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SUMMARY
We recently reported that atypical teratoid rhabdoid tumors (ATRTs) comprise at least two transcriptional
subtypes with different clinical outcomes; however, the mechanisms underlying therapeutic heterogeneity
remained unclear. In this study, we analyzed 191 primary ATRTs and 10 ATRT cell lines to define the genomic
and epigenomic landscape of ATRTs and identify subgroup-specific therapeutic targets. We found ATRTs
segregated into three epigenetic subgroups with distinct genomic profiles, SMARCB1 genotypes, and chro-
matin landscape that correlated with differential cellular responses to a panel of signaling and epigenetic
inhibitors. Significantly, we discovered that differential methylation of a PDGFRB-associated enhancer con-
fers specific sensitivity of group 2 ATRT cells to dasatinib and nilotinib, and suggest that these are promising
therapies for this highly lethal ATRT subtype.
Significance

ATRTs are considered to be genetically homogeneous with bland genomes. Our integrated genomic studies indicate a
higher non-coding mutation rate and predominantly structural coding alterations, which suggest a more complex ATRT
genome. We identify three epigenetic ATRT subtypes associated with distinct genotypic, chromatin, and functional
landscapes that correlate with cellular responses to various signaling and epigenetic pathway inhibitors. Significantly,
we identify twowell-characterized cancer drugs, dasatinib and nilotinib, as promising therapeutic agents for group 2ATRTs.
Together with our earlier findings, our data provide compelling rationale for the development of a risk- and biology-stratified
trial for ATRTs.
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INTRODUCTION

Rhabdoid tumors (RT) are highly malignant, multi-lineage

neoplasms of early childhood originally described in kidneys

and soft tissues, but most frequently seen in the CNS where

they are called atypical teratoid rhabdoid tumors (ATRTs).

ATRTs were historically considered incurable, and although

outcomes have improved with intensified multimodal ther-

apy, most patients survive less than 1 year after diagnosis

(Chi et al., 2008; Hilden, 2004; Lafay-Cousin et al., 2012; Te-

kautz, 2005).
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Biallelic SMARCB1 loss-of-function alterations are diagnostic

of all RTs (Versteege et al., 1998). Up to 35% of ATRTs patients

have heritable SMARCB1 alterations, which predispose to mul-

tiple RTs (Eaton et al., 2011). Indeed, Smarcb1+/� mice also

develop soft-tissue- or neural-crest-derived RTs (Klochendler-

Yeivin et al., 2000; Roberts et al., 2002), and ATRTs can arise

from conditional inactivation of Smarcb1 (Han et al., 2016).

SMARCB1 is a constitutive component of the SWI/SNF chro-

matin-remodeling complex, which exhibits substantial structural

and functional diversity during neurogenesis. Loss of SMARCA4

(Hasselblatt et al., 2011), which encodes another component of
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the SWI/SNF complex in some ATRTs, further underscores

SWI/SNF-directed epigenetic mechanisms as critical in ATRT

development. Although cumulative data support a central role

for SMARCB1 in RT initiation, specific mechanisms driving tu-

mor development remain unclear. SMARCB1 deficiency leads

to aberrant nucleosomal positioning by the SWI/SNF complex

and is associated with upregulation of EZH2, a histone methyl

transferase of the repressive PRC2 complex (Roberts and Orkin,

2004) with consequent deregulation of multiple downstream

signaling pathways. These observations have led to RT therapies

targeting EZH2 and other downstream pathways (Kim and Rob-

erts, 2016; Wilson et al., 2010).

Surprisingly, despite the highly malignant and heteroge-

neous nature of ATRTs, exome studies indicate only recurrent

SMARCB1 coding alterations (Johann et al., 2016; Lee et al.,

2012). We recently reported that ATRTs comprised at least

two transcriptional subtypes with different clinical phenotypes

(Torchia et al., 2015). While group 1 ATRTs with neurogenic sig-

natures correlated with superior survival, group 2 ATRTs with
mesenchymal signatures had aggressive, treatment-resistant

phenotypes and dismal outcomes. However, mechanisms un-

derlying varied therapeutic responses in ATRT patients remain

unclear. Therefore, we performed an integrated genomic and

functional epigenomic analysis of a large cohort of primary tu-

mors and cell lines to elucidate subgroup-specific therapeutic

sensitivities in ATRT.

RESULTS

ATRTs Comprise Three Epigenetic Subtypes with
Distinct Clinical Profiles and Genotypes
We integrated whole-genome sequencing (WGS), whole-exome

sequencing (WES), high-resolution copy number profiling, and

RNA-sequencing (RNA-seq) analyses with gene expression and

methylation profiling on a total of 191 primary tumors (Table S1).

Consistentwithprior studies, coding regionsingle-nucleotidevari-

ation (SNV) rate was low with only recurrent SMARCB1 coding

mutations (Figure 1A, Table S2). However, intergenic mutation
Cancer Cell 30, 891–908, December 12, 2016 893
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Figure 1. ATRT Coding Genome Is Predominantly Targeted By Structural Alterations

(A) Global genome and coding region somatic mutation rate in ATRTs. Median somatic mutation rates/Mb were calculated using WGS and WES data on 26

primary ATRTswithmatched normal DNA. Boxplot middle representsmedian, box boundaries represent first and third quartiles; whiskers representmin andmax

values.

(legend continued on next page)
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rate was significantly higher (0.64 mutation/Mb), suggesting that

non-coding alterations may be important in ATRT (Figure 1A).

