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Abstract

Comorbidity patterns have become a major source of information to explore shared mecha-

nisms of pathogenesis between disorders. In hypothesis-free exploration of comorbid condi-

tions, disease-disease networks are usually identified by pairwise methods. However,

interpretation of the results is hindered by several confounders. In particular a very large

number of pairwise associations can arise indirectly through other comorbidity associations

and they increase exponentially with the increasing breadth of the investigated diseases. To

investigate and filter this effect, we computed and compared pairwise approaches with a

systems-based method, which constructs a sparse Bayesian direct multimorbidity map

(BDMM) by systematically eliminating disease-mediated comorbidity relations. Additionally,

focusing on depression-related parts of the BDMM, we evaluated correspondence with

results from logistic regression, text-mining and molecular-level measures for comorbidities

such as genetic overlap and the interactome-based association score. We used a subset of

the UK Biobank Resource, a cross-sectional dataset including 247 diseases and 117,392

participants who filled out a detailed questionnaire about mental health. The sparse comor-

bidity map confirmed that depressed patients frequently suffer from both psychiatric and

somatic comorbid disorders. Notably, anxiety and obesity show strong and direct relation-

ships with depression. The BDMM identified further directly co-morbid somatic disorders,

e.g. irritable bowel syndrome, fibromyalgia, or migraine. Using the subnetwork of depression

and metabolic disorders for functional analysis, the interactome-based system-level score

showed the best agreement with the sparse disease network. This indicates that these epi-

demiologically strong disease-disease relations have improved correspondence with

expected molecular-level mechanisms. The substantially fewer number of comorbidity rela-

tions in the BDMM compared to pairwise methods implies that biologically meaningful
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comorbid relations may be less frequent than earlier pairwise methods suggested. The com-

puted interactive comprehensive multimorbidity views over the diseasome are available on

the web at Co=MorNet: bioinformatics.mit.bme.hu/UKBNetworks.

Author summary

Depression is one of the most common of psychiatric disorders and its causation is corre-

spondingly multifactorial, complex and heterogeneous. It occurs in combination with a

number of physical illnesses far more commonly than expected by chance. Such comor-

bidities may be important clues pointing to shared environmental and genetic risk factors

and could identify different causal types of depression. However, a method is still needed

to weed out statistically significant pairings that nevertheless arise through indirect routes

involving comorbidities between other diseases. We examined the pairwise associations

among 247 diseases of 117,392 participants recorded in the UK Biobank database. We

found that the great majority of disease associations were indirect consequences of a

sparse network of ‘direct’ comorbidities (‘sparse diseaseome’) constructed using probabi-

listic graphical models (PGMs) within the Bayesian statistical framework. In a depression-

related subset of illnesses, we found that several pairwise associations of depression were

indirect and due to their comorbidities with obesity which had a strong direct connection

with depression. Furthermore, the direct comorbidities in a depression-related subset of

disorders, but not the pairwise associations, strongly mapped onto an underlying molecu-

lar network (‘interactome’) suggesting that this approach significantly improved corre-

spondence with molecular reality.

Introduction

It has long been recognised that medical disorders frequently co-occur in the same individual

[1] but the significance of comorbidity in revealing shared mechanisms of pathogenesis and

outcome is a more recent realisation [2–4]. For a given disease or for a focused disease group,

the exploration of comorbidities is largely hypothesis driven, together with the cautious selec-

tion and management of potential confounders [4–7]. The availablility of large health data sets

with full multimorbidity information provides an unprecedented opportunity to understand

the overall network of dependencies underpinning complex multimorbidities. These multivar-

iate dependencies in turn become new targets for drug development and other therapies for

multimorbid conditions, particularly relevant in aging societies [8–10]. However, the dissec-

tion of comorbidity relations is hindered by myriads of confounding factors [11–13]. Follow-

ing the characterization from Bagley et al. [12], epidemiological co-occurrences can arise

through different routes: 1) shared genetic background, 2) disease interactions (a disorder

directly causes another), 3) common environmental cause and 4) different biases (diagnosis

artifacts, selection biases). Earlier diseasome-wide works focused on the exploration of shared

genetic background (1) behind comorbidities [2, 3, 12, 13] and the underlying molecular net-

works [3, 14–18]. These works relied on pairwise comorbid relations partly controlled for

potential confounding factors such as age (for controlling with disease onset see e.g. [2], for

