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Abstract: The experience of chronic pain is one of the 
commonest reasons for seeking medical attention, being 
a major issue in clinical practice. While pain is a univer-
sal experience, only a small proportion of people who felt 
pain develop pain syndromes. In addition, painkillers are 
associated with wide inter-individual variability in the 
analgesic response. This may be partly explained by the 
presence of single nucleotide polymorphisms in genes 
encoding molecular entities involved in pharmacodynam-
ics and pharmacokinetics. However, uptake of this infor-
mation has been slow due in large part to the lack of robust 
evidences demonstrating clinical utility. Furthermore, 
novel therapies, including targeting of epigenetic changes 
and gene therapy-based approaches are further broaden-
ing future options for the treatment of chronic pain. The 
aim of this article is to review the evidences behind phar-
macogenetics (PGx) to individualize therapy (boosting 
the efficacy and minimizing potential  toxicity) and genes 
implicated in pain medicine, in two parts: (i) genetic vari-
ability with pain sensitivity and analgesic response; and 
(ii) pharmacological concepts applied on PGx.

Keywords: acetaminophen; chronic pain; clinical transla-
tion; opioids; pharmacogenetics (PGx).

Introduction
Pain is the most common presenting physical symptom 
in primary care, accounting for an enormous burden of 
patient suffering, quality of life, work disability, health 
care and societal costs. According to the International 
Association for the Study of Pain, pain is defined as “an 
unpleasant sensory and emotional experience associated 
with actual or potential tissue damage” [1]. If untreated, 
chronic pain is very common and, approximately, one in 
three Americans and one in five Canadians and Europe-
ans, are reported to suffer from this problem [2].

From a genetic point of view, chronic pain is a typical 
gene x environment interaction, where the inherited 
genetic predisposition can influence greatly the devel-
opment of pain syndromes from various painful experi-
ences [3]. Different subtypes of pain can be described 
based on their neurophysiological basis and duration, 
including neuropathic, nociceptive, dysfunctional, 
acute and chronic. Treatment of pain-related suffering 
requires knowledge of how pain signals are initially 
interpreted and subsequently transmitted and perpetu-
ated. In fact, the evolution and intensity of the painful 
experience shows great individual differences, even in 
response to the same stimulus in an experimental envi-
ronment [4].
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The enormous variability in individual response to the 
many disparate treatments for chronic pain is clinically 
important and needs to be better understood. The notion 
that “one size fits all” has been replaced by the idea of 
patient-tailored healthcare prevention and therapy. This 
is the base of personalized medicine. Within this para-
digm, the research community has turned to examine 
genetic predictors of disease and treatment responses. 
Pain researchers performed genetic studies over the last 
decade that evaluated the association between genetic 
variability and pain sensitivity or analgesic response. 
Simultaneously, there is an increased recognition regard-
ing the complexity of pain research, acknowledging the 
additional role of epigenetic, transcriptomic, proteomic 
and metabolomic factors in the development, experience 
and treatment of pain [5].

Tools to personalize treatment of 
pain syndromes
The relatively high heritability rate and the assumed 
mechanisms behind transition from acute to chronic pain 
suggest that genetic research might provide useful target 
molecules for future drug development, as well as, could 
be used as a tool to personalize the treatment of pain 
 syndromes [6].

Gene-association studies searching

Gene-association studies searching for common genetic 
variants modulating pain vulnerability produced con-
founding results, probably because only few genetic 
regions were examined and its replication is very rarely 
found between the studies. In addition, most of these 
studies ignored the gene x environment interaction effect 
of stressful life events on vulnerability to pain that may 
contribute to transition to chronic pain state by trig-
gering negative mood [7]. Furthermore there are few 
meta- analyses in the field of pain genetics, and the only 
available considered the OPRM1 functional polymor-
phism 118A > G, but it did not confirm the relevance of this 
polymorphism in pain, only found weak evidences of less 
nausea and increased opioid intake in GG carriers [8–10].

