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  A typical human being spends approximately one third of his life sleeping, which is 

hardly matched by any other activity typical for our lives. Despite its prominence, sleep 

has been an elusive subject to study, and its functional importance has not been known 

until the second half of the last century. Once a subject of religious speculations, a 

source of mystery and prophetic dreams, sleep has been revealed to be a very particular 

neurobiological state in which the central nervous system enters a drastically altered 

state of functioning compared to wakefulness. While not all questions regarding the 

functions and mechanisms of sleep have been completely elucidated, by now it is 

certain the changes in the functioning of the central nervous system sleep brings about 

are crucial for optimal functioning in wakefulness. 

  Individual characteristics of sleep variables have also been revealed to correlate with 

intelligence. Single-factor intelligence has been repeatedly confirmed as a valid and 

reliable psychometric tool for over a century, and its importance is increased even 

further in new theories of its interpretation which stress that based on intelligence 

reliable predictions can be made not only of cognitive functioning or social status, but 

also about health and longevity. Therefore, the study of the relationship between sleep 

and intelligence links two fields – one from a neurobiological and one from a 

psychometric domain – which are of exceptional importance for human life.  

  The introduction section of this thesis briefly presents the most important morphologic 

and functional aspects of sleep – particularly NREM sleep – and the mechanisms by 

which it can contribute to cognitive functioning. Sleep spindles – NREM oscillations 

often implicated in the relationship between cognition and sleep – will be described in 

detail. The introduction also reviews some of the most important theoretical and 

empirical results related to intelligence, demonstrating that intelligence, on the one 

hand, can be conceptualized as a single-factor construct and on the other hands its 

importance extends beyond the cognitive domain into basic aspects of life strategies. 

Furthermore, the introduction reviews previous studies about the relationship between 

sleep and cognition, and it also comments on some important methodological details 

which were considered in the studies presented in the Methods and Results section. 

  Our investigations were performed on over two hundred subjects with a wide age 

range (4-70 years) and a similarly wide IQ range (85-160). Our results confirm the 
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relationship between individual EEG characteristics in sleep and intelligence, but they 

also point out the sexually dimorphic nature of this relationship. 

 

1.1. Sleep as a Biological State 

1.1.1. Basic Features and Regulation of Sleep 
  The profound biological importance of sleep is supported not only by the fact that 

humans spend a significant time of their lives sleeping, but also by the fact that sleep is 

present in virtually all animals as well, some of which spend even more time sleeping 

than humans(Cirelli and Tononi, 2008), and sleep deprivation generally leads to serious 

impairment in cognitive abilities and other biological functions. Despite these facts, our 

current knowledge of the functions of sleep is far from complete (Rosen, 2006). Some 

features and characteristics of sleep, however, may help highlight its significance for 

physiological and cognitive functioning. 

  Sleep is characterized by changes in hormone levels and it affects the functioning of 

the immune system, thus contributing to ’regeneration’ in a broad sense. After sleep 

deprivation, immune responses are attenuated due to a lower white blood cell count 

(Zager et al., 2007). On the other hand, slow-wave sleep increases growth hormone 

level(Van Cauter et al., 2000), which enables regeneration, wound healing and physical 

restorative processes of the body. Reduced restorative capacity was found in sleep-

deprived rats(Gümüstekin et al., 2004), albeit this effect appears to originate rather from 

NREM sleep deprivation and it is not present in case of selective REM deprivation 

(Mostaghimi et al., 2005). A higher amount and better quality of sleep is correlated with 

higher levels of melatonin in diurnal species, a hormone heavily involved in restorative 

processes (Bubenik, 2002; Odaci and Kaplan, 2009), suggesting that better sleep quality 

may be both a cause and an index of the increased ability of the body to heal itself. 

  The effects of sleep deprivation are certainly more immediate and perhaps even more 

dramatic in the cognitive domain. The most common and immediate effects of sleep 

deprivation are sleepiness, the slowing of mental processes as well as the lack of the 

ability to concentrate. These effects can partially reversed voluntarily, such as by being 

motivated by rewards (Horne and Pettitt, 1985; Monk, 1991), but they never completely 
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disappear. Sleep deprivation reduces performance in working memory tasks to a 

particularly striking degree(Turner et al., 2007), in line with increased hemodynamic 

responses inthe prefrontal cortex, a sign of compensatory recruitment (Drummond et al., 

2000; Drummond et al., 2005). However, similarly to the more basic physiological 

effects of sleep deprivation, alterations in the cognitive domain also appear to rather 

stem from NREM than REM sleep. REM sleep causes disturbances in emotional 

regulation(Ellman et al., 1978; Rosales-Lagarde et al., 2012), but it appears to be less 

involved in sleep-related cognitive processing (Siegel, 2001) and individuals with 

chronic pharmacological or traumatic REM deprivation are able to live without serious 

cognitive impairments (Vertes and Eastman, 2000). Thus, sleep cannot be treated as a 

monolithic process in terms of its effects and functions. 

  Sleep can be broadly defined as two very distinct states: rapid eye movement (REM) 

sleep and non-rapid eye movement (NREM) sleep (Rechtschaffen et al., 1968; Iber et 

al., 2007). At the same time NREM and REM sleep are two alternating phases of the 

ultradian oscillation serving the basis of the cyclical nature of sleep. Furthermore, 

subdivisions of these states can be made, reflecting the different depths or 

electrophysiological states. The following basic description of the most important 

features of normal sleep – when no other sources are noted – arepresented based on 

these two classification system (Rechtschaffen et al., 1968; Iber et al., 2007) and one 

book chapter (Billiard, 2008). Typical EEG features of different sleep stages are 

illustrated on Figure 1, whileFigure 2 shows a typical hypnogram of all-night sleep.. 
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  The onset of sleep is characterized by the disappearance of alpha wave trains which are 

prominent in the resting wakeful EEG signal. There is an increase in theta power, as 

well as vertex waves and occipital sharp transient waves. This intermediate state is 

Stage 1 sleep. Stage 1 sleep rarely lasts for more than a few minutes, and instead gives 

way to either deeper NREM sleep or, if sleep pressure is low (typically in the last 

periods of night sleep) an awakening. 

    Stage 2 sleep is characterized by an increased power int he delta band (<4 Hz) and 

the appearance of its main features, K-complexes and sleep spindles. K-complexes are 

transient, low-frequency waves which appear spontaneously but can also be elicited by 

stimulation. Sleep spindles are waxing and waning sinusoidal waveforms which appear 

all over the scalp but mainly in central and frontal midline derivations, reflecting 

specific neuronal firing patterns in thalamocortical circuits, mediated by reticular 

thalamic interference (Steriade, 2003; Lüthi, 2013). Sleep spindles are heavily 

implicated in the effect sleep exerts on cognition, which is why they will be described in 

greater detail in later chapters of this thesis. 

  Stage 3 sleep – together with what is called Stage 4 sleep in an earlier classification 

system (Rechtschaffen et al., 1968) – is also called slow wave sleep (SWS). 

Consequently, this sleep stage is characterized by the proliferation of low-frequency, 

high-amplitude slow waves, generated by synchronous firing (and silence) in cortical 

assemblies (Csercsa et al., 2010).  

  Importantly, slow wave activity in Stage 2 sleep and SWS does not appear in a 

symmetrically distributed manner, but they are instead organized into cyclic alternating 

patterns (CAPs) (Terzano et al., 1985; Terzano et al., 2001). Sometimes, slow waves are 

uniformly distributed for several minutes (Non-CAP), but at other times they appear in 

sudden, high-amplitude burst series (CAP A1), preceded and followed by a flattened 

EEG signal devoid of prominent low-frequency, high-amplitude activity (CAP B). 

Apart from the CAP A1 subtype, consisting of a transient burst of slow waves, other 

types of CAP activity are known. CAP A3 is characterized by arousal, reflected by a 

transient increase in alpha or beta activity and/or muscle tone, while the CAP A2 

subtype is characterized by mixed (slow and fast) transient activity. While a detailed 

description of cyclic alternating patterns is beyond the scope of this thesis, they 
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certainly deserve mention due to many results (Aricò et al., 2010; Esposito and 

Carotenuto, 2010; Drago et al., 2011) linking them to individual differences in waking 

cognitive ability. Figure 3 shows EEG recordings from NCAP sleep as well as CAP 

sequences.  

  The stages of NREM sleep are typically organized into 90-120 minute long sleep 

cycles with alternating sleep depth, which continue until awakening. Typically, the 

deepest stage (reflected by the amount of slow wave activity) of sleep is shallower in 

each successive sleep cycle. 

  Rapid eye movement sleep (REM) typically occurs between sleep stages, with 

increased prominence towards the end of the night. Regarding its appearance and 

physiological characteristics, REM sleep is radically different from NREM sleep. While 

reduced muscle tone is typical in all sleep stages, physiological REM sleep is 

characterized by complete atonia in the skeletal muscles, except for the facial muscles 

responsible for eye movements. However, REM stage is characterized by increased 

activity in every other regard, reflected by increased EEG activity in the beta and 

gamma band (with the complete disappearance of slow waves and sleep spindles), eye 

movements and prominent – albeit very chaotic – mental activity, which is evident from 

the fact that dreams are more frequently reported after awakenings from REM sleep. 

Importantly, however, dreams also occur in NREM sleep. 

 

Figure 2. Night sleep hypnogram of a healthy young male subject. Note the decreased depth and 

increased REM prominence in later parts of the night. 

 The existence and alternation of NREM and REM phases has been explained in 

numerous ways. One theory (Rial et al., 1993; Rial et al., 2010) proposes that sleep in 

mammals evolved from reptilian waking states, while mammalian waking is a 

phylogenically new phenomenon related to the development of a greater and more 
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specialized telencephalon. Based on similarities in EEG patterns and reactivity, these 

authors proposed that human NREM sleep is analogous to reptilian basking behavior, 

while REM sleep is analogous to the post-basking behavior of reptiles which is 

characterized by an observation of the environment and the initiation of new goals. 

Another – not necessarily contradicting – theory suggests that sleep phases are tools of 

energy conservation (Schmidt, 2014). Since thermoregulation is suspended in sleep – 

especially REM sleep – longer sleep periods are adaptive since they contribute to 

energy efficiency. This, however, comes at the price of less time available to achieve 

goals and also a longer time of exposure to predation and other potential dangers. In line 

with this theory, longer REM phases are observed in larger animals (which have greater 

thermal inertia) and extremely long periods of continuous waking are observed in niche 

exploiting animals, such as artic birds with very short mating periods. 

 

Figure 3. “CAP time and non-CAP time in stage 2 NREM sleep. CAP time: alternance of 

arousal-related phasic events (A) and of the background EEG activities (B). EMG, 

electromyogram; PNG, pneumogram; EKG, electrocardiogram; CNP, Clinica Neurologica 

Parma”. Figure and caption from (Terzano and Parrino, 1992) and (Billiard, 2008) 

  Sleep is frequently investigated using polysomnography for both clinical and research 

purposes. Polysomnography is the use of multiple electrophysiological exploration 

methods to accurately determine physiological activity (including and beyond neural 

activity) during sleep. 
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  A very important part of polysomnography recordings is electroencephalography 

(EEG). EEG recordings are usually performed on multiple channels, typically 

referenced to contralateral mastoids in order to ensure an even distribution of signal 

voltage. 

  Eye movements in sleep are investigated using electrooculography (EOG). EOG 

recordings are sensitive to eye movements by recordings the changes in the potential 

fields of the moving eyes. The most prominent use of EOG is in sleep stage scoring, 

since large eye movements are typical features of REM sleep. 

  Electromyography (EMG) is a measurement of muscle activity by electrophysiological 

measures. The applications of EMG include sleep stage scoring as well as the exclusion 

of muscle movement artifacts from EEG channel data using automatic noise rejection 

algorithms. 

  Electrocardiography (ECG) detects the electrical signals generated by the beating 

heart. In polysomnography settings, ECG recordings are performed with less electrodes 

than in clinical practice, and their role is typically limited to the investigation of basic 

features – such as heart rate and its variability in relation to sleep events – and the 

removal of cardiac artifacts from EEG channels. 

  Most of the research cited or described in this thesis was done according to the sleep 

staging and recording methodology described in this subsection. 

 

1.1.2. Potential Functions of Sleep, Slow Waves and Spindles 
 

Slow waves – Synaptic homeostasis 

Slow waves are perhaps the most prominent and mostly sleep-related oscillations, 

which led to their early recognition as important electrophysiological features of sleep. 

Early theories, however, identified delta waves as basically pathological, reflecting 

‘death, decay and disease’(Walter, 1936), mostly due to the occurrence of slow waves in 

brain areas which were damaged due to physical lesions or strokes. While the visually 

salient nature of slow waves is by no means misleading in the sense that they continue 
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to be among the most widely researched features of NREM sleep, these early claims 

about their pathological nature have proven to be unfounded. 

  Theories about the function of slow waves can be generally traced back to the general 

characteristics of these waves in relation to environmental and psychological variables. 

Slow wave activity follows an inverted U-shaped maturational curve, peaking in early 

childhood, dropping significantly during maturation, especially in adolescence (Jenni 

and Carskadon, 2004; Feinberg and Campbell, 2010; Feinberg and Campbell, 2013), but 

continuing to diminish throughout adulthood (Landolt et al., 1996; Carrier et al., 2001). 

In elderly adults, more retained slow wave activity is a marker of better neurocognitive 

functioning (Anderson and Horne, 2003; Mander et al., 2013) and it was recently 

directly linked to reduced mortality (Mazzotti et al., 2014). 

  Another maturational feature of slow waves is that changes in slow wave activity 

follow a very distinct postero-anterior pattern (Feinberg et al., 2011), much like cortical 

maturation itself (Tamnes et al., 2010), obviously hinting at a possible direct 

relationship between the two. The fact that maturational changes in the slow wave 

activity of young subjects are a direct function of cortical maturation has been 

demonstrated (Ringli and Huber, 2011; Feinberg and Campbell, 2013), suggesting that 

slow wave activity decreases in a region-specific manner when the cortical regions in 

question undergo maturation. Cortical maturation in children and adolescents generally 

means cortical thinning and an overall decrease in synaptic density (Tamnes et al., 

2010; Herting et al., 2015), reflecting the formation of ‘mature’, that is, functionally 

efficient networks and a loss of plasticity since it is no longer required. Of course, this 

coupling between cortical maturation (that is, synaptic density) and slow wave activity 

suggests that slow waves are the hallmarks of synaptic plasticity in sleep, which is why 

they diminish in the absence of highly plastic cortical networks. 

  A further point that was considered in early theories of slow wave function is that slow 

wave activity (spectral power) is increased after sleep deprivation, in line with a general 

deepening of NREM sleep, generally at the expense of stages 1 and 2, REM sleep and 

wakefulness(Borbely et al., 1981). This suggests that slow waves are not stand-alone 

elements of the sleep EEG, but they are related to waking neural activity. 
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  One of the first theories to systematically address these features of slow waves and 

suggest an explanatory model was the two-process theory by Alexander Borbély 

(Borbély, 1982). Borbély proposed that slow wave activity is ultimately a function of 

time spent awake: if wakefulness is longer, sleep pressure increases, and slow wave 

activity in sleep is a direct function of sleep pressure. During sleep, sleep pressure 

decreases, followed by the characteristic decrease in slow wave density, until it is so 

low that an awakening occurs. The (non-linear) relationship between time spent awake 

and sleep pressure (practically equivalent to slow wave pressure) was hypothesized to 

be regulated by a time-dependent Process S, while a sinusoidal Process C 

(corresponding to the circadian regulation) was proposed to regulate sleep and waking 

thresholds. Some EEG activity – most prominently sleep spindling – was also 

demonstrated to be regulated by both circadian and homeostatic processes rather than 

sleep pressure (Dijk and Czeisler, 1995), and some new evidence suggests that slow 

(slow) wave activity also depends on circadian phase too (Lazar et al., 2015).In sum, 

according to Borbély’s theory Process S mainly regulates sleep (slow wave) pressure as 

a function of time spent awake, while Process C regulates whether a given amount of 

sleep pressure implies sleep or wakefulness in the organism as a function of the phase of 

the circadian clock. 

  Borbély’s theory was solidly proven by the fact that he was able to create equations 

which accurately predicted sleep pressure (measured by slow wave activity) as a 

function of time spent awake(Achermann et al., 1993; Borbely and Achermann, 1999). 

This suggested that – as proposed by the theory – sleep pressure is indeed the result of 

time spent in wakefulness. 

  However, Borbély’s theory treated sleep and sleep pressure as an essentially global 

phenomenon, which was challenged by later studies. Slow wave activity was 

subsequently found to be regulated by waking activity in a region-specific manner: 

increased use (Kattler et al., 1994) or immobilization (Huber et al., 2006) of an arm 

during wakefulness elicited increased and decrease slow wave activity, respectively, but 

only over the contralateral motor cortices, suggesting that slow wave regulation occurs 

within local networks instead of the entire cortical structure of the brain. This is in line 

with the theories which envisage sleep as a local process (Krueger and Obál, 1993; 
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Krueger and Tononi, 2011), generated in small functional networks of the brain as a 

result of the long term potentiation (LTP) caused in the network by events in 

wakefulness. In these models, an asymmetric wakefulness-related change of slow wave 

activity is possible in different brain regions as a function of their prior use. 

  All the above findings are summarized in the synaptic homeostasis hypothesis (SHY) 

of Giulio Tononi and Chiara Cirelli (Tononi and Cirelli, 2003, 2014), which is arguably 

the best account of slow wave function currently available, as well as possibly the most 

significant description of NREM sleep function in general. The SHY proposes that the 

main function of NREM sleep is to compensate for plastic changes occurring in 

wakefulness, and this takes place through the generation of slow waves – that is, “sleep 

is the price the brain pays for plasticity” (Tononi and Cirelli, 2014). Ultimately, SHY 

proposes that the downregulation of synaptic strength is impossible in wakefulness, but 

slow waves perform this function in sleep in a manner that does not eliminate synaptic 

changes which reflect the learning of meaningful information. 

  SHY is supported by ample evidence. The density of GluA1-containing AMPA 

receptors (Vyazovskiy et al., 2008), synaptic strength (Liu et al., 2010), the number of 

synapses and synaptic spines (Bushey et al., 2011; Maret et al., 2011) and the slope and 

amplitude of electrophysiological evoked responses (Huber et al., 2013) increase during 

wakefulness and decrease during sleep, suggesting corresponding changes in synaptic 

strength.The time course of these variables is strikingly similar to that of slow wave 

activity, which is also strongest after prolonged wakefulness, but decreases during 

sleep. In fact, the slope of evoked responses in wakefulness was found to correlate 

positively with slow wave activity in later sleep(Vyazovskiy et al., 2008).  

  The intrinsic synaptic downscaling properties of NREM sleep are thought to be 

mediated among others by the upregulation of calcineurin and the inhibition of the 

protein kinase CamKII (Cirelli et al., 2004; Tononi and Cirelli, 2014). However, these 

downscaling effects are not symmetrical: very strong new synapses may be protected, 

for example by the inhibition of CamKIIN function by high calcium levels or the 

exclusion of downregulation-evoking genes from highly potentiated synapses (Tononi 

and Cirelli, 2014). Thus, the strong new synapses potentially encoding meaningful new 

information from a previous period of wakefulness can be protected even in an 
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environment which heavily favors synaptic downscaling and elimination, increasing the 

signal-noise ratio of neuronal activity through the elimination of randomly formed new 

synapses. Protein synthesis is also increased during NREM sleep(Ramm and Smith, 

1990), enabling the transformation of the strongest synaptic connections into a more 

permanent structure (Frey et al., 1988; Reymann and Frey, 2007; Poe et al., 2010). 

These sleep-related plastic changes, mainly induced by slow waves, increase the 

energetic efficiency of synapses and save extracellular space (Xie et al., 2013; Tononi 

and Cirelli, 2014). On a behavioral level, it promotes the forgetting of irrelevant 

information but enhances gist extraction, may bring forward new insights and 

consolidate memories through the elimination of synaptic noise(Tononi and Cirelli, 

2014). 

  To summarize the previous sub-section, the maturational, daily and overnight course 

of slow wave activity, together with structural, molecular and electrophysiological 

evidence suggests the main function of slow waves is to compensate for the increases in 

synaptic strength in functional units of the cortex caused by their use during 

wakefulness. As a result of slow wave activity, synaptic strength decreases to normal 

levels, but due to the selective protection of certain new synaptic connections most 

relevant new information from the previous episode of wakefulness is successfully 

retained. 

  As provided before, there is very strong empirical evidence for these statements, but 

the picture about NREM sleep function – let alone the function of sleep in general – is 

not yet complete. In fact, the concept of improving the information encoded in neural 

networks by decreasing synaptic strength – as proposed by the SHY – is somewhat 

counter-intuitive. While synaptic downscaling is certainly a very important part of 

NREM sleep, and it is also generally absent from wakefulness (Vyazovskiy et al., 2008; 

Liu et al., 2010), the opposite – increased synaptic strength in sleep – may be possible, 

complementing the downscaling properties of slow waves. 
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Ripples, hippocampal replay and long-termpotentiation 

  The previously discussed hypothesis of synaptic homeostasis relies on evidence about 

the fact that sleep – especially NREM sleep – is characterized mainly by decreasing 

synaptic strength, and it contributes to sleep-related enhancements of cognitive abilities 

by using this downscaling to eliminate noise and make synaptic assemblies more 

efficient. However, other theories about the functions of sleep also exist, which take 

into account the possibility of synaptic potentiation during sleep. 

  NREM sleep is generally characterized by an absence of acetylcholine, which makes 

LTP impossible(Leonard et al., 1987; Bramham and Srebro, 1989) as well as a lack of 

the expression of LTP-related genes(Poe et al., 2010; Ribeiro, 2012). There is, however, 

some evidence that LTP might still be possible if specific conditions are met during 

sleep. 

  NREM sleep is characterized by co-occurring sleep spindles and hippocampal sharp-

wave ripples, which are thought to play a role – among others - in sleep-related memory 

consolidation(Inostroza and Born, 2013; Genzel et al., 2014). Sharp-wave ripples 

initiate a cellular influx of calcium which may provide excellent conditions for 

LTP(Sejnowski and Destexhe, 2000; Steriade and Timofeev, 2003), while sleep 

spindles can demonstrably induce LTP if the right conditions are met(Rosanova and 

Ulrich, 2005). While the idea that ripples and spindles generally induce LTP is not 

decisively supported (see(Tononi and Cirelli, 2014) for review), it provides the 

framework for an alternative theory to SHY, which also takes into account the 

properties of REM sleep. It is notable that sleep spindles – while they occur in NREM 

sleep – are preceded by a drop in noradrenergic activity from the locus coeruleus(Aston-

Jones and Bloom, 1981) which may provide unique neurochemical conditions different 

from the rest of NREM sleep and more similar to REM sleep(Poe et al., 2010).  

  The theory of systems consolidation during sleep (Inostroza and Born, 2013; Rasch 

and Born, 2013) assumes that NREM and REM sleep work in tandem in order to 

consolidate memories acquired during wakefulness. In NREM sleep, a – generally 

accelerated – replay of waking activity takes place. Such a replay of waking activity has 

actually been found in NREM sleep in the hippocampus(O'Neill et al., 2010) as well as 
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neocortical structures (see(Inostroza and Born, 2013) for review). This replay happens 

in order to move episodic memories (that is, memory traces with a strong binding to 

specific circumstances and personal experience) from their initial, fast-learning 

hippocampal store to a more permanent but less episodic and more declarative (that is, 

less experience-related and more encyclopedic) neocortical memory store. This serves 

both to ’reset’ the limited hippocampal memory storage capacity in order to enable the 

acquisition of more information and also to allow for the creation of memories which 

have less to do with individual experiences and provide more information about the 

general characteristics of the environment. The hippocampal-neocortical replay during 

NREM sleep ‘tags’ synapses for transformation during a subsequent REM sleep 

episode(Rasch and Born, 2013). 

  The contribution of REM sleep to sleep functions is admittedly less clear that in case 

of NREM sleep(Tononi and Cirelli, 2014). However, the neurochemical environment in 

REM sleep, with the presence of acetylcholine but the absence of noradrenaline is 

drastically different, and LTP is readily induced in the hippocampus during REM 

sleep(Bramham and Srebro, 1989; Poe et al., 2010). While hippocampal reactivations – 

that is, the replay of prior waking activity – are generally observed in NREM sleep, they 

were also observed in REM sleep(Poe et al., 2000; Booth and Poe, 2006). Hippocampal 

REM sleep reactivations in these studies were structured by the hippocampal theta 

rhythm, and their effects were synaptic strength depended on the phase of the theta 

oscillation on which they occurred. Reactivations at theta peaks led to synaptic 

potentiation while reactivations at theta troughs led to synaptic depotentiation, allowing 

a bidirectional change in synaptic strength. In rats, the preferred direction of the change 

of synaptic strength varied as a function of familiarity with the environment: after initial 

exploration, LTP was more prevalent, but synaptic depotentiation prevailed after the 

environment became familiar, suggesting that an episodic-declarative transformation of 

memory traces indeed took place(Poe et al., 2000).  

  It is notable, however, that hippocampal reactivations in REM sleep were not 

universally found(Kudrimoti et al., 1999). Furthermore, REM sleep – in contrast to 

NREM sleep – does not appear to contribute to the sleep-related consolidation of 

hippocampal memory systems, being instead rather involved in amygdala-related 
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functions(Genzel et al., 2015). It is therefore not clear whether REM sleep indeed plays 

a role in hippocampal-neocortical memory transformations as a time of general synaptic 

strengthening of selected synapses. 

  An elegant and interesting alternative theory of NREM and REM function was 

recently put forward (Vyazovskiy and Delogu, 2014), drawing inspiration from both 

SHY and the systems consolidation hypothesis. This hypothesis considered NREM 

sleep to be a time of synaptic downscaling which is necessary because of the effects of 

the previous wakefulness, and which takes place during cortical slow waves. However, 

in line with the local and region-specific nature of these slow waves (Nir et al., 2011), 

slow wave activity is thought to reflect local synaptic homeostasis processes. Sleep 

spindles – which generally appear after slow waves have dissipates – indicate a 

‘tagging’ of networks which have previously undergone synaptic homeostasis by slow 

waves. In subsequent REM sleep, the functionality of these ‘tagged’ networks is tested 

in a safe environment where skeletal muscles are paralyzed (preventing accidents due to 

sub-optimally functioning cortical networks) and the ‘simulation’ of cortical activity 

may be what is experienced in dreams. As an increasing time is spent in sleep, the 

number of cortical networks still in need for synaptic homeostatic regulation decreases, 

which is reflected in turn by the decreasing number and increasingly regional 

occurrence of slow waves and the increasing prevalence of sleep spindles and REM 

sleep. Finally, when the process is completed and no more synaptic homeostatic 

regulation is necessary, awakening occurs. 

  Vyazovskiy and Delogu’s account is far from resolving every issue surrounding the 

functions of NREM and REM sleep, but it provides a framework which is a novel and 

logical addition to previous theories. 

  In sum, the functions and mechanisms of sleep cannot be limited to a single process, 

especially where REM sleep is also considered. Competing theories generally agree 

about the importance of synaptic changes that occur during sleep, but they disagree 

about the importance – or even the presence – of synaptic potentiation and 

depotentiation. Currently, empirical evidence seems to point in the direction that 

synaptic depotentiation occurs in sleep in a unique manner, in response to the synaptic 

potentiation that took place during the previous episode of wakefulness, and that this 
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depotentiation, occurring during slow waves, is perhaps the most important mechanism 

involved in NREM sleep function. The importance of synaptic potentiation by sleep 

spindles or spindle-ripple complexes is less completely delineated. The functions (and 

the mechanisms thereof) of REM sleep appear to be even more elusive. 

