type MSCs, cell 
lysates were collected from cultures at six time points until day 10 and immunoblots were performed for Tks4 
(Fig. 4c). Our results showed that Tks4 protein is continuously present at all time points measured. This is in line 
with a previous study where the adipogenic differentiation of 3T3-L1 cell line was tested and the mRNA of Tks4 
was present in the early stage of adipocyte differentiation25.

Figure 1. Generation and characterization of Tks4-deficient mice. (a) Gene targeting strategy to knock 
out exons 5 and 6 of Tks4. In the targeting vector, exons 5 and 6 were flanked by loxP sites. A puromycin 
(Puro) resistance gene cassette was inserted into intron 4 and the thymidine kinase gene (TK) was inserted 
downstream of exon 6 for positive and negative selection, respectively. Mice carrying the mutant floxed allele 
were crossed with transgenic C57Bl/6 mouse carrying Cre recombinase. (b) Position of deleted exons 5 and 6 
are depicted in chromosome 11. The primer set (a1, s1, s2) and the amplified regions (WT: 249 bp, KO: 329 bp) 
are indicated on the SH3PXD2B wild type (WT) and knock-out (KO) gene. (c) PCR genotyping of heterozygous 
(+/−), wild type (+/+) and homozygous Tks4 knock-out (−/−) mice. Genomic DNAs obtained from offspring 
of heterozygous (+/−) mice, were amplified using primer sequences (a1, s1, s2) located near the deleted region. 
(d) Body weights of 8–10 months old Tks4−/− mice (n =  4) and wild type mice (n =  3). (e) Tks4−/− mouse and 
wild type littermate. Arrows show the shorter nasal bone of Tks4−/− mouse compared to wild type. (f) Calvarias 
from an 8 months old wild type and a littermate Tks4−/− mouse were stained with methylene blue. (g) Bone 
length measurements of 8–12 months old Tks4−/− mice (n =  5) and wild type mice (n =  5). *p <  0.05. An 
unpaired t-test was used to determine the significance of the difference between means of two groups. Error bars 
represent s.d.
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Expression of a number of regulatory and structural proteins is required for the proper adipose tissue dif-
ferentiation, including PPARγ  and adiponectin26,27. PPARγ  has two isoforms, PPARγ 1 and PPARγ 2, generated 
by alternative promoter usage and splicing. Compared with the isoform 1, PPARγ 2 contains an N-terminal 
30-amino-acid extension and displays lower mobility on SDS-PAGE28. We investigated the expression of PPARγ  
and adiponectin during the differentiation process of MSCs. Immunoblot analysis with anti-PPARγ  antibody 
revealed constitutive PPARγ 1 expression in wild type MSCs, while PPARγ 2 appeared around day 4 in the cells 
(Fig. 4d). Tks4−/− MSCs also contained PPARγ 1 at all time points but PPARγ 2 expression could not be detected. 
Figure 4d also demonstrates that adiponectin was readily detectable around day 4 in adipocytes derived from 
wild type MSCs, while Tks4 deficient cells only started to express adiponectin at low level around day 10. These 
results suggest that the presence of Tks4 is necessary for adipocyte differentiation and in the absence of Tks4, the 
adipogenic differentiation is blocked or delayed.

To further confirm the involvement of Tks4 protein in the adipogenic differentiation, the gene expression  
profile of a panel of lipid-regulated genes was measured. Wild type and Tks4−/− MSCs were incubated in adipogenic 
media for 4 days and subjected to a Taqman Array for mouse lipid-regulated genes29,30 (Supplementary table S2).  
The analysis revealed that the mRNA levels of transcription factors related to adipocyte differentiation  
(e.g. Srebf1, Nr1h3, PPARγ ) increased in wild type adipogenic MSC cultures but did not change significantly in 
Tks4 KO samples (Fig. 4e,f). Furthermore, the mRNA levels of most enzymes involved in sterol-metabolism, 
including Abca1, Lpl, Cd36 were down-regulated in the Tks4−/− MSCs in ADM. Moreover, genes character-
istics for fatty acid synthesis, such as Fabp4, Fabp5, Scd1 significantly increased in wild type samples but 
remained almost unchanged in Tks4−/− adipogenic MSC cultures. Taken together, we could measure significant 
up-regulation of 19 lipid-regulated genes in wild type adipogenic MSC cultures but the expression of these genes 
did not change dramatically in the Tks4−/− MSC samples. These results show that ADM has an inductive effect 
on several genes important for lipid metabolism in wild type MSCs but the lipid-regulated gene transcriptome 
remains rather unaffected in Tks4−/− MSCs during the culturing period.