incidence-based control see e.g. [12]). However, these approaches do not address the issue of

apparent comorbidity mediated by intervening associations with other diseases; a problem of

indirect relations that is already attracting attention in other areas of network science [19].
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In this paper we demonstrate that probabilistic graphical models (PGMs) in the Bayesian

statistical framework provide a principled, unified solution for filtering such disease-mediated

indirect relations, for correcting for potential external confounders and for coping with limita-

tions and uncertainty of the data. Specifically, we construct sparse multimorbidity maps by

applying PGMs for all diseases, i.e. for the whole diseasome. To our knowledge, this method

has not been applied for the diseasome so far, despite the unique ability of PGMs to represent

maximally sparse models, demonstrated on, for example genomic datasets [19–25]. Our disea-

some-wide evaluations show that this approach efficiently scores and discriminates direct and

disease-mediated indirect comorbidity relations and has resulted in a loss of more than 80% of

comorbidity relations from prevailing pairwise methods.

We made a more detailed investigation of BDMMs in the subset of psychiatric and meta-

bolic disorders of the diseaseome. We focused on depression, which is a common psychiatric

disorder with a complex neurobiological and psychosocial background [26, 27], with approx-

imately 10% prevalence worldwide, and according to forecasts depression will be the largest

contributor to the disease burden in the middle- and high-income countries by 2030 accord-

ing to the World Health Organization [28–30]. Many epidemiologic studies have reported

high comorbidity between mental illnesses [5, 31], which was partly explained by shared her-

itability between psychiatric disorders [32, 33]. Less is known about the complex biopsycho-

social mechanisms which underlie associations between somatic and common psychiatric

disorders: depression frequently co-occurs with a wide range of somatic disorders, for exam-

ple with migraine [34], with other disorders causing chronic pain [35, 36], and with cardio-

metabolic syndromes [37]. It has been also demonstrated that patients with depression have

increased number of diagnosed disorders compared to non-depressed patients [5, 38] and

depression worsens the treatment outcome of the comorbid conditions [39] and is an inde-

pendent predictor of increased mortality rate [40, 41]. Therefore besides the exploration of

further comorbidities of depression, it is equally important to discriminate its comorbidities

as direct and indirect comorbidities. Such discrimination could reveal more specific patho-

physiological subgroups of this heterogeneous condition and thus transform the power of

genetic and epidemiological studies to advance precision medicine in psychiatry and meta-

bolic disorders.

We also evaluated the correspondence of BDMMs with molecular-level measures and rela-

tions, such as genetic overlap and the interactome-based association score for a depression-

related subset of diseases. Focusing on depression we identified a direct multimorbid neigh-

bourhood and confirmed that direct comorbidities correspond to direct relationships in the

molecular interactome.

Results

We used a subsample of 117,392 subjects from the large-scale cohort of the UK Biobank

resource (http://www.ukbiobank.ac.uk/) in which the presence or absence of lifetime depres-

sion had been established. In the analysis we used 247 diseases with sex and age information,

for the construction of this dataset DUKB, see Materials and methods. At the diseasome level,

we computed and cross-compared pairwise comorbidity measures and measures of direct and

indirect comorbidity relations using a Bayesian systems-based approach. Focusing on depres-

sion, we calculated co-occurence based measures for comorbidities of depression using the lit-

erature and also logistic regression based measures for depression comorbidities using the

UKB data set DUKB. For a depression related subset of diseases, we also evaluated the corre-

spondence of the disease-disease relations with molecular-level measures, including genetic

overlap and the interactome-based association score. Fig 1 shows the outline of the applied
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Fig 1. Workflow of the evaluation. The analysed databases and applied methodologies. Solid lines show the route of the

data whereas dotted lines represent expert validation.

https://doi.org/10.1371/journal.pcbi.1005487.g001
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approaches and their main parameters. In the paper we use interchangeably disease, disorder

and morbidity.

To explore direct and indirect comorbidities, we used Bayesian networks (BN) in the Bayes-

ian model averaging framework [20, 21, 23–25, 42, 43]. In the resulting BDMM an undirected

edge denotes a pairwise ‘co=morbidity’ relation, which corresponds to the presence of an edge

in any orientation between the respective morbidities in the underlying BN. Thus a co=mor-

bidity relation represents direct, unmediated dependence between two disorders, which can-

not be blocked by other diseases (note that this undirected skeleton of a BN does not have the

d-separation based semantics and interpretability as dependency or independency map [43]).