Interestingly, we identified a spectrum of 379 copy number alter-

ations (CNAs), including whole-arm gains and losses, focal dele-

tions, duplications, and complex inter- and intrachromosomal

gene rearrangements and uncovered 1.84–3.57 structural alter-

ations/ATRT (Figure 1B; Tables S2 and S3). Cell adhesion, neural

development, and chromatin-remodeling genes were targeted by

recurrent coding region CNAs in up to 20% of ATRTs (Table S4)

(Figure S1), andSMARCB1 lacked previously reportedmutational

hotspots (Bourdeaut et al., 2011; Jackson et al., 2009). Notably,

SMARCB1 loss in 55.8%of ATRTs analyzed arose from structural

events including exon duplications and gene fusions to HOR-

MAD2 and GTPBP1 (Figures 1C–1E; Table S5), indicating struc-

tural alterations as predominant mechanisms for SMARCB1 loss

in ATRTs.

Unsupervised cluster analyses of 450k methylation micro-

array data from 162 ATRTs revealed three epigenetic classes

with high concordance to gene expression subtypes deter-

mined from 90 primary ATRTs (Figures 2A and 2B, S2A–S2E).

While group 1 ATRTs comprised a single methylation cluster,

group 2 tumors further segregated into two methylation sub-

types (group 2A and 2B). ATRT subtypes correlated with distinct

clinical and genotypic features (Figures 2C and 2D; Table S6);

group 1 and 2A tumors arose predominantly in the supraten-

torial/cerebral (38/52; 73.1%) and infratentorial (cerebellum,

brain stem) (42/64; 65.6%) locations, respectively. Group 1

and 2A ATRTs were seen in the oldest (median age 24 months;

95% confidence interval [CI] = 20.70–26.55) and youngest

(median age 12 months; 95% CI = 11.05–13.00) children,

respectively. Group 2B ATRTs encompassed more heteroge-

neous locations and included infra- (9/34; 26.5%), supratento-

rial (17/34; 50.0%), and all spinal (8/34; 23.5%) tumors. Group

2B patients spanned a broader age distribution and comprised

the majority of patients older than 3 years of age (12/32; 37.5%).

We found no significant subgroup association with gender or

tumor metastases.

Although SNV alteration rates were comparable across

subgroups, we observed genotypic differences; group 2B tu-

mors had more focal genomic alterations (mean = 1.83; 95%

CI = 1.43–2.31 alterations/tumor; p = 0.0024) than group 1

(mean = 0.86; 95% CI = 0.65–1.12 alterations/tumor) and 2A

(mean = 0.88; 95% CI = 0.68–1.13 alterations/tumor; Figures

2C and Table S6) tumors. While group 1 tumors were distin-

guished by recurrent chr14 gains and chr19 losses, group 2B

tumors exhibited focal copy number losses across multiple

chromosomes, and group 2A ATRTs were genomically bland

(Figure S3). Strikingly, our analyses revealed the type of genetic

event leading to SMARCB1 loss also differed between ATRT

subgroups (p = 2.79 3 10�4; Figure 2C; Table S6). Most group
(B) Circos plot of recurrent structural alterations, including SCNAs and gene rearr

copy number data of 180 primary ATRTs.

(C) Schema of SMARCB1 alterations relative to DNA binding domain (DBD) and

(D) Schema of a chr22q intrachromosomal fusion ofSMARCB1 exon 5 (gray) andH

sequence and RT-PCR and Sanger sequencing validation of the fusion mRNA.

(E) Schematic of a chr22q intrachromosomal translocation involving SMARCB1

CREST predicted mRNA consensus sequence of respective gene fragments and

See also Figure S1, Tables S1, S2, S3, S4, and S5.
1 tumors (30/45; 66.7%) exhibited focal/subgenic alterations

with predicted retention of the SMARCB1 transcriptional start

site; however, group 2B tumors had large deletions encompass-

ing SMARCB1 and frequently additional chr22 genes, thus indi-

cating SMARCB1genotype:phenotype correlations in ATRTs.

ATRT Subgroups Have Distinct Lineage-Enriched
Functional Genomes
Our observation of specific genotypes suggests that SMARCB1

loss may have different functional consequences in ATRT sub-

types. To define core molecular and cellular features of ATRT

subgroups, we integrated supervised analyses of transcriptional

and methylation data and observed that, while ATRTs generally

exhibited a hypermethylated genome relative to other pediatric

brain tumors, group 2A ATRTs had the lowest CpG island

methylation levels compared with group 1 and 2B tumors

(Figure S4A). Distribution of differentially methylated probes in

CpG islands or gene bodies were similar across subgroups (Fig-

ure S4B); however, methylation and expression levels of lineage

and developmental signaling genes differed significantly be-

tween subgroups (Figure 3A). These findings were corroborated

by ingenuity pathway analyses (Figure 3B; Table S7), which

revealed neurogenic genes (FABP7, ASCL1, MYCN, c1orf61)

and genes involved in NOTCH (DLL1/3 HES5/6), glutamate re-

ceptor (SLC17A8, SLC17A6), and axonal guidance (TUBB2B/

3/4A, SEMA6A) signaling, were most highly expressed and hy-

pomethylated in group 1 ATRTs. BMP signaling (BMP4, BAMBI,

GDF5, FOXC1) and mesenchymal differentiation (SERPINF1,

CLDN10, FBN2,MSX1, PDGFRB) genes were most differentially

expressed and methylated in group 2A/B tumors (Figure 3C;

Table S7). Group 2A tumors were further distinguished by

enrichment of visual cortex/hindbrain development (OTX2),

retinol (RBP1, RBP7, RDH5, RDH10), and tyrosine (TYR) meta-

bolism genes, while upregulation of MYC and HOXB/C clusters

was seen in group 2B tumors (Figure 3C). Detailed analyses

showed high concordance of CpG methylation patterns at

promoters with ATRT subtypes, thus suggesting epigenetic

regulation of developmental/cell lineage signaling pathways in

ATRTs (Figures 3D and S5). Interestingly, while many group

2A enriched genes had functions in pluripotency and EMT,

group 2B ATRTs exhibited heterogeneous profiles with enrich-

ment of interferon signaling, cell adhesion, and cytoskeletal

genes (Figure 3B).