Conclusions
The results presented here demonstrate that the scaffold protein Tks4 plays an important role in the differentia-
tion process of BM-MSCs into adipogenic and osteogenic lineages. Our finding that the differentiation of MSCs 
is impaired in the absence of Tks4 may serve an explanation for why Tks4 deficient mice and Frank-ter Haar 
syndrome patients display such a compromised phenotype. Future studies are warranted to describe the precise 
mechanism of Tks4 scaffold protein in the signaling of stem cell differentiation.

Figure 2. Characterization of Tks4-deficient MSCs. MRI measurement showing fat tissues (white) and other 
tissues (gray or black), (a) represents a 7 months old wild type male mouse and (b) represents a 7 months old 
Tks4 deficient male mouse. (c) Total fat weight measured in three adult WT and Tks4−/− mice. (d) Weights 
of various fat depos isolated from 7 months old WT and Tks4 KO mice. Three adult mice in each group were 
analyzed. (e) Skeletal muscle, brain, heart, lung, WAT (gonadal white adipose tissue) and spleen lysates from 
WT and KO mice were analyzed by Western blot for Tks4. Samples and gels were handled and run under the 
same experimental conditions. Tubulin was used to control equal loading. *p <  0.05. An unpaired t-test was 
used to determine the significance of the difference between means of two groups. Error bars represent s.d.
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Material and Methods
Generation of Tks4 knock-out mice. Tks4 knock-out mice were generated by targeted disruption of 
SH3PXD2B gene on chromosome 11, followed by the germline transmission of the mutated gene in Tks4+/− and 
Tks4−/− mice by TaconicArtemis. In the targeting vector (designed to allow a conditional knock-out of Tks4), the 
fifth and sixth coding exons of the SH3PXD2B gene were flanked by loxP sites and a puromycin resistance gene 
cassette was inserted into intron 4 adjacent to the floxed exons. (Figure 1a) The thymidine kinase gene was placed 
next to the homologous sequence for negative selection. The C57BL/6N ES cell line was grown on a mitotically 
inactivated feeder layer comprised of mouse fibroblasts in DMEM high glucose medium containing 20% FBS 
and 1200 U/ml Leukemia Inhibitory Factor. 1 ×  107 cells and 30 μ g of linearized DNA vector were electroporated 
(Biorad Gene Pulser) at 240 V and 500 μ F. Puromycin selection (1 μ g/ml) started on day 2, counter selection 
with Gancyclovir (2 μ M) started on day 5 after electroporation. ES clones were isolated on day 8 and analyzed 
by Southern blotting according to standard procedures after expansion and freezing of clones in liquid nitrogen.

The floxed fifth and sixth exons were removed by cre-mediated recombination in the germ line. Genotyping 
was performed by PCR using oligonucleotide primers a1 vs. s1 (a1: ACC CCA TAT CCA AAT TGT TGG and 
s1: GGA TAC ATT ATG CTG GCA TCG) for the wild type allele (product size, 249bp) and oligonucleotides a1 
vs. s2 (s2: GGT TTG AGT GAC AGG TAT CAA CC) for the mutant reaction (product size, 329 bp). (Figure 1b) 
Inactivation of the SH3PXD2B gene was tested in every generation by PCR of genomic DNA. (Figure 1c) Animal 
procedures in this study were conducted under the approval of the Institutional Animal Ethics Committee. 