A large meta-analysis of microarray studies for pain-
induced gene expression changes in animal models 
resulted in the identification of genes commonly regulated 
by painful states. Immune system-related gene clusters 
showed the best association with induced pain suggesting 

a pronounced effect of inflammatory mechanisms under-
lying painful conditions. However, extrapolation of these 
results even between rat and mouse species failed [8]. 
The differences in gene regulation observed in rat’s dorsal 
root ganglia (DRG) were almost completely absent in 
mice, despite the fact that the painful stimulus was the 
same. Therefore, cautious extrapolation of these results is 
required in human studies [11]. Further research is required 
in order to assess the most pervasive factors in chronic pain 
development, and also to identify gene sets that shape the 
vulnerability profile toward those factors. With proper anal-
gesic medication and concomitant personalized preventive 
therapy we can intervene the transition of the experienced 
pain into a chronic maladaptive state [12].

Genome-wide association studies

Genome-wide association studies (GWAS) have identified 
hundreds of genetic variants associated with complex 
human diseases and traits scanning markers across the 
complete sets of DNA. However, they rarely reported or 
even measured the experienced pain. This might be due 
to the lack of reliable and cheap pain level measurement 
tools, and, also, because of the fluctuations in the per-
sonal pain experience that makes very hard to detect true 
average pain intensity in cross-sectional studies [13].

Most variants identified so far confer relatively small 
increments in risk and explain only a small proportion 
of familial clustering, leading many to question how the 
remaining “missing” heritability could be explained. 
However, most of the studies compare the co-occurrence 
of the painful disease itself, and not the experienced pain 
states. Induced pain under laboratory circumstances can 
provide slightly better measurements of the heritabil-
ity rate of pain-vulnerability, which is estimated among 
22%–60% [14].

The rare exception of the multi-level GWAS study of 
chronic widespread pain resulted in the association of 
rheumatic pain with 5p12.2 chromosomal region [13]. 
These results might facilitate to other research groups to 
consider experienced pain as a worthy target for GWAS 
analyses. In addition, novel therapies, including targeting 
of epigenetic changes and gene therapy-based approaches 
are further broadening future options for the treatment of 
chronic pain [15].

Epigenetic modifications

Epigenetic modifications, such as DNA methyla-
tion and histone modifications (e.g. acetylation and 
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phosphorylation), are known to cause stable gene 
expression changes via chromatin remodeling. These 
mechanisms have a role not only in the determination of 
developmental cell fates, but also in the physiological and 
pathological processes in the nervous system. Alterations 
in DNA methylation, an enzymatic covalent modification 
of cytosine bases in the DNA, could serve as a “genomic” 
memory of pain in the adult cortex mediating the long-
term consequences of painful experiences and embed 
them into the genome. DNA methylation is an epigenetic 
mechanism for long-term regulation of gene expression. 
Neuronal plasticity at the neuroanatomical, functional, 
morphological, physiological and molecular levels has 
been demonstrated throughout the neuroaxis in response 
to persistent pain, including in the adult prefrontal cortex. 
Importantly, there is emerging evidence that a variety of 
genes undergo epigenetic regulation via DNA methylation 
and histone modifications within peripheral and central 
nervous systems, thereby contributing to the alterations 
in both, pain sensitivity and pharmacological efficacy 
in neuropathic pain. It is discussed whether epigenetic 
mechanisms can serve as potential targets to treat neuro-
pathic pain [16].

Neuroimaging with functional magnetic 
resonance imaging

Living with unrelenting pain is maladaptive and is 
thought to be associated with physiological and psycho-
logical modifications, yet there is a lack of knowledge 
regarding brain elements involved in such conditions. The 
era of neuroimaging with functional magnetic resonance 
imaging (MRI) studies provide us a completely new aspect 
of pain genetic research. The capability for recording real-
time activation of human brain in reaction to painful stim-
ulus provides system-based biological phenotypes which 
are more able to assess the effect of genetic and neurobio-
logical variables than simple syndrome phenotypes [17].

In fact, sustained high pain of chronic back pain 
(CBP) resulted in increased activity in the medial prefron-
tal cortex (including rostral anterior cingulate), strongly 
related to intensity of CBP, and this region is known to be 
involved in negative emotions, response to conflict and 
detection of unfavorable outcomes, especially in relation 
to the self. Interestingly, spontaneous CBP involves spe-
cific spatiotemporal neuronal mechanisms, distinct from 
those observed for acute experimental pain, implicating 
a salient role for emotional brain concerning the self [18].