To further investigate the distinct functional epigenome of

ATRT subgroups, we performed high-resolution, genome-wide

chromatin accessibility mapping using the assay for trans-

posase-accessible chromatin (ATAC)-sequencing (ATAC-seq)

analyses on five primary tumors (two group 1 and 2A, one group

2B) and four ATRT cell lines. In keeping with methylation and

transcriptional analyses, principle component and correlation
angements, from integrated WGS, RNA-seq, SNP, and 450k methylation array

repeat regions 1 and 2 (Rp1 and Rp2) domains in the SMARCB1 protein.

ORMAD2 exon 11 (orange) identified by RNA-seq in ATRT T51 with consensus

intron 5 (gray) and GTPBP1 intron 1 (blue) identified by WES in ATRT T12 with

PCR and Sanger sequencing validation of breakpoint.

Cancer Cell 30, 891–908, December 12, 2016 895



Figure 2. ATRTs Comprise Three Epigenetic Subgroups with Distinct Clinical Profiles and Genotypes

(A and B) ATRTs were classified by unsupervised consensus hierarchical (HCL) and non-negative matrix factorization (NMF) cluster analyses of 450kmethylation

array (A) or Illumina HT12 gene expression array data (B). Adjusted Rand Index indicates concordance in methylation and gene expression clusters. Most stable

tumor grouping indicated by highest cophenetic coefficient (Coph. Coef; k = 3) with 250 genes and 10,000 methylation probes are shown.

(C) Clinical, molecular, and genotypic features of 177 primary ATRTs. Tumor subgroups determined by methylation or gene expression are indicated by red

(group 1), blue (group 2A), green (group 2B) or gray (group not available) bars; clinical (tumor location, patient age, metastatic status), global patterns of CNAs

(chromosomal or subchromosomal/focal), and type of SMARCB1 alterations in individual tumors are indicated. Clinical or molecular features with significant

subgroup correlation are indicated in red. SMARCB1 alterations were classified as focal (point mutations, small indels, intergenic deletions) or broad (intragenic

events, large deletions).

(D) Tumor location, median age, and age distribution in ATRT subgroups. Boxplot middle represents median, box boundaries represent first and third quartiles,

and whiskers represent 10th and 90th percentiles.

See also Figures S2, S3, and Table S6.
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analysis of primary ATRT ATAC-seq data showed segregation

and association of ATRT subtypes with distinct ATAC-seq pro-

files (Figure 4A; Table S8). Integration of ATAC-seq footprints

with RNA-seq data revealed open chromatin landscape in

group 2A ATRTs that correlated with generally increased gene

expression patterns in contrast to more closed chromatin land-

scapes and decreased gene expression patterns in group 1

tumors, while group 2B ATRTs exhibited an intermediate pro-

file (Figure 4B). Specifically, we observed that group 1 (ASCL1,

FABP7) and group 2A/B (OTX2, ZIC1/4, ZIC5/2) cell lineage

genes and multiple signaling genes including ligands of NOTCH

(DLL1,HES6) and BMP (BMP4,MSX2) pathways displayed open

chromatin in a subtype-specific pattern. ATAC-seq analyses of

ATRT cell lines showed similar patterns indicating that subgroup

lineage and signaling features were maintained in cell lines

(Figures 4C and 4D). These data suggest that ATRT subgroups

and SMARCB1 genotypes correlate with distinct functional

epigenomes and indicate that epigenomic mechanisms drive

lineage-specific gene expression and potential targetable thera-

peutic pathways in ATRTs.

NOTCH and BMP Signaling Drive ATRT Subgroup-
Specific Cell Growth
To investigate subtype-specific therapies, we used expression

profiling to determine molecular grouping of ten ATRT cell lines

including 78C and 34C, respectively, derived from tumors T13

(group 1), T45 (group 2B), and established lines CHLA02,

CHLA04, CHLA05, CHLA06, CHLA266, BT12, BT16, and

SH. Prediction analysis of microarray (PAM) analyses of gene

expression data from primary ATRTs reproducibly classified

cell lines into subgroups 1 and 2 which, respectively, showed

enrichment of neurogenic/NOTCH and mesenchymal/BMP

signaling genes seen in corresponding primary ATRT subtypes.

Western blot analyses confirmed expression of NOTCH intracel-

lular domain (NICD) and phosphorylated SMAD1/5 (pSMAD1/5),

respective effectors of NOTCH and BMP signaling in primary

group 1 and 2 ATRTs and corresponding cell lines (Figure 5A),

indicating that subtype signaling pathways were maintained.

To evaluate functional significance of NOTCH and BMP

signaling,weusedDAPT (N-[N-(3,5-difluorophenacetyl)-L-alanyl]-

S-phenylglycine t-butyl ester), a g-secretase inhibitor (Geling

et al., 2002), and dorsomorphin (DM) (Yu et al., 2008) to, respec-

tively, assess effects of NOTCH and BMP inhibition on a panel of

group 1 (78C, CHLA05, CHLA02) and group 2A/B (SH, CHLA06,

BT16) cell lines with most consistent growth phenotypes. Cell

viability assays showed robust dose-dependent growth inhibition

of group 1 and 2 cell lines with DAPT and DM treatment, respec-

tively (Figures 5B and S6A), while cross-treatment of group 1 and
Figure 3. ATRT Subgroups have Distinct Lineage-Enriched Transcripti

(A) Starburst plot of ATRT subgroup-specific genes with reciprocal changes in me

(left panel; red), group 2A (middle panel; blue), and group 2B (right panel; green)

(B) Top ten (top axis) enriched pathways for each subgroup was determined b

difference in expression; relative enrichment of pathways is shown on bottom ax

(C) Gene expression heatmap of subgroup-enriched neural/mesenchymal lineag

t test with FDR correction. Genes enriched in individual subgroups, or shared by

(D) Heatmaps showmethylation levels of representative lineage genes in ATRT su

relative to transcriptional start sites.