Figure 3. Altered osteogenic differentiation potential of Tks4−/− BM-MSCs. (a) Western blot analysis 
of cell extracts from three independent wild type and three independent Tks4 KO BM-MSC lines. Protein 
samples were subjected to SDS-PAGE followed by immunoblots with anti-Tks4. Tubulin was used to control 
equal loading. (b) Representative fluorescent images of wild type and Tks4 knock-out cell cultures. BM-MSCs 
were grown in confocal chambers, fixed, permeabilized and stained. Nuclei were stained with DAPI (blue), 
actin filaments were fixed/labeled with Phalloidin-TRITC (red) and anti-Tks4 was visualized with Alexa Fluor 
488 (green). (c) Wild type and Tks4−/− MSCs were incubated in ODM and pictures were taken after Alizarin 
Red S staining. Representative pictures of stained cultures in 10x magnification following 14 days of culture, 
showing the morphology of the cells and (d) the whole plate showing the differences between control and ODM 
treatment of the Tks4−/− and wild type MSC cultures. (e) Quantification of calcium deposition by detecting the 
absorbance of Alizarin Red S extracts. Data are represented as mean of OD values of three wells. Time course of 
(f) RunX2 and (g) Osterix (Osx) osteogenic marker expressions during in vitro osteogenic differentiation of wild 
type and Tks4−/− BM-MSCs. (g) The phosphorylated form of Osterix (P-Osx) appears as lower mobility bands. 
Cell lysates were prepared at various time points and Western blot analyses were performed. Gels were run 
simultaneously under the same experimental conditions. Tubulin was used to control equal loading. *p <  0.05. 
An unpaired t-test was used to determine the significance of the difference between means of two groups. Error 
bars represent s.d.



www.nature.com/scientificreports/

6Scientific RepoRts | 6:34280 | DOI: 10.1038/srep34280

(Approval number: 22.1/2236/003/2009). The animals were maintained and handled in accordance with the 
Guidelines for Accommodation and Care of Animals (European Convention for the Protection of Vertebrate 
Animals Used for Experimental and Other Scientific Purposes).

Generation of BM-MSC cultures. We used 10–12 weeks old C57Bl/6 wild type and C57Bl/6 Tks4−/− mice 
for the generation of wilde type and KO BM-MSC cultures. Methods were performed as described previously17,18. 
Briefly, the mice were euthanized and femurs and tibiae were collected in Petri dishes containing Hank’s bal-
anced salt solution (HBSS) (Invitrogen, Carlsbad, CA, USA). After clearing the bones from excess tissues and 
removing the epiphyses, bone marrow nucleated cells were flushed out with complete medium (CM) containing 
DMEM/Ham’s F-12 medium (Thermo Fisher Scientific, Bremen, Germany), 10% fetal bovine serum, 5% horse 
serum (Invitrogen), 50 U/ml penicillin, 50 μ g/ml streptomycin (Sigma-Aldrich, St Louis, MO, USA) and 2 mM 
L-glutamine (Invitrogen) supplemented with heparin at a final concentration of 5 U/ml. The suspension was 
washed twice with HBSS then cells were seeded into 25 cm2 culture flasks (BD Falcon, Bedford, MA) in CM 
with a cell density of 1–2 ×  105 cm2 and placed in a humidified incubator at 5% CO2 and 37 °C. After two days, 
media were changed (fresh CM) and thus non-adherent cells were removed. Cells were propagated by trypsiniza-
tion (0.25% Trypsin-EDTA solution (Invitrogen)) upon reaching confluence and were placed into 75 cm2 culture 
flasks (BD Falcon). From the second passage, cells were subcultured in a 1:5 ratio and were used from passage 4 to 
11 in our experimental settings. We have repeated the MSC isolation three times to ensure true biological parallels 
of the further analysis. In each time points, the bone marrow of three wild type mice and three Tks4−/− mice were 
pooled and used to establish WT MSC and Tks4 KO MSC lines.

Characterization of BM-MSCs by flow cytometry. To define WT and Tks4 KO BM-MSCs by cell 
surface antigens, cells were retrieved by trypsinization (0.25% Trypsin-EDTA) at passages 3., 6. and 9 for flow 
cytometry analysis. Suspensions containing 1 ×  105 cells were made and labelled for 20 minutes in the dark at 4 °C 
with either fluorescein isothiocyanate- or phycoerythrin-conjugated monoclonal antibodies against mouse Sca-1, 