It is probable that the most prominent electrophysiological characteristics of NREM 

sleep – slow waves, sleep spindles and hippocampal ripples – play similar or 

complementary functional roles. Of these three, only two – slow waves and sleep 

spindles – are observable on the scalp EEG. The importance of slow waves for synaptic 

homeostasis has been previously elaborated in this subsection. However, sleep spindles 

have been shown to be especially closely associated with cognitive functioning and they 

have been thoroughly investigated in the studies later presented in this thesis. 

Sleep spindles 

  Sleep spindles are prominent features of NREM sleep, particularly of more shallow 

stages (Iber et al., 2007). Sleep spindles arise as a result of reduced cholinergic 

activation which is typical in NREM sleep, and they are generated a network which 

encompasses thalamocortical, corticothalamic and (thalamic) reticular neurons (Steriade 

and Deschenes, 1984; Amzica and Steriade, 2000; Steriade, 2000; Fogel and Smith, 

2011).  

  At the descriptive level, sleep spindles are mainly observed throughout the scalp but 

mainly in midline derivations (frontal, central and parietal) with greater prevalence in 

the second half of the night where sleep is more shallow (Fogel and Smith, 2011). 

While spindles are characterized by a clear topographical prevalence in the 

aforementioned midline derivations – in line with distribution of the main outputs of 

their thalamic generators – they are essentially local phenomena (Nir et al., 2011) and 

much like slow wavesthey were shown to respond to learning involving well-delimited 

brain areas with locally increased activity at the corresponding sites (Tamaki et al., 

2009; Johnson et al., 2012).  

  The circadian regulation of sleep spindles is, however, quite different from that of slow 

waves. Unlike slow waves which are regulated in a principally homeostatic manner, 

sleep spindles generally follow both a circadian and an inverted S process, 
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appearingmost prominently during a clear-cut period of the day, with maximum 

prevalence achieved during the second half of the night (Dijk and Czeisler, 1995; Dijk 

et al., 1995). Sleep spindles are profoundly affected by melatonin levels (which also 

peak during the night), which affects mainly their peak frequency and density (Dijk et 

al., 1995; Knoblauch et al., 2003), while amplitude and duration are less affected 

(Knoblauch et al., 2003; Knoblauch et al., 2005). 

  At the microstructural level, sleep spindles are synchronized to the up-states of cortical 

slow oscillations (Steriade, 2003; Staresina et al., 2015). This synchronization may 

contribute to the efficacy of spindle function, as a correlation between intelligence and 

the coupling strength of sleep spindles to slow oscillations was found (Bodizs et al., 

2005). 

The main features of sleep spindle generation are well understood and were reviewed 

recently by (Lüthi, 2013).  The thalamic reticular nucleus (TRN), a diffuse structure 

enveloping most thalamic nuclei is a key element of sleep spindle generation 

(Fuentealba and Steriade, 2005). The TRN receives inputs from cortical neurons, but it 

only projects to other thalamic structures (with GABAergic inhibitory synapses) and 

does not have cortical projections. TRN neurons are active and functionally important 

both during wakefulness and sleep, but in sleep – due to the absence of ascending 

monoaminergic (and possibly cholinergic (Steriade, 2003)) inputs – their firing 

properties change drastically, since in the absence of such inputs their resting membrane 

potential decreases, leading to the activation of a certain type of voltage-gate Ca2+ 

channels (T-channels) (McCormick and Bal, 1997; Saper et al., 2010; Lüthi, 2013). T-

channels are expressed along the dendrites of TRN cells, where corticothalamic 

projections terminate. In NREM sleep, these projections are able to provide very strong 

bursting activity from TRN cells through the T-channels (Fuentealba and Steriade, 

2005). In case of cortico-TRN input, TRN-thalamic inhibitory synapses generate burst 

inhibitory postsynaptic potentials in thalamocortical cells (McCormick and Bal, 1997; 

Lüthi, 2013). This in turn leads to a similarly burst-like re-excitation of TRN cells via 

thalamocortical-reticular connections, inducing a ‘back-and-forth excitation cycle… like 

two ping-pong players’ (Lüthi, 2013) in thalamocortical and TRN neuron populations. 

Thalamocortical cells induce similar rhythms in cortical cell populations as well, which 
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sustaining neural firing patterns which underlie sleep spindles ultimately terminate due 
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activated cation-nonselective channels and the desynchronization of cortical activity 
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and may reflect the strength of cortical connections 

illustrates the role of thalamocortical networks in spindle generation, as well as the 

generation of other rhythms in sleep and wakefulness.
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thalamocortical (TC) neurons (red) provides a depolarizing drive that causes thalamocortical 

neurons and reticular (RT) neurons (blue) to exhibit single

more-or-less faithful transfer of information from the periphery up to cortical (Ctx) neurons 
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neurons switch into a burst-firing mode which they adopt by default in the absence of external 

input. The intrinsic ionic conductances of TC neurons favour a rhythmic burst

which is generated following a hyperpolarizing dr
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exists among and between thalamic and Ctx neurons, large populations of neurons are induced 

to fire in synchrony; this is the origin of the slow delta (δ) waves that are the 

electroencephalographic signature of deep sleep. During this burst-firing mode, ascending 

information through the thalamus is blocked. The transition from waking to sleeping also 

involves thalamic oscillations. In the electroencephalogram (EEG) these are called sleep 

spindles (highlighted in red on the left-hand EEG trace); they are generated when a burst of 

spikes from a TC neuron impinges on a GABA (γ-aminobutyric acid)-ergic RT neuron which 

then sends a robust inhibitory postsynaptic potential back to the same TC neuron. This 

hyperpolarizes the cell, which then fires another barrage of spikes on rebound, establishing an 

oscillation. The length of theinhibitory potential (which is mediated by GABA type A receptors) 

determines the time until another burst of spikes is generated by the TC neuron103,106 and sets 

the frequency at ~7–14 Hz. Although the TC–RT loop is necessary for spindle oscillations, 

isolated RT neurons can also oscillate with a natural frequency in the same frequency range, 

and this property might aid spindle generation.” Figure and caption from (Franks, 2008). 

 

  Probably due to their effect on thalamocortical communication, sleep spindles play a 

key role in the reduced behavioral responsiveness which is generally observed is 

sleeping animals and humans (Lüthi, 2013). It requires more intensive stimulation to 

wake up a person during sleep spindles (Yamadori, 1971), and both event-related 

potentials and fMRI BOLD responses to stimuli are reduced during sleep spindles 

(Schabus et al., 2012). The activation of GABAergic interneurons including, but not 

limited to reticular thalamic areas (which are also implicated in spindle generation) 

underlies the gating of sensory information in the thalamus in general (Bokor et al., 

2005; Groh et al., 2014; Rovo et al., 2014). Therefore, the very particular 

thalamocortical communication pattern during spindle oscillation reflects a mechanism 

which also regulates the flow of sensory information towards cortical areas in other 

physiological states. 

  Still, the most prominent candidate mechanism through which sleep spindles might 

contribute to cognitive function is not the protection of sleep, but their ability to induce 

long-term plastic changes in cortical and thalamocortical circuits. The rhythmic activity 

of TRN cells observed during sleep spindles induces long-term potentiation (LTP) in 

thalamocortical synapses (Astori and Luthi, 2013). Perhaps even more importantly, the 
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rhythmic cellular firing patterns observed during spindles constitute optimal conditions 

for long term synaptic changes in the cortex in general (Buzsaki, 1989; Fogel and 

Smith, 2011), and such synaptic changes – including LTP – were successfully induced 

experimentally (Rosanova and Ulrich, 2005). Another – but not unrelated – function of 

sleep spindles is that they are able to coordinate hippocampal ripple activity, which also 

contributes to long-term plastic changes in the cortex (Siapas and Wilson, 1998; 

Inostroza and Born, 2013; Genzel et al., 2014; Staresina et al., 2015). In line with the 

systems consolidation hypothesis, sleep spindles are thought to be involved in the 

deafferentation of the cortex from the hippocampus, providing a mechanism to 

consolidate memory traces (Peyrache et al., 2009; Wierzynski et al., 2009; Genzel et al., 

2014). 

  In line with these physiological characteristics and involvement in LTP generation 

(and plastic processes in general), sleep spindles were especially frequently implicated 

in cognitive functioning,that is, memory consolidation and trait intelligence.Evidence 

about the relationship between sleep spindling and cognition is presented in subsection 

1.3. 

 

1.1.3. Methodological Problems – Measuring Spectra and Sleep Spindles 
Most contemporary research intended to investigate sleep oscillations, such as spectral 

components or sleep spindles, uses mathematical algorithms to quantify these 

oscillations. The precise methodology chosen by such a study is not a trivial question, 

as the detection or analysis of most sleep oscillations does not have a ‘gold standard’ 

method which is accepted by all or almost all studies. Visual detection of sleep spindles 

is sometimes considered as a gold standard (Warby et al., 2014), however, this method 

is subjective and time consuming. This problem is particularly pervasive in the study of 

sleep spindles and EEG spectral components, and in our studies much attention was 

paid to choosing the right methodology. 

  Sleep spindles are very frequently detected using automatic algorithms. Early 

automatic detection methods implemented phase-locked loop devices, and they were 

reported to have sufficient agreement with visual detection to warrant their use in 

research (Broughton et al., 1978; Campbell et al., 1980). Another early implementation 
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of an automatic spindle detector was built as a combined software-hardware 

system(Ferri et al., 1989), which was also able to reliably reproduce visual detections.  

  Pure software solutions of sleep spindle detections were developed only somewhat 

later (Schimicek et al., 1994) with a specificity of 70% at a specificity point of 90%, 

with even better results in an altered implementation (Devuyst et al., 2006). Further 

modern automatic sleep spindle detections use neural networks (Acır and Güzeliş, 2004; 

Ventouras et al., 2005) and decision trees (Duman et al., 2009).  

  There are at least two very important pitfalls in automatic sleep spindle detection 

which must be avoided by automatic detectors. First, sleep spindles can be either slow 

and fast spindles, reflecting different generating structures and networks. Slow spindles 

have a lower frequency and a frontal maximum and they are generally restricted to 

frontal areas, whereas fast spindles have a higher frequency and a centro-parietal 

maximum, albeit they are also present in the frontal cortex (Andrillon et al., 2011). 

Also, slow and fast spindles have different hemodynamic correlates (Schabus et al., 

2007), further reinforcing the concept of two superficially similar, but at their core quite 

different oscillations.Second, a very important feature of sleep spindle oscillations is 

that they are characterized by prominent intra-individual stability and inter-individual 

variability (De Gennaro et al., 2005), with individual parameters heavily affected by age 

and sex (Driver et al., 1996; Carrier et al., 2001; Huupponen et al., 2002; Genzel et al., 

2012). As a result, sleep spindle detector parameters should be expected to take into 

account that sleep spindles may have different characteristics in different individuals.  

  The Individual Adjustment Method (IAM, (Bódizs et al., 2009; Ujma et al., 2014)) , 

developed in our laboratory based on the electrophysiological fingerprint theory of 

human sleep (De Gennaro et al., 2005; De Gennaro et al., 2008) is an automatic sleep 

spindle detector specifically designed to account for such individual differences in 

spindle parameters and take into account the separation of slow and fast spindles. The 

IAM relies on the shape of the individual NREM sleep EEG spectrum (from frontal and 

centro-parietal electrodes for slow and fast spindles, respectively) to extract individual 

sleep spindle frequencies which are used for filtering the EEG data for sleep spindle 

detection. A slow or fast spindle is detectedif the envelope of the filtered signal exceeds 

an amplitude threshold, which is determined using the average value of the amplitude 
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spectrum at the edges of the previously determined sleep spindle peaks. This way, both 

the threshold frequency and the amplitude of sleep spindles is determined in an 

individually adaptive manner. 

  Another very common approach in automatic sleep spindle detection is the SIESTA 

method or its modifications (Anderer et al., 2005). These methods use a generic 

frequency band (usually 11-16 Hz) to filter EEG data for sleep spindle detection, as well 

as a generic threshold amplitude (usually 11 µV). Sleep spindles are detected when the 

amplitude of the filtered signal exceeds this amplitude threshold. Slow and fast spindles 

are sometimes separated using the peak frequency of the detected signal as a 

classification parameter: slow spindles have a peak frequency below 13 Hz whereas fast 

spindles have a frequency over 13 Hz. 

  A third very common – and perhaps most intuitive – approach of sleep spindle 

detection is a fixed-frequency, adaptive-amplitude method (FixF)(Schabus et al., 2007; 

Ujma et al., 2015a). In this implementation, the EEG signal is filtered to a slow (11-13 

Hz) and a fast (13-15 Hz) frequency band, and a sleep spindle is detected when the root 

mean square of the amplitude of this filtered signal exceeds the 95% percentile. While 

this method has the merit of separating slow and fast spindles and using an adaptive 

amplitude criterion – that is, taking into account individual differences in baseline 

spindle amplitude – the determination of these frequency bands and the 95% percentile 

as the amplitude cutoff point is not based on empirical data. In fact, a comparison of 

individual sleep spindle features computed either from IAM or FixF (Ujma et al., 

2015a) revealed that while fast spindle parameters can be reliably estimated using the 

13-15 Hz frequency window, the 11-13 Hz slow spindle frequency window did not 

correspond well to empirically determined slow spindle frequencies, with many subjects 

having even lower peak frequencies and almost all having a much narrower slow 

spindle frequency window. Consequently, IAM and FixF slow spindle parameters were 

very different, pointing out the importance of choosing the right detection method. 

  The approach of using individual frequency bands, adaptive amplitude criteria and an 

explicit separation of slow and fast spindles is surprisingly rare in the scientific 

literature, and different studies investigating the relationship between sleep spindling 

and cognition use quite diverse sleep spindle detection methods. Many studies did not 
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separate slow and fast spindles, instead analyzing sleep spindle events or spectral power 

from a broader sigma frequency band (Clemens et al., 2005; Fogel and Smith, 2006; 

Fogel et al., 2007; Tucker and Fishbein, 2009; Lustenberger et al., 2012; Gruber et al., 

2013). Studies which did separate slow and fast spindles generally used a post-hoc 

classification of spindles based on their central frequency, usually with 13 Hz as the 

split point (Schabus et al., 2006; Schabus et al., 2008; Chatburn et al., 2013). 

Occasionally another separation of slow (11.5-12.5) and fast (13.5-14.5) sigma power 

bands was also used (Bang et al., 2014). Only a few studies used individually 

determined sleep spindle frequencies, either by using the IAM method (Bodizs et al., 

2005; Bódizs et al., 2008) or by computing individual relative sigma power defined as 

power ± 2Hz around a single maximal spectral peak relative to the otherwise 

exponentially declining (as a function of frequency) background EEG spectral 

power(Gottselig et al., 2002; Geiger et al., 2011). Our results (Ujma et al., 2015a) show 

that while fast spindles are fairly robust to the implemented specific detection method, 

with different methods yielding quite similar results, slow spindles are much more 

sensitive to the correct selection of frequency bands. Empirically determined slow 

spindle bands are lower than 11 Hz in many subjects, while in others they extend 

beyond the 13 Hz window, potentially confounding slow and fast spindle detections. It 

is notable that in studies with fixed detection frequencies (Schabus et al., 2006; Schabus 

et al., 2008) both slow and fast spindles were correlated with cognitive abilities, while 

in studies with individually determined frequencies (Bodizs et al., 2005; Ujma et al., 

2014) only fast spindles were correlated. 

  Thus, sleep spindle detection may be affected by an incorrect choice of frequency (and 

potentially amplitude) thresholds and the lack of separation between slow and fast 

spindles is a significant potential methodological problem. In order to avoid such errors, 

we used the IAM method in all the studies reported in this thesis. 

  Another mathematical tool frequently used in the study of sleep oscillations is spectral 

analysis. Spectral analysis transforms signals from the time domain to the frequency 

domain: that is, it determines how much is present in a signal of a sinusoid signal of a 

given frequency(Keil et al., 2014). The ratio of sinusoidal and cosinusoidal components 

determines the phase of the oscillation, but this distinction is irrelevant for spectral 
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power, which is determined as the sum of the squared sinusoidal and cosinusoidal 

components. The importance of spectral components in EEG analysis is that oscillations 

of a given frequency are thought to reflect the functioning of well-determined brain 

networks (Nir et al., 2011; Piantoni et al., 2013; Saletin et al., 2013). The shape of the 

sleep EEG spectrum is stable within individuals but variable between individuals(Finelli 

et al., 2001; De Gennaro et al., 2005), showing genetic determination (Buckelmuller et 

al., 2006; Ambrosius et al., 2008; De Gennaro et al., 2008; Landolt, 2011) and a direct 

relationship with the physical anatomy of the brain (Piantoni et al., 2013; Saletin et al., 

2013), which is why sleep EEG spectral components have long been considered 

candidate markers of cognitive functioning as well as mental status.  

  While the computation of EEG spectral components is arguably more straightforward 

than sleep spindle detection, selecting the correct measure of EEG spectral power is still 

an important methodological feature of any study. The raw spectral power of EEG 

signals – whether in wakefulness or sleep – follows a pink noise-like power law 

distribution, with the vast majority of power present in the lowest frequencies (Ferree 

and Hwa, 2003). Baseline power law trends are sometimes removed from the EEG 

spectrum by a procedure called detrending.Given the squared amplitudes in the formula 

of the FFT (serving the basis of power spectral estimation), the logarithmization of the 

raw spectrum is frequently performed to provide a more linear distribution and enable 

the use of standard parametric statistics which do not work well with power law 

distributions. It is notable that the voltage of the EEG signal is first and foremost 

affected by features not related to neural processes, such as the thickness of the skull 

and connective tissues (Chauveau et al., 2004), introducing a large amount of noise into 

the inter-individual differences in the spectral power of the EEG signal. This issue can 

be avoided by computing the relative spectrum, usually by dividing the spectral power 

of every frequency bin by the sum of power in all frequency bins, effectively removing 

the differences in the baseline amplitude of the spectrum and thus correcting for the 

effect of the default individual EEG voltage. An even more specialized method of 

assessing the shape (and not the amplitude) of the individual EEG spectrum is to 

compute z-transformed spectra. The z-transformation of spectral power does not only 

remove the effects of baseline voltage, but it is particularly sensitive to individual 

differences in the shape of the spectrum. This method – due to its sensitivity – works 
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best if it is applied to a relatively narrow frequency range, such as the broadly defined 

sigma (spindle) frequency range, where it has been frequently used to investigate the 

sleep EEG fingerprint (De Gennaro et al., 2005; Bódizs et al., 2012). 

  When a sample of subjects is relatively homogeneous – especially in terms of age, sex 

and physical build – results with absolute (logarithmized) and relative spectra are 

expected to be similar. If this is not the case, however, then the use of relative spectra 

may be necessary in order to correct for baseline individual differences in EEG voltage. 

In the studies elaborated in this thesis, while absolute logarithmized power was also 

computed, it was done so in addition to z-transformed spectral power. Just like in case 

of sleep spindle detection, this combination of methods was chosen in order to use a 

reliable and unbiased method and avoid common sources of potential error. 

 

1.2. Intelligence 
 

  A frequently used – albeit somewhat cynical – definition of intelligence is that it is 

“what intelligence tests measure”(Thorndike, 1921). The reason for this seemingly 

tautological definition is that intelligence – or more precisely, IQ – is a statistical 

abstraction, a factor. That is, its existence is confirmed by the consistent 

multicollinearity of several well-observable variables – such as school grades, 

socioeconomic status or the level of education – which are characterized by a large 

degree of common variance, also referred to as the g-factor (Spearman, 1927; Carroll, 

1997). 

  While a variable like IQ, arising as a stable amount of common variance in easily 

observable and psychosocially relevant variables, is less intuitively understandable than 

many other concepts used in psychology, it is arguably stronger as a construct. 

Psychological concepts which are derived from a human language – that is, practically 

invented as statistical constructs – are frequently easy to grasp, but it is unclear if they 

are honest to their true meaning. A very strong case is made about ‘emotional 

intelligence’, where the tests which it is measured by may rather be measuring 

‘conformity’(Roberts et al., 2001). That is, just because a psychological concept exists 
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in our language, it is absolutely not certain that it can be translated into a measurable 

mathematical reality, or that its measurable properties in relation with other 

psychological concepts will follow what we intuitively consider reasonable. Intelligence 

as a psychological construct was formed the other way around: the common variance 

(‘positive manifold’) of many cognitive and socioeconomic variables was discovered 

(Spearman, 1927), and this common variance was matched with a linguistic concept 

(‘intelligence’) to help grasp its meaning. 

  That is, to refer to the positive manifold, the g-factor or IQ (which concepts have no 

meaning outside the research of intelligence, and therefore accurately reflect the nature 

of this concept as a mathematical abstraction) as ‘intelligence’ is just an attempt to 

express an intuitivemeaning of this factor. As with all statistical factors, its naming is 

subjective and it may be improved by a more careful consideration of the factor 

structure. That is, the true nature of IQ is best discovered by examining the easily 

observable and socially, psychologically and culturally important variables it correlates 

with. 

 

1.2.1. Traditional Views of Intelligence 
  The concept of a unified and objectively measurable intelligence was first put forward 

by Galton(Atkinson et al., 2014) who proposed in the late 19th century that a correlation 

between cognitive ability and reaction time may exist (albeit this was not proven). 

Spearman’s studies in the early 20th century(Spearman, 1904; Williams et al., 2003) 

revealed a correlation between socioeconomic status, cognitive ability and biological 

variables. Spearman also demonstrated that while different persons may excel in 

different subdomains of cognitive ability and lag behind in others, their abilities are not 

uncorrelated: there is a strong presence of a ‘general ability’ which manifests itself in 

very different areas of cognition. 

  Spearman’s studies of school-age children also revealed a strong correlation between 

school grades, subjective peer ratings of intelligence as well as sensory discrimination 

(Spearman, 1904, 1927), further supporting the view of a ‘general ability’ behind many 

apparently different domains of cognition. Spearman’s idea of intelligence was that for 

every cognitive task a general ability (g-factor) as well as a task-specific skill (s-factor) 

DOI:10.14753/SE.2016.1895



30 

 

is used in tandem: that is, while a significant degree of individual differences is 

explainable by differences in general ability, there is of course room for individual 

excellence in or preference for a specific task as well as skill training. The measurement 

of school-age children was very important in early studies of intelligence: in fact, the 

first tests for measuring intelligence were developed to measure mental age(Binet and 

Simon, 1908), that is, the proportion of biological age and the age at which the level of 

competence demonstrated by the child are usually typical. Spearman’s idea of a general 

cognitive ability and Stanford and Binet’s ideas about measuring it are the precursors of 

modern intelligence measurement. While later theories of intelligence do not necessarily 

agree with all or any aspects of these frameworks, they frequently involve some concept 

which resembles or can be demonstrated to resemble the g-factor, and tests with very 

high g-factor-loadings such as Raven’s Progressive Matrices(Neisser et al., 1996; Gray 

and Thompson, 2004b) continue to be used to explore the biological underpinnings of 

cognitive ability. 

  Most later theories of intelligence differed from Spearman’s in that they assumed 

multiple intelligences instead of the single g-factor proposed by Spearman. One of the 

earliest of the alternative theories is Cattel’s idea of fluid and crystallized intelligence 

(Cattell, 1963; Cattell, 1987). In Cattel’s theory, fluid intelligence corresponds to the 

ability to rapidly recognize patterns, process novel information and adjust behavior 

accordingly. On the other hand, crystallized intelligence is the explicit knowledge of 

information, regardless of its ease of access or relationship to novel situations. These 

two abilities (often abbreviated as Gf and Gc, respectively) are subdivisions of the g-

factor. Cattel’s theory of a dual intelligence is very valuable as it can account for the 

changes in human cognitive abilities across the lifespan: in older individuals, fluid 

intelligence decreases but crystallized intelligence increases(Horn and Cattell, 1967; 

Lee et al., 2005). Stuart-Hamilton (Stuart-Hamilton, 2012) argues that this shift between 

different domains of intelligence is crucial in understanding the changes in human 

cognition which are typically encountered during ageing. On the other hand, Cattel’s 

theory is not bulletproof regarding its statistical postulates and construct validity. 

Intelligence tests with a high g-loading, such as Raven’s Progressive Matrices or the 

Woodcock-Johnson Tests of Cognitive Abilities typically correlate strongly with fluid, 

but not crystallized intelligence(Kline, 2014), which is more sensitive to tests of explicit 
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knowledge or text comprehension. Furthermore, fluid intelligence is often drastically 

impaired after brain injury, while crystallized intelligence is retained(Suchy et al., 

2007). This is very similar to the dissociation of working memory and long-term 

memory, which are similarly impaired and retained, respectively, after traumatic injury 

to the brain. The notion that fluid intelligence and working memory are very similar 

constructs is supported by the fact that tasks which train working memory (such as the 

n-back task) boost performance in tests of fluid(Jaeggi et al., 2008; Feiyue et al., 

2009)but not crystallized(Yuan et al., 2006) intelligence. Overall, Cattel’s theory of 

fluid and crystallized intelligence is not impossible to reconcile with Spearman’s g-

factor. In the light of research, it seems that fluid intelligence, the g-factor and working 

memory are very similar constructs (Geary, 2005), probably reflecting the functioning 

of the same frontal, prefrontal and cingular areas. On the other hand, crystallized 

intelligence and long-term memory seem to be part of a different functional unit with a 

more diffuse neocortical neural substrate. In real life situations the explicit knowledge 

of situations cannot always be compensated for with great cognitive flexibility, and the 

concept of intelligence as understood by most non-scholars arguably entails a 

significant level of explicit knowledge, which is why Cattel’s idea of a crystallized 

intelligence is an important addition to Spearman’s original g-factor. However, it seems 

that the g-factor is not composed of Gc and Gf, but nearly synonymous with just the 

latter. Crystallized intelligence can be rather considered a system of consolidated 

knowledge and skills. 

  Robert Sternberg(Sternberg, 1985, 2000) took a more drastic approach to developing a 

theory of multiple intelligences by proposing his framework of a triarchic intelligence. 

Sternberg differentiates analytical thinking (metacomponents) from the ability to carry 

out strategies (performance components) and the ability to acquire new information 

(knowledge-acquisition components) which together constitute intelligence. Sternberg’s 

view admittedly steered away from a psychometric view of intelligence in the process 

of separating performance in abstract intelligence tests from real-life success of 

adaptation, which is the ultimate test of intelligence. However, there is little empirical 

evidence for the existence of the triarchic intelligence proposed by 

Sternberg(Gottfredson, 2002), while there is plenty of evidence supporting the 
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predictive power of traditional IQ tests with a high g-loading for educational success, 

income, or other measures of adaptation (these are demonstrated later in detail). 

  Perhaps the most frequently quoted theory of multiple intelligences is the framework 

proposed by Howard Gardner(Gardner, 2011). Gardner’s theory proposes seven 

different ‘intelligences’ (with more added later), which involve linguistic, logical-

mathematical, musical, spatial, bodily-kinetistic, intrapersonal and interpersonal 

intelligences. The foundation of Gardner’s theory is the idea that the spectrum of human 

abilities is too wide to be squeezed into a single measurement of intelligence, especially 

one (as in Sternberg’s original g-factor) which relies very heavily on performance in 

abstract pseudo-mathematical operations while remaining uninfluenced by individual 

excellence in domains like language or music. Gardner’s theory, however, did not 

receive support from empirical research. First, Gardner’s selection of abilities which are 

classified as an intelligence is subjective and arbitrary(Waterhouse, 2006). Second, 

Gardner’s claim of multiple intelligences, as opposed to a single g-factor is 

unsubstantiated as most of the proposed intelligences correlate strongly with the g-

factor (Visser et al., 2006b, a). Therefore, while it may seem attractive to have a theory 

which appreciates the diversity of human cognitive abilities, research results are 

overwhelmingly weighed against multiple intelligences (Geake, 2008). 

