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Abstract

The vast majority of disease-associated single nucleotide polymorphisms (SNPs) mapped by 

genome-wide association studies (GWAS) are located in the non-protein coding genome, but 

establishing the functional and mechanistic roles of these sequence variants has proven 

challenging. Here, we describe a general pipeline in which candidate functional SNPs are first 

evaluated by fine-mapping, epigenomic profiling, and epigenome editing and then interrogated for 

causal function by using genome editing to create isogenic cell lines. To validate this approach, we 

analyzed the 6q22.1 prostate cancer risk locus and identified rs339331 as the top scoring SNP. 

Epigenome editing confirmed that rs339331 possessed regulatory potential. Using transcription 

activator-like effector nuclease (TALEN)-mediated genome-editing, we created a panel of 

isogenic 22Rv1 prostate cancer cell lines representing all three genotypes (TT, TC, CC) at 

rs339331. Introduction of the “T” risk allele increased transcription of the RFX6 gene, increased 

HOXB13 binding at the rs339331 region, and increased deposition of the enhancer-associated 

H3K4me2 histone mark at the rs339331 region. The cell lines also differed in cellular morphology 

and adhesion, and pathway analysis of differentially expressed genes suggested an influence of 

androgens. In summary, we have developed and validated a widely accessible approach to 

establish functional causality for non-coding sequence variants identified by GWAS.

INTRODUCTION

In contrast to Mendelian disorders, the vast majority of trait-associated common 

polymorphisms are located in the non-protein coding genome1, with many GWAS variants 

falling within gene regulatory elements. Trait-associated polymorphisms are enriched for 

expression quantitative trait loci (eQTLs)2,3. Moreover, the primary ENCODE paper 

recently reported a substantial enrichment of GWAS variants in ENCODE defined regions4, 

and another large-scale study revealed that approximately 75% of all noncoding GWAS 

single nucleotide polymorphisms (SNPs), or their proxies, are within a defined DNase I 

hypersensitive site5. However, linkage disequilibrium (LD) and the lack of a genetic code 

for the non-protein coding genome make functional interpretation of trait-associated 

polymorphisms particularly vexing. Even in large-scale fine mapping studies, LD prohibits 

the unambiguous identification of causal variants.

Spisak et al. Page 2

Nat Med. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Genome and epigenome editing technologies provide ideal and powerful tools to assess the 

functional significance of polymorphisms in the endogenous human genome. Epigenome 

editing reagents, which induce targeted recruitment of enzymes or domains that modify gene 

expression, can be used to validate the regulatory potential of particular genomic sequences. 

Genome editing nucleases including zinc fingers, TALENs and CRISPR/Cas constructs can 

be used to create isogenic series of disease-relevant cell lines representing the different 

genotypes of a candidate functionally causal risk SNP, enabling genotype-phenotype 

investigations in an identical and appropriate genetic background.

Despite the potential power of these technologies to address SNP causality, to our 

knowledge, no previously published study has used epigenome and/or genome editing 

methods to establish the functional significance of a non-coding variant identified through 

cancer GWA studies. A recent study used transcription activator-like effector nucleases 

(TALENs) to evaluate a variant correlated with fetal hemoglobin levels by deleting a 10-kb 

region harboring this SNP in intron-2 of the mouse Bcl11a gene. Although removal of this 

large sequence by non-homologous end-joining (NHEJ) repair significantly decreased 

BCL11A transcript and protein levels6, the deletion of such a large segment of DNA does 

not directly demonstrate the causal effect of the original polymorphism. Another study used 

nuclease-induced homology-directed repair (HDR) to characterize a regulatory mutation in a 

family for the rare autosomal recessive disorder, premature chromatid separation (PCS) 

syndrome7. However, these studies were not performed in a cellular context that is relevant 

for the actual disease; in addition, creation of the cell lines required a labor-intensive, two-

step antibiotic selection method that is not amenable to higher-throughput use7.

Currently, no validated experimental pipeline has been described to establish the 

mechanisms underlying risk SNPs despite repeated descriptions of the importance of such 

an approach in the published literature8–10. Here we describe the development and 

validation of a fully integrated, end-to-end pipeline that we call CAUSEL, Characterization 

of Alleles USing Editing of Loci, which enables experimental establishment of the 

functional causality of trait-associated variants. CAUSEL is comprised of five main steps: 

fine mapping, epigenomic profiling, epigenome editing, genome editing, and phenotyping. 

To demonstrate the feasibility of this concept, we evaluated the intronic prostate cancer risk 

locus located on chromosome 6q22.1 11. Our work establishes the causal function of a 

specific variant at this locus, and provides validation for the CAUSEL pipeline.

RESULTS

Overview of CAUSEL

To establish a general method for assessing the functional significance of non-coding SNP 

variants, we assembled a pipeline consisting of five main steps (Figure 1): (1) fine mapping 

to identify the range of candidate causal variants, (2) epigenomic profiling to narrow the 

field of candidate SNPs, (3) epignome editing to establish the regulatory potential of 

genomic regions bearing the variants, (4) homology-directed repair (HDR) induced by 

genome-editing nucleases combined with a barcoding screening strategy to create isogenic 

cell lines bearing the full range of potential genotypes, and (5) phenotypic analysis of the 

isogenic cell lines.
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Application to 6q22.1

To validate this method, we focused on a prostate cancer risk locus located on chromosome 

6q22.1. This locus had been previously shown to have a strong correlation with prostate 

cancer and to act as an expression quantitative trait locus (eQTL) for RFX6 expression12. 

The presence of an eQTL and its target gene make a locus particularly attractive for genome 

editing because they provide a testable hypothesis for genome editing – modification of a 

causal (but not correlated) variant will alter transcript levels.

To identify the strongest candidate causal variants, fine mapping data was evaluated from 

over 35,000 individuals and 27 SNPs were identified 13 (Figure 2a; Supplementary Figs. 1a–

d and Supplementary Tables 1 and 2). All of these variants are strongly associated with 

prostate cancer risk and are genetically indistinguishable, with association P values within 1 

order of magnitude (range: 1 × 10−16 to 2 × 10−17).