Figure 4. Reduced adipogenic differentiation potential of Tks4−/− BM-MSCs. In vitro adipogenesis of MSCs 
isolated from bone marrow of wild type and Tks4−/− mice. (a) Representative Oil red O-stained cultures and 
(b) the quantification of Oil Red O content (n =  8) following differentiation for 7 days. (c) Time course of Tks4 
protein expression in wild type MSCs during adipogenic differentiation. Cell lysates were prepared at various 
time points and Western blot analyses were performed with anti-Tks4 antibody. Tubulin was used to control 
equal loading. (d) Time course of adiponectin and PPARϒ expression during in vitro adipocyte differentiation 
of wild type and Tks4−/− BM-MSCs. Cell lysates were prepared at various time points and Western blot 
analysis were performed. Tubulin was used to control equal loading. Gels were run simultaneously under the 
same experimental conditions. The adipo-differentiated wild type (e) and Tks4−/− MSCs (f) were subjected 
to a TaqMan array for mouse lipid-regulated genes and gene expression profile was analyzed. The mRNA 
levels measured for day 0 of differentiation (control) were set to 1. The mRNA levels measured for day 4 of 
differentiation are calculated as n-fold differences relative to the control (day 0) samples. The relative expression 
levels of each gene are shown. (e,f) Indicates genes at least 2-fold up- or downregulation29.
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CD44, CD73, CD90.2 (all from BD Pharmingen, San Diego, CA, USA), CD45R, and F4/80 (AbD Serotec Ltd., 
Oxford, UK). Fluorescence was detected by flow cytometry using an Attune flow cytometer (Life Technologies, 
Carlsbad, CA) and the corresponding Attune Cytometer Software. Data are represented with the appropriate 
isotype controls.

Adipogenic and osteogenic differentiation of BM-MSCs. Wild type and Tks4 KO BM-MSCs were 
seeded into 24-well flat bottom plates or 25 cm2 culture flasks (all BD Falcon) and grown in CM. CM was replaced 
by the appropriate differentiation media upon reaching confluence or cells were harvested on day 0 as control 
sample for further analysis. Adipogenic differentiation medium (ADM) contained DMEM/Ham’s F12 supple-
mented with 10% FCS, 0.5 mM 3-isobutyl-1-methylxanthine (IBMX; Sigma-Aldrich) and 0.1 μ M dexamethasone 
(Sigma-Aldrich) while osteogenic differentiation medium (ODM) consisted of DMEM (Thermo Fisher Scientific) 
supplemented with 10% FCS, 10 mM β -glycerophosphate (Sigma-Aldrich), 50 μ g/ml ascorbic acid (Sigma) and 
0.01 μ M hydrocortisone (Sigma-Aldrich). During differentiation, ADM or ODM were replaced every 3–4 days. 
Cultures were kept in ADM for 1–10 days and the accumulation of lipid droplets was assessed by fixing cells with 
8% formalin for 20 minutes at 4 °C and staining with Oil Red O (Sigma Aldrich) and dimethylmethylene blue. 
Osteogenic differentiation was proved after 14 days in ODM. Cells were fixed with 8% formalin and extracellular 
calcium deposition was stained with Alizarin Red S (Sigma Aldrich). In order to quantify adipogenic differenti-
ation potential, photographs were taken of the Oil Red O stained cultures with a digital camera (Nikon Coolpix 
4500, Tokyo, Japan) connected to an inverted microscope (Olympus CK2) and stain accumulation was quantified 
according to Deutsch et al.31. To quantify osteogenic differentiation potential, Alizarin Red S-stained dry 24-well 
flat bottom plates were treated with 0.5 ml/well extraction solution of 20% (v/v) methanol and 10% (v/v) acetic 
acid in distilled water. Photographs were taken at this step of the whole plate, and then 100–100 μ l of the resulted 
solutions from each parallel wells were transferred to a 96-well plate (BD Falcon) and the optical densities (OD) 
at 450 nm were measured with a photometer.

RNA isolation, cDNA synthesis. Cultured and differentiated wild type and Tks4 KO BM MSC cells were 
harvested and pelleted followed by total RNA isolation using the Nucleospin RNA kit according to the manu-
facturer’s instructions (ref. no.: 740955, Macherey-Nagel). In-kit on-column DNase-treatment was included to 
eliminate potential genomic DNA contamination. 150 ng total RNA was used for reverse transcription during 
cDNA synthesis employing the Superscript kit following the manufacturer’s instructions (part no.: 4368814, Life 
Technologies). The kit includes random hexamer primers and performs first strand synthesis without additional 
RNase inhibition.