See also Figures S4, S5, and Table S7.
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2 cell lines respectively with DM and DAPT had insignificant

growth effects. Western blot and qRT-PCR analyses confirmed

growth inhibition by DAPT correlated with dose-dependent

downregulation of NICD and NOTCH transcriptional targets

HES1 and HES5 in group 1 lines (Figures 5C and S6B). Similarly,

we observed a dose-dependent decrease in pSMAD1/5 and

BMP target genes SOST andBAMBI in group 2 cell lines (Figures

5D and S6B). Changes in NICD and pSMAD1/5 levels after DAPT

and DM treatments also correlated with increased cell death

in TUNEL assays (Figure S6C). We confirmed that the growth

effects of g-secretase inhibitors were mediated via NOTCH

signaling in group 1 cells using siRNA-mediated knockdown of

theNOTCHeffector RBPJ, which significantly diminished growth

of group 1 (CHLA04/05) but not group 2 cell lines (BT12/BT16)

(Figure 5E). These data collectively indicate that NOTCH and

BMP are important ATRT subgroup-specific survival pathways

and attractive pharmacologic targets.

Epigenetic Regulation of an Enhancer Element
Underlies Group 2 ATRT Sensitivity to Pharmacologic
Inhibitors of PDGFRB Signaling
Recent studies report promising therapies targeting various

epigenetic and signaling pathways in ATRTs (Ginn and Gajjar,

2012); however, the relevance of these agents to ATRT subtypes

is unknown as prior studies examined a few cell lines. To identify

additional subgroup-specific targets, we tested the effects of 14

smallmolecules targeting epigenetic pathwaysongrowthof three

group 1 (CHLA04, 02, 05) and five group 2 ATRT (CHLA266/06,

SH, BT16/12) lines (Figure S7A). We selected small-molecule

inhibitors with well-defined in vitro cellular activity that target

Bromo/BET domain proteins (JQ1, PFI-1,2 GSK2801, SGC-

CBP30), methyltransferases (GSK343, UNC1999, UNC0642,

UNC0638, A-366, J4, DOT1L, LLY507), and histone deacetylases

(LAQ824). Cell viability assays showed that five of the 14 com-

pounds had consistent significant effects on cell growth (>30%

reduction in cell viability), including UNC0638, UNC1999, JQ1,

LAQ824, and J4. LAQ824 and J4 significantly diminished growth

of all cell lines. In contrast, UNC0638, UNC1999, and JQ1 treat-

ment induced >30% reduction in viability of all three group 1 cell

lines but did not affect three out of five group 2 cell lines (Figures

6A, 6B, S7A, and S7B). Interestingly, gene expression analyses

showed that EHMT2 (encodes G9a), EZH2, BRD4, and related

loci (BRD1-BRD7) were highly expressed across all ATRTs (data

not shown), and suggest that therapeutic sensitivity to epigenetic

inhibitors may be dependent on a distinct functional chromatin

landscape in ATRT subtypes.

Dasatinib and nilotinib are ATP-competitive small-molecule

multi-tyrosine kinase inhibitors (TKIs) of BCR-ABL fusion protein,
onal and Methylation Signatures

thylation (x axis) and gene expression (y axis). Genes associated with group 1

ATRTs are highlighted.

y ingenuity pathway analysis (IPA) of subgroup-specific genes with ±2-fold

is.

e and NOTCH/BMP/HOX signaling genes in ATRT determined by supervised

subgroups 2A and 2B are shown by solid and dashed boxes, respectively.

bgroups; methylation status of probes in ASCL1,OTX2, and HOXB2 are shown



Figure 4. ATRT Subgroups Have Unique Chromatin Landscape and Functional Genomes

(A) Principle component analysis (PCA) and correlation analysis of ATAC-seq data from five primary ATRTs. Aligned sequence reads from ATAC-seq profiling

were converted to peak tag counts using HOMER software for PCA and correlation analysis using DiffBind software; color gradients indicate sample relatedness.

Heatmap shows peaks enriched in group 1 and 2 ATRTs.

(legend continued on next page)
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stem cell factor receptor, platelet-derived growth factor receptor

(PDGFR), and Src family kinases (Rix et al., 2007). Both drugs

are widely used in treatment of leukemia (Kantarjian et al.,

2006) and some solid tumors (Araujo and Logothetis, 2010) but

have not been extensively investigated in pediatric brain tumors.

We therefore tested the sensitivity of ATRT cell lines to dasatinib

and nilotinib as gene expression data indicated that PDGFRB

was most differentially expressed between ATRT subgroups. In

contrast to the relative insensitivity of group 2 ATRTs to epige-

netic inhibitors, the growth of all five group 2 cell lines tested,

including CHLA266 that was reported previously to be dasatinib

sensitive (Kolb et al., 2008), was robustly diminished after dasa-

tinib and nilotinib treatment (Figures 6A and 6B). Importantly,

neither drug significantly affected the growth of group 1 cell lines.