  Most of the socioeconomic neurobiological correlates of intelligence were measured 

using single-factor test of intelligence, typically either Raven’s Progressive Matrices or 

the Wechsler’s Adult Intelligence Scale (although this latter provides a verbal and a 

performance IQ score, both of which were sometimes used and which can be considered 

different aspects of IQ, even if not as multiple intelligences).  IQ is devised as a concept 

mainly measuring cognitive performance and, from a broader perspective, educational 

success and also socio-economic status as its result. Results show that IQ is generally 

correlated to all these variables. 

  Neisser’s seminal work (Neisser et al., 1996) provided invaluable results about the 

correlates of IQ and socio-economic variables. This study found a correlation of about 

0.5 between IQ scores and school grades, and a correlation of a similar magnitude 

between IQ and social status. Income itself was generally found to be positively 
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correlated with IQ, with correlation coefficients in the range of 0.4-0.5 (Seligman, 1992; 

Jensen, 1998; Murray, 1998), heavily mediated by other variables. 

  Work productivity was also found to be positively correlated to IQ, though the strength 

of this link depended on the type of work in question(Hunter and Hunter, 1984), varying 

between 0.2 and 0.6. 

  Criminality, as an indicator of low socio-economic status and failure to comply with 

the standards of society, was found to be negatively correlated with IQ (Neisser et al., 

1996). Bartels et al. (Bartels et al., 2010) reported negative correlations between the 

average IQ scores measured in different US states and these states’ respective crime 

rates. This is, however, not the only indication of a connection between IQ and a the 

socio-economic status of an entire society instead of an individual: in their book, Lynn 

and Vanhanen (Lynn and Vanhanen, 2012) report the correlation between the per capita 

GDP levels of the countries of the world and their average measured IQ scores to be 

0.62.  

  Some of the most sensitive correlates of IQ in this field are school tests such as the 

Scholastic Aptitude Test (SAT) and the General Certificate of Secondary Education 

(GCSE). Frey and Detterman(Frey and Detterman, 2004) found the correlation between 

IQ and SAT to be 0.82. Deary et al. (Deary et al., 2007) reported a correlation of 0.81 

between IQ and GCSE. 

  It is debatable how much the neural correlates of g differ from other, more precisely 

defined but conceptually similar psychometric concepts, such as working memory or 

fluid reasoning. Very similar frontal (Duncan et al., 2000; Gray and Thompson, 2004b) 

and frontal and parietal (Jung and Haier, 2007) areas have been implicated in g and 

working memory, while other studies (Conway et al., 2003) warn against blurring the 

boundaries between (fluid) intelligence and working memory or executive functioning. 

Since it is not the purpose of this thesis to present this debate in detail, only the neural 

correlates of intelligence test scores will be considered, with a note that the neural 

processes implicated in many of these studies may in fact be similar or synonymous in 

more precisely defined higher-order cognitive processes. 

  It is long known that intelligence correlates not only with head size (Gignac et al., 

2003), but with brain volume as well (Andreasen et al., 1993; Witelson et al., 2006; 

Luders et al., 2009). Since these correlations are relatively modest – typically in the 0.3-

DOI:10.14753/SE.2016.1895



34 

 

0.4 range – it has long been considered an attractive line of research to identify specific 

brain areas which are particularly important for intelligence, reflected by a correlation 

with their structural or functional characteristics. Haier and Jung (Jung and Haier, 2007) 

put forward the theory of parieto-frontal integration theory (P-FIT) of intelligence, 

suggesting that high scores on standard intelligence tests are attainable using mainly 

higher-order sensory integration areas in the parietal cortex, executive functions in the 

frontal cortex, and the anterior cingulate for decision-making. In their review of several 

dozen studies which sparked a very long list of commentaries (Jung and Haier, 2007) 

they found that among the many studies investigating cerebral structural and functional 

correlates of intelligence, the most frequently implicated brain areas were BA 7 and BA 

40 in the parietal lobe, BA 6, BA 46 and BA 9 in the frontal lobe as well as BA 19 in 

the occipital lobe (particularly if fMRI studies were considered). All of their results are 

shown on Figure 5. 

 

 

Figure 5. „Graphical representation of the proportion (Y-axis) of all reviewed structural, PET, 

and fMRI studies describing relationships between intelligence and/or reasoning and discrete 

Brodmann areas by lobe (X-axis). These studies represent 1,557 subjects. Brodmann areas 

(BAs) in which greater than 25% of studies found significant relationships between 

intelligence/reasoning and neuroimaging measures were included as comprising the P-FIT. 

Furthermore, within a given BA that met this threshold, if hemispheric asymmetry 
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ratio exceeded 10:7, then predominantly left hemisphere asymmetry was assumed. In BAs where 

the hemispheric asymmetry ratio wasless than 10:7, bilateral symmetry was assumed.” Figure 

and caption from (Jung and Haier, 2007). 

 

This was interpreted as supporting evidence for P-FIT, albeit these areas were found to 

be implicated in intelligence in a relatively small proportion of studies (the strongest 

proportions being around 50-70%), with several other areas also implicated in many 

studies, which suggests that P-FIT may not be a complete account of the neural 

underpinnings of intelligence (Colom, 2007). Another review (Luders et al., 2009) 

confirmed that intelligence correlates with a relatively wide array of brain areas and 

cerebral metrics, including various measures of gray and white matter structure. While 

the strongest correlates of the common variance of many tests of intelligence and 

higher-order cognitive processes were found in the frontal lobe in one study (Colom et 

al., 2013), the converging evidence suggests that intelligence is supported by a wide 

range of structural and functional properties of the brain. It is true that no IQ test is a 

true measure of g: for example it can be said about Raven’s Standard Progressive 

Matrices that “SPM measures g plus spatial and reasoning abilities plus SPM 

specificity” (Colom et al., 2010). However, the broadly distributed neural correlates of 

IQ do not appear to be an artifact of poor psychometric practices, since structural 

correlates of intelligence in fact become more widespread when tests with higher g-

loadings are used (Colom et al., 2006).It has been explicitly studied of how different 

lower-level neural mechanisms – more similar to clear-cut neuropsychological 

constructs – contribute to intelligence (Choi et al., 2008). In this research of over a 

hundred subjects a clear distinction between crystallized intelligence (Gc, measured by 

the verbal subscale of the WAIS) and fluid intelligence (Gf, measured by Raven’s 

Progressive Matrices) was found. Anatomical properties of the brain – mainly cortical 

thickness in temporal areas – correlated positively and more strongly with Gc, while 

functional properties (fMRI BOLD signal during a reasoning task) correlated positively 

and more strongly with Gf. Importantly, functional imaging correlates of Gf were found 

in prefrontal and parietal cortices without significant lateralization, very much in line 

with the P-FIT model of intelligence (Jung and Haier, 2007) and the idea that prefrontal 

functioning is an important core feature of both executive functions and general (fluid) 

intelligence (Gray and Thompson, 2004b). 
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  A large – albeit perhaps somewhat less extensive – body of research was conducted to 

reveal the functional correlates of intelligence. Early pioneering PET studies(Haier et 

al., 1988; Haier et al., 1992a) revealed that task-related increases in cerebral glucose 

uptake is reduced in highly intelligent subjects, suggesting that the brains of these 

individuals is able to perform the same tasks more efficiently. However, glucose uptake 

measured by PET decreased dramatically after learning (Haier et al., 1992b), suggesting 

that task difficulty and familiarity may confound lower task-related increases in glucose 

uptake in highly intelligent individuals.  

  Many waking EEG studies used event-related desynchronization (ERD) primarily in 

the alpha band as a measure of task-related activation of the brain. A high level of ERD 

suggests a strong engagement of neural circuits which is reflected by more profound 

changes in the EEG signal. (Grabner et al., 2006) found an independent effect of task 

familiarity and intelligence on the level of ERD, suggesting that while neural efficiency 

may be observed in more intelligent individuals, it is also affected by task familiarity. 

An interaction between sex and task content has also been found (Neubauer et al., 

2005): females expressed neural efficiency in verbal tasks while males expressed neural 

efficiency in spatial tasks. A recent review of the neural efficiency theory (Neubauer 

and Fink, 2009)acknowledges that while this theory may be true in relatively easy and 

familiar tasks, task type, task difficulty and sex may have a strong confounding effect. 

  Many other waking EEG studies were performed partially or fully diverging from the 

neural efficiency theory. Generally, resting EEG power and frequency were modestly or 

not correlated with cognitive ability (Marosi et al., 1999; Jausovec and Jausovec, 2000; 

Thatcher et al., 2005). More evidence was found for current density measured by 

LORETA (Jausovec and Jausovec, 2001; Thatcher et al., 2007), coherence (Jausovec 

and Jausovec, 2000; Thatcher et al., 2005) and especially phase locking and phase delay 

(Thatcher et al., 2005; Thatcher et al., 2008). The study which to date analyzed the most 

waking EEG parameters(Thatcher et al., 2005) found that the relative effect sizes for 

IQ-EEG correlations were the following: “EEG phase > EEG coherence > EEG 

amplitude asymmetry > absolute power > relative power and power ratios”.  

  Given the limited convergence of the results obtained from imaging or waking 

electroencephalographic studies of intelligence, it is arguable that the correlation 

between sleep spindling in NREM sleep is one of the most frequently reproduced neural 
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correlates of intelligence. Studies demonstrating this relationship are reviewed under 

subsection 1.3 of this thesis. 

  It is notable that both structural and functional correlates of intelligence were 

frequently reported to be sexually dimorphic. Despite this fact, not all studies 

investigated potential sex differences in the biological correlates of IQ, perhaps adding 

to the apparent lack of consensus which is evident from these studies. As for structural 

studies, two MR volumetric studies (Gur et al., 1999; Haier et al., 2005) reported 

stronger correlations between intelligence and white matter volume in women. A study 

using magnetic resonance spectroscopy (MRS) (Jung et al., 2005) revealed that N-

acetylaspartate levels (which is a metabolite that is indicative of neural density) in white 

matter correlated with intelligence only in women. fMRI connectivity (indicated by 

BOLD time course) was found to be correlated with intelligence in older, but not 

younger girls, while in boys a correlation was found in younger children but not in older 

ones (Schmithorst and Holland, 2006), suggesting not only sex differences in the neural 

underpinnings of IQ, but also an increased importance of connectivity in girls towards 

adulthood. In a recent study it was confirmed that gray matter parameters were more 

strongly correlated with cognitive ability in men (Escorial et al., 2015). In fact (Jung 

and Haier, 2007) reported that “it does appear that, across several studiesand groups, the 

relationship of intelligence to white mattervolumes, chemical composition, and perhaps 

water diffusivity may be higher in women than in men”. Interestingly, a single recent 

DTI study (Dunst et al., 2014) found an opposite pattern and a correlation between 

callosal white matter fractional anisotropy and radial diffusivity in men but not in 

women. The correlation in men was positive with FA and negative with RD. 

  Functional correlates of intelligence were also frequently reported to be sexually 

dimorphic. Glucose metabolic rate was found to correlate with mathematical ability 

only in men (Haier and Benbow, 1995). Highly intelligent males showed greater event-

related alpha decoupling in the waking EEG, while highly intelligent females showed 

the opposite pattern and greater decoupling (Jausovec and Jausovec, 2005). Results 

about the apparently divergent neural efficiency in men and women as a function of task 

content (Neubauer et al., 2002; Neubauer et al., 2005) have already been mentioned. It 

is notable that this pattern is not caused or affected by a possible stereotype threat 

(Dunst et al., 2013), suggesting the existence of truly biological reasons. To our 
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knowledge, however, no previous study investigated the potential sex differences in the 

correlates of intelligence in sleep. 

 

  Overall, structural parameters of many brain areas (including gray and white matter) as 

well as a large number of functional imaging results (PET or fMRI) and waking EEG 

parameters were reported as candidate markers or correlates of intelligence. Some of 

these were replicated more often than others, but the true neural framework of 

intelligence is far from being understood. In fact, it must be considered that intelligence 

is mainly a psychometric and sociological and not a neurological construct: it is not 

meant to reflect the functioning of a single organ or cerebral subregion, but rather a 

possibly very complex and redundant array of neural networks and abilities, which are 

however very important for the social and cognitive adaptation of an individual. 

  One could argue that IQ is an artifact (Schlinger, 2012) and use the lack of a clear-cut 

and sublime neural framework behind as an evidence. However, while IQ tests are not 

designed to measure a single ability or the functioning of a singular cerebral network 

(unlike neuropsychological tests, which are sometimes superficially similar) they are 

able to provide predictions about a very large and diverse are of life outcomes far 

beyond the realm of cognition or neuropsychology. The following subsection (1.2.2) 

reviews some of the non-cognitive correlates of intelligence in order to show that 

intelligence truly is “a unifying construct for the social sciences” (Lynn and Vanhanen, 

2012): a concept with an unquestionable importance for human beings, the neural 

underpinnings of which are certainly worth researching even if a consensus on such 

underpinnings is hard to find. 

 

1.2.2. Non-Cognitive Correlates of IQ 
  While a large body of socioeconomic and biological evidence confirms the existence 

and practical importance of the g-factor and highlights the importance of some neural 

mechanisms behind it, it does not completely clarify the meaning of g. Given that g 

typically correlates with cognitive performance, school performance and educational 

attainment as well as social status, it is compelling to refer to it as ‘intelligence’. 

However, performance on IQ tests with high g-loadings correlates with variables vastly 

outside the cognitive domain. 
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  Health and longevity are generally positively associated with IQ (Deary, 2008). A 

follow-up study (Hauser and Palloni, 2011) found significantly positive correlations 

between adolescent IQ recorded from 1957 onward and survival to at least 69 years old. 

(Marmot and Kivimäki, 2009) reported similar results using a large Swedish sample. 

Similar results were obtained in a Scottish study (Whalley and Deary, 2001)as well. A 

frequently coined (Gottfredson and Deary, 2004; Hauser and Palloni, 2011) explanation 

for this association is that people with higher IQs are more conscious of their health 

behavior, and they are less likely to have harmful habits or dangerous jobs. While 

socioeconomic variables undeniably mediate the health outcomes related to IQ, IQ was 

found (Gottfredson and Deary, 2004; Batty et al., 2006) to have an effect on overall 

mortality which is independent from common risk factors. 

  Specifically, IQ was found to be negatively associated with the probability of 

developing heart conditions (Batty et al., 2008), even if controlled for socioeconomic 

variables. A similar negative association was found with cancers (Batty et al., 2009) in 

an American study, where there was an effect of both IQ which was independent from 

common risk factors, such as smoking. However, a research group under the leadership 

of the same first author failed to find such an association in a Swedish cohort (Batty et 

al., 2007). Results about the inverse association between IQ and heart disease or cancer 

are especially important given that these diseases are among the leading causes of death 

in developed societies. 

  IQ is also often found to be negatively correlated with the prevalence of psychiatric 

disease.(Batty et al., 2005) found that childhood IQ was in itself negatively correlated 

with later psychiatric hospitalization. The effect was independent from socioeconomic 

variables and birth weight. More specifically, an inverse relationship between the risk of 

schizophrenia (David et al., 1997; Zammit et al., 2004)and major depression, as well as 

other nonaffective psychoses (Zammit et al., 2004) and IQ was found.  In a follow-up 

study (Breslau et al., 2006) found that children with higher IQ were more successful in 

coping with traumatic life events, as expressed by a lower incidence of PTSD. 

    Fertility – expressed as the number of children de facto born, not as a biological 

potential for procreation – has been long thought to be related to intelligence (Graff, 

1979). However, while the correlation between IQ, effective functioning of the brain 
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and educational success may not seem odd as all of these things may generally be 

perceived as positive, correlations between IQ and measurements of fertility have 

generally been demonstrated to be negative. 

  A large and relatively modern (post-WW2) sample of several thousand people yielded 

extremely high negative correlations between fertility rates and IQs of American 

women (Vining, 1982). In fact, these correlations were so high (0.8-0.9) that they 

approached test-retest and inter-test correlation rates of IQ tests themselves. These 

results – although with more modest correlations – have been replicated using the same 

cohort (Vining Jr, 1995). Similarly, (Lynn, 1999) found negative correlations between 

IQ and fertility, albeit with more modest correlation levels. Significant negative 

correlations between IQ and both the number of children and the number of siblings 

(Meisenberg, 2010) have been found by another study. A more recent study (Lynn and 

Van Court, 2004) confirmed this tendency, also with modest, but significant 

correlations. A large-scale review(Van Court and Bean, 1985) found consistently 

negative correlations between IQ and fertility in the American population between 1912 

and 1982. 

  There are fewer such studies from countries outside the United States or other Western 

countries. However, a study (Vining et al., 1988) found negative correlations between 

IQ and the number of siblings in a Japanese sample – however, not surprisingly 

knowing the high correlation of IQ and educational success – this relationship did not 

survive controlling for the father’s level of education. In the same study, however, no 

significant correlations were found in a Swedish cohort. 

  There is even less data available for developing countries. However, there were 

attempts to measure ‘national IQ’, by using non-standardized IQ score averages 

recorded in different countries as indicators (Lynn and Vanhanen, 2012). While such 

measurements certainly do not reach the psychometric excellence ordinary IQ tests do, 

it is certainly notable that using such an approach(Lynn and Harvey, 2008)a strong (-

0.73) correlation between national IQ and the average fertility rates of the countries in 

the study has been found. Once again, the strength of this correlation approaches the 

test-retest and interest correlations observed in actual IQ tests. Another study 

(Meisenberg, 2009) used a multiple regression method and revealed that both GDP and 

national IQ had an independent, significantly negative effect on the average fertility 
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rate. The negative relationship between national IQ and fertility has been 

replicated(Shatz, 2008). 

  While correlations between IQ and fertility may vary in strength, and in case of 

national IQ measurements there is some room for criticism regarding the general 

methodology, the reported relationship between IQ and fertility is generally consistently 

negative (for a review see(Mackintosh and Mackintosh, 2011)). 

 

1.2.3. The K-factor 
 The fact that intelligence correlates robustly with variables outside the cognitive 

domain has led to the development of the differential K theory of intelligence, which is 

basically an extension of Spearman’s original concept of the g-factor including its non-

cognitive correlates and stating that IQ is in fact only ‘one side of the coin’ of a much 

broader construct which is essentially a life history continuum. The differential K theory 

of intelligence was developed by J. Philippe Rushton and commented on by many of his 

colleagues and peers, often not without controversy (Suzuki and Aronson, 2005). 

  Rushton (Rushton, 2004) investigated 234 mammalian species and demonstrated that 

brain weight, longevity, gestation time, birth weight, litter size (negatively), age at first 

mating, duration of lactation, body weight and body length of these animals correlate 

robustly and have heavy loadings on a single factor. This factor was named the K-

factor, as it represented the position of a species on the continuum between r and K 

reproduction strategies (Pianka, 1970), that is, the preference of high reproduction but 

low survival and specialization versus low reproduction but high survival and 

specialization rates. Rushton hypothesized that these variables – despite their apparently 

divergent content – are naturally highly correlated, because they all represent the 

adaptation to a certain reproductive strategy or ‘life history’ (Figueredo et al., 2005; 

Figueredo et al., 2006). Rushton also hypothesized that a similar convergence of the 

underlying variables of the K-factor will be found by comparing individual humans 

(within the same society) or a series of different human societies. 

  A study (Figueredo et al., 2005) found strong positive loadings on the K-factor by 

variables such as attachment to the biological father and adult romantic attachment and 

negative loadings by variables such as risk propensity and trait psychopathy. Another 
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study (Templer, 2008) provided direct factor analytic evidence for the existence of the 

K-factor by analyzing cross-national data about IQ test performance, birth rate, life 

expectancy, infant mortality and HIV/AIDS prevalence. A common factor – identified 

as the K-factor – explained 75% of the variance of these variables. Cross-national 

differences in IQ test performance correlate strongly with per capita GDP, even if 

controlled for exposure to education (Meisenberg, 2012), and a ‘national K’ index was 

proposed to measure the strongly correlated indicators of intelligence, health, wealth 

and fertility (Meisenberg and Woodley, 2013). The ‘national K’ index was most 

strongly correlated with intelligence (Meisenberg and Woodley, 2013). 

  Michael Minkov conceptualized the K-factor as a ‘hypometropia’-factor, that is, the 

preference for immediate gratification (high hypometropia) or the preference for future 

goals (low hypometropia) (Minkov, 2014). Minkov found correlations between this 

hypometropia index and the prevalence of certain receptor gene polymorphisms – the 

frequency of lower CAG of the androgen receptor gene AR, the 7-repeat allele of DRD4 

dopamin receptor gene and the 5-HTTLPR VNTR short allele, all related to a lack of 

risk aversion – in a comparison of different human populations (Minkov and Bond, 

2015), suggesting that lower K (or higher hypometropia) preferences may be mediated 

by personality traits and may be in part genetically influenced. A recent neuroimaging 

study (Smith et al., 2015) for the first time provided solid empirical evidence for the 

existence of a concept very similar to either Rushton’s K-factor or Minkov’s 

hypometropia dimension. This study investigated the canonical correlation patterns of 

280 demographic, psychometric and behavioral variables and found a strong single 

mode of co-variation containing these variables, with ‘positive’ outcomes (low 

hypometropia) at one of the extremes and ‘negative’ outcomes (high hypometropia) at 

the other. This co-variation correlated with various brain connectivity measures. 

Importantly, fluid intelligence was one of the variables with the strongest factor 

loadings on this single co-variation pattern, suggesting its high relevance. Figure 6 

(adapted from the original article) illustrates the variables included in the co-variation. 
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Figure 6. “The set of SMs most strongly associated with the CCA mode of population 

variability. SMs included in the CCA are colored blue, whereas others (gray) were correlated 

with the CCA mode post hoc. Vertical position is according to correlation with the CCA mode 

and font size indicates SM variance explained by the CCA mode.” CCA stands for canonical 

correlation analysis. Figure and caption from (Smith et al., 2015). 

  The contents of the K-factor are surprisingly similar to the life history variables 

measured during the follow up of the Stanford Marshmallow Study, a pioneering 

psychological experiment not originally intended to investigate intelligence (Mischel 

and Ebbesen, 1970). In this experiment, 3-6 year old young children were placed in an 

experimental situation where they were able to choose between either eating a delicious 

piece of candy of their choice, or wait a few minutes where greater reward was 
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promised (and delivered). This experimental setup was designed to measure the 

children’s ability to delay gratification. In follow-up studies, good delayers had better 

academic achievement, SAT scores and abilities to cope with stress (Shoda et al., 1990), 

lower Body Mass Index (Schlam et al., 2013) and lower reaction times in a Go/No-Go 

task (a measurement of working memory capacity) (Eigsti et al., 2006). Unsurprisingly 

given the latter results, prefrontal regions were found to be more active in good delayers 

while the ventral striatum was found to be more active in poor delayers in a forty-year 

follow-up study (Casey et al., 2011). Given the conceptual similarity between IQ and 

working memory (Unsworth and Engle, 2005; Colom et al., 2013) and the frontal 

correlates of both (Gray and Thompson, 2004b; Jung and Haier, 2007; Neubauer and 

Fink, 2009; Colom et al., 2013) it is unsurprising that the prefrontally mediated ability 

to delay gratification – a concept very similar to the inverse of Minkov’s hypometropia 

dimension – was found to be unchanged during the lifespan and correlated with better 

outcomes in terms of health and wealth, much in line with the concept of the K-factor. 

  Of course when entire human subpopulations – such as cross-national averages – are 

investigated, it must be considered that cross-national differences cannot be considered 

‘trait-like’ in the sense which is common in case of individuals. Many nations – notably 

most European nations – have arguably made a transition from an ‘r’ strategy of high 

reproduction, mortality and low wealth and specialization to a ‘K’ strategy of the 

opposite over the course of a few centuries which is very little time in an ecological 

sense andcertainly not sufficient to fundamentally change the heritable biological 

properties of these populations. This change was paralleled by an increase of IQ scores, 

generally referred to as the Flynn effect(Mackintosh and Mackintosh, 2011). Therefore, 

even if cross-national differences are found in the K-factor, possibly even with some 

genetic correlates, it is a reflection of the current level of development and culturally 

dominant life strategy in a given nation, affected by a plethora of non-biological factors 

(such as a recent history of warfare, colonization, political turmoil or natural disasters) 

and it does not by any means show that a given population has reached it maximal 

possible capacity of adapting either an ‘r’ or a ‘K’ strategy due to the biological 

characteristics of the individuals it is comprised of. The main message of the K-factor is 

that the change or cross-sectional variability of intelligence, health, wealth and fertility 

tends to be coupled, possibly because IQ tests reliably measure the trait-like capacity of 
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the prefrontal networks which are in a very broad and general sense implicated in all the 

above (as well as working memory). The fact that the effects of intelligence virtually 

always extend beyond the cognitive domain is evidenced by not only the results shown 

in the previous subsection, but also by the fact that the coupling of intelligence, health, 

wealth and fertility can be reliably replicated not only by comparing entire human 

populations but even by comparing similar variables in various animal species.  

This suggests that intelligence has profound effects beyond the cognitive domain; it 

deserves interest in the field of epidemiology and perhaps even economics, and the 

frequently very abstract tests which measure IQ in a way seemingly very weakly related 

to real-life situations is in fact a valid predictor of a vast range of life history outcomes, 

not at all limited to cognition in the narrow or broad sense. This is perhaps the strongest 

reason why the biological underpinnings of the apparently abstract and elusive concept 

of IQ deserve much research. Sleep – as it will be demonstrated in the next subsection – 

is arguably one of the most abundant source of candidate markers of intelligence, since 

the physiological processes of the sleeping brain are often characterized by a trait-like 

nature (Linkowski et al., 1989; Finelli et al., 2001; De Gennaro et al., 2005; 

Buckelmuller et al., 2006; De Gennaro et al., 2008; Landolt, 2011; Smit et al., 2012) 

and the investigation of the sleeping brain is free of contamination by the consequences 

of conscious perception and thinking. 

 

1.3. Sleep, cognition and intelligence 
 

  The following subsection summarizes some of the most important scientific 

knowledge about the relationship between sleep and cognition, with special emphasis 

on trait cognitive ability (most frequently measured by intelligence tests) and sleep 

spindling. Other features are described more briefly. 

1.3.1. Memory consolidation 
   It is an old truth that ‘sleeping on’ problems can provide us with new insight the next 

morning, including better remembrance. Early theories suggested that sleep is important 

for enhancing memories because it protects them from interference. However, it has 
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since been revealed that sleep plays an active role in selecting, strengthening and 

enhancing memories – for a review, see (Stickgold and Walker, 2005; Csábi and 

Németh, 2014). Importantly, NREM sleep appears to be the most significant for the 

consolidation of most memory content, including both implicit and explicit memory, as 

long as it involves the hippocampus (Csábi and Németh, 2014), while the role of REM 

sleep seems to be limited to hippocampus-independent learning frequently implicating 

the amygdala (Genzel et al., 2015). 

  Based on early clinical studies about pathological sleep spindles in mentally retarded 

children (Shibagaki et al., 1982), sleep spindles have long been specifically investigated 

as a candidate mechanism through which sleep has an effect on cognition in 

wakefulness. The number of sleep spindles was shown to be correlated with memory 

retention in both verbal (Clemens et al., 2005) and visuospatial (Clemens et al., 2006) 

domains about a decade ago. While an exhaustive review of the literature on the 

relationship between sleep spindling and memory consolidation is beyond the scope of 

this thesis, it must be noted that a correlation between sleep spindling and overnight 

memory consolidation has been reported in both procedural (Fogel and Smith, 2006; 

Fogel et al., 2007; Morin et al., 2008) and declarative (Gais and Born, 2004; Genzel et 

al., 2009) tasks. Treatment with GABA-ergic hypnotic agents increases sleep spindle 

density, producing physiologically normal spindles which also correlate with overnight 

memory retention, depending on the type of memory investigated (Mednick et al., 2013; 

Wamsley et al., 2013). 