Also, with MRI technology we can distinguish 
between different components of pain processing, such 

cognitive, affective or sensory elements and seems to be 
useful to entangle the previously confounding results 
about genetic predictor variants. These results suggest 
that different kinds of exposure to pain can cause transi-
tion to chronic pain states in different allele carriers, and 
also they would respond to psychological pain-manage-
ment therapy differently [11].

Pharmacogenomics in inflammatory 
pain treatment
In contrast to the wide variety of pain and painful syn-
dromes, only a handful of pharmacological substances 
proved to be effective against pain. Benefit/risk ratio of all 
the analgesic drugs is unsatisfactory with either a limited 
efficacy or a high level of adverse effects and, sometimes, 
both.

Analgesic drugs

Acetaminophen: new targets

Acetaminophen is one of the most popular and widely 
used drugs for the treatment of pain and fever. It occupies 
a unique position among analgesic drugs. Unlike non-
steroidal anti-inflammatory drugs (NSAIDs), it is almost 
unanimously considered to have non-anti-inflammatory 
activity and does not produce gastrointestinal damage or 
untoward cardiorenal effects. Unlike opioids, it is almost 
ineffective in intense pain and has no depressant effect 
on respiration. A novel and original view of this molecule 
now proposes acetaminophen to be a pro-drug needed 
to be biotransformed to be analgesic [19] by (i) hepatic 
deacetylation of into para-aminophenol; (ii) conjugation 
by the cerebral fatty acid amide hydrolase enzyme into 
AM404 [20] involving the activation of TRPV1 receptors 
[19, 20], followed by the inhibition of Cav3.2 [21] and the 
modulation of CB1 receptors [22]. This complex mecha-
nism disinhibits the periaqueductal grey matter output 
neurons, which could promote activation of the descend-
ing serotonergic inhibitory pathways as shown both in 
animals [23–25] and humans [26].

NSAIDs as COX inhibitors: balancing benefit/risk

The COX inhibitors are used most commonly in noncancer 
pain, however, in patients with severe pain they are often 
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proved to be ineffective, as well as, they present danger-
ous renal and gastrointestinal long-term side effects. In 
addition, they increase the risk of serious cardiovascu-
lar conditions, especially in patients with high risk for 
these conditions. The risks of these and other side effects 
increase in the elderly, when taken at higher doses, and 
with long-term use. As of April 2005, following recommen-
dations by the US Food and Drug Administration issued 
a public health advisory stating that “NSAIDs should be 
administered at the lowest effective dose for the short-
est duration consistent with individual patient treatment 
goals”. It is recommended that patients consult with their 
treating physician to evaluate the relative benefits and 
risks, especially of COX-2 inhibitors, in order to come up 
with the best treatment plan for their individual clinical 
situation [27, 28].

Opioids: large inter-individual analgesic variations

Opioids with their central mechanisms of action are con-
troversial drugs in noncancer pain treatment. Apart from 
the most-discussed abuse potential, the tolerance and 
dependence developed after chronic administration are 
also limiting the usage of opioids against pain [29]. More-
over, opioids suffer from invalidating adverse effects, 
which can alter the quality of life of patients and, in some 
rare cases, jeopardize the vital prognosis. They modulate 
nociception by stimulating μ opioid receptors (μOR), the 
major molecular gate for opioid analgesia [30]. None of the 
pharmacological activities of morphine, either its analge-
sic or adverse effects, could be detected in mutant mice 
lacking μOR [31]. This explains the difficulty to separate 
beneficial from adverse effects of μOR agonists. Recently, 
truncated μOR splice variants [32] have been proposed as 
targets to improve benefit/risk ratio of opiate analgesics 
[33]. Several other strategies have been developed to try to 
reduce opioids adverse effects, such as using agonists of 
other opioid receptors [34, 35] or peripheral μOR antago-
nists [36, 37]. However, the former ones produce a limited 
analgesia [38] and the latter ones need to be co-prescribed 
with opioids and prevent constipation, but not morphine 
central adverse effects such as respiratory depression [39].

Recently, using a different strategy, it has been dem-
onstrated that the TREK-1 K+ channel is a crucial contribu-
tor of morphine-induced analgesia in mice, while it is 
not involved in morphine-induced constipation, respira-
tory depression and/or dependence. These observations 
suggest that direct activation of the TREK-1 channel, acting 
downstream from the μOR, might have strong analgesic 
effects without opioids-like adverse effects [40, 41].