To further narrow the list of 27 candidate causal SNPs identified by fine mapping, we 

overlayed the genomic locations of these variants with epigenetic features in the LNCaP 

prostate cancer cell line obtained from publicly available databases and in primary prostate 

tumors. This analysis identified one SNP, rs339331, over the other 26 variants as having the 

highest likelihood of being functionally relevant (Fig. 2b,c). Of note, the “T” risk allele of 

rs339331 has been previously shown to create a binding site for the prostate lineage-specific 

HOXB13 transcription factor in prostate cancer cell lines12. We confirmed that HOXB13 

binding occurs in primary human prostate tumors using chromatin immunoprecipitation 

followed by quantitative PCR (ChIP-qPCR). We observed strong enrichment of HOXB13 

binding in two independent prostate tumor samples thereby demonstrating that this region is 

a bona fide HOXB13 binding site in human tissue (Methods; Fig. 2e).

To functionally test the hypothesis that rs339331 is located within an RFX6 regulatory 

sequence, we used targeted epigenome editing reagents. TALE-LSD1 fusion proteins consist 

of a programmable transcription activator-like effector (TALE) array, which can be 

engineered to bind nearly any DNA sequence of interest14, fused to LSD1, a histone lysine-

specific demethylase. Previous work has shown that TALE-LSD1 fusions can remove H3K4 

methylation marks associated with enhancers and decrease their gene regulatory activities15. 

We designed two TALE-LSD1 fusions that overlapped the HOXB13 binding site that 

encompasses rs339331 (Fig. 2d). These two fusions significantly suppressed RFX6 

transcript levels by three-fold in the LNCaP prostate cancer cell line (Fig. 2f). In a reciprocal 

experiment, we fused the same DNA-binding TALE repeat arrays from the TALE-LSD1 

proteins to a VP64 transcriptional activation domain to create artificial TALE-activators16. 

Site-specific recruitment of VP64 to rs339331 resulted in a greater than two-fold increase in 

RFX6 expression (Fig. 2g). We obtained similar results when we performed these same 

experiments in 22Rv1, an independent prostate cancer cell line (Supplementary Fig. 2). 

Taken together, these results suggest that the rs339331 site lies within a genomic region that 

can transcriptionally regulate expression of the target RFX6 gene.

Next, we used TALE nuclease (TALEN)-mediated HDR (Supplementary Fig. 3) to create a 

series of isogenic 22Rv1 prostate cancer cell lines each harboring one of the three rs339331 

genotypes (the parental diploid 22Rv1 line harbors a heterozygous genotype of CT). 
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Because we found nuclease-induced HDR of the rs339331 locus to be a low frequency event 

in 22Rv1 cells, we developed a barcoding strategy that enabled us to both efficiently isolate 

single cell clones and sequence the target locus of thousands of clones at nucleotide 

resolution without the need for antibiotic resistance marker selection.

The method uses traditional barcoding for clones within a plate coupled with an amplicon 

shifting strategy resulting in each plate being tagged with a unique amplicon (Figure 3 and 

Supplementary Figs. 4 and 5). With this method, we analyzed 1,920 clones derived from 

two independent transfection experiments (960 clones from each) in one high-throughput 

sequencing lane (Methods). We obtained evaluable data for 1,832 clones, of which 407 

retained the heterozygous status of the parental line. Thus, the percentage of single cells 

bearing at least one mutated rs339331 allele was 78% (1,425/1,832) (Fig. 4c and Methods). 

Among these mutations, we identified 459 distinct alleles that were generated by this 

TALEN pair (Methods; Fig. 4a,b; Supplementary Table 3) with variable-length deletions 

most likely induced by mutagenic non-homologous end-joining (NHEJ)-mediated 

repair17,18. The percentage of single cell clones with homozygous alleles at rs339331 

(created by induction of one of the two desired HDR-mediated alterations in one allele) was 

0.2% for the TT clones and 0.4% for the CC clones: 2/916 clones bearing TT (mediated by 

HDR with the donor template used to create the “T” allele) and 4/916 clones bearing CC 

(mediated by HDR with the donor template used to create the “C” allele) (Fig. 4c).

To assess the phenotypic impacts of rs339331 alteration, we first examined expression of the 

RFX6 target gene in the isogenic 22Rv1 prostate cancer cell lines (Fig. 5a). Baseline RFX6 

expression variability measured in 20 unmodified 22RV1 cell clones (CT heterozygous at 

rs339331) showed consistent levels of expression (Supplementary Fig. 6). By contrast, 

RFX6 transcript levels were significantly altered in the isogenic modified cell lines: in two 

independent clones bearing homozygous TT risk alleles, RFX6 expression was significantly 

increased relative to the parental, heterozygous (CT) parental line, while two independent 

clones bearing homozygous CC protective alleles showed decreased RFX6 expression (Fig. 

5b). We measured the allelic ratio of RFX6 mRNA levels in the TT and CC homozygous 

cell clones to further examine the impact of rs339331 genotypes on RFX6 gene expression. 

Using another SNP, rs12202378, located in intron 12 of RFX6 (r2 with rs339331 = 0.97) as a 

marker to distinguish between allelic transcripts, we observed that the allelic mRNA ratio 

was balanced at rs12202378 for cell lines homozygous (TT or CC) at rs339331 but was 

imbalanced for the parental, heterozygous cell line (Fig. 5c,d). Not unexpectedly, in 22Rv1 

cell clones bearing variable-length NHEJ-induced deletions, which presumably disrupt 

HOXB13 binding, we also observed downregulated expression of RFX6 (Supplementary 

Fig. 7a). To further substantiate the role of this region in a second independent cell line, we 

also performed genome editing of the hypotetraploid LNCaP prostate cancer cell line, which 

carries only the “T” allele at rs339331. Nine independent cell clones each carrying a 

variable-length NHEJ-mediated deletion all showed decreased RFX6 transcript levels 

(Supplementary Fig. 7b). Taken together, these results demonstrate that introduction of a 

“T” risk allele at rs339331 causes increased RFX6 expression while introduction of a “C” 

protective allele results in decreased RFX6 expression.
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We next used ChIP-qPCR to interrogate the state of regulatory epigenetic marks across the 

CC, CT, and TT genotypes in our isogenic 22Rv1 cell lines. Consistent with the gene 

expression data, we found that both the HOXB13 transcription factor occupancy and the 

H3K4me2 post-translational histone modification characteristic of enhancers were higher in 

the TT clones compared to the TC and CC clones at the rs339331 locus (Fig. 5e,f). ChIP-

qPCR in the parental, heterozygous cell line confirmed this observation for HOXB13 (as 

previously shown)12 and H3K4me2 by demonstrating greater binding to the T variant than 

the C allele (Supplementary Fig. 8a,b).