  Sleep spindling was also suggested as a candidate marker of trait ability – that is, a 

correlate of stable inter-individual differences in memory performance or cognitive 

ability. This relationship is presented in detail in the following subsection. It has been, 

however, only rarely investigated whether trait cognitive or memory ability is a 

confounding factor in studies of overnight memory retention: that is, whether good 

overnight retainers have good memory or cognitive abilities as a stable trait, reflected by 

their prominent spindling. One such study (Lustenberger et al., 2012) reported an 

association between sleep spindle activity and processing speed and initial acquisition 

rate (learning efficiency before sleep), but not with sleep-related memory consolidation, 

suggesting that sleep spindling is a marker of trait rather than state ability. Another 

study (Hoedlmoser et al., 2014) reported similar results with children: sleep spindling 
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was associated with intelligence and learning ability, but not with overnight memory 

consolidation. A very recent study, however (Lustenberger et al., 2015a) reported 

different but significant sleep spindling correlates for trait cognitive ability and 

overnight memory consolidation. 

  Taken together, these results suggest that trait cognitive ability may explain a 

significant amount of the inter-individual variance of overnight memory consolidation 

scores, and the relationship between trait cognitive ability and sleep spindling is worth 

serious investigation. 

 

1.3.2. Intelligence 
Increased time in stage 2 sleep was linked to higher intelligence in school-age children 

more than three decades ago (Busby and Pivik, 1983). Abnormalities in sleep spindles, 

which are predominant features of stage 2 sleep, were linked to mental retardation even 

earlier (Gibbs and Gibbs, 1962; Bixler and Rhodes, 1968; Shibagaki et al., 1982), and 

sleep spindling remains one of the principal biological correlates of intelligence. Since 

sleep spindling promotes long-term plastic changes in the brain (Buzsaki, 1989; 

Rosanova and Ulrich, 2005; Fogel and Smith, 2011), it is associated with memory 

consolidation in both procedural  (Fogel and Smith, 2006; Fogel et al., 2007; Morin et 

al., 2008)and declarative (Gais and Born, 2004; Clemens et al., 2005; Genzel et al., 

2009) tasks, and much like fluid intelligence, decreases with age (Fogel et al., 2012; 

Lafortune et al., 2014), it seemed logical that sleep spindling is heavily involved in 

sleep-related information processing, and it is perhaps a cause (but at least and index) of 

cognitive ability. 

  Consequently, several studies found an association between sleep spindling and 

intelligence – however, these studies are remarkably heterogeneous for both their 

methodologies and the precise details of their results. (Bodizs et al., 2005) found a 

positive association between the density of fast (but not slow) spindles and scores on the 

Raven’s Progressive Matrices Test in a sample of five female and 14 male subjects. 

This effect was strongest on the electrodes Fp2 and F4, while it did not survive a (rather 

strict) correction for multiple comparisons on other electrodes. A negative association 

with spindle peak frequency was also found. 
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(Schabus et al., 2006) found a similar positive correlation between both slow and fast 

spindle activity and scores on the Raven’s Advanced Progressive Matrices Test as well 

as the Wechsler Memory Scale. This sample consisted of 12 male and 12 female 

subjects and only one electrode (C3) was analyzed. Fast spindle duration and both slow 

and fast spindle amplitudes were also found to be positively associated with 

intelligence. 

(Fogel et al., 2007) reported the analysis of three different subject groups consisting of 

young adult subjects (10 females, 12 females, 29 females and 6 males, respectively) 

detecting spindles from C3 and C4 for the first twostudies and Cz for the last study and 

the Multidimensional Aptitude Battery (MAB-II) for intelligence testing. The authors 

reported a positive relationship between full-scale as well as performance intelligence 

and the total number of sleep spindles and sigma power in the first two studies. Notably, 

these authors did not calculate sleep spindle amplitude. 

(Lustenberger et al., 2012) found a positive association between sleep spindle activity 

measured on C4 and intelligence measured by the Zahlenverbindungstest (a number 

connecting task with a fixed time limit). Fifteen young male subjects participated in this 

study. 

  In a child study (Geiger et al., 2011) using the Wechsler Intelligence Scale for 

Children with a sample of 6 female and 8 male children, a negative association was 

found between full-scale IQ and sleep spindle peak frequency, while a positive 

association was found between both full-scale and performance IQ and individually 

adjusted sigma power, which approximates sleep spindle activity. The electrodes C3 

and C4 were used. Notably, verbal IQ was not associated with any measure of sleep 

spindling. 

(Tessier et al., 2015) investigated the sleep spindle correlates of intelligence measured 

by the Wechsler Intelligence Scale for Children in thirteen typically developing (TD) 

and thirteen autistic children (all males). In the TD group, spindle duration positively 

correlated with verbal IQ. In the autistic group, spindle density correlated negatively 

with both verbal IQ and full-scale IQ. 

  A previously mentioned study (Hoedlmoser et al., 2014) investigated the relationship 

between sleep spindling, overnight memory consolidation and intelligence (measured 

by the Wechsler Intelligence Scale for Children) in 63 healthy children (28 females, 35 
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males). Sleep spindle activity was positively associated with intelligence scores as well 

as learning ability in a widely distributed scalp area (but not with overnight memory 

consolidation). 

  However, these positive correlations between measures of intelligence and sleep 

spindling are by no means present in every study of the field. (Clemens et al., 2006) 

failed to find a correlation between scores on the Raven’s Progressive Matrices Test and 

the total number of spindles recorded from their 15 male subjects over 21 scalp 

electrodes. In a study of 12 female and 12 male subjects(Tucker and Fishbein, 2009), 

sigma power on C3 and C4 was not correlated with intelligence measured by the 

Multidimensional Aptitude Battery-II. Two studies (Peters et al., 2007; Peters et al., 

2008) recorded sleep spindling on C3 and C4 and measured intelligence using the 

Multidimensional Aptitude Batter-II in 12 young female and 12 young male subjects 

and seven male and seven female subjects in both young and an elderly subgroup, 

respectively. Neither of these studies found any significant association between sleep 

spindle parameters and intelligence (Kevin Peters, personal communication).  

Two child studies(Chatburn et al., 2013; Gruber et al., 2013) using the Stanford-Binet 

Intelligence Scale (with 13 female and 14 male children, C3 and C4) and the Wechsler 

Intelligence Scale for Children (14 female and 15 male children, 8 electrodes), 

respectively,failed to find an association between full-scale IQ and any sleep spindle 

parameters. While some aspects of executive functioning were found to be correlated 

with sleep spindling, this relationship was notably absent for intelligence.  

  Table 1 summarizes previous findings about the relationship between sleep spindling 

and intelligence. 
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Publication test age sex spindle 

parameter 

electrode correlation 

Bodizs et al., 2005 RPMT: IQ 27-67 years 5 f / 14 m density slow Fp1, Fp2, 

Fpz, F3, F4, 

Fz, F7, F8, C3, 

C4, Cz, T3, 

T4,T5, T6, P3, 

P4, Pz, O1, 

O2, Oz 

n.s. 

Bodizs et al., 2005 RPMT: IQ 27-67 years 5 f / 14 m density fast Fp1, Fp2, 

Fpz, F3, F4, 

Fz, F7, F8, C3, 

C4, Cz, T3, 

T4,T5, T6, P3, 

P4, Pz, O1, 

O2, Oz 

from r=.25, 

p=.33 at O2 to 

r=.79, p=.0001 

at Fp2 

Clemens et al., 2006 RPMT: IQ 25-47 years, 

M=35, 

SD=7.7 

15 m total number Fp1, Fpz, 

Fp2, F7, F3, 

Fz,F4, F8, T3, 

C3, Cz, C4, 

T4, T5, P3, 

Pz, P4, T6, 

O1, Oz, O2 

n.s. 

Schabus et al., 2006 APM: IQ 20-30 years, 

M=24 SD=2.6 

24 f / 24 m activity slow C3 r=.40, p<.01 

Schabus et al., 2006 APM: IQ 20-30 years, 

M=24 SD=2.6 

24 f / 24 m activity fast C3 r=.44,  p<.01 

Schabus et al., 2006 APM: IQ 20-30 years, 

M=24 SD=2.6 

24 f / 24 m density slow C3 r=.06, p=.68 

Schabus et al., 2006 APM: IQ 20-30 years, 

M=24 SD=2.6 

24 f / 24 m density fast C3 r=–.01, p=.97 

Schabus et al., 2006 APM: IQ 20-30 years, 

M=24 SD=2.6 

24 f / 24 m duration 

slow 

C3 r=.09, p=.54 

Schabus et al., 2006 APM: IQ 20-30 years, 

M=24 SD=2.6 

24 f / 24 m duration fast C3 r=.34, p=.02 

Schabus et al., 2006 APM: IQ 20-30 years, 

M=24 SD=2.6 

24 f / 24 m amplitude 

slow 

C3 r=.39, p=.01 

Schabus et al., 2006 APM: IQ 20-30 years, 

M=24 SD=2.6 

24 f / 24 m amplitude 

fast 

C3 r=.35, p=.02 

Fogel et al., 2007 MAB-II: VIQ 18-29 years 10 f total number C3, C4 r=.56, p=.09 

Fogel et al., 2007 MAB-II: PIQ 18-29 years 10 f total number C3, C4 r=71, p=.02 

Fogel et al., 2007 MAB-II: FSIQ 18-29 years 10 f total number C3, C4 r=.76, p=.01 

Fogel et al., 2007 MAB-II: VIQ 20-25 years 12 f total number C3, C4 r=.38, p=.10 

Fogel et al., 2007 MAB-II: PIQ 20-25 years 12 f total number C3, C4 r=.79, p=.001 

Fogel et al., 2007 MAB-II: VIQ 20-25 years 12 f total number Cz r=.01, p=.94 

Fogel et al., 2007 MAB-II: PIQ 20-25 years 12 f total number Cz r=.05, p=.79 

Fogel et al., 2007 MAB-II: VIQ 18-26 years, 

M=20, 

SD=5.3 

29 f / 6 m density Cz n.s.  

Fogel et al., 2007 MAB-II: PIQ 18-26 years, 29 f / 6 m density Cz n.s. 
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M=20, 

SD=5.3 

Fogel et al., 2007 MAB-II: VIQ 18-26 years, 

M=20, 

SD=5.3 

29 f / 6 m duration Cz n.s.  

Fogel et al., 2007 MAB-II: PIQ 18-26 years, 

M=20, 

SD=5.3 

29 f / 6 m duration Cz n.s. 

Peters et al., 2007 MAB-II: VIQ M=21, 

SD=2.4 

12 f / 12 m density C3, C4 r=–.26, p>.05 

Peters et al., 2007 MAB-II: PIQ M=21, 

SD=2.4 

12 f / 12 m density C3, C4 r=.05, p>.05 

Peters et al., 2007 MAB-II: FSIQ M=21, 

SD=2.4 

12 f / 12 m density C3, C4 r=–.11, p>.05 

Peters et al., 2008 MAB-II: VIQ 17-24 years, 

M=20, 

SD=2.3 

7 f / 7 m density C3, C4 n.s.  

Peters et al., 2008 MAB-II: PIQ 17-24 years, 

M=20, 

SD=2.3 

7 f / 7 m density C3, C4 n.s. 

Peters et al., 2008 MAB-II: FSIQ 17-24 years, 

M=20, 

SD=2.3 

7 f / 7 m density C3, C4 n.s.  

Peters et al., 2008 MAB-II: VIQ 62-79 years, 

M=70, 

SD=5.1 

7 f / 7 m density C3, C4 n.s. 

Peters et al., 2008 MAB-II: PIQ 62-79 years, 

M=70, 

SD=5.1 

7 f / 7 m density C3, C4 n.s.  

Peters et al., 2008 MAB-II: FSIQ 62-79 years, 

M=70, 

SD=5.1 

7 f / 7 m density C3, C4 n.s. 

Tucker & Fishbein, 

2009 

MAB-II: VIQ M=21 years 12 f / 12 m sigma power C3, C4 n.s. 

Tucker & Fishbein, 

2009 

MAB-II: PIQ M=21 years 12 f / 12 m sigma power C3, C4 n.s.  

Tucker & Fishbein, 

2009 

MAB-II: FSIQ M=21 years 12 f / 12 m sigma power C3, C4 n.s. 

Geiger et al., 2011 WISC-IV: VIQ 9-13 years, 

M=10.5 

6 f / 8 m spindle peak 

frequency 

C3, C4 n.s. 

Geiger et al., 2011 WISC-IV: FIQ 9-13 years, 

M=10.5 

6 f / 8 m spindle peak 

frequency 

C3, C4 n.s. 

Geiger et al., 2011 WISC-IV: 

FSIQ 

9-13 years, 

M=10.5 

6 f / 8 m spindle peak 

frequency 

C3, C4 r=–.56, p<.05 

Geiger et al., 2011 WISC-IV: VIQ 9-13 years, 

M=10.5 

6 f / 8 m sigma power C3, C4 n.s. 

Geiger et al., 2011 WISC-IV: FIQ 9-13 years, 

M=10.5 

6 f / 8 m sigma power C3, C4 r=.65, p<.05 

Geiger et al., 2011 WISC-IV: 

FSIQ 

9-13 years, 

M=10.5 

6 f / 8 m sigma power C3, C4 r=.67, p<.01 
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Lustenberger et al., 

2012 

ZVT: IQ 18-20 years, 

M=19, 

SD=0.8 

15 m activity C4 r=.55, p<.05 

Chatburn et al., 2013 SBIS: VIQ 4-13 years, 

M=8, SD=2.1 

13 f / 14 m total number: 

all, fast, slow 

C3, C4 n.s. 

Chatburn et al., 2013 SBIS: NVIQ 4-13 years, 

M=8, SD=2.1 

13 f / 14 m total number: 

all, fast, slow 

C3, C4 n.s. 

Chatburn et al., 2013 SBIS: FSIQ 4-13 years, 

M=8, SD=2.1 

13 f / 14 m total number: 

all, fast, slow 

C3, C4 n.s. 

Chatburn et al., 2013 SBIS: VIQ 4-13 years, 

M=8, SD=2.1 

13 f / 14 m density: all, 

fast, slow 

C3, C4 n.s. 

Chatburn et al., 2013 SBIS: NVIQ 4-13 years, 

M=8, SD=2.1 

13 f / 14 m density: all, 

fast, slow 

C3, C4 n.s. 

Chatburn et al., 2013 SBIS: FSIQ 4-13 years, 

M=8, SD=2.1 

13 f / 14 m density: all, 

fast, slow 

C3, C4 n.s. 

Chatburn et al., 2013 SBIS: VIQ 4-13 years, 

M=8, SD=2.1 

13 f / 14 m duration C3, C4 n.s. 

Chatburn et al., 2013 SBIS: NVIQ 4-13 years, 

M=8, SD=2.1 

13 f / 14 m duration C3, C4 n.s. 

Chatburn et al., 2013 SBIS: FSIQ 4-13 years, 

M=8, SD=2.1 

13 f / 14 m duration C3, C4 n.s. 

Chatburn et al., 2013 SBIS: VIQ 4-13 years, 

M=8, SD=2.1 

13 f / 14 m frequency C3, C4 n.s. 

Chatburn et al., 2013 SBIS: NVIQ 4-13 years, 

M=8, SD=2.1 

13 f / 14 m frequency C3, C4 n.s. 

Chatburn et al., 2013 SBIS: FSIQ 4-13 years, 

M=8, SD=2.1 

13 f / 14 m frequency C3, C4 n.s. 

Gruber et al., 2013 WISC-IV: 

FSIQ 

7-11 years, 

M=9 SD=0.9 

14 f /15 m density F3, F4, C3, 

C4, P3, P4, 

O1, O2 

n.s. 

Gruber et al., 2013 WISC-IV: 

FSIQ 

7-11 years, 

M=9 SD=0.9 

14 f /15 m amplitude F3, F4, C3, 

C4, P3, P4, 

O1, O2 

n.s. 

Gruber et al., 2013 WISC-IV: 

FSIQ 

7-11 years, 

M=9 SD=0.9 

14 f /15 m duration F3, F4, C3, 

C4, P3, P4, 

O1, O2 

n.s. 

Gruber et al., 2013 WISC-IV: 

FSIQ 

7-11 years, 

M=9 SD=0.9 

14 f /15 m frequency F3, F4, C3, 

C4, P3, P4, 

O1, O2 

n.s. 

Ward et al., 2014 MAB-II: VIQ 18-29 years, 

M=21, 

SD=3.0 

21 f / 9 m density C3 r=.18, p>.05 

Ward et al., 2014 MAB-II: PIQ 18-29 years, 

M=21, 

SD=3.0 

21 f / 9 m density C3 r=.14, p>.05 

Ward et al., 2014 MAB-II: FSIQ 18-29 years, 

M=21, 

SD=3.0 

21 f / 9 m density C3 r=.22, p>.05 

Hoedlmoser et al. 2014 WISC-IV: 

FSIQ 

8-11 years, 

M=10, 

28 f / 35 m activity 

(slow) 

F3, Fz, F4, C3, 

C4, P3, Pz, 

r=..39, p<0.001 
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SD=0.8 P4, O1, O2  

Tessier et al. 2015 WISC-III: 

FSIQ 

6-13 years, 

M=10, SD=2 

13 m 

(autistic), 13 

m (TD) 

density, 

duration, 

sigma power 

Fp1, Fp2, C3, 

C4 

r=-0.55 p=0.05 

(density, 

autistic) 

Tessier et al. 2015 WISC-III: VIQ 6-13 years, 

M=10, SD=2 

13 m 

(autistic), 13 

m (TD) 

density, 

duration, 

sigma power 

Fp1, Fp2, C3, 

C4 

r=-.62, p<0.05 

(density, 

autistic) 

r=0.72, p<0.02 

(duration, TD) 

Table 1.Previous studies and their results about the relationship between sleep spindling and 

intelligence. RPMT: Raven Progressive Matrices. APM: Advanced Progressive Matrices. MAB-

II: Multidimensional Aptitude Battery-II. SBIS: Stanford-Binet Intelligence Scale. WISC-IV: 

Wechsler Intelligence Scale for Children IV. WAIS-III: Wechsler Adult Intelligence Scale III. 

ZVT: Zahlen-Verbindungs-Test. VIQ: Verbal IQ. PIQ: Performance IQ, FSIQ: Full scale IQ. 

FIQ: fluid IQ. NVIQ: Non-verbal IQ, TD: typically developing. Data from Peters et al., 2007; 

Peters et al., 2008; and Ward et al., 2014 were added with data from K. Peters, personal 

communication. Reproduction from (Ujma et al., 2014), with added data. 

 

  Overall, many previous studies have investigated the relationship between sleep 

spindling and intelligence, but both the implemented methods and the results were 

highly variable. Given the high g-loading of most of the IQ tests used in these studies, it 

is unlikely that the source of variability was a low concordance between these studies 

with respect to the psychometric construct they measured. However, most of these 

studies can be criticized for their sleep spindle detection methods, which either did not 

separate slow or fast spindles or did it with a generic threshold frequency, did not take 

into account individual variations in sleep spindle frequency and amplitude, or both of 

the above. Some of these studies investigated a very small number of subjects (the 

highest number being 48 in (Schabus et al., 2006)) and none of them specifically 

investigated potential sex differences in the sleep spindling correlates of IQ, despite 

much evidence of such differences in other neurobiological correlates of intelligence 

(Neubauer et al., 2002; Haier et al., 2005; Jausovec and Jausovec, 2005).  
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2. Aims 
 

  In our studies, we investigated the correlations between sleep spindle parameters, EEG 

spectral components and intelligence, specifically targeting potential sex differences and 

employing the IAM method of sleep spindle detection specifically designed to identify 

slow and fast spindles using individually adjusted amplitude and frequency 

thresholds.We paid particular attention to avoid the methodological problems seen in 

previous studies, that is: 

 

1.) We aimed to create a study sample of a greater size than any of the previous studies 

investigating the relationship between sleep spindling and intelligence. 

2.) We detected slow and fast sleep spindles separately, considering individual 

differences in sleep spindle frequency and amplitude. This was performed using our in-

house Individual Adjustment Method of sleep spindle detection. 

3.) In line with previous results about the biological correlates of intelligence – which 

were frequently revealed to be not unequivocal in males and females – wespecifically 

investigated the possibility of a sexual dimorphism by analyzing not only the study 

sample as a whole, but also the male and female subsamples separately. 

4.) In order to further clarify and to establish the consistency of our findings we 

repeated the study in three subsamples spanning a significant age range, analyzing i.) a 

sample of 4-8 year old children, ii.) a sample of  adolescents and iii.) a sample of adults. 

The adult sample also contained individuals of exceptionally high intelligence. 

  Our ultimate aim was to conduct an investigation of the relationship between sleep 

spindling and intelligence superior to previous studies both in terms of signal processing 

methodology and statistical power. 
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3. Methods 
 

  Our technical and mathematical methods are discussed in this section in the same way 

they appear in the corresponding articles originally reporting our research (Bódizs et al., 

2014; Ujma et al., 2014)and (Ujma et al. submitted), with three exceptions: 1) spectral 

analysis is described even in case of the studies where it was not originally part of the 

article (Ujma et al., 2014) and (Ujma et al. submitted) 2) since all three studies 

implemented the same sleep spindle detection as well as spectral analysis methodology, 

the description of these methods are removed from the subsections discussing each 

individual study and instead reported together at the beginning of the Methods section 

3) due to overlaps in methodology, multiple comparison correction is described at the 

beginning of the Methods section instead of individually for the three studies. 

 

The Individual Adjustment Method (IAM) of sleep spindle analysis 

 

  The Individual Adjustment Method (IAM) of sleep spindle analysis (Bódizs et al., 

2009; Ujma et al., 2015a) has already been mentioned in earlier parts of this thesis, 

together with its empirical benefits in comparison to other methods. Here, a more 

detailed description is given according to (Ujma et al., 2015a). According to this 

method, the following analysis of the EEG signal is performed: 

i. Average amplitude spectra. Non-overlapping 4 second artifact-free NREM sleep EEG 

segments are Hanning-tapered (50%), then zero-padded to 16 second. The average 

amplitude spectrum of all-night NREM sleep EEG derivations is computed between 9–

16 Hz by using an FFT routine (frequency resolution: 0.0625 Hz).  

ii. Individually adjusted frequency limits of slow and fast sleep spindles. Determination 

of the individual slow and fast sleep spindle frequencies is based on second order 

derivatives of the 9–16 Hz amplitude spectra. In order to avoid small fluctuations in 

convex and concave segments average amplitude spectra of 0.0625 Hz resolution (i) is 

downsampled (decimated) by a factor of 4 (0.25 Hz) before calculating the derivation-
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specific second-order derivatives in this frequency range. Derivation-specific second 

order derivatives of the amplitude spectra are then averaged over all EEG derivations 

resulting in a whole-scalp second order derivative for each subject. Individual-specific 

frequency limits of sleep spindles are defined as pairs of zero crossing points 

encompassing a negative peak in the whole-scalp second order derivatives. These zero-

crossing points are rounded to the closest bins within the high-resolution (0.0625 Hz) 

amplitude spectra obtained in step i. Two pairs of individual-specific frequency limits 

and corresponding ranges are defined (one for slow and one for fast spindles). In cases 

of uncertainty (lack of zero crossing points indicating slow spindles or partial overlap 

between slow and fast sleep spindles in some cases), frequencies with predominance of 

power in averaged frontal (Fp1, Fp2, Fpz, F3, F4, Fz, F7, F8, as available) over 

averaged centro-parietal (C3, C4, Cz, P3, P4, Pz, as available) amplitude spectra are 

considered as slow spindle frequencies. In our studies reported here, there was no case 

of uncertainty related to the individual-specific upper frequency boundary of fast sleep 

spindling.  

iii. Individual-specific spindle middle frequencies. Slow spindle middle frequency of a 

given subject is quantified as the arithmetic mean of the individual-specific lower and 

upper limits for slow spindling as obtained above (ii). In case of fast sleep spindling the 

arithmetic mean of the lower and the upper frequency limits of fast sleep spindles are 

considered. 

iv. Individual- and derivation-specific amplitude criteria for sleep spindles.Spindles are 

defined as those EEG segments contributing to the peak region of the average amplitude 

spectrum. Hence we obtain an amplitude criterion corresponding to the line determined 

by the y-values (µV) pertaining to the individually adjusted pairs of frequency limits (ii) 

in the average amplitude spectra (i). 

iv/a. The number of high resolution (0.0625 Hz) frequency bins (i) falling in the 

individual-specific slow- and fast sleep spindle frequency ranges (ii) are determined.  

iv/b. The amplitude spectral values (i) at the individually adjusted frequency limits for 

slow and fast sleep spindles (ii) are determined. This is performed in a derivation-

specific manner.  

DOI:10.14753/SE.2016.1895



57 

 

iv/c. Number of bins for slow and fast sleep spindling (iv/a) are multiplied with the 

arithmetic mean of the pairs of derivation-specific amplitude spectral values for slow 

and fast sleep spindle frequency limits (iv/b), respectively. Outcomes are individual- 

and derivation specific amplitude criteria for slow and fast sleep spindle detections. 

v. Envelopes of sleep spindling. EEG data is band-pass filtered for the slow and fast 

spindle frequency ranges by using an FFT-based Gaussian filter with 16 sec windows: 

f(x) = e^− (((x − xm)/(w/2))^2), where x varies between zero and the Nyquist frequency 

according to the spectral resolution, xm is the middle frequency of the spindle range (iii), 

and w is the width of the spindle range (ii) (ii and iii). Filtered signal is rectified and 

smoothed by a moving average weighted with a Hanning window of 0.1 s length and 

multiplied with π/2 (the latter is the inverse of the mean of a rectified sine wave). 

vi. Detection and characterization of sleep spindles. If envelopes of this band-pass 

filtered and rectified data (v) exceed the individual and derivation-specific threshold as 

defined above (iv) for at least 0.5 seconds, a sleep spindle is detected. Sleep spindles 

detected this way are analyzed and average sleep spindle density (number of spindles 

per minute), sleep spindle duration (s), as well as median and maximum amplitude 

(expressed as all-night means of intra-spindle envelopes in µV at the middle of the 

detected spindles and at the maxima of the spindles, respectively) is calculated for the 

subject. 

  The IAM process is illustrated on Figure 7. 
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Figure 7. The Individual Adjustment Method (IAM) of sleep spindle analysis. A. Four second 

EEG epoch Hanning-tapered and zero padded to 16 Hz. B. Fast Fourier Transformation (FFT) 

is used to calculate 9-16 Hz average amplitude spectra of all night NREM sleep EEG from 

Hanning-tapered and zero-padded segments. C. Decimated amplitude spectra by a factor of 4. 

D. Second order derivatives of the decimated amplitude spectra. E. Calculating the whole-scalp 

second order derivative by series averaging. The series is overplotted with the averaged frontal 

(generally Fp1, Fp2, Fpz, F3, F4, Fz, F7, F8, as available) and centro-parietal (generally C3, 

C4, Cz, P3, P4, Pz, as available) amplitude spectra. Appropriate zero-crossing points 

encompassing individual-specific slow and fast sleep spindle bands are selected according to 

the frequency scale in B. F. Derivation-specific amplitude criteria is calculated. G. 