TaqMan Lipid-Regulated gene expression analysis. 96-well plates for Taqman Array of mouse 
lipid-regulated genes were used for precise gene expression profiling following the manufacturer’s instructions 
(part no.: 4415461, Life Technologies). The plate allowed for the direct comparison of control and treated samples 
on the same plate with 2 ×  48 well layouts, and also for the parallel use of multiple housekeeping genes (actin, 
GAPDH, HPRT1, GUSB) for precise standardization at all abundance levels. Plate PCR was run on an HT7500 
platform and evaluated using SDS 7500 v2.3 software (Life Technologies). The measured fold increase or decrease 
of the differentiated BM-MSC samples was normalized to the day 0 control samples. Data were represented in 
logarithmic scale. The gene set included in the array was grouped according to gene ontology and clustered as 
transcription factors, sterol metabolism, fatty acid metabolism and lipid droplet formation groups30.

Western blot analysis. Cells were washed with PBS and lysed in ice-cold 30 mM Tris buffer (pH 7.5),  
containing 100 mM NaCl, 1% Triton X-100, 10 mM NaF, 1 mM EGTA, 1 mM Na3VO4, 2 mM 
p-nitrophenyl-phosphate, 10 mM benzamidine, 1 mM phenylmethylsulphonyl fluoride (PMSF), 25 μ g/ml each 
of Pepstatin A, trypsin inhibitor and aprotinin. Lysates were clarified by centrifugation at 14000 rpm for 10 min at 
4°C. Sample buffer (4x, 0.2 M Tris, 0.277 M SDS, 40% (V/V) glycerol, 0.588 M β -mercaptoethanol, 0.05 M EDTA, 
1.19 mM bromophenol blue in distilled water) was then added to the supernatants, and the samples were boiled 
for 3 min. Equal amounts of samples were subjected to SDS-PAGE using 7.5, 10 or 12.5% running gels, respec-
tively. In case of testing for the presence of Tks4, proteins were transferred to nitrocellulose membranes while 
in the other cases, PDVF membranes were used. Membranes were blocked and incubated for 60 min with the 
appropriate primary antibodies at room temperature. Polyclonal anti-SH3PXD2B specific antibody was generated 
earlier7. Anti-α -tubulin (DM1A) was obtained from Sigma-Aldrich, St. Louis, MO, USA, PPARγ  (81B8), adi-
ponectin (C45B10) from Cell Signaling Technology, Danvers, MA, USA and anti-RunX2 (ab76956), anti-Osterix 
(ab22552) from Abcam, Cambridge, UK. After several washing steps, membranes were incubated for 30 min with 
a horseradish peroxidase-conjugated secondary antibody (GE Healthcare, Little Chalfont, Buckinghamshire, UK) 
and washed again. Reacting antigens were visualized with the enhanced chemiluminescence (ECL) detection 
reagents (Amersham Life Sciences Limited, Buckinghamshire, UK).

Confocal microscopy. Cells plated on μ -Slide 8-well ibiTreat Microscopy Chamber (ibidi GmbH, 
Martinsried, Germany) were fixed in 4% paraformaldehyde in PBS for 10 min, washed with 0.1% Triton X-100 in 
PBS and blocked with 2.5% FBS in PBS for 30 min. Anti-Tks4 polyclonal rabbit antibody7 was applied at 1:1000 
and TRITC-Phalloidin (P1951, Sigma-Aldrich, St. Louis, MO, USA) was applied at 1:500 dilution for 1 h. After 
washing with 0.05% Triton X-100 in PBS, the sample was incubated with Alexa Fluor 488 labeled anti-rabbit 
secondary antibody (Molecular Probes® , Thermo Fisher Scientific, Waltham, MA USA) for 30 min at 1:1000 
dilution. The pictures of fixed samples were acquired on a Zeiss LSM710 inverted confocal microscope with 63×  
objective (Carl Zeiss, Jena, Germany). Images were processed using ZEN software (Carl Zeiss, Jena, Germany).
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Positron emission tomography/magnetic resonance imaging (PET/MRI). Information on adipose 
tissues obtained by MRI measurement was collected using NanoScan PET/MRI system (Mediso Ltd, Hungary). 
Mice were anesthetized with isoflurane and underwent MRI without using contrast material. Parameters used: 
scan range 100 mm, 250 slice, slice thickness 0,4, FO,V 50, matrix 128 ×  128, NEX 3, TR/TE/FA 4.4/1.5/60 FESS 
were allowed.

Statistical Analysis
All data were analyzed using Prism software and represented as mean and standard deviation (s.d.). Statistical 
significance was assessed by unpaired Student’s t-tests. Three different wild type and three different Tks4−/− MSC 
cell lines were established and subjected to all experiments and analysis.
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