We next assessed if there are phenotypic differences relevant to cancer among the three 

isogenic 22Rv1 cell lines. Homozygous TT and parental TC cells displayed a mesenchymal-

type morphology, whereas CC clones were rounder with a regular cobblestone morphology, 

and formed tight colonies more typical of normal, untransformed epithelial cells (Fig. 6a). 

Because changes in cell shape can indicate a difference in the expression of proteins 

involved in cell-cell and cell-matrix interactions, we performed assays to test the ability of 

cells to adhere to collagen and plastic. TT clones adhered significantly more readily to both 

substrates than the CC clones (Fig. 6b). In contrast to a previous report, where modulation of 

RFX6 expression by shRNAs and siRNAs affected cell proliferation, invasion and 

migration12, we did not detect any significant differences in these phenotypes with respect to 

genotype (Supplementary Fig. 9).

To assess the impact of rs339331 alteration on global gene expression, we profiled the 

transcriptomes of the isogenic cell lines (both CC clonal lines (N=2), both TT clonal lines 

(N=2), and the parental 22Rv1 lines (N=2) using RNA sequencing (RNAseq) followed by 

validation of selected differentially expressed genes by qRT-PCR (Supplementary Fig. 10a). 

Principal component analysis of the data showed that independent biological replicates 

clustered together according to genotype (Supplementary Fig. 10b). One hundred and fifty 

three genes were differentially expressed in the CC cell lines compared to the parental TC 

cells, and 43 genes were differentially expressed in the TT cell lines compared to the 

parental TC cells (Fig. 6c and Supplementary Table 4). This is consistent with the greater 

phenotypic similarities we observed between the parental cell lines and homozygous TT 

clones. Ingenuity Pathway Analysis using the differential gene set identified between the CC 

and TT cell lines highlighted androgenic compounds and the androgen receptor as predicted 

upstream regulators of gene expression changes (P value for AR=8.2×10−5, CC v TT, Fig. 

6d). These data connect androgen signaling and RFX6 expression levels and are consistent 

with the observation of androgen receptor (AR) binding at rs339331 (Fig. 2c).

DISCUSSION

This work describes and validates an integrated pipeline to establish functional causality of 

non-protein coding variants derived from GWAS. This strategy includes multiple tools and 

technologies, some novel and some that have been previously described by our groups and 

others. However, our study is the first to describe the successful integration of all of these 

steps into a single validated pipeline for the systematic and comprehensive evaluation of the 

impact of genotype on phenotype.
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We selected the previously identified 6q22 prostate cancer risk locus to demonstrate proof-

of-concept of this pipeline11. Previous work from others showed that this locus was an 

established eQTL for RFX6 expression and that suppression of RFX6 levels resulted in 

alterations in proliferation, migration, and invasion12. Although this earlier study had shown 

that the T risk allele induced stronger binding of HOXB13 in prostate cancer cell lines, it did 

not provide proof of direct causality on RFX6 expression 12. By contrast, we used the 

CAUSEL pipeline to move beyond correlation and to show HOXB13 binding in vivo in 

primary human prostate tumors and to prove functional causality of rs339331 on RFX6 

target gene expression, on induction of cellular phenotypic alterations, and on global 

transcriptional changes that link androgen receptor signaling with RFX6 expression. Our 

observation of somewhat different cellular phenotypic effects than the earlier report may be 

attributable to our use of genetic modification of an endogenous SNP allele on RFX6 

expression as opposed to the shRNA and siRNA-based suppression approach used in the 

previous study12. This difference in phenotypic outcomes reinforces the importance of 

performing true genetic analysis rather than using other techniques such as shRNA that do 

not necessarily correctly recapitulate the phenotypic impacts of sequence variation.

Although our initial validation of the CAUSEL pipeline used TALENs, any of the various 

genome-editing nucleases, including CRISPR-Cas9 nucleases, ZFNs or meganucleases, can 

be used to create isogenic cell lines. We used TALENs because this was the platform of 

choice at the time we initiated this work, but we are currently using CRISPR-Cas9 nucleases 

in our on-going studies. The choice of which genome editing platform to use will depend on 

many factors, including the specific experimental question, the cell type, the locus being 

modified, desired ease of use, and the intrinsic design constraints of the genome editing 

reagents. Similarly, although we used engineered TALEs to direct LSD1 or transcriptional 

activation domains to specific loci, the epigenome editing component of CAUSEL might 

also be practiced using engineered zinc finger arrays or catalytically inactive Cas9.

An important consideration for experiments that use genome-editing nucleases to create 

isogenic cell lines is the potential for confounding off-target mutations19. This possibility 

exists regardless of the specific genome-editing nuclease platform used. Although we and 

others have shown that TALENs can induce off-target mutations20,21, we believe it is 

unlikely that our results are confounded by such effects because the same TALEN pair was 

used to create the homozygous “T” and “C” lines, which in turn showed different but 

consistent effects on RFX6 expression in more than one cell clone. Users of the CAUSEL 

pipeline need to be aware of the possibility for off-target mutations and to design their 

experiments appropriately. Although genome-wide methods for determining off-target 

effects of nucleases are beginning to be described in the literature22–25, these approaches are 

likely not necessary if appropriate control experiments are performed as we have done in 

this report.

The barcoding-based single cell screening approach that we developed for clonal genotyping 

should provide an important and broadly useful tool for genome editing projects. This 

method is flexible with respect to scale and can be used with any genome editing platform. 