The well-characterized pharmacology of these drugs make

them ideal candidates for clinical translation, hence we sought

to further investigate the pharmacologic properties and mecha-

nisms underlying the robust effect of both drugs on group 2

ATRT cell growth. Half-maximal inhibitory concentration (IC50)

assays revealed group 2 cell lines were up to 1,000 times more

sensitive to dasatinib than group 1 cell lines (IC50 range 1.01 ±

0.02 to 5.23 ± 0.13 mM versus 3.98 ± 0.90 to 49.95 nM for group

1 and 2, respectively) (Figure 6C). As there are no reports of

dasatinib efficacy in brain tumors, we tested dasatinib treatment

in vivo using a BT16 orthotopic xenograft model which recapitu-

lates classical rhabdoid morphology (Figure S7C) with predict-

able engraftment rates. Mice with BT16 xenografts treated with

daily intraperitoneal dasatinib (30 mg/kg) injections for 2 weeks

had significantly prolonged survival compared with vehicle-

treated controls (Figure 6D). Bioluminescence imaging (BLI) of

a subset of tumor-bearing mice showed that drug treatment

correlated significantly with decreased BLI signals (p = 0.043;

Figure 6D).

To investigate mechanisms for dasatinib sensitivity, we

compared expression of known dasatinib targets in ATRT sub-

types. Integrated analyses identified PDGFRB as the most sig-

nificantly differentially expressed locus in group 2 versus group

1 ATRTs (>2-fold change, p = 6.35 3 10�5) (Figure 6E), which

was confirmed by western blot analyses of primary ATRTs (Fig-

ure 6F). CSF1R, which also encodes a potential dasatinib/nilo-

tinib target and maps next to PDGFRB, was not differentially

expressed or methylated in primary tumors or cell lines. These

findings suggested that differential epigenetic regulation leading

to PDGFRB upregulation may underlie the distinct sensitivity of

group 2 cells to dasatinib and nilotinib. Consistent with high

PDGFRB expression in group 2 ATRTs, ATAC-seq analyses re-

vealed open chromatin at the PDGFRB but not the CSF1R

promoter, specifically in group 2 primary tumors and cell lines

(Figures 7A and 7B). Interestingly, ATAC-seq analyses also iden-

tified a distinct region of open chromatin in group 2 tumors and

cell lines that corresponded to a potential regulatory domain
(B) Genome-wide chromatin openness profiles of group 1 (T4, 13), 2A (T26, 27

identified using DiffBind analysis of ATAC-seq data. Heatmap shows average re

of corresponding genes in individual tumors determined by RNA-seq. The colo

experiments relative to input DNA.

(C and D) ATAC-seq alignment tracks for subgroup-specific lineage (C) and signal

hg19 RefSeq annotation and ATRT molecular group (red, 1; blue, 2A; green, 2B)

See also Table S8.
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50 kb upstream of the PDGFRB promoter within exon 1 of

CSF1R (chr5:149,491,285-149,493,716) (Figures 7A and 7B).

To examine whether juxtaposition of the PDGFRB promoter

and putative enhancer by chromatin looping underlies PDGFRB

upregulation in group 2 ATRTs, we performed C3D analyses on

primary tumor ATAC-seq data to evaluate the probability of peak

associations (Thurman et al., 2012). The Pearson correlation co-

efficient calculated for ATAC-seq peaks within a 500 kb window

of the PDGFRB promoter showed significant correlations be-

tween the PDGFRB promoter and putative enhancer only in

group 2 tumors, T26 (0.5170; p < 0.0001) and T27 (0.3028; p =

0.0067) (Figure 7C), and strongly supported direct interaction

of the PDGFRB promoter and putative enhancer specifically in

group 2 ATRTs. Detailed analyses of CSF1R and PDGFRB re-

vealed hypomethylation of six CG residues within the putative

enhancer in group 2 tumors and cell lines that correlated signif-

icantly with PDGFRB but not CSF1R expression (Figure 7D).

Alignment with ENCODE data indicated features characteristic

of enhancers in this region (Filippova et al., 1996; Malik et al.,

2014), including differential H3KMe1, H3K4Me3, and H3K27Ac

marks, and binding sites for multiple transcription factors

including Myc network proteins, FOS and CTCF (Figures 7A

and S8A). Together with the significant enrichment of MYC and

FOS expression seen in group 2 ATRTs (Figure S8B), these find-

ings suggest that differential epigenetic regulation of the putative

enhancer underlies PDGFRB upregulation and distinct group 2

ATRT sensitivity to dasatinib and nilotinib. To confirm and map

the putative PDGFRB enhancer, we performed H3K27Ac chro-

matin immunoprecipitation sequencing (ChIP-seq) on two dasa-

tinib/nilotinib-resistant group 1 (CHLA04, 05) cell lines and a

representative dasatinib/nilotinib-sensitive group 2 (BT12) cell

line. Peak analyses showed that enriched H3K27Ac marks

aligned with the predicted enhancer region only in group 2 lines,

indicating enhancer activity only in group 2 ATRT cells (Fig-

ure 7B). 3C analyses revealed co-enrichment of probes mapping

to the PDGFRB enhancer and promoter regions in BT12 and

CHLA05 cells (Figure 8A). Of note, a second peak in thePDGFRB

gene body was not associated with H3K27Ac enrichment in

BT12 cells. Taken together with the enrichment of H3K27Ac

marks at the putative PDGFRB enhancer in BT12 but not

CHLA04 and 05 cells, these data indicate that direct interac-

tion of a distant active enhancer and promoter via chromatin

looping facilitates PDGRB expression in group 2 ATRT cells (Fig-

ure 8B). Consistent with these observations, western blot ana-

lyses showed high phospho-PDGFRB (pPDGFRB) expression

in group 2, but not group 1 ATRT cell lines (Figure 8C), and robust

downregulation of pPDGFRB after dasatinib treatment in group 2

cells (Figure 8D). Collectively, our results suggest that epigenetic

regulation via differential methylation of a PDGFRB-associated

enhancer specifically drives the sensitivity of group 2 ATRTs to

small-molecule inhibitors of the PDGFRB signaling axis and
), and 2B (T45) ATRTs. Differentially open chromatin peaks (FDR < 0.5) were

ad density in 20 bp bins (range ±2.5 kb from peak center) and FPKM values

r scale is proportional to read enrichment and normalized between ChIP-seq

ing (D) genes in primary tumors and cell lines. Gene tracks are shown relative to

.