Empirically, it is well understood that large inter-
individual variations exist with respect to the response 
to opioids [42]. With conventional drug dosing, some 
patients will experience toxicity whereas other patients 
will not receive adequate analgesia at the same dose. 
Variations in analgesic efficacy can vary as much as two- 
to 10-fold or even 100-fold among members of the same 
family [43, 44].

Pharmacogenetics

Pharmacogenetics (PGx) refers to the way in which 
genetic differences between individuals influence patient 
drug responses and drug disposition [9, 10, 45]. Gener-
ally, genes affecting outcome of treatment can be divided 
into two broad categories. On the one hand, genes affect-
ing pharmacodynamics, based on variations in drug 
target receptors and downstream signal transduction (i.e. 
μ-opioid receptor, OPRM1; enzyme catecholamine methyl-
transferase, COMT, etc.) [46, 47]. On the other hand genes 
affecting pharmacokinetics (PK) that affect drug metabo-
lism and/or elimination (i.e. cytochrome P450 family of 
enzymes, enzymes responsible for glucuronidation, drug 
transporter proteins, COX enzymes, etc.) altering the rela-
tionship between drug dose and steady state serum drug 
concentrations [48].

Pharmacodynamics

Some candidate genes are implied either directly (opioid 
receptors) or indirectly into the opioid transduction path-
ways when signal is transmitted to a variety of effectors 
(e.g. adenylate cyclase or calcium and potassium ion 
channels named Kir3.2, KCNJ6).

Opioid receptors
Opioid receptors belong to the family of G-protein-coupled 
receptors (GPCRs). There are three types of classical opioid 
receptors: mu (μ), kappa (κ) and delta (δ). They share a 
high degree of homology and are structurally similar, 
containing an extracellular N-terminus domain, seven 
transmembrane domains and an intracellular C-termi-
nus domain. Most variations are found in the N-terminal 
domain and extracellular loops. The extracellular loops 
determine ligand binding and are, therefore, particularly 
important. Splice variations of opioid receptor mRNA have 
been shown to produce receptor subtypes which may be of 
functional importance [49].
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Opioid receptor μ1 (OPRM1) gene
The μ-opioid receptor encoded by the opioid receptor μ1 
(OPRM1) gene is the primary site of action for the most 
commonly used opioids. Therefore, it represents the first-
line candidate for evaluating the role of polymorphisms in 
the clinical effects of morphine.

Studies in mice with targeted deletion of OPRM1 gene 
established that this receptor is essential for morphine 
analgesia, physical dependence and reward [31, 50]. More 
than 100 single nucleotide polymorphisms (SNPs) local-
ized in the C-terminal intracellular domain of the protein 
have been described, and could possibly participate 
in various transduction signaling pathways following 
agonist binding [51, 52].

The most common polymorphism C118A > G (rs1799971, 
A118G), leading to an asparagine to aspartate substitution 
(Asn40Asp), with an allelic frequency varying from 2% 
to 50% according to ethnic groups, has been extensively 
studied [53]. This polymorphism is responsible for the loss 
of a putative N-linked glycosylation site in the N-terminal 
domain of the receptor and is associated with modified 
response to opiates. Indeed, the variant protein exhibits 
a three-times greater binding affinity for the endopeptide 
β-endorphin, whereas binding to substances such as mor-
phine, methadone and naloxone was unaffected in vitro 
[54]. Subjects carrying the variant G-allele were found to 
present reduced response to morphine treatment [9, 10, 
55–57] and reduced analgesic response to alfentanil and 
morphine-6-glucuronide [46, 58, 59], requiring higher 
doses of morphine for pain relief [46, 60]. In addition, it is 
also associated with MOR expression, a variant associated 
with a decrease in both mRNA expression and translation 
into a functional protein [61]. Also, lower mRNA expres-
sion in human brain tissue and in transfected cells was 
found in G-allele carriers [57].

Other SNPs from OPRM1 and the other classical opioid 
receptor genes, including OPRK1 and OPRD1, have been 
tested, for example, in the European Pharmacogenetic 
Opioid Study (EPOS). EPOS is the largest genetic associa-
tion study of opioid response to date, with 2294 patients 
taking opioids for cancer-related pain. A total of 112 SNPs 
in 25 genes, including OPRM1, OPRK1 and OPRD1, were 
investigated for relationship to oral equivalent morphine 
dose requirements. However, no association was identi-
fied with any of the SNPs tested in both, development and 
validation analyses [60].