For our experiments, the frequency of obtaining cells bearing HDR of one allele and not 

having an NHEJ-induced indel mutation in either allele was very low and necessitated a 
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screen that enabled high-throughput genotyping. We envision that for many other similar 

experiments performed with the CAUSEL pipeline, the rate of obtaining desired HDR-

modified cell clones will be low because: NHEJ-mediated repair can efficiently introduce 

unwanted indel mutations; and because the strategy of introducing additional mutations that 

prevent re-cleavage of the locus following successful HDR modification cannot be easily 

adapted to non-coding loci. However, even for genome editing experiments with higher 

rates of desired modifications, we believe that our screening approach will provide an 

economical and comprehensive method for genotyping cell clones; for example, enabling 

the pooling of multiple editing experiments into a single sequencing run.

In summary, this strategy provides an important blueprint for addressing the causal 

significance of the numerous trait-associated non-protein coding variants that have been and 

will continue to be identified. As the field advances, larger screens across multiple cell types 

and loci and in vivo modeling to characterize the role of inherited variation in disease 

development will continue to unravel the underlying biology of human traits. Thus, we 

envision that the CAUSEL approach will be of wide utility to the GWAS research 

community.

Methods

Fine Mapping

We combined data from studies with existing high-density SNP genotyping in prostate 

cancer GWAS in the following populations: European ancestry [8,600 cases and 6,946 

controls from the Cancer of the Prostate in Sweden (CAPS)26, Breast and Prostate Cancer 

Cohort Consortium (BPC3)27,28 African ancestry [5,327 cases and 5,136 controls from the 

African Ancestry Prostate Cancer GWAS Consortium (AAPC)29 and the Ghana Prostate 

Study]30; Japanese ancestry [2,563 cases and 4,391 controls from GWAS in Japanese in the 

Multiethnic Cohort (MEC)]11,31,32 and Latino ancestry [a GWAS of 1,034 cases and 1,046 

controls from the MEC]31. Details of each study are provided in Supplementary Tables 1 

and 2. Genotyping the samples from each study was performed using Illumina or Affymetrix 

GWAS arrays and quality control procedures of each GWAS have been described 

previously and the citations are provided in Supplementary Table 2. Imputation was 

performed in each study using a cosmopolitan reference panel from the 1000 Genomes 

Project (1KGP; March, 2012). Across each region, genotyped SNPs, imputed SNPs, and 

insertion/deletion variants ≥1% frequency were examined for association with prostate 

cancer risk. SNPs with an imputation r2 (‘info score’)33 less than 0.3 were not tested for 

association. Plots for Fig. 2a and for Supplementary Fig. 1 were created by the LocusZoom 

program (http://locuszoom.sph.umich.edu/locuszoom/)34

Cell Culture

22RV1 and LNCaP prostate cancer cell lines were requested from ATCC and cultivated in 

RPMI-1640 containing 10% FBS and 1% pen/strep (Life Technologies), unless otherwise 

indicated. TrypLE Express Enzyme (LifeTechnologies) was used to detach cells from tissue 

culture plastics. All cell cultures were incubated at 37°C with 5% CO2. Cells were passaged 

a maximum of 20 times. Mycoplasma contamination was checked at least once in a month 
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(LookOut Mycoplasma PCR Detection Kit (Sigma-Aldrich). 22Rv1 and derivative lines 

were authenticated by profiling short tandem repeats using the Promega PowerPlex16HS 

Assay (at the University of Arizona Genomics Core).

Plasmid Construction

TALE binding sites were identified using ZiFiT Targeter Version 4.2 (http://

zifit.partners.org/ZiFiT) and were designed to target the rs339331 locus (Supplementary Fig. 

3). All the TALE arrays were assembled using FLASH protocol as previously 

described17,35. Assembled TALEs were cloned into FokI nuclease, LSDI, or VP64 activator 

expression vector respectively using BsmBI restriction site. XL1-Blue chemically competent 

cells (Agilent) were transformed with plasmids and verified by colony PCR and Sanger 

sequencing.

Transfection

22RV1 or LNCaP cells were plated the day before transfection, to reach 70–80% confluency 

at the time of transfection. 1 × 106 and 0.4 × 106 cells per transfection were collected, for 

each cell line respectively. Cells were transfected with 1 μg of TAL nuclease or TALE 

effector or control empty vector plasmid DNA by nucleofection with SF Cell Line 4D-

Nucleofector™ × Kit (Lonza) using 20 μl Nucleocuvette™ Strips, as described by the 

manufacturer (Program EN120 and EN150). Cells were immediately resuspended in 100 μl 

culturing media and plated into 1.5 ml pre-warmed culturing media in 24 well tissue culture 

plate. The T7E1 assay, gene expression assays or single cell cloning were performed 72h 

post nucleofection.

ssODN mediated HDR

Ultramers (200 bp sense containing either C or T allele) were ordered from IDT and diluted 

(10μM). Primer sequences are listed in Supplementary Table 5. One μg TALEN pairs were 

cotransfected with 50 pM oligo. Two independent experiment was performed the C and the 

T allele changes. Cells were single cell cloned after regeneration. While this study used a 

200 base pair donor oligo, we note that other studies have shown that shorter donor oligos 

also can be used to modify DNA sequences36.

Single Cell Cloning

Cells were plated 3 days after transfection into 20% FBS containing RPMI-1640 media with 

1000 cells per 10 cm dish. After 14–21 days, when the formed colonies can be distinguished 

by eye, the colonies were scraped by pipet tips using a 10× super magnifier. Each colony 

was placed into a well of 384 tissue culture plate (Corning). Colonies were washed and 

suspended into 20 μl serum-free RPMI-1640 medium. 20 μl TrypLE™ Select 10× reagent 

was added to each well and incubated at room temperature for 10 minutes. The reagent was 

quenched by 40μl 20% FBS containing RPMI-1640 media. After vigorous shaking and a 

brief centrifugation at 1000g the plate was incubated for 3 days to regenerate colonies. The 

media was changed two times per week on the plates. The colony names referred to in Figs. 

3 and 4 were created according to the following parameters: “genotype_plate number/well 

ID”.
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Cell lysis and PCR amplification of region of interest - Template generation by direct PCR 
for T7E1 assay and sequencing

The goal of this step was to continue to allow the processing of the clones in an efficient 

manner without having to perform DNA extraction for each well.