Figure 5. NOTCH and BMP Inhibitors Have Subgroup-Specific Effects on ATRT Cell Growth

(A)Molecular subtype of ten ATRT cell lines is shownwith a heatmap of PAMpredicted gene classifiers based on primary ATRT gene expression data andwestern

blot analyses of NOTCH intracellular domain (NICD) and pSMAD1/5 expression in cell lines and primary tumors. UW228 medulloblastoma cell line served as a

control (C) for SMARCB1 expression; tubulin served as loading control.

(legend continued on next page)
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indicate that dasatinib/nilotinib are important agents for the

particularly lethal group 2 ATRTs.

DISCUSSION

ATRTs are highly malignant cancers with substantial heteroge-

neity in disease presentation and poorly defined biology for

which best therapeutic approaches are undefined. Here, we

demonstrate that ATRTs comprise three epigenetic subtypes

that correlate with distinct tumor locations, patient age, line-

age-enriched methylation and transcriptional signatures, and

unique global and SMARCB1-specific genotypes. Our data

reveal that ATRT subgroups are associated with a distinct epige-

nomic landscape and sensitivity to inhibitors of NOTCH, BMP,

PDGFRB, and epigenetic signaling. Significantly, we discovered

that differential methylation of a PDGFRB enhancer underlies the

robust and distinct sensitivity of group 2 ATRTs to dasatinib and

nilotinib, two well-characterized and widely used cancer drugs.

Cumulative studies indicate that a convergence of epigenomic

features reflecting cellular origins and specific somatic alter-

ations underlies diverse tumor phenotypes (Feinberg et al.,

2006). Here, we observed that ATRTs segregate into subtypes

with specific lineage-enriched methylation signatures, distinct

tumor location, and age of presentation suggestive of origins

from different neural progenitors. In the predominantly supra-

tentorial group 1 ATRTs, we observed distinct methylation and

enrichment of neurogenic loci including forebrain markers

LHX2 (Roy et al., 2014) and MEIS2 (Cecconi et al., 1997), as

well as FABP7 and ASCL1, markers of radial glial neural progen-

itors (Anthony et al., 2004), indicating these as potential cell of

origins for group 1 ATRTs. In contrast, differentially methylated

and expressed loci in group 2 ATRTs were primarily mesen-

chymal lineage/signaling (BMP/PDGFRB) and mid/hindbrain

development (ZIC1, -2, -4, -5, OTX2, HOXB/C) genes and sug-

gest that group 2A/B ATRTs, which are primarily infratentorial

and spinal tumors, develop from mid/hindbrain neural pro-

genitors. Enrichment of neuronal development pathways in

group 1 tumors contrasted with a dominance of stem cell differ-

entiation and pluripotency pathways in group 2A ATRTs. We

also observed that, in contrast to group 1 and 2B, group 2A tu-

mors were associated with global CpG island hypomethylation,

a more open chromatin landscape and overall increased gene

expression patterns reminiscent of more primitive cell types.

These data further suggest that group 2A tumors, which arise

in the youngest patients (12.00 months 95% CI = 11.05–13.00),

originate from highly primitive neural precursors. Our findings

corroborate a recent study that also reported three epigenetic

subtypes of ATRTs with distinct enhancer landscapes (Johann
(B) MTS assays of group 1 and 2 cell lines respectively at 3 and 5 days post-treat

treated controls.

(C and D) Effect of DAPT and DM on NOTCH and BMP signaling in ATRT cells wa

analyses for NICD and pSMAD1/5 in group 1 (C) and group 2 (D) cell lines treated w

single dose of DM or DAPT; ± signs indicate presence or absence of specific dru

bars). Significance was calculated using Student’s t test.

(E) Cell viability of group 1 (CHLA04, 05) and group 2 (BT12, 16) cell lines treated

Alamar blue assays; western blot and qRT-PCR analyses confirmed RBPJ knoc

Error bars show ±SEM (n = 3).

See also Figure S6.
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et al., 2016), and a study of murine ATRTs derived from a condi-

tional ROSA-Cre model (Han et al., 2016). Our data revealed that

ATRTs have rare coding mutations but exhibit subtype-en-

riched patterns of CNAs and SMARCB1 genotypes, and suggest

differentmechanisms of tumor initiation and progression in ATRT

subtypes. Notably SMARCB1 deletions in group 2B ATRTs were

frequently accompanied by copy number-driven gene expres-

sion changes in candidate modifier loci with neurogenic and

epigenetic functions, includingBCR,MKL, and EP300 (Kaartinen

et al., 2001).

As ATRTs lack other recurrent coding alterations, there has

been substantial interest in epigenetic therapies for ATRTs.