Opioid transduction pathways
β-Arrestin 2
β-Arrestin 2 is an intracellular protein that is integral to 
μOR inactivation and internalization [62–66]. On binding, 

opioid receptor agonists differentially trigger receptor 
phosphorylation and recruitment of β-arrestin. Knock-
out studies have shown that mice lacking β-arrestin 2 
gene (ARRB2) exhibit prolonged analgesia from morphine 
treatment at lower doses [66]. It is worth noting that pro-
longed analgesia in mice lacking ARRB2 may also be due 
to a combination of more complex effects transduced by 
multiple GPCRs in the knockout animal model [66]. Poly-
morphisms in ARRB2 have been associated with overall 
response to morphine and opioid switching [67].

Pharmacokinetics

Other genes are implicated in the cellular transport of the 
molecules (such as ABCB1) or in their metabolism, which 
aims to convert lipophilic chemical compounds into more 
readily excreted hydrophilic products (mainly cytochrome 
isoforms CYP2D6, CYP3A4 and CYP2B6, and a glucurono-
syltransferase implied in morphine metabolism, UGT2B7).

Opioid metabolism
Different enzymes in phase 1 and/or phase 2 metabolisms 
are important for the metabolism of different opioids.

a) Phase 1 metabolism
a1) Cytochrome P450 2D6 (CYP2D26)
CYP2D26 is highly polymorphic and expression of differ-
ent variants results in several phenotypes: poor metaboliz-
ers (PM) express two nonfunctional alleles (e.g. two of *4, 
*5, *6 or other alleles), intermediate metabolizers express 
at least one reduced functional allele (e.g. one of *9, *10, 
*41 or other alleles), extensive metabolizers (EM) express 
at least one functional allele, and ultrarapid metaboliz-
ers (UM) that present multiple copies of the functional 
allele. The prevalence of variant alleles exhibits consider-
able interethnic differences [68]. The frequencies of these 
phenotypes in Caucasians are: PM, 5%–10%; intermediate 
metabolizers, 10%–15%; EM, 65%–80% and UM, 5%–10%. 
Well-characterized SNPs in CYP2D6 lead to the inability to 
convert codeine to morphine, thus making codeine ineffec-
tive as an analgesic for approximately 10% of the Cauca-
sian population [69]. In UM, codeine is convert to morphine 
and high concentrations of morphine can be observed [70] 
inducing major adverse effects. Tramadol is also metabo-
lized through CYP2D6 and its analgesic effect may change 
according to the polymorphisms of this enzyme [71].

a2) Cytochrome P450 3A (CYP3A4) and 2B6 (CYP2B6)
The CYP3A4 enzyme is localized in the liver and small 
intestine and, thus, contributes to first-pass and systemic 
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metabolism of opiates. CYP2B6 gene is a major isoform 
implied in methadone metabolism and clearance. 
However, although its activity is highly variable among 
individuals, no clear correlation between a genotype and 
a phenotype has yet been established [72].

b) Phase 2 metabolism
b1) UGT2B7
UGT2B7 insures the glucuronidation of morphine to mor-
phine-6-glucuronide (M6G) and morphine-3-glucuronide 
(M3G) metabolites [73]. M6G is approximately twice as 
potent as morphine in animal models and humans [74]. 
Even though, M3G has little affinity for opioid receptors, 
but may contribute to excitatory effects of morphine [75]. 
One frequent SNP, UGT2B7*2, has been studied (rs7439366, 
His268Tyr, 802C > T) that seems to be associated with a 
decreased activity [76].

Multi-drug resistance genes
P-glycoprotein 1 also known as multidrug resistance  
protein 1 or ATP-binding cassette sub-family B member 
1 (ABCB1) is an important protein of the cell membrane 
involved in multidrug resistance. It is responsible for 
decreased drug accumulation in multidrug-resistant cells 
and also functions as a transporter in the blood-brain  
barrier. Mutations of the ABCB1 gene (SNP 1236C > T) have 
been associated with higher methadone doses ( > 150 mg/
day) in methadone-maintained heroin addicts [77].