Phire Tissue Direct PCR Master Mix (Thermo Scientific) was used according to our 

optimized protocol. Briefly, after media removal cells were detached by adding 20 μl 

TrypLE™ Select 10× (LifeTechnologies) for 10 minutes at room temperature. The reaction 

was quenched by 40μl 20% FBS containing RPMI-1640 media. Samples were mixed well 

and 30 μl of cell suspension transferred into a 384 well PCR plate. Cells were pelleted by 

centrifugation for 10 minutes at 3000g, and the supernatant removed. Cells were then 

suspended in 20 μl lysis buffer (950 μl lysis buffer + 50 μl DNA release solution) and 

denatured for 5 min at 99°C.

A premix sufficient for 192 reactions in 6 μl final volume and 500 nM final primer 

concentration per each was prepared allowing for a 1× reaction mix after added DNA 

template. Five μl premix was dispensed into each well and 1 μl cell lysate was added. The 

amplification was performed under the following thermal profile: ([98 °C, 2 min], [98 °C, 

10 s; 65–60 °C, −0.5 °C/cycle, 10 s; 72 °C, 20 s]10 cycles, [98 °C, 10 s; 62 °C, −1 °C/cycle, 

10 s; 72 °C, 20 s]25 cycles, [72 °C, 2 min]). PCR products were used for either T7E1 assay or 

sequencing.

T7E1 assay

TALEN cleavage efficiency was assayed. gDNA was isolated from TALEN treated cells 

according to Agencourt gDNA isolation protocol. 500bp amplicons including the TALEN 

target site were generated using appropriate primers. PCR products were purified by 

Ampure XP (Agencourt) magnetic beads according to the manufacturer’s instructions and 

quantified by nanodrop. 500 ng of purified PCR product was denatured and reannealed in 1× 

NEBuffer 2.1 (New England Biolabs) using the following protocol: 95 °C, 5 min; 95–85 °C 

at −2 °C/s; 85–25 °C at −0.1 °C/s; hold at 4 °C. Hybridized PCR products were treated with 

10 U of T7 Endonuclease I at 37 °C for 30 min in a reaction volume of 30 μl. Reactions 

were stopped by the addition of 2 μl 0.5 M EDTA, purified with Ampure XP magnetic 

beads. The fragments were visualized by agarose gel electrophoresis or quantified by 2100 

Agilent Bioanalyzer.

Gene expression analysis

RT-PCR—Total RNA was isolated using RNeasy Mini Kit (Qiagen). 500 ng total RNA 

was reverse transcribed using High Capacity Reverse transcription kit (LifeTechnologies). 

cDNA was diluted (20×) and RT-PCR was performed using 2× LC480 SYBR Green Master 

Mix (Roche) and Light Cycler 480 (Roche) instrument. Primer sequences are listed in 

(Supplementary Table 5) Relative gene expression was calculated based on ddCT method. 

Each sample was measured by three biological and technical replicates. The ALAS1 gene 

was used as a housekeeping gene to normalize the samples. Expression values determined 

by quantitative RT-PCR were compared between the genotypes using two-tailed Student’s 
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test. The analysis was performed in the R-environment (The Statistical R Core Team, 

2014)37.

RNA-sequencing and analysis—RNAseq was performed at the USC Epigenome 

Centre Core Facility. Libraries were prepared from 0.5μg total RNA using the Illumina 

TruSeq Sample Prep kit (with polyA selection), barcoded and six samples multiplexed for 

sequencing on the Illumina NextSeq 500, with 75bp paired-end reads. Data analysis was 

performed using Partek Flow and Partek Genomics Suite software. Using Tophat2 RNAseq 

reads were mapped to hg18 and annotated using Gencode v20. Differential gene expression 

analyses (GSA) were performed to identify genes differentially expressed between parental, 

TT and CC samples.

Measure of Allelic Imbalance

PCR products were generated from gDNA, ChIP DNA and heteronuclear cDNA and Sanger 

sequenced at DFCI-MBCF Core facility.

Chromatin immunoprecipitation (ChIP)

ChIP was performed after crosslinking 5~10 × 106 22RV1 cells with 1% formaldehyde in 15 

ml PBS at room temperature for 10 min, cells were then rinsed with ice-cold PBS twice and 

collected in RIPA buffer (0.1% SDS, 1% Triton X-100, 10 mM Tris pH 7.4, 1 mM EDTA, 

0.1% Na Deoxycholate, 0.25% N-Lauroylsarcosine, 1 mM DTT (suppliers)) with 0.3 M 

NaCl and protease inhibitor (Roche). Chromatin was sonicated to 300–800 bp and 

centrifuged at 13,000 rpm for 10min at 4°C. 6 ug antibodies (Anti-dimethyl-Histone H3 

(Lys4) Antibody: 07-030, Emd Millipore; HOXB13 Antibody (H-80): sc-66923, Santa 

Cruz) were incubated with 30μl Dynabead Protein A/G (Invitrogen) for at least 3hrs before 

immunoprecipitation with the sonicated chromatin overnight. Chromatin was washed with 

RIPA, then with with 0.3 M NaCl and LiCl wash buffer (0.25 M LiCl, 0.5% NP-40, 0.5% 

Na Deoxycholate, 1 mM EDTA, 10 mM Tris pH8.1) twice for 10 min sequentially. After 

rinsing with TE buffer twice, immunoprecipitated chromatin in elution buffer (1% SDS, 1 

mM EDTA, 5 mM Tris pH 8.1) was treated with Proteinase K for 6~12 hrs at 65°C with 

gentle rocking. After RNase A treatment at 37°C for 30min, ChIP DNA was quantified by 

Quant-iT TM dsDNA HS assay kit (Invitrogen). Quantification of target regions present in 

ChIP and input samples was achieved by quantitative PCR using the specific primers as 

listed in Supplementary Table 5. qPCR was performed using the Light cycler 480 SYBR 

Green I master mix (Roche) and run on the Roche Light cycler 480. Results are represented 

as mean ± SD for replicate samples. Data are representative of three independent 

experiments. Fold enrichment was calculated based on the ddCt method and the geometric 

mean of three housekeeping genes was used (primers are listed in Supplementary Table 5).