Specifically, promising studies of EZH2 (Knutson et al., 2013)

and BET domain (Tang et al., 2014) inhibitors have been re-

ported. Intriguingly, while our screen of small epigenetic in-

hibitors confirmed the therapeutic effects of UNC1999 and

JQ1, respectively EZH2 and BET domain inhibitors, we observed

growth inhibitory effects predominantly in group 1 lines. Simi-

larly, we observed that only group 1 lines were sensitive to

UNC0638, a chemical compound for histone methyl trans-

ferase G9a, while LAQ824, a histone acetylase inhibitor, dimin-

ished growth in all cell lines. These findings may reflect more

general epigenetic functions of histone deacetylases versus

histone methyl transferases. Interestingly, the cellular responses

to epigenetic compounds overlapped with the sensitivity to

inhibitors of NOTCH and BMP signaling pathways, critical medi-

ators of lineage-specific progenitor cell survival (Ericson et al.,

1998). Specifically, group 1 cells with neurogenic transcriptional

and epigenomic profiles were sensitive to DAPT, UNC0638,

and UNC1999, while group 2 cell lines with limited features of

neural differentiation were largely insensitive to these three inhib-

itors. In contrast, we observed a distinct sensitivity of group 2 cell

lines to inhibitors of BMP and PDGFRB, both mediators of

mesenchymal signaling. Of note, recent reports indicate a func-

tional and physical interaction of the G9a/GLP and polycomb

repressive complex 2 (PRC2) epigenetic silencing machineries

and co-regulation of neuronal developmental genes by G9a

and PRC2 (Mozzetta et al., 2014). These observations collec-

tively indicate that lineage-associated epigenomic landscapes

of ATRTs have critical implications for the development of

ATRT subtype-specific therapies. Future investigations to define

contributions of other epigenetic modifiers implicated by our

genomic and experimental data will clearly be important for

informing the development of ATRT therapies.

Our data extend an earlier report of PDGFRA/B expression

in some ATRTs and rhabdoid tumor sensitivity to TKIs (Koos

et al., 2010). Here, we observed that nilotinib and dasatinib

have growth inhibitory effects only in group 2 ATRT cells,
ment with DAPT and dorsomorphin (DM), cell viability is normalized to DMSO-

s confirmed by qRT-PCR analyses of respective target genes and western blot

ith increasing doses (black triangles) of DAPT or DM, and cross-treated with a

gs. mRNA levels are normalized to actin, and to carrier treated controls (black

with RBPJ (25 nM) and scrambled control (20 nM) siRNA were assessed using

kdown.



Figure 6. Subgroup-Specific Effect of Signaling and Epigenetic Pathway Inhibitors on ATRT Cell Growth

(A) Cell viability of cell lines treated with indicated small molecules for 7 days was determined by the MTS assays relative to DMSO controls over 5–7 days. Error

bars show ±SEM (n = 3).

(B) Summary of MTS assays for cell lines treated with indicated chemicals. + and � indicate > or <30% reduction in cell viability, respectively.

(C) Group 1 and 2 cell lines were treated with 0.3 nM–10 mM dasatinib; IC50 was determined using Alamar blue assays at day 6 post-treatment.

(D) Kaplan-Meier survival analysis of mice with orthotopic BT12 cell line xenografts treated with 30mg/kg intraperitoneal dasatinib injections for 2 weeks. Dot plot

(middle bar represents mean, whiskers represent 10th and 90th percentiles) and BLI images depicting tumor mass at day 21 post-injection in three representative

control and treated mice. Differences in survival and tumor growth were assessed using log rank (Mantel-Cox) test and ANOVA analysis, respectively.

(E) Gene expression heatmap of PDGFRB (red) and putative receptor (green) and cytosolic tyrosine kinase (brown) targets of dasatinib/nilotinib in ATRTs.

Significance was determined by FDR adjusted Student’s t test.

(F) Western blot analyses of total and pPDGFRB in primary ATRTs.

See also Figure S7.
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including the CHLA266 cell line reported previously to be dasa-

tinib sensitive (Kolb et al., 2008). Importantly, our studies show

that dasatinib significantly prolongs the survival of mice with or-

thotopic group 2 ATRT xenografts, thus indicating that dasatinib

can accumulate at a sufficient concentration for tyrosine kinase

inhibition in brain tumors. Our studies also suggest that PDGFRB

expression is a promising biomarker for dasatinib sensitivity in

ATRTs. These findings have significant implications for ATRT

treatment as the safety and efficacy of dasatinib are established

in adults and children. Interestingly, consistent with the reported

enrichment of BMP signaling/mesenchymal lineage genes in

non-CNS RTs (Birks et al., 2011; Chun et al., 2016; Gadd et al.,

2010), we observed an overlap in the methylation profiles of

non-CNS RTs and group 2 ATRTs (data not shown), which sug-

gests that some group 2 ATRTs and non-CNS tumors character-

istically seen in very young children with rhabdoid predisposition

syndrome, may have common or closely related cellular origins.

Indeed, we observed that dasatinib and nilotinib also robustly in-

hibited the growth of G401, a renal RT cell line (data not shown)

and suggest potential roles for dasatinib and nilotinib in non-CNS

RT treatment.

Despite evidence of a critical etiologic role for SMARCB1 in RT

initiation, the pathobiology of ATRTs remains poorly elucidated.

Our data suggest that SMARCB1 loss via diversemechanisms in

different cellular contexts, together with additional epigenetic

and genetic events, underlies the clinical heterogeneity of human

ATRTs. These observations have significant implications for

the fundamental understanding and targeting of SWI/SNF func-

tion in neoplastic growth and clinical management of ATRTs.