Thresholding of the envelopes of the slow and fast-spindle filtered signal. Reproduced from 

(Ujma et al., 2015a). 
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Spectral analysis 

 

In all studies reported here, we computed the NREM sleep EEG spectrum using the Fast 

Fourier Transform to compute spectral power. FFT power was computed for all 

available 4-second epochs (with 2 second overlaps) of artifact-free N2 and SWS EEG 

signals, and an average spectral power value was calculated by averaging across all 4-

second epochs. In line with the relevant guidelines, spectral power was log-transformed 

before the statistical analyses(Pivik et al., 1993; Jobert et al., 2013)in order to 

approximate a normal distribution instead of the power law distribution typically seen in 

raw EEG spectra. 

 Besides log-transformation, z-scores of the 8–16 Hz spectra were also analyzed. This 

latter transformation is justified by the findings supporting the striking trait-like 

reliability(De Gennaro et al., 2005) and the marked sensitivity of this sleep EEG scores 

expressing discrete frequency points of the individual shapes of the sleep EEG 

spectra(Bódizs et al., 2012). Z-score spectra are calculated by replacing the power 

spectral values for each electrode of each individual by the z-scores of the same values 

(within a specified range, here 8-16 Hz). In all three studies, both log-transformed 

power (10-base) and z-transformed normalization (x-m/SD) were used in separate 

statistical models. 

Correcting for multiple comparisons 

 In case of the child and adolescent samples, which had relatively low sample sizes, 

multiple comparisons correction was performed using a modified version of the Rüger 

area method (Abt, 1987; Duffy et al., 1990; Bódizs et al., 2014) on correlation data. In 

this method, instead of determining the significance of individual correlation 

coefficients, a global null hypothesis is tested on a contiguous area of significant results. 

This global null hypothesis is kept or rejected for the area as a whole. We defined areas 

of significance on the scalp where uncorrected p-values on at least two neighboring 

electrodes were below the conventional significance limit (α=0.05). If the uncorrected 
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p-values were below α/2 (p<0.025) for at least 50% of the correlations within the area of 

significance, then the global null hypothesis was rejected for the area as a whole. 

  In order to obtain a better localization of regions with significant correlations between 

sleep spindling and age or IQ the correlations were represented by significance 

probability maps (Hassainia et al., 1994). 

  In case of spectral data, this Rüger area method was used in all three studies. In this 

case, areas of significance were defined not only in the spatial domain (neighboring 

electrodes) but also in the frequency domain (neighboring frequency bins). That is, a 

contiguous area of significance was defined as an area where correlation coefficients 

were below the conventional significance threshold (α=0.05) on at least two 

neighboring electrodes and in at least two neighboring frequency bins. Likewise, an area 

of significance was defined from the first frequency bin with a conventionally 

significant correlation on at least electrode to the last frequency bin with such results. 

Similarly to sleep spindle parameters, if the uncorrected p-values were below α/2 

(p<0.025) for at least 50% of the correlations within the area of significance, then the 

global null hypothesis was rejected for the area as a whole. 

  In case of the adult sample, the larger sample size allowed a multiple comparison 

correction method with better spatial resolution. In this case, the Benjamini-Hochberg 

method of false discovery rate (FDR) correction (Benjamini and Hochberg, 1995) 

method was applied, which tests the null hypothesis that a statistically significant result 

is a false discovery using the distribution of p-values in all performed statistical tests. 

This correction procedure was selected because sleep spindle parameters at different 

electrodes are expected to correlate positively, rendering a Bonferroni correction overly 

conservative. The Benjamini-Hochberg procedure, on the other hand, is valid for both 

independent and positively correlated tests. 

 

3.1. Study 1 – Children 

3.1.1. Recruitment, Ethics and Psychometric Testing 
  We recruited a sample of 33 healthy young children in the greater Budapest area. All 

the children were healthy; any diagnosis of mental or physical illness caused an 
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exclusion from the study. Written consent forms were obtained from the parents. Ethical 

approval of the study was received from the Semmelweis University Ethical Review 

Board. The children underwent all-night polysomnography recordings in a sleep 

laboratory (in the presence of their parents) for two consecutive nights. Due to the poor 

quality of second-night recordings the recording of the first night was used in case of 

two children (both males, age 4.99 and 4.34 years, respectively). Due to the poor quality 

of both first and second night recordings a third night was recorded and used for 

analysis in the case of another four children (3 females, one male, ages 8.22 years, 6.25 

years, 7.05 years and 8.5 years, respectively). In case of four additional children the 

families refused to undergo a third polysomnography recording. Therefore, we analyzed 

recordings from 29 children (15 females, 14 males, age: 3.84-8.5 years). Because of the 

presence of high-frequency artifacts in his EEG recordings, one further male subject 

was rejected from spectral analyses (but not sleep spindle analysis which only uses a 

narrow frequency band less affected by artifacts).  

 The age of the children was obtained in months and re-calculated to years including 

fractions which is how it is reported here. We aimed to reduce the number of nights 

spent in the sleep laboratory to the minimum necessary, and we used first and third 

night recordings due to the inter-night stability of the individual EEG spectrum in the 

typical sleep spindle frequency range even in case of drastic manipulations (De Gennaro 

et al., 2005). 

  All children completed a psychological and neuropsychological battery,among them 

the Raven’s Colored Progressive Matrices, a nonverbal test of IQ (Raven et al., 1962). 

The CPM raw score was used to assess the children’s cognitive ability. 

 

3.2.2. Polysomnography Recording and Scoring 
  On both nights, subjects were fitted with 19 EEG electrodes (Fp1, Fp2, F3, F4, Fz, F7, 

F8, C3, C4, Cz, P3, P4, Pz, T3, T4, T5, T6, O1, O2) according to the 10–20 electrode 

placement system(Jaspers, 1958) as well as with two EOG electrodes (bipolar channel) 

monitoring vertical and horizontal eye-movements; EMG electrodes (bipolar channels) 

for the chin muscles, two ECG electrodes according to standard lead I. Gold coated 

Ag/AgCl EEG cup electrodes were fixed with EC2 Grass Electrode Cream (Grass 
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Technologies, USA) and referred to the mathematically- linked mastoids. Impedances 

were kept below 10 kΩ. In 27 children, signals were collected using the 32 channel 

EEG/polysystem (Brain-Quick BQ 132S, Micromed, Italy), prefiltered (0.33–1500 Hz, 

40 dB/decade anti-aliasing hardware input filter), amplified and digitized with 4096 

Hz/channel sampling rate (synchronous) with 12 bit resolution. A further 40 dB/decade 

anti-aliasing digital filter was applied by digital signal processing which low-pass 

filtered the data at 450 Hz. Finally, the digitized and filtered EEG was undersampled at 

1024 Hz. Two further children were recorded in their homes by using the newly 

available SD-LTM 32 Express ambulatory home polysomnography device and the 

System Plus Evolution Software (Micromed, Italy) with the following technical 

characteristics: 0.15-250 Hz hardware input filtering (40 dB/decade), 4096 Hz/channel 

synchronous sampling rate, 22 bit resolution, downsampling (decimation) to 1024 Hz 

after 463.3 Hz anti-aliasing filtering performed by firmware. Because of the small 

amplitude attenuation due to the hardware filter characteristics of the EEG devices in 

the spindle frequency range data from the two recording systems were pooled without 

correcting for device-specific amplitude differences (Ujma et al., 2014). 

  All polysomnography recordings were scored according to standard criteria (Iber et al., 

2007) based on 20 second epochs, artifacts were manually rejected based on 4 second 

epochs  using in-house software, FerciosEEG (© 2009-2014. Ferenc Gombos).  

3.2.3. Spectral Analysis, Sleep Spindle Detection and Statistics 
Artifact-free N2 and SWS EEG epochs were fed to the Individual Adjustment Method 

(IAM) sleep spindle detection algorithm (Bódizs et al., 2009; Ujma et al., 2015a). 

Frontal electrodes for IAM input were Fp1, Fp2, F3, F4, Fz, F7 and F8, while centro-

parietal electrodes were C3, C4, Cz, P3, P4 and Pz. The IAM method calculated 

individual averages for slow and fast spindle frequency (Hz), density (no./minute), 

duration (second) and amplitude (µV, based on the envelope of the EEG signal filtered 

to the individual frequencies). Raw power spectral values (10-base log-transformed) and 

spectrum z-scores were calculated as described at the beginning of the Methods section. 

Spectral power was computed and used in statistical analyses in 0.25 Hz bins. Due to 

electrode failures, 18 electrodes from 12 subjects were excluded from spectral analysis 

and treated as missing data. These electrode failures occurred 3 times on Cz, F7 and F8, 

2 times on O1, T3 and Pz, and once on Fp2, O2 and T5, respectively. Since these 
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electrode failures produced either low or high frequency artifacts not affecting the 

spindle range, exclusion of the same electrodes from sleep spindle analysis was not 

deemed necessary. 

  We investigated the correlates between CPM scores, age and individual sleep spindle 

parameters using Pearson’s point-moment correlations with a modified version of the 

Rüger area method (Abt, 1987; Duffy et al., 1990; Bódizs et al., 2014) in order to adjust 

for multiple comparisons. 

  In order to assess the correlations between sleep spindling and cognitive performance 

both from a developmental/maturational and trait perspective (Geiger et al., 2010), we 

computed the correlations between spindle parameters and CPM scores both with and 

without correcting for age, similarly to our previous study in an adolescent 

(postpubertal) sample (Bódizs et al., 2014). 

 

3.2. Study 2 – Adolescents 

3.1.1. Recruitment, Ethics and Psychometric Testing 
Subjects (N = 24, 12 males) were adolescents recruited by a convenience sampling 

procedure.  

Subjects were interviewed on their health status by the authors of the study. Exclusion 

criteria for the participants were self-reported sleep problems or psychiatric, 

neurological or other medical disorder. Subjects were requested to not to drink alcohol 

containing beverages, to not to take drugs other than caffeine and to not to take naps 

during the study. Habitual doses of caffeine were allowed. 

The research protocol was approved by the Ethical Committee of the Pázmány Péter 

Catholic University Budapest. Adult participants or the parents of the underage 

participants signed informed consent for the participation in the study according to the 

Declaration of Helsinki. 

Intelligence was tested by using the Raven Progressive Matrices Test (RPMT), which is 

based on items assessing the abilities in the field of non-verbal reasoning(Raven, 2000; 

Raven et al., 2004). Scores of the RPMT were shown to be among the most reliable 
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measures of the general factor of mental abilities(Gray and Thompson, 2004a). Raw 

RPMT scores were transformed to IQ by using the Hungarian standards (Raven et al., 

2004).   

3.3.2. Polysomnography Recording and Scoring 
Subjects’ sleep was recorded at their homes by using ambulatory home 

polysomnography. Sleep recordings on two consecutive weekend nights were 

performed according to the subjects’ sleeping habits. We used a portable SD LTM 

32BS Headbox together with a BRAIN QUICK System PLUS software (Micromed, 

Italy) for polysomnographic data recording. We recorded EEG according to the 10–20 

system (Jasper, 1958) at 21 recording sites (Fp1, Fp2, Fpz, F3, F4, F7, F8, Fz, C3, C4, 

Cz, P3, P4, Pz, T3, T4, T5, T6, O1, O2, Oz) referred to the mathematically linked 

mastoids. Bipolar EOG, ECG and submental as well as tibial EMG were also recorded. 

EEG and polygraphic data were high-pass filtered at .15 Hz and low-pass filtered at 250 

Hz (both 40 dB/decade). Data were collected with an analogue to digital conversion rate 

of 4096 Hz/channel (synchronous, 22 bit). A further 40 dB/decade anti-aliasing digital 

filter was applied by digital signal processing (firmware) which low pass filtered the 

data at 463.3 Hz before the decimation by a factor of 4, resulting in a sampling rate of 

1024 Hz. 

Sleep recordings of the second nights were visually scored according to standard criteria 

(Rechtschaffen and Kales, 1968) in 20 second epochs. The following definitions were 

used for sleep architecture evaluation: time in bed (as the time from lights out to final 

awakening), sleep time (defined as the amount of sleep from sleep onset to final 

awakening), wake time after sleep onset (WASO, excluding wakefulness after the final 

awakening), sleep efficiency (calculated as the percent of sleep time without WASO 

divided by the time in bed), sleep latency (defined as the period between lights off and 

the first appearance of S2 sleep), non-rapid eye movement (NREM), Stage 1 (S1), S2, 

SWS (defined as the amount of time spent in Stages 3 and 4), rapid eye movement sleep 

(REM), REM latency (defined as the period between sleep onset and the first epoch 

scored as REM), number of sleep cycles (number of REM periods separated from each 

other by more than 15 min), average REM period duration (duration of REM sleep 

divided by the number of REM periods) and average sleep cycle duration in minutes 
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(sleep time from the sleep onset to the end of the last REM period divided by the 

number of sleep cycles). 

The 4 second epochs containing artefactual sleep EEG (movement, sweating or 

technical artifacts) were manually removed before further automatic sleep EEG 

analyses. One male subject was excluded from the below listed quantitative EEG 

analyses because of technical artifacts interfering with deliberate and reliable signal 

processing approaches. 

 

3.3.3. Spectral Analysis, Sleep Spindle Detection and Statistics 
The Individual Adjustment Method (IAM) of sleep spindle analysis (Bódizs et al., 

2009) was used to unravel the potential peculiarities of NREM sleep (stages 2-4) EEG 

spindling. Frontal derivations were Fp1, Fp2, Fpz, F3, F4, Fz, F7, and F8; while centro-

parietal derivations wereC3, C4, Cz, P3, P4 and Pz.FFT-based measurement (10-base 

logarithmized raw spectra and z-transformed spectra) of binwise spectral power in the 

8–16 Hz range of all-night average NREM sleep (stages 2-4) was also performed based 

on 0.25 Hz bins. Our aim was to compare the results based on the more sophisticated 

IAM of sleep spindle analysis with the relatively simple spectral analysis. While IAM is 

sensitive to sleep spindle features at the individual frequencies, spectral power mapping 

is able to provide evidence for the importance of sleep spindle activity occurring at 

specific frequencies. 

  We investigated the correlates between RPMT scores, age and individual sleep spindle 

parameters using Pearson’s point-moment correlations with a modified version of the 

Rüger area method (Abt, 1987; Bódizs, et al., 2014; Duffy, et al., 1990) in order to 

adjust for multiple comparisons.  

 

3.3. Study 3 – Adults 

3.3.1. Recruitment, Ethics and Psychometric Testing 
  A total of 160 subjects (72 females, 88 males) participated in this study, in a 

cooperation of the Max Planck Institute for Psychiatry, Munich, and the 

Psychophysiology and Chronobiology Research Group of Semmelweis University, 
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Budapest. The sleep spindle database was created using previously existing 

polysomnography recordings with available IQ scores, but it has never been used in 

publications addressing the relationship between sleep spindles and intelligence, either 

in its entirety or in part. Subjects were recruited for different research projects by 

advertisements and personal contacts in Hungary and Germany. To include also a 

considerable number of subjects in the high to very-high intelligence range, subjects 

were also recruited among the members of the high-IQ society Mensa.  

    The research protocols were approved by the Ethical Committee of the Semmelweis 

University, Budapest or the Medical Faculty of the Ludwig Maximilians University, 

Munich in accordance with the Declaration of Helsinki. All subjects signed informed 

consent for the participation in the studies.  According to semi-structured interview with 

experienced psychiatrists or psychologists, all subjects were healthy, had no history of 

neurologic or psychiatric disease and were free of any current drug effects excluding 

contraceptives. However, small doses of caffeine (max. 2 cups of coffee before noon) 

were allowed. Alcohol consumption was not allowed. 6 male and 2 female subjects 

were light to moderate smokers (self-reported), while the rest of the subjects were non-

smokers. 

  Based on their availability, all subjects completed one or two standardized nonverbal 

intelligence tests. The tests used in the study were the Culture Fair Test (CFT, (Weiss 

and Weiss, 2006)) and Raven Advanced Progressive Matrices (Raven APM, (Raven et 

al., 2004)).  Both the CFT and Raven APM are nonverbal intelligence tests where 

subjects are required to complete abstract patterns by finding their organizing rules. 

Performance in these tests was shown to correlate strongly and to be a particularly good 

measurement of the general factor of intelligence (Cattell, 1973; Duncan et al., 2000; 

Prokosch et al., 2005). A total of 113 subjects completed the CFT and 89 subjects 

completed the Raven APM test. 42 subjects completed both tests.  

  Sleep spindle parameters were expected to change as a factor of age, and IQ scores 

derived from intelligence tests are age-corrected, while raw scores of different 

intelligence tests are on different scales. Therefore, a composite raw intelligence test 

score was calculated, expressed as a Raven equivalent score. Raven equivalent scores 

for Raven APM tests were equal to the actual raw test score. For CFT raw scores, 
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Raven equivalent scores were equal to the Raven APM score corresponding to the IQ 

percentile derived from CFT performance and the age of the subject – in other words, 

the Raven APM score which would have yielded the same population percentile score 

as the actually completed CFT test. If both Raven APM and CFT scores were available 

for a subject, the two Raven equivalent scores were averaged. Raven APM was chosen 

as a basis of standardization because of the availability of detailed norms. For this 

study, norms from the 1993 Des Moines (Iowa) standardization (Raven et al., 2004) of 

APM were used. 

 

3.3.2. Polysomnography Recording and Scoring 
Sleep was recorded for two consecutive nights by standard polysomnography, including 

EEG according to the 10-20 system (Jaspers, 1958) (common recording sites across the 

studies and laboratories were: Fp1, Fp2, F3, F4, Fz, F7, F8, C3, C4, Cz, P3, P4, T3, T4, 

T5, T6, O1, and O2), electro-oculography (EOG), bipolar submental electromyography 

(EMG), as well as electrocardiography (ECG). EEG electrodes were re-referenced to 

the mathematically-linked mastoids. Impedances for the EEG electrodes were kept 

below 8 kΩ. Signals were collected, pre-filtered, amplified and digitized at different 

sampling rates using different recording apparatus in the different subsamples (see 

Table 2 for details). 
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 N EEG 
recording 

sites (10-20 
system) 

Polygraphic 
channels 

Electrodes used Effective 
sampling 

rate/sampling 
rate (Hz) 

Precision Hardware 
prefiltering (Hz) 

Amplitude 
attenuation, 

10-15 Hz 
(mean [std. 

dev.]) 

Recording 
apparatus 

Recording 
software 

Budapest 
– I. 

31 Fp1, Fp2, F3, 
F4, Fz, F7, 
F8, C3, C4, 
Cz, P3, P4, 
T3, T4, T5, 
T6, O1, O2 

left and right 
EOG, bipolar 

submental 
EMG, ECG, 
thoracic and 
abdominal 
respiration 

Au coated Ag/AgCl 
fixed with EC2 
Grass electrode 

cream 

249/249 12 bit 0.5-70 0.9705 
[0.0036] 

 

Flat Style 
SLEEP La 

Mont Headbox, 
HBX32-SLP 
preamplifier 

(La Mont 
Medical Inc. 

USA) 

DataLab 
(Medcare, 
Iceland) 

Budapest 
– II. 

16 Fp1, Fp2, F3, 
F4, Fz, F7, 
F8, C3, C4, 
Cz, P3, P4, 
Pz, T3, T4, 
T5, T6, O1, 

O2 

bipolar EOG, 
bipolar 

submental 
EMG, ECG 

Au coated Ag/AgCl 
fixed with EC2 
Grass electrode 

cream 

4096/1024 12 bit 0.33-1500 (<450 
Hz antialiasing 
digital filtering 

before 
undersampling) 

0.9356 
[0.0021] 

Brain-Quick 
BQ 132S 

(Micromed, 
Italy) 

System 98 
(Micromed, 

Italy) 

Munich – 
I. 

93 Fp1, Fp2, 
Fpz, AF1, 

AF2, F3, F4, 
Fz, F7, F8, 
C3, C4, Cz, 
P3, P4, Pz, 
T3, T4, T5, 
T6, O1, O2 

bipolar EOG, 
bipolar 

submental 
EMG, ECG 

Ag/Ag-Cl, 
with EC2 Grass 

Electrode Cream for 
EEG and Nihon 
Kohden ELEFIX 

for EMG 

250/250 8 bit 0.53-70 0.9693 
[0.0016] 

 

Comlab 32 
DigitalSleep 

Lab 

Brainlab V 
3.3 

Munich – 
II. 

20 Fp1, Fp2, F3, 
F4, C3, C4, 
P3, P4, O1, 

O2 

bipolar EOG, 
bipolar 

submental 
EMG, ECG 

Ag/Ag-Cl, 
with EC2 Grass 

Electrode Cream for 
EEG and Nihon 
Kohden ELEFIX 

for EMG 

250/250 8 bit 0.53-70 0.9693 
[0.0016] 

 

Comlab 32 
DigitalSleep 

Lab 

Brainlab V 
3.3 

Table 2. Details of the recording precedures in different subsamples 

 

  Sleep EEG recordings for the second nights spent in the laboratory were manually 

scored on a 20 second basis by applying standard criteria (Iber et al., 2007). Epochs 

with artifacts were removed on a 4 second basis by visual inspection of all recorded 

channels (including polygraphy).  

 

3.3.3. Spectral Analysis, Sleep Spindle Detection and Statistics 
   In order to correct for the different analog EEG filter characteristics of our machines, 

we connected an analog waveform generator to the C3 and C4 electrode inputs (with 

original recording reference, re-referenced for A1-A2 common references for further 

analysis) of all EEG devices and applied 40 and 355 µV amplitude sinusoid signals of 

various amplitudes (0.05 Hz, every 0.1 Hz between 0.1-2 Hz, every 1 Hz between 2-20 

Hz, every 10 Hz between 10 Hz-100 Hz). 

  We determined the amplitude reduction rate of each recording system by calculating 

the proportion between digital (measured) and analog (generated) amplitudes of 

sinusoid signals at typical sleep spindle frequencies (10, 11, 12, 13, 14 and 15 Hz) for 

both inducing (40 and 355 µV amplitude) signals. Machine-specific amplitude reduction 

rates were given as the mean amplitude rate between digital and analog values at the 
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two amplitudes and six measured frequencies (see Table 2 for the reduction rates). Sleep 

spindle amplitudes were corrected by dividing their calculated values by the amplitude 

reduction rate of the recording system. 

 The individual adjustment method (IAM) of sleep spindle analysis was applied for N2 

and SWS sleep. Frontal derivations for the IAM were Fp1, Fp2, F3, F4, Fz, F7, and F8; 

while centro-parietal derivations were C3, C4, Cz, P3 and P4. FFT-based measurements 

of raw (10-base logarithmized and z-score) power spectral density were also computed.  

Spectral power was computed and used in statistical analysis in 0.25 Hz bins. Due to 

electrode failures, data from a total of 27 electrodes from 21 subjects was excluded and 

was treated as missing data in all subsequent analyses. Electrode failures occurred on 

Fp1 in 10 cases; Fp2 in 3 cases; F4, F8, F7 and Fpz in 2 cases; F3, T3, T5, C3, O2 and 

T6 in 1 cases, respectively. 

  Given the individual- and derivation-specific adjustment inherent to the procedure, 

sleep spindle densities and durations are amplitude-insensitive measures (see an 

empirical demonstration in (Bodizs et al., 2005). Thus, there was no need for the 

compensation of the different recording systems in these values. Group comparisons 

(male vs. female) were performed by independent samples t-tests. Partial Pearson 

correlation coefficients were calculated to test the relationship between sleep spindle 

parameters and Raven equivalent scores, controlling for the effects of age. This was 

deemed necessary due to the potential effects of age on both sleep spindle parameters 

(De Gennaro and Ferrara, 2003; Fogel and Smith, 2011) and intelligence test 

performance (Tucker-Drob, 2009). In order to control for multiple comparisons across 

electrodes, we performed the Benjamini-Hochberg procedure (Benjamini and Hochberg, 

1995) controlling for the false discovery rate for each sleep spindle parameter. 
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4. Results 
 

  Results are reported as they were originally published (Bódizs et al., 2014; Ujma et al., 

2014)and (Ujma et al., submitted) with the exception that spectral analysis results are 

also reported in both studies where they were originally not (Ujma et al., 2014)and 

(Ujma et al., submitted). 

 

4.1. Study 1 – Children 

4.1.1. Basic biological and psychometric data 
Mean age was 6.17 years (SD 1.5 years, range 3.8-8.5 years). Mean CPM score was 

25.69 (SD 6.09, range 13-35). Male and female children did not differ in their age 

(Meanmale= 5.95; Meanfemale=6.4; t=0.8; p>0.4) or CPM score (Meanfemale= 24.47; 

Meanmale=27; t=1.12; p>0.25).  

  Unsurprisingly, CPM scores correlated very strongly and positively with age (r=0.76, 

p<0.001) without notable sex differences. 

4.1.2. Sleep macrostructure and sleep spindles 
  Table 3 shows sleep macrostructure variables in the child sample. 

 

Mean Minimum Maximum SD 

Sleep duration (min) 538.9310 463.0000 633.0000 45.48438 

Sleep efficiency (%) 95.1910 81.8902 99.7312 3.99250 

WASO (min) 3.4483 0.0000 25.0000 5.66126 

Sleep latency (min) 23.1839 2.0000 61.3333 17.53966 

NonREM duration (min) 366.6897 289.6667 465.6667 39.44626 

Relative NREM duration (%) 68.1265 53.9231 80.2294 5.66865 

N1 duration (min) 2.1609 0.0000 6.3333 1.65381 

Relative N1 duration (%) 0.4135 0.0000 1.3149 0.33943 

N2 duration (min) 187.1034 91.0000 283.6667 43.47633 

Relative N2 duration (%) 34.8415 16.1443 52.2678 8.09940 

SWS duration (min) 177.4253 54.0000 269.3333 43.76950 

Relative SWS duration (%) 32.8715 11.6631 53.7787 7.86736 

REM duration (min) 172.2414 97.6667 291.6667 37.76177 

Relative REM duration (%) 31.8735 19.7706 46.0769 5.66865 

Table 3. Sleep macrostructure in the child sample. 
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After correcting for multiple comparisons (correction for false discovery rate), longer 

sleep duration was significantly correlated with higher intelligence in the entire sample 

(r=0.56, p<0.01). This association was seen in both male and female children but only 

reached statistical significance in the combined sample. Longer NREM duration in 

female children and shorter sleep latency and shorter wake duration in male children is 

significantly associated with intelligence, but these correlations are not significant after 

correcting for multiple comparisons. 

  Table 4 shows sleep spindle descriptive data in the child sample. Sex differences were 

not significant in case of any sleep spindle parameter. 

 

   
Mean SD Min. Max. 

   
Mean SD Min. Max. 