HOXB13 ChIP-qPCR on the two prostate tumors—Using a 2mm2 core needle, 

approximately three cores were extracted from the areas circled on an H&E slide. The 

frozen cores were pulverized using the Covaris CryoPrep system (Covaris, Woburn, MA). 

The tissue was then fixed using 1% formaldehyde buffer for 18 minutes and quenched with 

glycine. Chromatin was sheared to 300–500 base pairs using the Covaris E220 ultra-

sonicator. The resulting chromatin was incubated overnight with 6ug antibody—HOXB13 
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(H-80, Santa Cruz Biotechnology, Dallas, TX),—bound to protein A and protein G beads 

(Life Technologies, Carlsbad, CA). A fraction of the sample was not exposed to antibody to 

be used as control (input). The samples were de-crosslinked, treated with RNase and 

proteinase K, and DNA was extracted. PCR reactions were performed as described in the 

paragraph above and the primer sequences are in Supplementary Table 5. These samples 

were from the IRB approved protocol #01-045 at the Dana-Farber Cancer Institute.

Amplicon sequencing and genotyping analysis pipeline

We developed a high throughput sequencing strategy using amplicon sequencing and a 

novel multiplexing strategy for the screening and genotyping of about 2,000 samples at the 

nucleotide level. The primary goal was to establish a “3 dimensional” indexing strategy – 

each colony was uniquely identified by a well number (determined by a specific 

combination of 16 forward primers and 12 reverse primers) and a plate number (determined 

by an amplicon that is unique to each plate as shown in Supplementary Figs. 4 and 5).

Within each plate, a conventional barcoding method was performed allowing colony 

identification based on the barcode combinations. For example, colonies in well A1 across 

all plates will have the same forward and reverse primer barcodes. The plates are further 

distinguished by different amplicons. All of the amplicons interrogate the region around 

rs339331 (referred to as the core region), however they are uniquely identified by shifting 

the starting position by some number of basepairs (for these data, we shifted most of the 

amplicons by 3 bp) relative to the other amplicons (Supplementary Fig. 5a). Samples from 

each plate were pooled in equimolar amounts. The 16 and 12 forward and reverse primers 

allowed us to identify 192 sample groups that were then further separated based on the 10 

amplicons by locating the position of the unique 6 bp identifier segment (in this case 

“TGTACA”) that was included in amplicons (Supplementary Fig. 5). Thus, this strategy 

allowed for genotyping of 16 × 12 × 10=1920 samples in a single sequencing run.

Amplicon sequencing—A three-step PCR procedure was performed to generate a Mi-

Seq-compatible library for amplicon sequencing (Supplementary Figs. 4 and 5) (Primer 

sequences are in Supplementary Table 5).

First step PCR – The goal for this first PCR is to amplify region of interest by gene specific 

primers to create an amplicon that will serve as a template for the second PCR. In a 6μl final 

volume per sample, F and R primers were added at 0.4 uM final concentrations, and a 960 

bp amplicon was generated by direct touchdown PCR. 3 μl reaction products were 

visualized by agarose gel electrophoresis using a 1% TBE agarose gel. One μl PCR product 

was diluted in 200 μl molecular biology grade distilled water (LifeTechnologies) for use as 

template in the second PCR.

Second step PCR – the goal of this step was to generate PCR products with adapter 

sequences adapter PCR to generate shifted amplicons (most of the amplicons were shifted 

by three bps). Ten PCR primer pairs were designed against the RFX6 reference sequence to 

interrogate the rs339331 locus (illustrated in Supplementary Fig. 5a). PCR reactions were 

set up in 6 μl final volume by adding 2× Phusion High-Fidelity PCR Master Mix, 0.4 uM 

forward and reverse primer mix and 1 μl diluted template from the first PCR. Touchdown 
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PCR was performed using the following thermal profile: ([98 °C, 2 min], [98 °C, 10 s; 65–

60 °C, −0.5 °C/cycle, 10 s; 72 °C, 20 s]10 cycles, [98 °C, 10 s; 62 °C, −1 °C/cycle, 10 s; 72 

°C, 20 s]25 cycles, [72 °C, 2 min]). One μl PCR product was diluted in 200 μl molecular 

biology grade distilled water (LifeTechnologies) and used as the template for the barcoding 

reaction.

Third step PCR – generatation of Mi-Seq compatible barcoded amplicons. Forward (N=16) 

and reverse (N=12) HPLC purified barcode tagged adapter specific oligonucleotides were 

diluted and mixed in equimolar ratio to yield a 2uM final concentration, resulting in a total 

of 192 combinations. PCR reactions were set up in 10 μl final volume by adding 2× Phusion 

High-Fidelity PCR Master Mix, 0.2 uM forward and reverse primer mix and 1 μl diluted 

template. Two step PCR (i.e., the annealing and extension steps used the same temperature) 

was performed using the following thermal profile: ([98 °C, 2 min], [98 °C, 10 s; 72 °C, 20 

s]25 cycles, [72 °C, 2 min]).

The presence of the product was analyzed by agarose gel electrophoresis on 1% TBE 

agarose gel. The 192 barcoded samples were pooled and purified using QIAquick PCR 

Purification Kit (Qiagen). Library QC and 75PE Mi-Seq amplicon sequencing was 

performed in the DFCI-MBCF Core Facility.

Library QC analysis

The size of the final pooled amplicon libraries was assessed on the TapeStation 2200 

(Agilent Technologies) and quantified using the Library Quantification Kit for Illumina 

(Kapa Biosystems). The pooled libraries were denatured and diluted to 12 pM according to 

the standard Illumina protocol and paired-end 75bp reads were sequenced on the MiSeq 

(Illumina).

Data processing of high-throughput amplicon sequencing data

Two demultiplexing steps were used to uniquely distinguish the sequence of each clone. 