Specifically, our analyses, which reveal a spectrum of alterations

throughout SMARCB1, indicate that current diagnostic methods

may underestimate the frequency of SMARCB1 alterations in

ATRTs. We have identified known and potential drugs and

drug-like inhibitors with different therapeutic effects in molecular

subtypes of ATRTs. In addition to nominating dasatinib and nilo-

tinib as promising repurposed drugs for ATRTs, our comprehen-

sive characterization of ATRT cell lines provides a rich resource

for the further development of other candidate ATRT drugs.Most

importantly, our study underscores the significant limitations of

current chemoradiotherapeutic regimens used uniformly for all

ATRT patients. Together with our earlier observations that indi-

cate differential outcomes for molecular subtypes of ATRTs,

our study provides a critical framework for informing pre-clinical
Figure 7. A PDGFRB Enhancer Element Exhibits Differential Methylatio

(A) Schema of CSF1R (green) and PDGFRB (purple) relative to UCSC and/or ENC

view of putative enhancer relative to exon 1 and gene body of CSF1R (blue) and

cations, DNaseI hypersensitivity, and ENCODE cell line tracks for H3K27Ac, H3K4

enhancer with relative hypomethylation in group 2 ATRTs is shown in red font an

(B) ATAC-seq signal for CSF1R/PDGFRB in primary ATRTs and cell line data is sh

promoter (boxed). Bottom track shows H3K27Ac ChIP-seq signal for BT12, a da

lines are indicated in red, blue, and green, respectively.

(C) Correlationmatrix of associated open chromatin regions in a 120 kb window ar

tumors T26 (top panel) and T27 (bottom panel). Absolute correlation is shown p

indicated in blue and red, respectively. All correlations were tested within a 500 k

method); blank squares indicate insignificant correlations.

(D) Pearson’s correlation/linear regression analyses of PDGFRB and CSF1R gene

domain, PDGFRB gene body, North (N) shore, CpG island, and PDGFRB promote

array data of 75 ATRTs is schematized.

See also Figure S8.
studies as well as risk- and biology-stratified clinical trials for

ATRTs.

EXPERIMENTAL PROCEDURES

Tumor and Patient Information

All tumors and clinical information were collected through an international

collaborative network (see Supplemental Experimental Procedures) with con-

sent as per protocols approved by the Hospital Research Ethics Board at

participating institutions. In total, 194 CNS (191 primary and 3 recurrent) and

9 non-CNS RT samples were collected for genomic analyses (Table S3). All

ATRTswere diagnosed according to theWorldHealth OrganizationCNS tumor

classificationcriteria (Louis andWiestler, 2007) andconfirmedbyBAF47 immu-

nostains (BD Biosciences, catalog no. 612110). Biallelic SMARCB1 alterations

were confirmed using FISH, MLPA, targeted exons 1–9 Sanger sequencing, or

WGS/WES analyses. DNA or RNA from snap frozen tumor were investigated

with one or more of WGS/WES, RNA-seq and high-resolution copy number/

SNP, gene expression, and methylation array analyses; 123 samples with

DNA from formalin-fixed, paraffin-embedded materials were analyzed with

the Illumina 450k methylation arrays. Animal studies were conducted in accor-

dance with the policies and regulations for ethical treatment of animals

approved for the Toronto Center for Phenogenomics.

Statistical Analyses

Difference in nucleotide transition/transversion rates from WGS SNV calls

were determined using the two-proportion Z test with Yates’ correction for

continuity. Significance of differences in gender, location, metastasis, and

individual genomic loci between ATRT subgroups were analyzed using a

two-sided Fisher’s exact test. The Kruskal-Wallis test was used to assess

the significance of tumor subgroups in relation to age and counts of genomic

alterations. Student’s t test and the Mann-Whitney-Wilcoxon test with false

discovery rate (FDR) correction were used, respectively, to test for differences

in gene expression and methylation between groups. All analyses were con-

ducted in the R statistical environment (v2.15.2) or with SPSS version 22.0.

A p value of <0.05 was regarded as significant for all analyses.

ACCESSION NUMBERS

Data for whole-genome/exome DNA and RNA sequencing, ChIP sequencing

for H3K27Ac, ATAC sequencing, gene expression, methylation and SNP gen-

otyping array data have been deposited at the European Genome-Phenome

Archive, EGA Study Accession ID EGAS00001000506.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

eight figures, and eight tables and can be found with this article online at

http://dx.doi.org/10.1016/j.ccell.2016.11.003.
n and Chromatin Association in Group 2 ATRTs

ODE tracks and flanking genes (chr5:149,370,252-149,566,612) with a zoomed

PDGFRB promoter (purple) (chr5:149,479,360-149,545,365), 450k probe lo-

Me1, and H3K4Me3 ChIP-seq data. Probes in PDGFRB promoter and putative

d dashed pink and orange boxes.

own with C3D predicted associations (curved lines) of PDGFRB enhancer and

satinib-sensitive group 2 cell line. Group 1, 2A, and 2B primary ATRTs and cell

ound the PDGFRB promoter predicted by C3D analysis of ATAC-seq data from

roportional to size of colored squares, positive and negative correlations are

b window of PDGFRB promoter and adjusted for statistical significance (FDR

expression (log2, y axis) and methylation levels (b value, x axis) at the enhancer

r. Location of differentially methylated CSF1R-PDGFRB probes based on 450k
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Figure 8. A Promoter-Enhancer Loop Regulates PDGFRB Expression and Confers Dasatinib/Nilotinib Sensitivity in Group 2 ATRT

(A) 3C analyses of PDGFRB enhancer:promoter interaction in ATRT cell lines CHLA05 (red) and BT12 (blue). Plot indicates relative co-amplification and

interaction frequency of an anchor primer in the putative enhancer with test primers located at various distances in theCSF1R/PDGFRB gene body and promoter

(gray bars).

(B) Schema of 3C analysis indicating DNA looping and direct interaction of PDGFRB promoter and an enhancer 50 kb upstream.

(C) Western blot analyses of pPDGFRB expression in ATRT cell lines.

(D) Western blot and corresponding densitometric analyses of total and pPDGFRB expression in group 2 cell lines post-treatment with 50 nM of dasatinib (+) and

DMSO (�). Error bars show ±SEM (n = 3).
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