There has been noted to be an association between 
the ABCB1 and the OPRM1 gene polymorphisms related 
to morphine pain relief; combining evaluation of the 
two genes allowed detection of three response groups, 
resulting in a sensitivity close to 100% and specificity of 
more than 70% in predicting morphine relief [78]. Also 
an association between COMT and OPRM1 gene polymor-
phisms has been found in other studies [79, 80]. Carriers 
of both COMT Met/Met in Val158Met and OPRM1 A/A in 
A118G polymorphisms required less morphine than other 
subjects, however, differences were not significant and 
further studies should evaluate this association [79].

There may be differences between male and female 
patients at this gene as well; men with the TT allele had 
higher beta-endorphin levels than men with the more 
common CC allele, while the opposite was true in women 
[81]. In addition, women with the TT allele presented a 
higher risk of postoperative pain 3  months after surgery 
[82]. Similarly, female G-allele carriers of OPRM1 A118G 
SNP presented a slower recovery rate than male G-allele 
carriers after the disc herniation and increased pain 
 intensity [83–85].

Modifying systems
a) Catechol-O-methyltransferase (COMT)
The involvement of catecholamines in pain modulation is 
known from both clinical and experimental studies [57]. 
COMT is a key modulator of dopaminergic and adrenergic 
neurotransmission, and, as a consequence, in the reward 
signaling response to opioids. The C472G > A SNP of COMT 
(rs4680, Val158Met) causes a valine to methionine substi-
tution at codon 158 in the enzyme. The Met allele leads 
to an enzyme up to four-times less active than the Val  
allele [86].

b) Potassium channel, inwardly rectifying subfamily 
J, member 6
This gene encodes a member of the G protein-coupled 
inwardly rectifying potassium channel family of inward 
rectifier potassium channels. This type of potassium 
channel allows a greater flow of potassium into the cell 
than out of it. These proteins modulate many physiologi-
cal processes, including circuit activity in neuronal cells, 
through G-protein coupled receptor stimulation and it has 
been shown to participate in the modulation of analgesic 
effects on postsynaptic transmission and miosis under 
opioid treatment [80].

c) Serotonin transporter
Preliminary work in pain research is now emerging, with 
published studies that examine genotypic influence sero-
tonin transporter  (5HTT) gene polymorphisms on opioid 
analgesia in healthy volunteers and clinical response to 
anti-depressants [87–89].

Translating pharmacogenomics discoveries 
into the clinic

In general, PGx studies thus far in pain management have 
failed to yield evidence of improved clinical outcomes 
associated with knowledge of patient genotypes when 
prescribing pain medications. Genetic factors are thought 
to be responsible for approximately 12%–60% of response 
variance in opioid treatment, as evaluated in twin studies 
[90]. Many genes have been studied in order to identify 
PGx markers in opioid treatment, including genes implied 
in opioids’ pharmacodynamics and PK. In this review, 
we focus on those genes, although numerous genes have 
been implied in nociception and inflammation, and can 
participate in the analgesic dose requirement.

On an individual level, there is a difference in the 
analgesic response to a given opioid. Various factors 
such as gender, age and genetic variation can affect the 
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analgesic response. In fact, opioid analgesia can be pre-
dicted from activity of reward-responsive brain regions 
during pain as well as subjects trait-reward responsive-
ness ratings [91, 92]. Thus, studies have shown promising 
results regarding PGx as a diagnostic tool for predicting 
the individual response to a given opioid in experimental 
settings; however, in the clinic, it is a more complicated 
task to accomplish [93].

Pharmacogenomics in neuropathic pain 
treatment

Neuropathic pain is characterized by complicated com-
bination of positive (e.g. hyperalgesia and allodynia) and 
negative (e.g. hypoesthesia and hypoalgesia) symptoms, 
and is refractory to conventional pharmacological agents, 
including morphine.

Recently, Finnerup et  al. [94] proposed a revision 
of the NeuPSIG (Special Interest Group on Neuropathic 
Pain, from the International Association for the Study 
of Pain) recommendations for the pharmacotherapy of 
neuropathic pain as follows: first-line treatment for tri-
cyclic antidepressants, serotonin-noradrenalin reuptake 
inhibitors, pregabalin and gabapentin; second line for 
lidocaine patches, capsaicin high concentration patches 
and  tramadol; third line for strong opioids and botuli-
num toxin A [94]. They also stated that topical agents and 
botulinum toxin A are recommended only for peripheral 
 neuropathic pain.