First, data were demultiplexed using the configureBclToFastq.pl script in the cassava-1.8.2 

software package (Illumina) with no mismatches allowed in the index read and otherwise 

default settings resulting in 192 FASTQ files were generated according to the 16 forward 

and 12 reverse barcode combinations (Supplementary Table 5). Second, each FASTQ file 

contained sequences from an identical well position and the plate identity was determined by 

the position of the “TGTACA” identifier segment within the sequence (Supplementary Fig. 

5a). Approximately 2.7% of reads did not have the TGTACA identifier sequence at the 

expected position and these reads were discarded. In addition, any read containing a base 

with a quality score, Q < 30 was discarded. After these filtering steps, a total of 10.9 million 

reads were used for further evaluation. Clones containing fewer than a total of 40 reads were 

discarded (N=40) leaving 1,880 (1,920–40) clones for sequence variant characterization.

Sequence variant characterization and genotyping

On average, each clone had 5,797 reads (10.9 million/1,880 clones). The unix command, 

uniq, allowed the identification of unique sequences that were present for each clone. These 

unique sequences were then tallied using another series of commands. From the total reads, 
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we selected the two most abundant sequences in each sample. If the two most abundant 

sequences comprised at least 80% of the total number of reads, the clone was considered 

pure, i.e., not polyclonal. Next, the 21 basepair core region (Supplementary Figure 5a) was 

used to assign each of the two sequences into three possible groups (C, T, or Mut). If the 

sequence matched the 21 base pair string, ‘TCCCCAGTTTCATGAGGTTTA’ (the 

underlined base is the C/T SNP at rs339331), it was called as a ‘C’ allele; if the sequence 

matched the ‘TCCCCAGTTTTATGAGGTTTA’ string, it was called as a ‘T’ allele. If the 

sequence did not match either, it was categorized as ‘Mut’. At the end of this step, each 

clone is assigned to one of the following six possibilities – ‘T/T’, ‘C/C’, ‘T/C’, ‘T/Mut’, ‘C/

Mut’, ‘Mut/Mut’. At this step, we still do not know the nucleotide sequence of the ‘Mut’ 

alleles and ‘Mut’ can result from a substitution, insertion, or deletion.

To characterize the actual alleles at the nucleotide level, we used the BLAST algorithm to 

align each of the top two sequences for each clone against a 141 bp region of the RFX6 

region, which was considered as the reference sequence (Supplementary Fig. 5a). After this 

initial alignment, we focused specifically on the 21 basepair core region that is in common 

to all amplicons (the yellow highlighted sequence in Supplementary Fig. 5a) and alleles 

were called only if they occurred in this region. Based on this pipeline, we identified a total 

of 459 individual allele variants (Fig. 2a) resulting from NHEJ- and HDR- nuclease-induced 

modifications (Supplementary Table 3).

All scripts for processing and analyzing the sequencing data are available by contacting the 

corresponding authors.

Variant visualization

The weblogo tool (http://weblogo.berkeley.edu/logo.cgi) (Fig. 4a) was used to visualize the 

distribution and frequency of deletions in our dataset. The heatmap in Figure 4b was created 

based on all of the identified alleles (N=459) with certain deletion length; and the number of 

other alteration (base substitution or insertion resulted by NHEJ) and their combinations. 

The heatmap shows the distribution and correlation of the number of altered and deleted 

positions (Fig. 4b). The pie chart shows the distribution of certain genotype categories, 

including; C/T (parental/unmodified); C_or_T / Mut (one chromosome altered); Mut/Mut 

(both chromosomes altered); C/C or T/T (recombinant). Mut means that the sequence differs 

from the parental including (deletions, insertions and substitutions) (Fig. 4c).

Adhesion assays

Cells were normalized to 0.3×106 cells/ml and applied to 96 well plates uncoated or coated 

with collagen IV (Sigma Aldrich). After 45 minutes wells were extensively washed with 

PBS and fixed for 10 mins with 100% ice cold methanol (VWR). Wells were washed again 

with PBS and stained for 10 minutes with 5mg/ml crystal violet (Sigma Aldrich) in 2% 

ethanol. Stained cells were extensively washed with PBS then water, lysed in 2% SDS and 

absorbance at 590nm read using a microplate reader (Microwin).
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Statistical analyses

No specific statistical method was used to determine sample size for the gene expression and 

ChIP data. RFX6 expression measurements were determined by quantitative RT-PCR and 

were compared across genotypes using the unpaired two-tailed Student’s t-test. Fold 

enrichments for ChIP were determined by quantitative PCR and P values were determined 

using the unpaired two-tailed Student’s t-test. For the cell-based adhesion assay, absorbance 

data were normalized to the parental genotype and statistical comparisons were made using 

the unpaired two-tailed Student’s t-test. The analyses were performed in R-environment37. 

No samples were excluded during the analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview of the CAUSEL pipeline
(a) Fine Mapping – Initial GWAS identifies a trait-associated locus (green). Fine mapping 

reduces the numbers of SNP candidate causal variants (blue). (b) Epigenomic Profiling – 

Analysis of colocalization of SNPs with epigenetic features can further prioritize causal 

variants for epigenome and genome editing. and Epigenome Editing - the regulatory 

potential of the candidate SNPs can be interrogated using epigenome-editing reagents. (c) 

Genome Editing - genome editing of the candidate SNP can be altered using nuclease-

induced HDR. Because the efficiency of the HDR can be low, single cell cloning and 

genotyping is necessary. (d) Phenotypic Characterization - The isogenic cell lines can 

undergo phenotypic assessment for a range of traits, including measurement of gene 

expression levels and cell-based functional assays. Abbreviations: GWAS = Genome Wide 

Association Study; DNaseI = DnaseI Hypersensitivity peak; HM = Histone Marks 

including, H3K3Me2 and H3K27Ac sites; TF = transcription factor binding sites; DBD = 

DNA Binding Domain (TALE or gRNA mediated dCAS9); LSD1 = Lysine-specific histone 

demethylase 1A; VP64 = VP64 artificial transcription factor activator; T= mutant allele; C 
= wild type allele; gDNA = genomic DNA; FokI = FokI nuclease; DSB = Double Stranded 