F
p

1
 S
lo

w
 Density 7.11 0.73 5.92 8.77 

C
z 

S
lo

w
 Density 7.22 1.02 5.31 9.45 

Duration 1.82 0.33 1.10 2.43 Duration 1.74 0.37 0.98 2.32 
Amplitude 4.20 2.14 1.78 10.47 Amplitude 4.45 1.72 2.53 8.98 

F
a

st
 Density 6.83 0.99 5.39 9.14 

F
a

st
 Density 7.74 0.84 6.08 8.97 

Duration 1.30 0.22 0.87 1.92 Duration 1.41 0.19 1.07 1.91 
Amplitude 4.71 1.69 2.54 8.53 Amplitude 7.77 1.95 4.38 12.11 

F
p

2
 S
lo

w
 Density 7.09 0.78 5.75 8.95 

C
4

 S
lo

w
 Density 7.30 0.93 5.46 9.38 

Duration 1.81 0.33 1.09 2.34 Duration 1.72 0.36 0.96 2.29 
Amplitude 4.16 2.05 1.77 9.44 Amplitude 3.50 1.49 1.82 7.54 

F
a

st
 Density 6.87 0.94 5.49 9.23 

F
a

st
 Density 7.58 0.83 6.36 9.53 

Duration 1.27 0.18 0.94 1.83 Duration 1.37 0.19 1.08 1.90 
Amplitude 4.84 2.32 2.52 13.56 Amplitude 5.85 2.18 2.95 13.15 

F
7

 S
lo

w
 Density 7.20 0.98 4.33 9.15 

T
4

 S
lo

w
 Density 7.47 1.00 5.51 9.66 

Duration 1.80 0.30 1.28 2.36 Duration 1.69 0.37 0.95 2.30 
Amplitude 2.92 1.41 1.30 6.93 Amplitude 2.01 0.88 1.08 4.32 

F
a

st
 Density 6.77 1.21 4.28 9.60 

F
a

st
 Density 7.42 1.18 5.50 10.15 

Duration 1.25 0.27 0.87 2.29 Duration 1.20 0.18 0.91 1.80 
Amplitude 3.62 2.15 1.44 12.94 Amplitude 2.96 2.30 1.23 13.44 

F
3

 S
lo

w
 Density 7.11 0.71 5.89 8.74 

T
5

 S
lo

w
 Density 7.48 1.14 4.43 9.61 

Duration 1.80 0.32 1.07 2.37 Duration 1.67 0.38 0.92 2.31 
Amplitude 5.14 2.38 2.47 10.30 Amplitude 2.07 1.56 0.95 9.26 

F
a

st
 Density 7.17 0.83 6.04 9.00 

F
a

st
 Density 7.52 1.30 4.52 10.35 

Duration 1.33 0.19 0.97 1.89 Duration 1.23 0.20 0.79 1.80 
Amplitude 6.66 2.02 3.09 11.52 Amplitude 3.23 3.51 1.37 20.32 

F
z 

S
lo

w
 Density 7.12 0.76 5.83 8.84 

P
3

 S
lo

w
 Density 7.29 1.06 4.55 9.37 

Duration 1.80 0.33 1.08 2.38 Duration 1.69 0.38 0.93 2.27 
Amplitude 5.87 2.73 2.56 11.83 Amplitude 2.67 1.00 1.59 5.27 

F
a

st
 Density 7.38 0.77 6.13 9.13 

F
a

st
 Density 7.42 0.92 5.90 9.30 

Duration 1.34 0.19 1.04 1.88 Duration 1.38 0.20 1.04 1.97 
Amplitude 7.42 2.38 3.54 13.72 Amplitude 4.43 1.24 2.25 7.41 

F
4

 S
lo

w
 Density 7.15 0.78 5.82 9.08 

P
z 

S
lo

w
 Density 7.04 1.31 2.83 9.07 

Duration 1.79 0.33 1.05 2.33 Duration 1.73 0.46 0.90 3.15 
Amplitude 5.13 2.60 2.17 10.82 Amplitude 3.34 1.44 0.67 6.64 

F
a

st
 Density 7.24 0.81 6.20 9.25 

F
a

st
 Density 7.45 0.94 5.28 8.86 

Duration 1.34 0.17 1.05 1.86 Duration 1.48 0.22 0.96 2.05 
Amplitude 6.94 2.53 3.29 12.72 Amplitude 6.08 2.32 1.55 14.29 

F
8

 S
lo

w
 Density 7.28 0.83 5.98 9.48 

P
4

 S
lo

w
 Density 7.35 1.01 4.99 9.37 

Duration 1.76 0.33 1.02 2.27 Duration 1.67 0.38 0.94 2.27 
Amplitude 2.91 1.32 1.39 6.61 Amplitude 2.75 1.15 1.55 5.92 

F
a

st
 Density 6.96 1.02 5.07 9.37 

F
a

st
 Density 7.38 1.08 3.89 9.23 

Duration 1.22 0.17 0.91 1.78 Duration 1.35 0.23 0.78 1.94 
Amplitude 3.70 2.21 1.57 12.98 Amplitude 4.50 1.61 1.94 9.79 

T
3

 

S
lo

w
 Density 7.38 1.23 3.73 9.59 

T
6

 

S
lo

w
 Density 7.57 1.09 4.81 9.63 

Duration 1.74 0.34 1.10 2.30 Duration 1.66 0.40 0.89 2.33 
Amplitude 2.14 1.17 1.03 6.34 Amplitude 1.96 1.15 0.89 6.34 
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F
a

st
 Density 7.22 1.36 4.19 10.34 

F
a

st
 Density 7.63 1.21 5.78 10.24 

Duration 1.22 0.27 0.87 2.29 Duration 1.22 0.19 0.88 1.81 
Amplitude 2.95 2.09 1.16 12.01 Amplitude 2.99 2.52 1.29 14.57 

C
3

 S
lo

w
 Density 7.29 0.91 5.62 9.09 

O
1

 S
lo

w
 Density 7.36 1.26 4.36 9.85 

Duration 1.73 0.35 0.99 2.29 Duration 1.72 0.53 0.87 3.70 
Amplitude 4.24 4.36 1.89 25.77 Amplitude 3.06 3.55 1.12 19.85 

F
a

st
 Density 7.44 1.01 4.90 9.42 

F
a

st
 Density 7.65 1.97 4.28 15.74 

Duration 1.37 0.21 0.84 1.91 Duration 1.24 0.21 0.76 1.78 
Amplitude 7.13 9.35 2.86 55.17 Amplitude 4.48 5.58 1.46 29.76 

Slow spindle low 
frequency 

10.36 0.47 9.59 11.43 

O
2

 

S
lo

w
 

Density 7.50 1.19 4.39 9.81 

Slow spindle high 
frequency 

11.04 0.50 10.13 12.13 Duration 1.67 0.40 0.85 2.31 

Slow spindle middle 
frequency 

10.70 0.48 9.86 11.73 Amplitude 2.43 1.61 1.05 9.60 

Fast spindle low 
frequency 

11.58 0.36 10.87 12.21 

F
a

st
 

Density 7.56 1.24 4.86 9.75 

Fast spindle high 
frequency 

12.58 0.40 11.66 13.24 Duration 1.23 0.20 0.90 1.74 

Fast spindle middle 
frequency 

12.08 0.37 11.26 12.70 Amplitude 3.61 3.59 1.43 21.25 

Table 4. Sleep spindle descriptive statistics in children. Density is given in spindle/minute, 

duration in seconds and amplitude in µV. 

  No statistically significant differences (using independent-sample t-tests) were seen 

between the sleep spindle parameters of male and female children. 

 

4.1.3. Correlations between EEG data and intelligence 
  There was no significant correlation between age and sleep spindle parameters when 

the entire sample was considered. Fast spindle density on Fz and O1 correlated 

positively and significantly with age, but these correlations did not constitute an area of 

significance. 

  A more in-depth analysis revealed that these correlations originated purely from the 

male subsample. In male subjects, an acceleration of slow spindle frequency (r=0.54, 

p<0.05), an increase in fast spindle density on F3, Fz, C4 and Cz and an increase in 

slow spindle density on T5, O1 and O2 was seen. These correlations (0.5<r<0.65), 

however, did not form an area of significance. In females, only a tendency for lower 

slow spindle density with increasing age was seen. This was only statistically significant 

on Fp2 and Cz and did not form an area of significance (Figure8). 
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Figure 8. The correlation between sleep spindle density and age in children. A. Significance 

probability map for the region-specific correlations depicting the age-related changes in sleep 

EEG slow spindle density in female children (effects are non-significant after correction for 

multiple comparisons). B. Significance probability map for the region-specific correlations 

depicting the age-related changes in sleep EEG slow spindle density in male children (effects 

are non-significant after correction for multiple comparisons). C. Scatterplot representing the 

correlation between left occipital (O1) slow spindle density and age in female and male 

children. D. Significance probability map for the region-specific correlations depicting the age-

related changes in sleep EEG fast spindle density in female children (effects are non-significant 

after correction for multiple comparisons). E. Significance probability map for the region-

specific correlations depicting the age-related changes in sleep EEG fast spindle density in 

male children (effects are non-significant after correction for multiple comparisons). F. 

Scatterplot representing the correlation between frontal midline (Fz) fast spindle density and 

age in female and male children. (P-values plotted on inverted logarithmic scale, * p < .05. 

Scatterplots represent the electrode where the effect was strongest. Electrodes Fpz and Oz are 

only shown for better localization) 

   A similar sexual dimorphism was seen in the age-uncorrected correlates of CPM 

scores and sleep spindle parameters. In females no significant correlations were seen, 

except for one between slow spindle amplitude on T4 and CPM scores (r=0.527, 

p<0.05) which was insufficient to form an area of significance. In males, a positive 
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correlation between CPM scores and fast spindle density on Fp1, F3, Fz, F4 and C4 was 

seen, forming an area of significance (Figure9). 

 

Figure 9. Age-corrected and age-uncorrected correlation between fast sleep spindle density and 

Raven CPM scores in children. A. Significance probability map depicting the age-uncorrected 

associations between fast spindle densities and Raven CPM scores in female children. B. 

Significance probability map depicting the age-uncorrected associations between fast spindle 

densities and Raven CPM scores in male children.  C.  Scatterplot representing the age-

uncorrected correlation between frontal midline (Fz) fast sleep EEG spindle density and Raven 

CPM scores in female and male children. D. Significance probability map depicting the age-

corrected associations between fast spindle densities and Raven CPM scores in female children. 

E. Significance probability map for depicting the age-corrected associations between fast 

spindle densities and Raven CPM scores in male children. F.  Scatterplot representing the age-

corrected correlation between frontal midline (Fz) fast sleep EEG spindle density and Raven 

CPM scores in female and male children. The scatterplot illustrates residuals after regression 

for the effects of age, in order to reliably illustrate partial correlations. (P-values plotted on 

inverted logarithmic scale, * p < .05. Scatterplots represent the electrode where the effect was 

the strongest. Electrodes Fpz and Oz are only shown for better localization.) 

  This pattern of correlation changed after correcting for the effects of age. In males, 

only a tendency for a negative correlation with fast spindle duration was seen with no 
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area of significance. In females, however, positive correlations with slow and fast 

spindle amplitude emerged (Table 5 and Table 6). While the correlations with fast 

spindles remained a tendency, the correlations with slow spindle amplitude formed a 

large area of significance along a sagittal line over both hemispheres (not including the 

midline) with a right temporal maximum (Figure 10). 

 
Slow spindles Fast spindles 

 
Density Duration Amplitude Density Duration Amplitude 

 
r p r p r p r p r p r p 

Fp1 -0.287 0.320 -0.281 0.330 0.539* 0.047 -0.178 0.542 0.177 0.544 0.384 0.175 

Fp2 -0.151 0.606 -0.317 0.270 0.496 0.072 -0.210 0.471 0.237 0.416 0.322 0.261 

F7 -0.277 0.337 -0.203 0.486 0.576* 0.031 -0.337 0.238 0.177 0.546 0.548 0.042 

F3 -0.133 0.651 -0.325 0.258 0.603* 0.022 -0.035 0.905 0.163 0.577 0.418 0.137 

Fz -0.298 0.301 -0.338 0.238 0.332 0.246 -0.258 0.374 0.223 0.443 0.173 0.554 

F4 -0.181 0.537 -0.305 0.289 0.505 0.065 -0.203 0.487 0.238 0.412 0.387 0.172 

F8 -0.234 0.421 -0.250 0.389 0.635* 0.015 -0.268 0.355 0.213 0.466 0.367 0.197 

T3 -0.291 0.312 -0.235 0.419 0.509 0.063 -0.258 0.374 0.148 0.613 0.672 0.008 

C3 -0.289 0.316 -0.345 0.227 0.611* 0.020 -0.196 0.501 0.237 0.415 0.480 0.083 

Cz -0.059 0.841 -0.367 0.197 0.480 0.082 -0.250 0.388 0.246 0.396 0.314 0.275 

C4 -0.248 0.394 -0.332 0.247 0.658* 0.011 -0.254 0.381 0.356 0.211 0.560 0.037 

T4 -0.237 0.414 -0.312 0.278 0.701* 0.005 -0.151 0.608 0.123 0.675 0.548 0.043 

T5 -0.269 0.353 -0.373 0.189 0.478 0.084 -0.157 0.591 0.145 0.622 0.316 0.271 

P3 -0.282 0.328 -0.375 0.187 0.539* 0.047 -0.191 0.513 0.176 0.547 0.492 0.074 

Pz -0.125 0.670 -0.290 0.315 0.389 0.169 -0.174 0.552 0.312 0.278 0.192 0.510 

P4 -0.323 0.261 -0.362 0.204 0.607* 0.021 -0.296 0.303 0.337 0.239 0.595 0.025 

T6 -0.238 0.412 -0.381 0.179 0.477 0.085 -0.132 0.653 0.119 0.686 0.376 0.186 

O1 -0.317 0.270 -0.377 0.184 0.547* 0.043 -0.123 0.674 0.263 0.365 0.519 0.057 

O2 -0.238 0.412 -0.402 0.154 0.543* 0.045 -0.108 0.714 0.192 0.510 0.514 0.060 

 

Table 5. Age-corrected correlations between sleep spindle parameters and CPM scores in 

female subjects. Electrodes belonging to an area of significance are indicated with an asterisk. 

 
Slow spindles Fast spindles 

 
Density Duration Amplitude Density Duration Amplitude 

 
r p r p r p r p r p r p 

Fp1 -0.324 0.281 0.316 0.293 -0.019 0.951 0.386 0.193 -0.363 0.223 0.339 0.257 

Fp2 -0.363 0.223 0.339 0.257 0.113 0.713 0.395 0.182 -0.485 0.093 0.429 0.143 

F7 -0.295 0.327 0.283 0.349 -0.018 0.954 0.315 0.294 -0.514 0.072 0.331 0.269 

F3 -0.274 0.365 0.305 0.312 -0.062 0.840 0.389 0.190 -0.566 0.044 0.341 0.255 

Fz -0.345 0.249 0.319 0.288 -0.200 0.512 0.291 0.335 -0.567 0.044 0.210 0.491 

F4 -0.285 0.345 0.324 0.280 0.040 0.897 0.326 0.276 -0.528 0.063 0.472 0.103 

F8 -0.364 0.221 0.322 0.283 0.218 0.474 0.216 0.479 -0.379 0.201 0.450 0.123 

T3 -0.170 0.578 0.212 0.486 0.153 0.618 -0.035 0.910 -0.471 0.104 0.346 0.247 

C3 -0.268 0.377 0.311 0.301 0.323 0.282 -0.056 0.856 -0.574 0.040 0.345 0.248 

Cz -0.236 0.439 0.296 0.326 -0.076 0.806 0.040 0.897 -0.499 0.083 0.283 0.348 

C4 -0.314 0.297 0.353 0.237 0.127 0.679 0.245 0.420 -0.514 0.072 0.430 0.143 

T4 -0.168 0.584 0.263 0.386 0.285 0.346 -0.129 0.674 -0.513 0.073 0.355 0.234 

T5 -0.128 0.677 0.237 0.436 0.362 0.224 -0.219 0.472 -0.662 0.014 0.365 0.220 

P3 -0.093 0.763 0.249 0.412 0.039 0.898 -0.117 0.703 -0.553 0.050 0.228 0.454 

Pz -0.062 0.841 0.290 0.337 -0.219 0.473 -0.173 0.573 -0.515 0.072 -0.122 0.690 

P4 -0.211 0.489 0.265 0.381 0.314 0.296 -0.256 0.399 -0.542 0.056 0.355 0.235 

T6 -0.033 0.916 0.262 0.388 0.333 0.266 -0.146 0.633 -0.582 0.037 0.358 0.229 

O1 -0.443 0.130 0.329 0.273 0.469 0.106 -0.027 0.931 -0.393 0.184 0.521 0.068 

O2 -0.325 0.278 0.280 0.354 0.359 0.229 -0.263 0.386 -0.635 0.020 0.365 0.221 

 

Table 6. Age-corrected correlations between sleep spindle parameters and CPM scores in male 

subjects. 
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Figure 10. Age-corrected and age-uncorrected correlations between slow sleep spindle 

amplitude and Raven CPM scores. A. Significance probability map for the region-specific 

correlations depicting the age-uncorrected associations between slow sleep spindle amplitudes 

and Raven CPM scores in female children. B. Significance probability map for the region-

specific correlations depicting the age-uncorrected associations between slow sleep spindle 

amplitudes and Raven CPM scores in male children. C.  Scatterplot representing the age-

uncorrected correlation between right temporal (T4) slow sleep EEG spindle amplitude and 

Raven CPM scores in female and male children. D. Significance probability map for the region-

specific correlations depicting the age-corrected associations between slow sleep spindle 

amplitudes and Raven CPM scores in female children. E. Significance probability map for the 

region-specific correlations depicting the age-corrected associations between slow sleep 

spindle amplitudes and Raven CPM scores in male children. F.  Scatterplot representing the 

age-corrected correlation between right temporal (T4) slow sleep EEG spindle amplitude and 

Raven CPM scores in female and male children. The scatterplot illustrates residuals after 

regression for the effects of age, in order to reliably illustrate partial correlations. (P-values 

plotted on inverted logarithmic scale, * p < .05. Scatterplots represent the electrode where the 

effect was the strongest. Electrodes Fpz and Oz are only shown for better localization)  

 

  A comparison of the strongest correlation coefficients illustrated on Figures 9 and 10 

using Fisher’s r to z method revealed that they do not reach significance (one-tailed 
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p=0.08 in case of age-corrected slow spindle amplitude on T4 and p=0.053 in case of 

age-uncorrected fast spindle density on Fz). Of course, the small sample size (N=14 for 

males and N=15 for females) must be taken into account when interpreting these results. 

  A spectral analysis using 10-base log-transformed spectra revealed a positive 

correlation between Raven scores and spectral power over the entire 8-16 Hz range in 

female children, which was significant both with and without controlling for the effects 

of age (p<0.05/2 in 80.2% of cases and p<0.05/3 in 68.7% of cases with age control, 

p<0.05/2 in 56.7% of cases and p<0.05/3 in 39.1% of cases without age control, 

respectively). In male children, no Rüger-significant association was seen between log-

transformed spectral power in the 8-16 Hz range and intelligence with or without 

controlling for the effects of age. 

  No significant effects were seen in case of z-score spectra either in male or female 

children, regardless of the presence or absence of a statistical control for the effects of 

age. 

  Figure 11 illustrates the relationship between intelligence and log-transformed power 

spectral density in female and male subjects in the comparison most compatible with the 

other two studies, that is, after controlling for the effects of age. 
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Figure 11. Correlation coefficients (axis y) at 

on all electrodes (subpanels) in male (left panel) and female (right panel) children. Horizontal 

lines parallel to axis x indicate the critical correlation coefficients in case of electrodes where 

at least one uncorrected correlation coefficient was significant. Red arrows indicate areas of 

correlations which are significant after correcting for multiple comparisons using the Rüger 

4.2. Study 2 – Adolescents

4.2.1. Basic biological and psychometr
Age range was 15–22 years, while mean age was 18 years (SD: 2.3 years). 

were evenly distributed over the age range as an equal number (3 males and 3 males) of 

subjects were present over four evenly distributed age subgroups 

18, 19–20 and 21–22 years old subjects). Mean height of the subjects was 173.04 cm 

(range: 160–198, SD: 10.57). Subjects’ weight averaged 63.83 kg (range: 47

78 

. Correlation coefficients (axis y) at various frequencies from 8 Hz to 16 Hz (axis x) 

on all electrodes (subpanels) in male (left panel) and female (right panel) children. Horizontal 

lines parallel to axis x indicate the critical correlation coefficients in case of electrodes where 

e uncorrected correlation coefficient was significant. Red arrows indicate areas of 

correlations which are significant after correcting for multiple comparisons using the Rüger 

area method. 

 

Adolescents 

.1. Basic biological and psychometric data 
22 years, while mean age was 18 years (SD: 2.3 years). 

were evenly distributed over the age range as an equal number (3 males and 3 males) of 

subjects were present over four evenly distributed age subgroups (groups of 15

22 years old subjects). Mean height of the subjects was 173.04 cm 

198, SD: 10.57). Subjects’ weight averaged 63.83 kg (range: 47

 

various frequencies from 8 Hz to 16 Hz (axis x) 

on all electrodes (subpanels) in male (left panel) and female (right panel) children. Horizontal 

lines parallel to axis x indicate the critical correlation coefficients in case of electrodes where 

e uncorrected correlation coefficient was significant. Red arrows indicate areas of 

correlations which are significant after correcting for multiple comparisons using the Rüger 

22 years, while mean age was 18 years (SD: 2.3 years). Subjects 

were evenly distributed over the age range as an equal number (3 males and 3 males) of 

(groups of 15–16, 17–

22 years old subjects). Mean height of the subjects was 173.04 cm 

198, SD: 10.57). Subjects’ weight averaged 63.83 kg (range: 47–92, SD: 
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11.92), while their body mass index (BMI) was between the normal limits (mean: 21.19, 

range: 17.68–27.01, SD: 2.6). 

RPMT-derived IQ-scores of the sample resulted in a group average of 104.12 (range: 

91–126, SD: 10.82). Neither age (r = .30; p = .15), nor weight (r = .13; p = .51), height 

(r = .14; p = .50) nor BMI (r = .06; p = .77) correlated significantly with IQ. Males and 

females did not differ in their general mental abilities (t = 0.31; p = .75) and a possible 

difference in age was eliminated by the deliberately symmetrical recruitment of male 

and female subjects from the same age 1-year ranges. 

 

4.2.2. Sleep macrostructure and sleep spindles 
  Table 7 shows sleep macrostructure variables in the adolescent sample. Intelligence 

was significantly correlated with relative N2 duration in females (r=0.69, p=0.13), but 

not in males (r=-0.25, p=0.434). This correlation, however, did not survive correcting 

for multiple comparisons. 

 Mean Min Max SD 

Total sleep time (min) 494.33 368.33 617.00 54.60 

Sleep efficiency (%) 94.84 85.25 99.09 3.36 

WASO (min) 19.50 1.00 81.66 19.02 

Sleep latency (min) 10.72 2.00 38.00 10.09 

NREM duration (min) 365.86 302.00 447.00 38.33 

Relative NREM duration (%) 74.16 66.28 81.99 4.00 

N1 duration (min) 10.68 3.00 33.66 6.36 

Relative S1 duration (%) 2.16 0.62 6.28 1.23 

N2 duration (min) 294.34 208.33 386.00 49.70 

Relative S2 duration (%) 59.59 43.61 75.83 7.93 

SWS duration (min) 60.83 3.00 162.33 37.15 

Relative SWS duration (%) 12.40 0.56 33.98 7.70 

REM duration (min) 128.47 66.33 170.00 27.35 

Relative REM duration (%) 25.83 18.00 33.71 4.00 

Table 7. Sleep macrostructure in adolescent subjects. 

Table 8 shows descriptive data of the sleep spindle parameters of the adolescent sample. 

 

 Slow spindles Fast spindles 
Mean Min. Max. SD Mean Min. Max. SD 
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D
e

n
si

ty
 (

sp
in

d
le

/m
in

) 

Fp2 7.13 5.34 9.22 1.16 Fp2 5.87 1.15 7.69 1.34 
F8 7.10 4.77 9.33 1.21 F8 6.05 3.81 7.76 0.88 
T4 6.98 3.97 9.45 1.47 T4 6.57 4.96 8.14 0.78 
T6 6.91 3.68 9.44 1.59 T6 6.88 5.54 8.14 0.77 
O2 6.86 3.27 9.51 1.66 O2 6.98 4.96 8.32 0.86 
Fp1 7.12 4.98 9.51 1.27 Fp1 6.25 3.99 7.73 0.94 
F7 6.89 0.62 9.47 1.93 F7 6.20 2.56 7.76 1.22 
T3 7.01 4.00 9.50 1.54 T3 6.83 5.07 8.24 0.90 
T5 6.91 3.65 9.48 1.63 T5 7.06 5.47 8.25 0.86 
O1 6.85 3.28 9.42 1.72 O1 7.03 4.92 8.29 1.00 
F4 7.13 5.20 9.11 1.12 F4 6.88 4.75 8.34 0.80 
C4 6.97 4.32 9.38 1.35 C4 7.45 5.95 8.73 0.75 
P4 6.82 3.68 9.35 1.57 P4 7.67 6.25 8.92 0.76 
F3 7.12 4.97 9.22 1.17 F3 7.03 5.02 8.30 0.91 
C3 6.97 4.07 9.36 1.41 C3 7.68 6.34 9.07 0.77 
P3 6.85 3.81 9.53 1.60 P3 7.81 6.56 9.25 0.81 
Fpz 7.09 4.95 9.16 1.20 Fpz 5.95 3.04 7.83 1.01 
Fz 7.09 5.14 9.08 1.09 Fz 7.13 5.12 8.71 0.89 
Cz 6.94 4.29 9.21 1.29 Cz 8.00 6.63 9.35 0.67 
Pz 6.72 3.62 9.21 1.53 Pz 8.18 6.76 9.89 0.77 
Oz 6.76 3.22 9.47 1.67 Oz 7.20 4.27 8.54 1.00 

D
u

ra
ti

o
n

 (
se

c)
 

Fp2 1.41 0.89 2.70 0.43 Fp2 1.05 0.80 2.78 0.39 
F8 1.38 0.87 2.61 0.43 F8 0.96 0.79 1.14 0.08 
T4 1.33 0.82 2.49 0.42 T4 0.99 0.84 1.17 0.09 
T6 1.30 0.81 2.47 0.42 T6 1.03 0.84 1.23 0.10 
O2 1.28 0.81 2.54 0.42 O2 1.04 0.82 1.24 0.11 
Fp1 1.39 0.88 2.60 0.41 Fp1 0.98 0.80 1.16 0.08 
F7 1.82 0.86 12.95 2.44 F7 1.05 0.80 2.77 0.39 
T3 1.32 0.84 2.57 0.42 T3 1.00 0.84 1.23 0.10 
T5 1.30 0.83 2.56 0.43 T5 1.03 0.86 1.27 0.10 
O1 1.28 0.82 2.57 0.44 O1 1.06 0.85 1.29 0.11 
F4 1.41 0.88 2.69 0.43 F4 1.04 0.88 1.24 0.10 
C4 1.34 0.83 2.54 0.42 C4 1.11 0.91 1.30 0.11 
P4 1.31 0.83 2.58 0.43 P4 1.14 0.91 1.35 0.12 
F3 1.41 0.87 2.68 0.42 F3 1.05 0.88 1.23 0.09 
C3 1.34 0.84 2.66 0.43 C3 1.12 0.93 1.36 0.10 
P3 1.30 0.84 2.61 0.43 P3 1.15 0.95 1.42 0.11 
Fpz 1.40 0.88 2.69 0.44 Fpz 0.96 0.78 1.14 0.09 
Fz 1.41 0.87 2.78 0.44 Fz 1.07 0.88 1.41 0.12 
Cz 1.34 0.83 2.62 0.43 Cz 1.16 0.99 1.35 0.10 
Pz 1.31 0.82 2.59 0.43 Pz 1.21 0.99 1.50 0.12 
Oz 1.28 0.79 2.55 0.42 Oz 1.08 0.82 1.30 0.12 

A
m

p
li

tu
d

e
 (

μ
V

) 

Fp2 4.65 1.66 10.92 2.21 Fp2 5.15 3.44 7.91 1.05 
F8 4.05 1.39 8.22 1.71 F8 4.86 3.39 6.97 0.88 
T4 3.49 1.26 6.83 1.37 T4 4.93 3.38 7.30 0.90 
T6 3.37 1.22 6.07 1.27 T6 5.24 3.64 7.88 1.10 
O2 3.21 1.14 5.34 1.23 O2 5.03 3.37 7.34 1.14 
Fp1 4.55 1.44 10.20 2.22 Fp1 4.92 3.48 6.95 0.87 
F7 5.04 1.43 19.71 3.68 F7 6.63 3.38 44.59 8.32 
T3 3.56 1.26 7.10 1.50 T3 4.95 3.27 7.18 0.89 
T5 3.39 1.19 6.33 1.30 T5 5.24 3.55 7.39 1.00 
O1 3.23 1.14 5.34 1.15 O1 5.23 3.32 6.68 1.15 
F4 5.41 1.79 11.14 2.46 F4 7.07 4.62 10.52 1.57 
C4 4.23 1.49 8.92 1.84 C4 7.05 4.80 10.44 1.49 
P4 3.72 1.40 7.22 1.50 P4 6.94 4.34 10.39 1.52 
F3 5.50 1.68 12.42 2.68 F3 6.87 4.43 9.16 1.42 
C3 4.28 1.51 9.15 1.88 C3 7.22 4.49 10.47 1.43 
P3 3.81 1.41 7.41 1.58 P3 7.19 4.31 9.62 1.49 
Fpz 4.07 1.62 8.76 1.86 Fpz 4.51 3.09 6.07 0.83 
Fz 5.41 1.87 12.41 2.67 Fz 7.40 4.27 11.29 1.98 
Cz 4.40 1.56 8.99 1.84 Cz 8.53 5.18 13.06 2.02 
Pz 3.61 1.42 6.44 1.41 Pz 8.04 5.08 12.33 1.83 
Oz 2.86 1.04 4.95 1.12 Oz 4.80 2.88 6.66 1.23 

Table 8. Sleep spindle parameters in adolescent subjects. 
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  Female subjects had significantly longer fast spindle durations on Fpz (Meanmale=0.92, 

Meanfemale=0.99, t=-2.25, p=0.03), and higher fast spindle amplitudes on Cz 

(Meanmale=7.66, Meanfemale=9.33, t=-2.12, p=0.04), Pz (Meanmale=7.22, Meanfemale=8.78, 

t=-2.22, p=0.04), Oz (Meanmale=4.1, Meanfemale=5.44, t=-3.07, p=0.005), P3 

(Meanmale=6.5, Meanfemale=7.81, t=-2.29, p=0.03), F4 (Meanmale=6.38, Meanfemale=7.68, 

t=-2.15, p=0.04) and O1 (Meanmale=4.69, Meanfemale=5.72, t=-2.35, p=0.02).  