In recent years, it has begun to be appreciated that 
the pathobiology of various neuropathic pain subtypes 
may differ [95]. As an example, chemotherapy-induced 
peripheral neuropathy (CIPN) is a common secondary 
toxicity to neurotoxic anticancer drugs. The type of anti-
cancer drug and the cumulative dose may impact in the 
incidence (possibly until 90% of patients for oxaliplatin), 
the symptoms and the severity/grade of neuropathy [96]. 
Recent meta-analysis demonstrated that among 31 studies 
(4179 patients), 68% (57.7–78.4) of patients suffered of 
CIPN 1 month after chemotherapy, 60% (36.4–81.6) after 
3 months and 30% (6.4–53.5) at 6 months or more [97]. In 
the case of oxaliplatin, which is probably the most neuro-
toxic anticancer drug, neuropathy symptoms can last until 
several years after the end of the chemotherapy cycles 
(2 years in the study by André et al. [98] and 8 years in the 
study of Yothers et al. [99]). Neurotoxicity mechanisms of 
anticancer drugs are not fully understood, but they may 
result from interactions with DNA, mitochondria, ion 
channels, glutamate neurotransmission and/or kinases, 
at various levels such as DRG (sensory neurons, Schwann 

cells, satellite cells) and spinal cord (neurons, glial cells) 
(for review, see Carozzi et al. [100]). CIPN is thus relatively 
distinct from other forms of neuropathic pain, including 
pathophysiology and symptomatology [101, 102]. After a 
systematic literature search identifying randomized con-
trolled trials for the treatment of CIPN, it has been con-
cluded on the poor efficacy of these drugs in CIPN. Genetic 
factors may be important in predisposing patients to this 
adverse effect.

Pharmacodynamics

Chemotherapy-induced peripheral neuropathy and drug-
induced peripheral neuropathies (DIPNs) are encoun-
tered, including small-fiber involvement. The introduction 
of new diagnostic techniques, such as excitability studies, 
skin laser Doppler flowmetry, and PGx, holds promise 
for early detection and elucidation of underlying mecha-
nisms. New approaches to improve functions and quality 
of life in CIPN patients are discussed. Apart from develop-
ing less neurotoxic anticancer therapies, there is still hope 
to identify chemoprotective agents, such as erythropoietin 
and substances involved in the endocannabinoid system, 
able to prevent or correct painful CIPNs [103].

Increased susceptibility to peripheral neurotoxicity 
after exposure to offending agents has been associated 
with polymorphisms in genes involved in the following 
pathways: chemotherapy-induced DNA adducts repair 
[104], immune function (cytotoxic T-lymphocyte-associ-
ated protein 4), also known as CD152 (cluster of differen-
tiation 152), CTLA4 and compatible time-sharing system, 
reflexive coupling within Schwann cells (Gap Junction 
Protein, Epsilon 1, GJE1), drug binding (proteasome 
subunit beta 1, PSMB1) and neuron function (Transcrip-
tion Factor, 4TCF4 and dynein cytoplasmic 1 intermediate 
chain 1, DYNC1I1) [105], apoptosis [106], mitochondrial 
dysfunction, inflammation [107] and oxidative stress scav-
engers such as glutathione S-transferase 1 (GST1) [108].

Pharmacokinetics

Chemotherapy-induced peripheral neuropathy has been 
associated with variations in genes encoding for drug 
transporters, detoxification enzymes, genes involved in 
DNA repair mechanisms and integrin B3 Leu33Pro poly-
morphism [109].

For instance, polymorphisms of the gene encoding 
ABCB1, have been suggested to partially explain the vari-
ability of taxane-induced DIPN [110]. It should be noted 
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that several other studies have been unable to identify 
relevant associations [111, 112]. Similarly, genetic variants 
of proteins involved in the metabolism of xenobiotics, for 
example, cytochrome 3A5, have been linked to increased 
risk of DIPN in children receiving vincristine [113]. A range 
of polymorphisms have also been identified with GWAS in 
association with oxaliplatin [114], paclitaxel, bortezomib, 
thalidomide and vincristine [107, 108].