Break; HDR = Homology Directed Repair; ssODN = single stranded oligonucleotide HDR 

template, carrying the required alteration; eDNA = edited DNA; RT-qPCR = quantitative 

real-time PCR; CBA = cell based assay
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Figure 2. Genetic and epigenetic landscape of the 6q22.1 region
(a) Fine mapping of the 6q22 prostate cancer risk region (Data from 13). Each dot represents 

a SNP and its association with prostate cancer risk (–log(P value) from a 1-degree freedom 

Wald test) in a multiethnic cohort (N=18,031 cases and N=18,030 controls) is plotted on the 

y-axis. Rs339331 is shown in purple. The colors represent the degree of linkage 

disequilibrium with rs339331. (b) Fine mapping revealed 27 correlated variants in this 

region (green), however only the rs339331 (red) SNP co-localizes with multiple epigenetic 

features. (c) Publicly available epigenomic data, including DNaseI peaks (light blue) and 

H3K4me2 (dark blue). Transcription factor ChIP-seq in LNCaP cells reveals binding of 

HOXB13 (royal blue), FoxA1 (yellow), and AR (green). The red track demonstrates the AR 

ChIP-seq enrichment from a human prostate tumor tissue sample. (d) Genomic locations of 
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rs339331, HOXB13 binding site (red), amplification oligos for HOXB13 ChIP-qPCR (blue) 

and TALE-LSD1 or TALE activator DNA binding locations (DBD represents DNA Binding 

Domain; golden (DBD_1) and purple (DBD_2)). (e) HOXB13 ChIP-qPCR performed in 

primary prostate tumors. RFX6 expression in response to site-specific recruitment of TALE-

LSD1 (f) and TALE-ACT (g) to rs339331. All ChIP-qPCR and gene expression calculations 

are based on the mean ± standard deviation of three independent experiments (n=9). P 

values were obtained using the unpaired two-tailed Student’s t-test; **P<0.01.
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Figure 3. High-throughput sequencing pipeline and barcoding strategy
(a) Identification of isogenic cell lines by single cell cloning. This process consists of colony 

transfer into tissue culture plates and making replica plates; one for DNA extraction and 

genotyping and one for continued growth of colonies. The rest of the figure focuses on the 

sequencing pipeline. In this example, there are five separate plates for genotyping. (b) Each 

plate (represented by the blue bars) is barcoded by a unique amplicon and each amplicon 

contains the area of interest (denoted by the red hash mark). Each amplicon is shifted by 2–3 

basepairs relative to the previous one. PCR based target amplicon generation using cell 

lysate from the plates is performed. (c) Within an individual plate, conventional dual 

barcoding is performed. Thus, each well (e.g., well A1) from separate plates will have the 

same conventional dual barcodes, but will be distinguished by the amplicon, which is unique 

for each plate. (d) Amplicon sequencing and variant identification after high throughput 

sequencing. Each clone is identified by its plate number (amplicon barcode) and well 

position (conventional barcode). A full computational pipeline has been developed and is 

available upon request. See Methods for full details. (e) Each clone can have one of three 

possible outcomes: unchanged, indels created by the NHEJ pathway, and knock-ins created 

by the HDR pathway.
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Figure 4. Sequencing reveals allelic diversity created by genome editing
(a) Summary plot representing the 459 alleles identified by sequencing 1,832 clones (1,920 

clones – 40 failed reactions – 48 controls); each row is an allele and black lines refer to 

deletions. All of the deletion variants were listed and sorted based on the starting position of 

the deletion. The four bases are color coded (A, C, G, T); an insertion (I) larger than 1bp is 

indicated by light blue cells, a deletion (D) is demonstrated by black cells. Sequence logos 

show a 21 base pair core region surrounding rs339331 (top) and the positions and deletion 

frequencies for each nucleotide in the core sequence (bottom). (b) Heatmap showing the 

frequency of clones with a certain deletion size (x-axis) and insertion or substitution size (y-

axis). (c) Frequency distribution for different mutation classes across the 1,832 clones. 

Genotypes are indicated by C or T, “Mut” is defined as a substitution, insertion, or deletion.
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Figure 5. Genotypic status at rs339331 causally affects RFX6 gene expression, HOXB13 binding, 
and the H3K4me2 histone modification
(a) Sanger sequencing of the two TALEN HDR-modified (C/C and T/T) and parental (C/T) 

22RV1 cell lines. The rs339331 position is in larger font (b) RFX6 mRNA abundance was 

evaluated by qPCR in two clones of each HDR modified cell line (CC_1/169 and CC_2/096 

represent two independent CC clones and TT_1/160 and TT_5/138 represent two 

independent TT clones). (c) Genomic location and DNA chromatogram of two SNPs in the 

RFX6 gene in the 22Rv1 cell line: rs339331 (intron 4) and the rs12202378 heterozygous 

reporter SNP in intron 12. (d) Each row represents one of the rs339331 genotypes (green) 

and the two columns represent rs12202378 (blue) sequenced in genomic DNA (gDNA) and 

heteronuclear cDNA. Genomic (gDNA) was used as a control for allelic balance. HOXB13 

enrichment (e) and H3K4me2 enrichment (f) were measured by ChIP qPCR at the rs339331 

Spisak et al. Page 23

Nat Med. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



site. All calculations are based on the mean ± standard deviation of three independent 

experiments (n=9). P values were obtained using the unpaired two-tailed Student’s t-test; 

***P<0.001.
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Figure 6. Genotype at rs339331 alters morphology, cellular adhesion, and transcripts that are 
predicted to be regulated by androgens
(a) The 22Rv1 cell lines of each genotype were cultured in serum-containing medium for 48 

hours, and analyzed by phase microscopy, 100× magnification. (b) The TT clones are 

significantly more adherent to plastic and to collagen IV; Mean ± standard deviation of three 

independent experiments (n=12). P values were obtained using the unpaired two-tailed 

Student’s t-test; *** P<0.001. (c) Venn diagram displaying the number of differentially 

expressed genes for each pairwise comparison between the isogenic cell lines. (d) 

Androgenic compounds and the androgen receptor (AR) (grey) are among the most 

significant predicted upstream regulators of genes differentially expressed between TT and 

CC clones.
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