 

4.2.3. Correlations between EEG data and intelligence 

IQ was shown to be significantly and positively related to average fast spindle density 

(r=.43; p = .04) and amplitude (r=.41; p=.049). While females were characterized by 

significant fast spindle density vs. IQ, as well as fast spindle amplitude vs. IQ 

correlations [r=.80 (p=.002) and r=.67 (p =.012), respectively, males were not [r=.00 

(p=.99) for both measures]. Differences between the correlation coefficients depicting 

the linear relationship between fast spindle density vs. IQ of females and males was 

significant (p=.017, one-sided). However, the female-male difference in fast spindle 

amplitude vs. IQ correlation proved to be a tendency only (p=.055, one-sided). One-

sided statistics were used because of our explicit hypothesis on female predominance in 

the spindle vs. IQ correlations. 

The region-specific analysis of the fast spindle density vs. IQ correlation of females 

revealed significant correlations in 21 out of 21 derivations, 19 of which were 

significant at the level of .025 (Figure 12). Thus, findings fulfill the criteria for rejecting 

the global null hypothesis. Maximal significances were revealed over the frontal 

midline region (r=.90; p=.0001 at derivation Fz). 

Likewise, the region-specific analysis of the fast spindle amplitude vs. IQ correlation of 

females revealed significant correlations in 12 out of 21 derivations (Fp1, Fpz, F3, F7, 

Fz, C3, Cz, P3, P4, Pz, T3, T6), 8 of which were significant at the level of .025 (Figure 

13). Again, based on these findings the global null hypothesis can be rejected. Maximal 

significances were revealed over the left central region (r=.82; p=.001 at derivation C3). 
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In order to test whether individual levels of fast sleep spindling age-independently 

predict general mental ability in adolescent females, partial correlations were calculated 

and entered in the procedure of descriptive data analysis and significance probability 

mapping (Figure 14). We found 13 significant correlations (out of 21) between FS 

density and IQ with the effects of age corrected for. The Rüger’s area consisted of a 

wide region including frontopolar-prefrontal, central, parietal and posterior temporal 

locations (Fp1, Fpz, F3, F4, Fz, C3, C4, Cz, T5, T6, P3, P4, Pz) with p values less than 

.025 at 11 derivations. Thus, the area includes significant fast spindle density vs. IQ 

partial correlation (with the effects of age held constant) in adolescent females. 

Maximal correlation emerged at the frontal midline derivation Fz (r=.90; p=.0002). 

 

Figure 12. Gender-specific sleep EEG fast spindle (FS) density vs. IQ relationship in 

adolescents. (A) Scatterplot representing the frontal midline FS density vs. IQ relationship. (B) 

Significance probability map of the FS density vs. IQ correlations in females. (C) Significance 

probability map of the FS density vs. IQ correlations in males. P-values are plotted on inverted 

logarithmic scale. 
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Figure 13. Gender-specific sleep EEG fast spindle (FS) amplitude vs. IQ relationship in 

adolescents. (A) Scatterplot representing the frontal midline FS amplitude vs. IQ relationship. 

(B) Significance probability map of the FS amplitude vs. IQ correlations in females. (C) 

Significance probability map of the FS amplitude vs. IQ correlations in males. P-values are 

plotted on inverted logarithmic scale. 

 

 

Figure 14. Age-independence of the sleep EEG fast spindle (FS) density vs. IQ relationship in 

females. (A) Scatterplot representing the partial correlations between FS density and IQ (both 

were residualized for age). (B) Significance probability map of the FS density vs. IQ partial 

correlations (effects of age partialled out) in females. (C) Significance probability map of the 

FS density vs. IQ partial correlations (effects of age partialled out) in males. P-values are 

plotted on inverted logarithmic scale. 

 

The same analyses were run with fast spindle amplitudes. Eight out of 21 partial 

correlations were significant in adolescent females, depicting a scattered parasagittal 

area (F7, Fz, C3, Cz, T6, P3, P4, Pz) with four p values being less than .025. Thus, the 

null hypothesis cannot be unambiguously rejected for this Rüger’s area. 

 

  In males, a significant correlation of fast spindle frequency with IQ was revealed (r = 

.60; p = .04; Figure 15). Correcting for the effects of age even slightly increased the 

strength of this relationship (r = .65; p = .04). However, no other correlation between 

sleep spindle measures and IQ in males proved to be significant. 
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Figure 15. Scatterplot representing the correlation between sleep EEG FS frequency and IQ in 

males. 

 

In females, neither log-transformed EEG powers nor z-scores revealed significant 

associations with IQ after the Rüger area correction, with or without control for the 

effects of age. 

In males, however, a positive association between log-transformed EEG power on F3, 

C3 and C4 between 13.75 and 15 Hz (rmax = .70; p = .014 on F3 at 14 Hz) is significant 

after Rüger correction, while there is a tendency (with significant correlations not 

surviving Rüger correction) for a negative correlation between IQ and log-transformed 

power between 12.75 and 13 Hz on T5 and Pz (Figure 16). Using EEG power z-scores, 

a significant negative correlation between IQ and power is present between 12 and 

13.25 Hz on C3, C4, P3, P4, Pz, T3, T4, T5, T6, O1 and O2 (rmax = -.78; p = .001 on T5 

at 12.75 Hz; Figure 16). Similar results were obtained if age-controlled correlations 

were used. In this case, no Rüger-significant effects are evident in females, while there 
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is a significant negative correlation between IQ and power z-scores between 12 and 13.5 

Hz (on C3, P3, P4, Pz, T3, T4, T5, T6, O1, O2, and Oz) in males. The positive 

correlation between IQ and log power is present between 13.75 and 15 Hz (on F3, C3, 

and C4) in males, but does not reach significance after correcting with the Rüger area 

method. 

 

Figure 16. Correlations between NREM sleep EEG spectral power of 8–16 Hz frequency and 

IQ in males. Graphs are indicating region-specific correlations as revealed at different scalp 

locations. Horizontal lines denote critical values for p < 0.05. (A) Binwise spectral data were 

log-transformed (10-base) before implementing correlation analyses. Positive correlations of 

NREM sleep EEG 13.75–15 Hz spectral power at derivations F3, C3 and C4 with IQ (red 

arrows) are significant after controlling for multiple testing according to the procedure of 

descriptive data analysis.(B) Binwise spectral data were z-transformed before implementing 

correlation analyses. Negative correlations of NREM sleep EEG 12–13.25 Hz spectral power at 

derivations C3, C4, P3, P4, Pz, T3, T4, T5, T6, O1, O2 and Oz with IQ (red arrows) are 
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significant after controlling for multiple testing according to the procedure of descriptive data 

analysis 

4.3. Study 3 – Adults 

4.3.1. Basic biological and psychometric data 
 Mean age of subjects was 29.7 years (standard deviation 10.7 years, range: 17-69 

years). Mean Raven equivalent score was 26.8 (standard deviation: 6.2, range: 10.5-36). 

There was no difference between age (F=1.16, p>0.9) or Raven equivalent scores 

(F=1.36, p>0.1) of males (mean age: 29.5 years, SD: 10.4; mean Raven: 27.5, SD: 5.7) 

and females (mean age: 29.3 years, SD: 11.2; mean Raven: 26.0, SD: 6.7). 

4.3.2. Sleep macrostructure and sleep spindles 
  Table 9 shows sleep macrostructure variables in the adult sample. Sleep 

macrostructure was not significantly correlated with intelligence with or without age 

correction and with or without the separate analysis of males and females. 

 

 

 

 

 

 

 

 

 

 

Mean Minimum Maximum SD 

Sleep duration (min) 441.3520 271.3333 607.6667 46.61235 

Sleep efficiency (%) 88.5966 55.4874 98.6241 7.39900 

WASO (min) 30.4438 0.3333 134.6667 28.16106 

Sleep latency (min) 29.7250 1.0000 121.0000 20.64266 

NonREM duration (min) 332.0331 207.3333 459.3333 32.72640 
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Relative NonREM duration (%) 75.4232 63.6364 86.5604 4.49874 

N1 duration (min) 16.3499 1.6667 86.3333 12.36285 

Relative N1 duration (%) 3.8066 0.3618 19.0722 2.99318 

N2 duration (min) 236.1408 121.3333 379.6667 37.89928 

Relative N2 duration (%) 53.5469 35.4766 70.4316 7.00109 

SWS duration (min) 79.5424 2.0000 172.0000 28.69109 

Relative SWS duration (%) 18.0697 0.4615 37.7469 6.44168 

REM duration (min) 109.3188 48.0000 189.0000 26.65566 

Relative REM duration (%) 24.5768 13.4396 36.3636 4.49874 

 

Table 9. Sleep macrostructure in the adult sample. These data include one female subject who 

was excluded from analyses involving intelligence due to her missing IQ test score. Movement 

artifacts are not included in relative sleep and wake durations. 

 

  Table 10 shows descriptive data of sleep spindle parameters in the adult sample, as 

adopted from (Ujma et al., 2015a). Mean peak frequency was 11.43 Hz (standard 

deviation .76 Hz, range 9.59-13.28 Hz) for slow spindles and 13.72 Hz (standard 

deviation .59 Hz, range 12.5-15.38 Hz) for fast spindles. 

 

 

 

 

 

 

 

  Mean       SD        Mean    SD 

C3    Fz    
Slow spindles Density 6.830 1.428 Slow spindles Density 6.876 1.245 

 Duration 1.413 0.467  Duration 1.435 0.462 

 Amplitude 3.548 1.848  Amplitude 4.902 2.507 

Fast spindles Density 7.176 0.921 Fast spindles Density 6.571 1.007 

 Duration 1.074 0.141  Duration 1.435 0.462 

 Amplitude 5.471 1.533  Amplitude 5.588 1.732 

C4    O1    
Slow spindles Density 6.878 1.430 Slow spindles Density 6.737 1.947 

 Duration 1.411 0.462  Duration 1.365 0.476 

 Amplitude 3.638 1.831  Amplitude 2.460 1.406 
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Fast spindles Density 6.878 1.430 Fast spindles Density 7.062 1.104 

 Duration 1.411 0.462  Duration 1.073 0.146 

 Amplitude 5.542 1.536  Amplitude 4.062 1.395 

Cz    O2    
Slow spindles Density 6.692 1.526 Slow spindles Density 6.728 1.944 

 Duration 1.381 0.465  Duration 1.366 0.479 

 Amplitude 4.211 2.094  Amplitude 2.479 1.377 

Fast spindles Density 6.692 1.526 Fast spindles Density 7.051 1.109 

 Duration 1.381 0.465  Duration 1.066 0.142 

 Amplitude 7.324 2.076  Amplitude 3.975 1.319 

F3    P3    
Slow spindles Density 6.920 1.193 Slow spindles Density 6.743 1.741 

 Duration 1.459 0.459  Duration 1.376 0.471 

 Amplitude 4.518 2.341  Amplitude 3.050 1.687 

Fast spindles Density 6.323 0.982 Fast spindles Density 7.506 0.932 

 Duration 1.014 0.117  Duration 1.110 0.149 

 Amplitude 4.846 1.525  Amplitude 5.773 1.670 

F4    P4    
Slow spindles Density 6.966 1.182 Slow spindles Density 6.761 1.754 

 Duration 1.456 0.456  Duration 1.371 0.473 

 Amplitude 4.585 2.316  Amplitude 2.992 1.616 

Fast spindles Density 6.357 0.996 Fast spindles Density 7.468 0.961 

 Duration 1.456 0.456  Duration 1.104 0.150 

 Amplitude 4.945 1.541  Amplitude 5.532 1.646 

F7    T3    
Slow spindles Density 6.953 1.318 Slow spindles Density 6.927 1.521 

 Duration 1.420 0.455  Duration 1.388 0.470 

 Amplitude 3.253 1.617  Amplitude 2.312 1.201 

Fast spindles Density 5.561 1.101 Fast spindles Density 6.210 1.142 

 Duration 0.964 0.102  Duration 0.993 0.113 

 Amplitude 2.998 0.875  Amplitude 2.529 0.702 

F8    T4    
Slow spindles Density 6.979 1.334 Slow spindles Density 6.929 1.546 

 Duration 1.418 0.456  Duration 1.379 0.466 

 Amplitude 3.303 1.626  Amplitude 2.348 1.198 

Fast spindles Density 5.534 1.099 Fast spindles Density 6.031 1.228 

 Duration 0.960 0.101  Duration 0.985 0.117 

 Amplitude 3.039 0.885  Amplitude 2.601 0.785 

Fp1    T5    
Slow spindles Density 7.043 1.228 Slow spindles Density 6.753 1.808 

 Duration 1.448 0.455  Duration 1.354 0.480 

 Amplitude 3.755 1.943  Amplitude 2.276 1.293 

Fast spindles Density 5.500 1.061 Fast spindles Density 6.849 1.058 

 Duration 0.969 0.099  Duration 1.045 0.139 

 Amplitude 3.325 1.010  Amplitude 3.279 1.074 

Fp2    T6    
Slow spindles Density 7.064 1.238 Slow spindles Density 6.785 1.852 

 Duration 1.445 0.454  Duration 1.348 0.475 

 Amplitude 3.783 1.927  Amplitude 2.241 1.213 

Fast spindles Density 5.569 1.070 Fast spindles Density 6.750 1.074 

 Duration 0.965 0.098  Duration 1.033 0.132 

 Amplitude 3.345 1.031  Amplitude 3.108 0.876 

 

Table 10. Descriptive data of sleep spindle parameters in the adult sample (Ujma et al., 2015a). 

Density is given in spindle/minute, duration in seconds and amplitude in μV. These data include 

one female subject who was excluded from analyses involving intelligence due to her missing IQ 

test score. 

 

 

  Sex differences were found in various sleep spindle parameters. Women had 

significantly higher fast spindle amplitudes in derivations F3 (Meanmale=4.61, 

Meanfemale=5.13, t=-2.18, p=0.03), F4 (Meanmale=4.66, Meanfemale=5.3, t=-2.66, 

p=0.008), Fz (Meanmale=5.29, Meanfemale=5.99, t=-2.39, p=0.02), C3 (Meanmale=5.20, 

Meanfemale=5.82, t=-2.55, p=0.01), C4 (Meanmale=5.24, Meanfemale=4.92, t=-2.83, 
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p=0.005), Cz (Meanmale= 6.81, Meanfemale=8.02, t=-3.55, p=0.0005), P3 (Meanmale=5.43, 

Meanfemale=6.2, t=-2.99, p=0.003),  P4 (Meanmale=5.22, Meanfemale=5.91, t=-2.66, 

p=0.009), T6 (Meanmale=2.97, Meanfemale=3.28, t=-2.07, p=0.04), O1 (Meanmale=3.81, 

Meanfemale=4.36, t=-2.51, p=0.01), and O2 (Meanmale=3.77, Meanfemale=4.22, t=-2.14, 

p=0.03), and higher peak frequencies (Hz) both in case of slow (Meanmale=11.28, 

Meanfemale=11.61, t=-2.82, p=0.005) and fast (Meanmale=13.55, Meanfemale=13.92, t=-

4.13, p=0.00006) spindles. Men had significantly higher fast spindle densities (No./min) 

on derivations P3 (Meanmale=7.64, Meanfemale=7.34, t=2.00, p=0.04), P4 (Meanmale=7.60, 

Meanfemale=7.30, t=2.00, p=0.04), O1 (Meanmale=7.24, Meanfemale=6.84, t=2.35, p=0.02)  

and O2 (Meanmale=7.29, Meanfemale=6.76, t=3.08, p=0.002), and significantly higher fast 

spindle durations on O2 (Meanmale=1.09, Meanfemale=1.03, t=2.57, p=0.01). 

4.3.3. Correlations between EEG data and intelligence 
  Strong sex differences were found in correlations between sleep spindle parameters 

and Raven equivalent scores. In females, age-corrected partial correlations were 

significant between Raven equivalent scores and fast spindle amplitude (central, frontal 

and parietal derivations, rmax=0.412 on Cz) and slow spindle duration (all derivations 

with the exception of C3, rmax=0.379 on T3). In males, age-corrected partial correlations 

revealed a negative association between Raven equivalent scores and fast spindle 

density (posterior derivations, rmax=-0.337 on O1). After correction for multiple testing, 

partial correlation coefficients were significant between Raven equivalent scores and 

fast spindle amplitude (electrodes Cz, C3, C4, Fz) and slow spindle duration (electrodes 

F7, F8, T3, T4, T5, T6, Cz, Fz) in females, as well as fast spindle density (electrodes 

O1, O2, P3, P4, T5) in males. Age-uncorrected correlations were not considered in this 

study since the robust effects of age on sleep spindling in the wide age range we 

analyzed made age-corrected correlations more viable. 

  Table 11 gives an overview of the partial correlations found in females. Table 12 gives 

an overview of the partial correlations found in males. Table 13 gives an overview of 

partial correlations in all subjects. Figure 17 illustrates the most prominent partial 

correlations between Raven equivalent scores, fast spindle amplitude, slow spindle 

duration and fast spindle density in both sexes. 
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Slow Spindles Fast Spindles 

 

Density Duration Median 

Amplitude 

Maximum 

Amplitude 

Density Duration Median 

Amplitude 

Maximum 

Amplitude 

N df R p r p r p r p r p r p r p r p 

Fp1 72 69 0,273 0,036 0,271 0,038 -0,075 0,570 -0,081 0,540 0,114 0,391 0,056 0,672 0,285 0,029 0,292 0,025 

Fp2 72 69 0,291 0,026 0,262 0,045 -0,086 0,516 -0,094 0,480 0,140 0,290 0,089 0,505 0,265 0,042 0,267 0,041 

Fz 60 57 0,286 0,028 0,338* 0,009 -0,187 0,156 -0,188 0,155 0,089 0,503 0,050 0,709 0,334 0,010 0,335* 0,010 

F3 72 69 0,265 0,042 0,260 0,047 -0,076 0,568 -0,083 0,533 0,107 0,421 0,101 0,447 0,274 0,036 0,277 0,034 

F4 72 69 0,261 0,046 0,262 0,045 -0,102 0,441 -0,108 0,417 0,127 0,336 0,120 0,364 0,277 0,034 0,281 0,031 

F7 60 57 0,328 0,011 0,368* 0,004 -0,162 0,220 -0,166 0,208 -0,012 0,930 -0,019 0,889 0,183 0,167 0,185 0,160 

F8 60 57 0,328 0,011 0,374* 0,004 -0,165 0,213 -0,167 0,207 0,059 0,656 0,015 0,910 0,234 0,075 0,231 0,078 

C3 72 69 0,247 0,060 0,254 0,052 -0,110 0,408 -0,117 0,379 0,082 0,537 0,133 0,316 0,365 0,004 0,367* 0,004 

C4 72 69 0,259 0,047 0,259 0,048 -0,131 0,324 -0,135 0,308 0,134 0,310 0,130 0,327 0,371 0,004 0,371* 0,004 

Cz 60 57 0,295 0,023 0,356* 0,006 -0,194 0,142 -0,194 0,142 0,083 0,533 0,092 0,488 0,412 0,001 0,410* 0,001 

P3 72 69 0,231 0,078 0,268 0,040 -0,148 0,264 -0,150 0,256 0,036 0,788 0,135 0,308 0,281 0,031 0,283 0,030 

P4 72 69 0,241 0,066 0,270 0,039 -0,136 0,305 -0,140 0,290 0,084 0,528 0,126 0,340 0,282 0,030 0,284 0,029 

T3 60 57 0,314 0,015 0,379* 0,003 -0,172 0,193 -0,176 0,183 0,027 0,837 0,019 0,887 0,210 0,110 0,203 0,123 

T4 60 57 0,306 0,018 0,374* 0,004 -0,214 0,104 -0,214 0,104 -0,017 0,898 -0,010 0,940 0,030 0,819 0,027 0,842 

T5 60 57 0,288 0,027 0,372* 0,004 -0,226 0,085 -0,223 0,089 -0,019 0,886 0,070 0,598 0,152 0,251 0,154 0,245 

T6 60 57 0,312 0,016 0,363* 0,005 -0,282 0,030 -0,278 0,033 0,033 0,806 0,045 0,737 0,059 0,656 0,064 0,629 

O1 72 69 0,258 0,049 0,263 0,045 -0,173 0,191 -0,173 0,189 0,027 0,841 0,116 0,380 0,158 0,233 0,160 0,225 

O2 72 69 0,273 0,036 0,261 0,046 -0,190 0,149 -0,194 0,141 0,089 0,503 0,122 0,359 0,129 0,330 0,133 0,316 

 

Table 11. Partial Pearson correlation coefficients (corrected for Age) between sleep spindle 

parameters and Raven APM scores in female subjects. In the first two columns, the number of 

available subjects and the corresponding degrees of freedom are given for each electrode. 

Correlations which remain significant after multiple comparisons correction are marked with 

an asterisk. 

Slow Spindles Fast Spindles 

   Density Duration Median 

Amplitude 

Maximum 

Amplitude 

Density Duration Median 

Amplitude 

Maximum 

Amplitude 

 N df r p r p r p r p r p r p r p r p 

Fp1 88 85 -0,016 0,890 -0,100 0,379 -0,102 0,370 -0,101 0,374 -0,182 0,106 -0,123 0,278 -0,173 0,126 -0,177 0,117 

Fp2 88 85 0,005 0,963 -0,102 0,366 -0,087 0,442 -0,077 0,500 -0,168 0,135 -0,090 0,429 -0,172 0,128 -0,165 0,145 

Fz 81 78 0,045 0,690 -0,080 0,481 -0,038 0,741 -0,030 0,791 -0,241 0,032 -0,086 0,450 -0,110 0,330 -0,109 0,337 

F3 88 85 0,043 0,707 -0,083 0,466 -0,065 0,565 -0,057 0,617 -0,241 0,031 -0,107 0,345 -0,124 0,274 -0,125 0,271 

F4 88 85 0,012 0,917 -0,095 0,401 -0,078 0,493 -0,068 0,552 -0,211 0,060 -0,041 0,719 -0,136 0,228 -0,134 0,236 

F7 81 78 0,045 0,694 -0,094 0,405 -0,036 0,754 -0,030 0,792 -0,172 0,128 -0,073 0,520 -0,093 0,413 -0,087 0,445 

F8 81 78 0,027 0,815 -0,108 0,341 -0,078 0,492 -0,071 0,530 -0,167 0,139 -0,027 0,816 -0,145 0,199 -0,134 0,237 

C3 88 85 0,096 0,395 -0,099 0,384 -0,073 0,518 -0,065 0,568 -0,238 0,033 -0,127 0,262 -0,114 0,316 -0,110 0,331 

C4 88 85 0,064 0,573 -0,109 0,335 -0,093 0,411 -0,083 0,462 -0,219 0,051 -0,084 0,460 -0,128 0,259 -0,124 0,273 

Cz 81 78 0,094 0,407 -0,106 0,350 -0,055 0,629 -0,050 0,661 -0,234 0,037 -0,090 0,426 -0,081 0,476 -0,079 0,489 

P3 88 85 0,098 0,388 -0,135 0,232 -0,111 0,325 -0,102 0,367 -0,309* 0,005 -0,121 0,286 -0,189 0,093 -0,184 0,103 

P4 88 85 0,122 0,282 -0,118 0,296 -0,059 0,602 -0,051 0,656 -0,312* 0,005 -0,128 0,260 -0,138 0,222 -0,134 0,236 

T3 81 78 0,085 0,456 -0,124 0,272 -0,117 0,301 -0,117 0,302 -0,165 0,144 -0,066 0,563 -0,190 0,092 -0,182 0,107 

T4 81 78 0,062 0,584 -0,121 0,285 -0,134 0,235 -0,125 0,271 -0,162 0,150 -0,055 0,626 -0,197 0,080 -0,163 0,148 

T5 81 78 0,097 0,391 -0,132 0,244 -0,069 0,542 -0,065 0,565 -0,287* 0,010 -0,108 0,340 -0,063 0,577 -0,059 0,604 

T6 81 78 0,074 0,512 -0,134 0,235 -0,121 0,286 -0,113 0,317 -0,266 0,017 -0,089 0,432 -0,144 0,204 -0,140 0,214 

O1 88 85 0,083 0,462 -0,140 0,216 -0,081 0,477 -0,071 0,531 -0,337* 0,002 -0,140 0,216 -0,128 0,256 -0,125 0,268 

O2 88 85 0,104 0,357 -0,126 0,265 -0,066 0,559 -0,054 0,634 -0,315* 0,004 -0,128 0,259 -0,143 0,207 -0,139 0,219 

Table 12. Partial Pearson correlation coefficients (corrected for Age) between sleep spindle 

parameters and Raven APM scores in male subjects. In the first two columns, the number of 

available subjects and the corresponding degrees of freedom are given for each electrode. 

Correlations which remain significant after multiple comparisons correction are marked with 

an asterisk. 