Voltage-gated sodium channels

While the use of pharmacogenetic techniques to identify 
genetic polymorphisms has enabled further identification 
of potential differences in susceptibility to neurotoxic-
ity between individual patients, it remains a lack of con-
sensus on the association between genetic variants and 
the risk of neurotoxicity. Further studies with standard-
ized objective measures of neuropathy, the choice of the 
good primary outcome and larger patient numbers will be 
required to fully assess the involvement of genetic poly-
morphisms in the risk of neurotoxicity.

A recently published collaborative international 
study attempted to overcome those limitations, thor-
oughly investigating a series of SNPs in genes coding for 
neurologically relevant targets, such as the voltage-gated 
sodium channels (SCNA), in an adequately powered, pro-
spective cohort of well-characterized patients. SCNAs are 
fundamental to facilitate the initiation and propagation of 
action potentials in neurons. These membrane proteins 
are encoded by  > 10 genes in mammals, and mutations 
in SCNAs are associated with diseases of both, the central 
and peripheral nervous system [115]. The results of this 
study provided evidences to support a causal relationship 
between SCN4A-rs2302237 and SCN10A-rs1263292 poly-
morphisms and increased incidence and/or severity of 
oxaliplatin-induced peripheral neuropathy [116]. Further 
SCNA SNPs, such as the SCN2A R19K polymorphism, have 
been previously investigated with negative results [117]. 
These results illustrate the difficulty to choose potential 
genetic biomarkers. Mutations in genes encoding SCNAs 
have emerged as the most clinically relevant genes associ-
ated with several pathologies. This is the case for SCN10A 
regarding peripheral pain disorders. However, SCN4A has 
not been associated with pain syndromes [118].

Looking for new genetic biomarkers

A better understanding of the pathophysiology of CIPN 
will certainly lead to identify new molecular targets 

for the prevention of this particular neuropathy. For 
example, mechanistically, oxaliplatin promotes neu-
ronal over-excitability by drastically lowering the expres-
sion of distinct potassium channels (TREK, TRAAK) and 
by increasing the expression of pro-excitatory channels 
such as the hyperpolarization-activated channels (HCNs). 
These findings are corroborated by the analysis of TREK-
TRAAK null mice and the use of the specific HCN inhibitor 
ivabradine, which abolishes the oxaliplatin-induced cold 
hypersensibility [119, 120].

These results suggest that oxaliplatin exacerbates 
cold perception by modulating the transcription of dis-
tinct ionic conductance that together shape sensory 
neuron response to cold. The translational and clinical 
implication of these findings would be that ivabradine, 
a nonspecific HCN blocker, or TREK and TREK agonists, 
may represent tailored treatment for oxaliplatin-induced 
neuropathy. Ivabradine, which has been developed to 
treat stable angina pectoris, is able to selectively and 
strongly attenuate the cold sensitization effects of oxali-
platin in mice. Therefore, as a drug already used in the 
clinic, it could rapidly become a new potential preventive 
analgesic treatment in patients undergoing oxaliplatin 
chemotherapy [119]. Moreover, unpublished data from A. 
Eschalier’s group suggest the involvement of epigenetics 
in the transcriptional changes observed after oxaliplatin 
administration in mice, which opens to new pharmacolog-
ical prevention strategies opportunities in this pathology.

Conclusions
Ideally, PGx studies aim to aid in the selection and dosing 
of an optimal drug therapy for a specific patient. Choosing 
the optimal therapy should lead to maximize therapeutic 
benefit, improved patient adherence and reduction in 
adverse drug reactions. However, patients are very com-
monly prescribed several medications for multiple co-
morbidities and genetics can only partially explain the 
variability in patient responses to analgesic drugs.

Regardless that, one of the major challenges facing 
researchers working in this field, is translating their dis-
coveries into clinical practice. As an emerging field, PGx 
confronts new challenges such as ensuring its correct 
standardization and its correct translation into routine 
clinical practise. The need to standardize how PGx infor-
mation in order to translate it into routine clinical prac-
tices, to ensure dissemination of knowledge and education 
of clinicians and patients, need different multidiscipli-
nary consortiums as the European Society of Pharmacog-
enomics and Personalised Therapy (ESPT). Furthermore, 
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concerted efforts and open and active cooperation with 
industry, are required in order to facilitate translation and 
commercialization, avoiding to stuck PGx biomarkers in 
the discovery phase. Additionally, the knowledge and 
acceptance of new approaches to determine drug targets 
by clinicians, regulators, patients, and the public will be 
important in determining future success.
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