 

Slow Spindles Fast Spindles 

 

Density Duration Mediian 

Amplitude 

Maximum 

Amplitude 

Density Duration Median 

Amplitude 

Maximum 

Amplitude 

N df r p r p r p r p r p r p r p r p 

Fp1 160 157 0,127 0,135 0,073 0,393 -0,083 0,327 -0,085 0,321 -0,039 0,650 -0,025 0,769 0,038 0,659 0,035 0,685 

Fp2 160 157 0,144 0,089 0,066 0,441 -0,082 0,338 -0,079 0,354 -0,025 0,769 0,007 0,935 0,021 0,806 0,023 0,791 

Fz 141 138 0,156 0,066 0,076 0,371 -0,075 0,381 -0,074 0,388 -0,071 0,406 0,007 0,937 0,052 0,544 0,053 0,535 

DOI:10.14753/SE.2016.1895



91 

 

F3 160 157 0,136 0,109 0,070 0,409 -0,096 0,257 -0,094 0,270 -0,049 0,567 0,050 0,561 0,038 0,652 0,040 0,636 

F4 160 157 0,183 0,031 0,112 0,188 -0,107 0,207 -0,106 0,214 -0,100 0,242 -0,035 0,681 0,021 0,804 0,024 0,776 

F7 141 138 0,168 0,047 0,106 0,211 -0,129 0,129 -0,126 0,137 -0,077 0,365 -0,001 0,995 0,011 0,902 0,015 0,861 

F8 141 138 0,167 0,049 0,111 0,193 -0,127 0,135 -0,123 0,147 -0,084 0,327 -0,011 0,895 0,068 0,424 0,069 0,415 

C3 160 157 0,173 0,041 0,064 0,452 -0,103 0,225 -0,102 0,229 -0,071 0,406 0,011 0,902 0,082 0,339 0,083 0,328 

C4 160 157 0,160 0,059 0,060 0,481 -0,121 0,156 -0,118 0,165 -0,042 0,626 0,034 0,690 0,076 0,372 0,078 0,359 

Cz 141 138 0,198 0,019 0,103 0,224 -0,143 0,093 -0,140 0,099 -0,078 0,360 0,005 0,954 0,094 0,269 0,095 0,264 

P3 160 157 0,168 0,047 0,052 0,542 -0,141 0,098 -0,137 0,108 -0,111 0,190 0,021 0,804 0,010 0,907 0,015 0,864 

P4 160 157 0,182 0,032 0,058 0,493 -0,111 0,191 -0,109 0,199 -0,093 0,277 0,014 0,868 0,034 0,687 0,037 0,661 

T3 141 138 0,200 0,018 0,098 0,252 -0,154 0,070 -0,155 0,068 -0,064 0,453 -0,017 0,842 -0,035 0,678 -0,035 0,686 

T4 141 138 0,179 0,035 0,096 0,261 -0,179 0,034 -0,174 0,040 -0,104 0,222 -0,030 0,725 -0,104 0,221 -0,090 0,292 

T5 141 138 0,198 0,019 0,089 0,295 -0,171 0,044 -0,167 0,049 -0,127 0,134 -0,006 0,943 -0,003 0,974 -0,001 0,996 

T6 141 138 0,192 0,023 0,083 0,329 -0,224 0,008 -0,219 0,009 -0,107 0,206 -0,011 0,902 -0,087 0,307 -0,083 0,328 

O1 160 157 0,170 0,044 0,044 0,603 -0,145 0,087 -0,140 0,099 -0,122 0,152 0,004 0,964 -0,022 0,797 -0,020 0,814 

O2 160 157 0,184 0,030 0,051 0,551 -0,147 0,083 -0,142 0,095 -0,062 0,468 0,017 0,839 -0,036 0,671 -0,033 0,697 

 

Table 13. Partial Pearson correlation coefficients (corrected for Age) between sleep spindle 

parameters and Raven APM scores in all subjects. In the first two columns, the number of 

available subjects and the corresponding degrees of freedom are given for each electrode. No 

correlations are significant after multiple comparisons correction. 
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Figure17.Scalp maps and partial regression plots for females (upper half) and males (lower 

half), for Cz fast spindle median amplitude (left panels), T3 slow spindle duration (middle 

panels), and O1 fast spindle density (right panels). Scalp maps illustrate the topographical 

distribution of the strength of partial correlations between Raven equivalent scores and sleep 

spindle parameters. On the partial regression plots, X axes represent the residuals after 

regressing Raven APM scores against Age. Y axes represent the residuals after regressing 
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spindle parameters against Age. Thus, these scatterplots demonstrate the relationship between 

Raven APM scores and spindle parameters after pruning both variables for the effects of Age. 

Standard Pearson correlation between the shown residuals equals the age-corrected partial 

correlations between Raven APM scores and spindle parameters. Dots represent data points 

from the Budapest sample while triangles represent data points from the Munich sample. 

Reproduced from (Ujma et al., 2014). 

  Sex differences in the correlations between Raven equivalent scores and sleep spindle 

parameters were confirmed by statistical comparison of the maximal significant 

correlations illustrated in Figure 17. Using Fisher’s r to z transformation method, 

correlation coefficients found in males and females were significantly different for fast 

spindle amplitude on Cz (z=3.2, p=0.001), slow spindle duration on T3 (z=3.23, 

p=0.001) and fast spindle density on O1 (z=2.23, p=0.02). 

  Sleep spindle peak frequencies were not correlated with Raven equivalent scores in 

either sex and in either slow or fast spindles (age-corrected partial correlation with slow 

spindle peak frequency is .17 [p=.160] in females, -.06 [p=.539] in males; correlation 

with fast spindle peak frequency is -.04 [p=.744] in females, .095 [p=.379] in males). 

  Similar results were seen if individual intelligence test raw scores (CFT or Raven) 

were used instead of the combined score. Correlations were also not exclusively driven 

by either subgroup (Budapest or Munich) used in the study (see scatterplots on Figure 

17 for details). Inclusion or exclusion of the 8 smoking subjects did not change the 

results of the study.  

  The sexually dimorphic nature of the correlation between NREM sleep measures and 

IQ were confirmed by spectral analysis as well. Log-transformed (10 base) power 

spectral density correlated significantly with intelligence in a Rüger area encompassing 

the entire analyzed range (8-16 Hz) and involving electrodes Fp1, Fp2, Fz, F4, C3, C4, 

Cz, P3, P4, T4, O1 and O2. p<0.05/2 was true for 52% of all tests within this range and 

p<0.05/3 was true for 39% of tests. While due to the rules of Rüger areas such a wide 

area had to be considered, effects extending continuously into the alpha range were only 

seen on P3, P4 and C4, and the maximal effect had a clear peak around 13 Hz, that is, in 

the fast spindle (sigma) frequency range (Figure 18). No significant effects were seen, 

however, with z-transformed spectra in females and in males in general. Figure 18 also 
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shows the correlations between raw (10

intelligence scores in males.

Figure 18. Correlation coefficients (axis y) at various frequencies from 8 Hz to 16 Hz (axis x) 

on all electrodes (subpanels) in male (left panel) and female (right panel) subjects. 

lines parallel to axis x indicate the critical correlation coefficients 

at least one uncorrected correlation coefficient was significant. Red arrows indicate areas of 

correlations which are significant after correcting for multiple comparisons using the Rüger 
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shows the correlations between raw (10-base logarithmized) spectral power and 

intelligence scores in males. 

. Correlation coefficients (axis y) at various frequencies from 8 Hz to 16 Hz (axis x) 

on all electrodes (subpanels) in male (left panel) and female (right panel) subjects. 

indicate the critical correlation coefficients in case of electrodes where 

at least one uncorrected correlation coefficient was significant. Red arrows indicate areas of 

correlations which are significant after correcting for multiple comparisons using the Rüger 

area method. 

base logarithmized) spectral power and 

 

. Correlation coefficients (axis y) at various frequencies from 8 Hz to 16 Hz (axis x) 

on all electrodes (subpanels) in male (left panel) and female (right panel) subjects. Horizontal 

in case of electrodes where 

at least one uncorrected correlation coefficient was significant. Red arrows indicate areas of 

correlations which are significant after correcting for multiple comparisons using the Rüger 
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5. Discussion 
 

  In the three studies which are presented in this doctoral thesis, we investigated the 

relationship between trait intelligence (measured by nonverbal IQ tests with a high g-

loading) and sleep spindling and NREM sleep EEG spectral power in over two hundred 

healthy subjects ranging from less than four to nearly seventy years old, including a 

particularly broad range of IQ scores in the adult sample (85-160), making it the largest 

and most extensive study of the relationship between sleep spindling and intelligence to 

date. Besides recruiting a large number of subjects, we also intended to improve the 

methodological quality of our studies by implementing the IAM algorithm of sleep 

spindle detection and analysis, which – unlike some previous studies with similar aims 

– separated slow and fast spindles and detected both using adaptive, individually 

determined amplitude and frequency criteria. Using this methodology, we were able to 

confirm that 

1. sleep spindling (particularly sleep spindle amplitude) is indeed a biological 

marker of trait intelligence throughout the lifespan, and 

2. the relationship between sleep spindling and intelligence exhibits substantial 

sexual dimorphism, with a positive relationship usually observed only in case of 

females. 

  Our results were relatively homogeneous within the three age groups and confirmed 

similar trends in 4-8 year old children, adolescents and adults from a wide age range. 

Table 14 summarizes our results for all three age ranges. 

  Children Adolescents Adults 
  Male Female Male Female Male Female 

S
lo

w
 s

p
in

d
le

s 

Density       

Duration      positive, 

temporal 

Amplitude  positive after 

age correction, 

lateral 

    

Frequency       

F
as

t 
sp

in
d

le
s 

Density positive,  but not 

after age 

correction, 

frontal 

  positive negative, 

occipital 

 

Duration       
Amplitude    positive, tendency 

only after age-

correction, 

central 

 positive, 

central 
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Frequency   positive    

 Alpha 
power 

 positive, lateral, 

with or without 

age correction 

   positive, 

frontal 

 Sigma 
power 

 positive, lateral, 

with or without 

age correction 

low frequency 

negative, high 

frequency 

positive 

  positive, 

central 

Table 14. A summary of significant correlations between intelligence and sleep spindling/EEG 

power measures 

  In sum, we found evidence for a positive relationship between sleep spindle amplitude 

and intelligence in females. This relationship was strongly present in case of fast 

spindles in the adult and adolescent sample (albeit in the latter case became a mere 

tendency after correcting for the effects of age) and slow spindles in the child sample 

(where it became especially evident after age correction). Logarithmized NREM sleep 

EEG power – an approximate measure of sleep spindling – was also positively 

correlated with intelligence in young female children and adult females (albeit not in 

adolescents), with the positive correlation extending into the alpha frequency range. 

While there was a correlation between NREM sleep EEG power in the sigma range in 

case of adolescent males, this correlation was negative for the lower frequency ranges 

and positive in the higher ones, thus it probably rather reflected the higher dominant fast 

spindle frequency of more intelligent subjects (which was revealed to be an independent 

significant effect) than a simple unidirectional relationship with between EEG power 

and IQ. Though sleep spindle density was the earliest reported correlate of IQ (Bodizs et 

al., 2005), we found relatively little evidence for such a relationship. Fast spindle 

density correlated positively with IQ only in adolescent females, and in fact in adult 

males a negative correlation was found (albeit in a very restricted occipital area). The 

positive relationship between fast spindle density and intelligence in young male 

children was revealed to be entirely due to the effects of age. The positive relationship 

between slow spindle duration and intelligence in adult females was not replicated in 

the other two studies. Notably, most significant effects were found in case of fast 

spindles. 

  What is the meaning of sleep spindle parameters? Sleep spindle density reflects the 

number of spindle events, which can be affected by previous wakefulness, such as the 

effects of learning (Morin et al., 2008; Peters et al., 2008; Barakat et al., 2011). Sleep 
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spindle duration may reflect the length of the slow oscillation up-states spindles are 

coupled to (Steriade, 2003; Clemens et al., 2007; Heib et al., 2013) which may actually 

be in itself a correlate of IQ (Bodizs et al., 2005) although this was not investigated in 

these studies. The intra-individual stability – in contrast to significant inter-individual 

variability – of NREM sleep, which is what ultimately justifies the investigation of 

possible trait markers in NREM sleep EEG, was generally demonstrated using spectral 

power (De Gennaro et al., 2005; De Gennaro et al., 2008) This can be affected by either 

more frequent, longer or larger oscillations and the precise practical contribution of 

these measures is currently unknown. However, measures of density and duration are 

arguable more malleable (in response to wakeful events or homeostatic pressure) than 

amplitude, which ultimately relies on the underlying cortical structures and subcortical 

(thalamocortical) connections (Piantoni et al., 2013; Saletin et al., 2013). Therefore, it is 

unsurprising that we found sleep spindle amplitude and log sigma spectral power – 

themost ‘trait-like’ parameters – tobe the most frequently replicated markers of 

intelligence. Intelligence correlated positively with sleep spindle amplitude in all three 

and with log sigma spectral power in two out of three age groups. Notably, however, 

these effects were found exclusively in female subjects. 

  While many studies investigated the relationship between sleep spindling and 

intelligence, with somewhat diverging results (see Table 1. for review) it is notable not 

none of them searched for possible sexual dimorphisms. This is surprising because 

many other studies from other neuroscience domains, such as structural or chemical 

imaging (Gur et al., 1999; Haier et al., 2005; Jung et al., 2005), functional imaging 

(Haier and Benbow, 1995; Schmithorst and Holland, 2006) and wakeful EEG 

monitoring (Neubauer et al., 2002; Jausovec and Jausovec, 2005; Neubauer et al., 2005) 

revealed quite profound sex differences in the biological and physiological correlates of 

intelligence. While there is one exception (Dunst et al., 2014), most studies reported 

stronger white matter correlates of IQ in female subjects. This is in line with the reliance 

of sleep spindle oscillations on the structural integrity of thalamocortical white matter 

tracts (Piantoni et al., 2013) constituting the networks in which spindles are generated. 

Therefore, based on our results and some others, a hypothesis may be proposed that a 

triangular relationship exists between the integrity of thalamocortical white matter 

connections, intelligence and sleep spindle amplitude in case of female subjects. It is 
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notable that white matter connections are generally more robust in females than males 

(Gong et al., 2009; Ingalhalikar et al., 2014; Satterthwaite et al., 2014), suggesting the 

neural underpinnings are not only sexually dimorphic, but that in females they rely on 

cerebral characteristics which are more ‘feminine’ by default. 

  Our results, however, are not completely unanimous. In adults and adolescents, more 

intelligent females had higher central fast spindle amplitudes, but female children had 

higher slow spindle amplitudes in lateral derivations. In adolescent females, the positive 

relationship between fast spindle amplitude and intelligence was at least in part due to 

the effects of age. How certain can we be of the presence of such an effect in females 

and its absence in males? Two further results seem to confirm this idea. First, a re-

analysis of the currently second-largest sleep spindle/intelligence database (Schabus et 

al., 2006) to investigate sex differences revealed stronger associations between sleep 

spindle amplitude and intelligence in case females (Manuel Schabus, personal 

communication). Second, a new study from our laboratory(Ujma et al., 2015b) in over 

80 male subjects monitored during an afternoon nap no association between sleep 

spindle amplitude and intelligence (although, unlike in case of the night sleep subjects, 

there was a low positive correlation with spindle density). Overall, the majority of 

results seem to confirm the positive relationship between some measure of sleep spindle 

amplitude and intelligence in females, but not males. It is also worth mentioning that the 

only previous paper using exclusively female samples in two out of the three studies it 

reported (Fogel et al., 2007) found a robust correlation with sigma power, though it did 

not calculate spindle amplitude. 

IQ correlates with fast spindle amplitude in adolescent and adult females, but slow 

spindle amplitude in female children. While the amplitude of both spindle types is 

presumably affected by connectivity in similar ways despite different generating 

systems (Shinomiya et al., 1999; Schabus et al., 2007), this dichotomy deserves some 

reflection. Most studies explicitly investigating the different cognitive correlates of slow 

and fast spindling confirmed that the association between sleep spindling and memory 

or intelligence is different in case of slow and fast spindles (Tamaki et al., 2009; 

Lustenberger et al., 2015b; Nader and Smith, 2015). The distribution and frequency of 

slow and fast spindles is strongly affected by ageing during childhood (Shinomiya et al., 
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1999), with an acceleration of spindles in older children. In fact, one study (Hoedlmoser 

et al., 2014) did not analyze fast spindles in children at all, because they failed to find a 

spectral peak in the traditional fast spindle frequency range (13-15 Hz). We did find 

typical dual spectral peaks in 4-8 year old children and used them as slow and fast 

spindle frequency ranges according to standard IAM methodology, but these were 

indeed much slower, with fast spindles were generally below the 13 Hz frequency limit 

and slow spindles as slow as 10 Hz. Thus, slow and fast spindles may contribute to 

cognition in different ways during different stages of life, and accelerated adult-like 

spindles may have different functional characteristics than spindles in early childhood. 

It is notable that slow spindle amplitude correlated with IQ in temporal derivations, 

possibly reflecting local – specifically language-related – processes, in line with 

evidence about the local nature of spindles and their role in local processes (Tamaki et 

al., 2009; Nir et al., 2011). The different contribution of slow and fast spindles to 

cognition throughout the lifespan certainly deserves further investigation. 

  There is much less consistency in the results about other sleep spindle parameters, 

however, which only occasionally correlate with intelligence with little success in 

replication. Our results do not provide decisive results about whether or not spindle 

density or duration correlates with intelligence. It is possible that these parameters are 

affected by other factors – such as wakeful, even involuntary, learning – which may 

serve as a proxy for IQ depending on the experimental design and the composition of 

the subject pool, leading to a correlation with IQ only occasionally. 

  The effects of ageing on sleep spindling and its potential confounding effects deserve 

further comment. Our results were in generally in line with previous studies (Landolt et 

al., 1996; Shinomiya et al., 1999; Fogel et al., 2012; Martin et al., 2013) reporting an 

increase in sleep spindling during childhood and adolescence and a decrease during 

adulthood (albeit earlier data from younger subjects is sparse), in line with the proposed 

rule of sleep spindles in fluid cognitive ability which also increases during maturation 

but decreases with ageing. This is reflected by the fact that standard IQ scores are 

calculated from raw scores following an inverted U-shaped curve (Raven et al., 2004), 

that is, average performance is highest in young adolescents and lower average 

performance is seen in both younger children and older adults. We found robust 
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correlations between age and sleep spindle parameters as well as IQ test performance, 

which was strongly in line with these previous results. Due to the potential confounding 

effects of age, controlling for the effects of age was considered the most reliable 

analysis of the direct relationship between sleep spindling and IQ. Despite this fact, the 

correlations between sleep spindling and IQ were similar with or without age correction, 

providing further support that our results are not due to the confounding effects of age. 

It is very important, however, that this is not the case for all sleep spindle parameters. 

Fast spindle density was positively correlated with both age and IQ in both child and the 

adolescent subsamples, revealing the role of spindling as a potential developmental 

marker (Shinomiya et al., 1999). After correcting for the effects of age, the positive 

correlation between fast spindle density and IQ completely disappeared in children and 

became weaker in adolescents, suggesting that at least some of the common variance in 

IQ and sleep spindling is due to the effects of age, and supporting the view that sleep 

spindle parameters are not only sensitive to trait-like cognitive ability (such as IQ), but 

they can also be interpreted as developmental markers. 

  Some comments must be made on the statistical reliability of our results, mainly 

concerning corrections multiple comparisons. Statistical methods involving multiple 

EEG channels require specific correction approaches due to the highly correlated nature 

of neighboring channels, which is why it is empirically wrong to treat analyses 

involving them as statistically independent, which is assumed by methods such as the 

Bonferroni correction. In our studies, we used two different approaches: a significance 

map approach using Rüger areas (Abt, 1987; Duffy et al., 1990) and a more standard 

method (false detection rate, FDR) which does not require a topographical relationship 

between statistical tests (Benjamini and Hochberg, 1995). The Rüger area method 

requires that a significant portion of conventionally significant results be stronger than a 

certain limit (50% stronger than p=0.05/2 or 33% stronger than p=0.05/3, respectively) 

and rejects or keeps the null hypothesis for an entire statistical area according to these 

parameters. In contrast, the FDR method provides a corrected p-value for each statistical 

test based on the distribution of p-values across the entire sample. As a consequence, 

the ‘critical’ effect size necessary for FDR-corrected significance can only be assumed 

based on the other (even non-significant) p-values. If most p-values are close to 1, a 

lower p-value will be necessary to reject the null hypothesis after FDR correction, but if 
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all p-values are conventionally significant, all of them remain significant after FDR 

correction even if they do not exceed the significance threshold by much. To put the 

differences of the Rüger area, FDR and Bonferroni methods in perspective, in the 

spindle parameter where our strongest results were measured (Ujma et al., 2014), that is, 

fast spindle amplitude in adult females, the critical correlation (assuming N=72) 

coefficient was  0.292 or 0.283 for the Rüger area method (p=0.05/2 or p=0.05/3, which 

must be met on at least 50% or 33% of neighboring significant electrodes), 0.315 for the 

FDR method (as with the given distribution of p-values p=0.007 was the critical p-value 

for FDR significant effect sizes) and 0.35 for the Bonferroni method (assuming a 

critical p of 0.05/18=0.0027, given the 18 electrodes in the analyses). Absolute p-values 

heavily depend on sample size, which may make it difficult to produce significant FDR-

, or let alone Bonferroni-corrected significant results in relatively small samples. For 

this reason, we chose the Rüger area method in the child and adolescent study where the 

sample size was relatively low, losing some spatial resolution due to the fact that the 

Rüger area method only tests the null hypothesis over a large area of significance, but 

for the adult study with a larger sample we deemed the FDR method to be more 

adequate for its better spatial resolution. Clearly, there is not one true method of 

multiple comparisons correction and it is possible to argue against the concept of 

multiple comparisons correction in general (Rothman, 1990). A very important feature 

supporting our results, however, is that they were reproducible across samples, as 

evidenced by the independent analyses of child, adolescent and adult samples. 

  A significant problem with any study investigating correlates of intelligence is the 

concept of intelligence itself. It has been argued that intelligence is a statistical artifact 

(Schlinger, 2012), a proxy for working memory and executive functions (Geary, 2005) 

or a very specific combination of these (Conway et al., 2003; Unsworth and Engle, 

2005). The concept of intelligence certainly overlaps with executive and memory 

functions(Colom et al., 2006; Colom, 2007) and it is cannot be elegantly distilled to a 

single brain area or neurologically testable function (Jung and Haier, 2007; Colom et 

al., 2010). However, the concept of intelligence is not a neurological but rather a 

phenomenological reality, which is evidenced by the fact that intelligence is reliably 

related to a vast variety of social, health, wealth and fertility life outcomes beyond the 

realm of cognition (Rushton, 2004; Figueredo et al., 2005; Templer, 2008). Therefore, it 
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is perhaps best to view intelligence from a cognitive neuroscience point of view as a 

stable combination of skills and abilities, relying on a distributed and probably quite 

redundant set of brain networks (Colom et al., 2006; Jung and Haier, 2007) specifically 

relevant for life outcomes, rather than a singular ability. This perspective would suggest 

that while intelligence relies on perhaps more than a single brain network (Haier et al., 

2009), its entirety is regardless relevant for an individual’s cognitive, health, wealth and 

fertility history.  

  This approach also provides a meaningful conceptual framework for the results 

presented in the present thesis. Our studies confirmed that the amplitude of NREM 

sleep spindle oscillations is a relatively stable correlates of intelligence across the 

lifespan, possibly reflecting more efficient thalamocortical white matter connections. 

However, this association is only present in females, providing support for earlier 

studies reporting a sexual dimorphism in the biological correlates of intelligence, and 

confirming that intelligence may rely on more than a single specific neural network or 

function. The most important field of further study would be to analyze the relationship 

between sleep spindling and intelligence in subjects with structural imaging data. The 

hypothesis that higher spindle amplitudes in more intelligent subjects reflect more 

efficient thalamocortical connections could be confirmed if morphometric and DTI 

structural imaging data was available. 
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Summary 
 

  Intelligence, as measured by standard psychometric tests, has been linked to a wide 

variety of life history outcomes, including better performance in various cognitive 

domains, better educational success, lower lifetime prevalence of psychiatric disease 

and leading causes of death including heart disease and cancer, lower criminality and a 

longer lifespan. These correlates make the biological mechanisms of intelligence an 

important target for scientific research. 

  Biological correlates of intelligence include brain size, the volume and functional 

measures of widespread cerebral areas, as well as electroencephalographic measures. 

Many previous studies reported a correlation between intelligence and sleep spindles, 

NREM sleep oscillations generated by thalamocortical and reticular thalamic circuits 

and also linked to sleep-related memory consolidation. Biological correlates of 

intelligence were frequently found to be sexually dimorphic, but this was never 

investigated for sleep spindles previously. 

  In our research, we investigated the association between sleep EEG measures and 

nonverbal intelligence (measured by variants of Raven’s Progressive Matrices) in over 

two hundred subjects, divided into three age groups (4-8 year old children, 15-22 year 

old adolescents and 17-69 year old adults). We detected sleep spindles with the IAM 

method, taking into account inter-individual variations in sleep spindle amplitude and 

frequency and separating slow and fast spindles. 

  We found evidence about an association between intelligence and sleep spindling in all 

three age groups, most prominently in case of sleep spindle amplitude. We also found 

this association to be highly and consistently sexually dimorphic: sleep spindle 

amplitude was positively associated with intelligence in female children, adolescents 

and adults, but never in males.  

  Our study, the largest so far investigating sleep EEG correlates of intelligence, 

confirmed the association between sleep spindling and intelligence, but also provided 

evidence that this relationship is highly sexually dimorphic.  
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Összefoglalás 
 

A pszichometriai tesztekkel mérhető intelligencia összefügg a kogníció számos 

területén megfigyelhető jobb teljesítménnyel, jobb tanulmányi előmenetellel, 

pszichiátriai betegségek és vezető halálokok (például szív- és daganatos betegségek) 

alacsonyabb élettartam-prevalenciájával, a bűnözővé válás alacsonyabb 

valószínűségével és hosszabb várható élettartammal. Ezek az összefüggések az 

intelligencia biológiai háttérmechanizmusait a tudományos kutatások fontos célpontjává 

teszik. 

  Az intelligencia biológiai korrelátumai magukban foglalják az agyméretet, változatos 

agyterületek térfogatát és funckionális sajátosságait, illetve elektroenkefalográfiás 

méréseket. Számos korábbi kutatás számolt be összefüggésekről az intelligencia és az 

alvási orsózás között. Az alvási orsók NREM alvásban thalamocorticalis és reticularis 

thalamicus hálózatokban generált oszcillációk és az alvás során történő emlékezeti 

konszolidációval is összefüggenek. Az intelligencia biológiai korrelátumai gyakran 

nemi dimorfizmust mutattak, de az alvási orsók esetében ezt korábban soha nem 

vizsgálták. 

  Kutatásunkban több mint kétszáz, három korcsoportba (4-8 éves gyemekek, 15-22 

éves serdülők, 17-69 éves felnőttek) osztott vizsgálati személyen vizsgáltuk az alvási 

EEG sajátossai és a Raven Progresszív Mátrixok változatai által mért nonverbális 

intelligencia összefüggéseit. Az alvási orsókat az IAM módszer segítségével 

detektáltuk, figyelembe véve az alvási orsók amplitúdójában és frekvenciájában 

megfigyelhető egyéni különbségeket és különválasztva a lassú és gyors orsókat. 

  Mindhárom csoportban bizonyítékát találtuk az intelligencia és az alvási orsózás 

közötti összefüggésnek, legtöbbször az alvási orsók amplitúdója esetében. Ez az 

összefüggés erős nemi dimorfizmust mutatott: az alvási orsók amplitúdója pozitívan 

függött össze az intelligenciával a gyermekkorú és serdülők lányok és felnőtt nők 

esetében, de a fiúk és férfiak esetében nem.  

Kutatásunkaz eddigi legnagyobb vizsgálata az alvási EEG-paraméterek és az 

intelligencia közötti összefüggésnek. Eredményeink megerősítették az alvási orsózás és 

az intelligencia között korábban leírt összefüggést, de bizonyítékot szolgáltattak annak 

erős nemi dimorfizmusára is. 
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