An indirect comorbidity denotes a relationship without direct connection where one or more

diseases directly connect or confound the two disorders (see S1 Appendix) [13]. To quantita-

tively characterize the plausibility of direct and indirect comorbidity relations in this systems-

based approach, we used their respective a posteriori probabilities from Bayesian model aver-

aging. Fig 2 illustrates differences between pairwise and systems-based approaches to explore

multimorbidities on a restricted subset of diseases.

Finally, we also performed multiple analysis with depression as a target: we used text-min-

ing of relevant PubMed abstracts and PMC articles to summarize the known comorbid disor-

ders of depression based on co-occurrence measures, which were compared to data-based

measures, and we also investigated the effect of onset time of depression on the BDMMs

approach.

Comorbidities in the diseasome: Direct or indirect?

To explore the direct and indirect status of comorbidities in the diseasome and to investigate

the effect of filtering disease-mediated, indirect comorbidity relations by BDMMs, we com-

puted multiple pairwise measures. The prevailing non-systems based approaches usually use a

pairwise measure such as odds ratio (OR), Pearson’s correlation coefficient (F) or logistic

regression to determine the epidemiologic relationship of disorders [2, 3]. We computed these

most often used statistical descriptors of comorbidity for all the investigated diseases (see S2

Dataset for all computed pairwise measures for all possible disease pairs). We also computed

BDMMs and cross-compared with the prevailing pairwise approaches [3, 11, 12, 18]. The Fig 3

illustrates the sparsity of the direct (systems-based) map compared to a non-systems based net-

work over the diseasome. The BDMM approach resulted in 320 direct connections (BDMM

edge posterior > 0.95) whereas applying the χ2 independence test 1714 disorder-disorder rela-

tions have significant p-values with a threshold of 0.05 after Bonferroni correction.

We also investigated the sufficiency of the sample size on different approaches. Fig 4 shows

characteristics of the most significant results in each approaches. We transformed the different

scores to the [0, 1] interval to make them comparable (see Materials and methods). Descriptors

and statistics are available on the web (Co=MorNet: bioinformatics.mit.bme.hu/UKBNet-

works), also as an interactive tool to visualise networks of direct and mediated connections of

selected diseases.

The examination of the filtering capacity of the BDMM approach confirms that the BDMM

edge posteriors strongly differentiate the direct connections from the mediated ones, e.g.

there are only a few disease pairs which have a BDMM edge posterior between 0.05 and 0.95

(Fig 5). For the definition of BDMM edge and BDMM (structural) association relations see

Table S1 in S1 Appendix. On Fig 5, we mark the direct comorbid connections with high

BDMM edge posteriors (> 0.95) in red, showing that all of them have significant Bonferroni-

corrected χ2 p-values. Additionally, focusing on a subset of relations with BDMM edge poste-

rior less than 0.95, we examined the BDMM association posteriors versus the parametric
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Fig 2. A matrix, tree and network view of comorbid relations. Sparsity and correspondence of pairwise

associative measure of comorbidity and co=morbidity posteriors of the Bayesian direct multimorbidity maps

(BDMM) using three subsets (clusters) of disorders, namely metabolic syndromes (red), diseases of the

nervous system (blue) and mental and behavioural disorders (green), reported in the UK Biobank dataset.

Top figure a. shows the p-values of the comorbidity associations by χ2 test in purple as pairwise statistical

associations, while the posterior probabilities of co=morbidities derived from the BDMM are in gold below the

Bayesian filtering of the diseasome: Comorbidities of depression
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association (see Fig 6). It confirms that almost all such strongly significant parametric associa-

tion has high BDMM association posterior. Note, that relations with high BDMM edge poste-

rior have high BDMM association posteriors as well. Furthermore, Fig 6 also illustrates that

BDMM association posterior indicates many more structurally distant -presumably parametri-

cally weaker- associations which cannot be inferred by parametric association tests such as

Bonferroni-corrected χ2 p-values.

To evaluate the genetic relevance of direct versus indirect comorbidity relations, we

extended the epidemiological-level analysis with molecular-level approaches using a genetic

overlap [3] and the interactome-based separation score [16]. This analysis included depres-

sion, metabolic syndromes and hypertension, see Fig 7, S2 Fig and Table S3 in S1 Appendix.

The genetic overlap measures for comorbidities were computed based on manually

curated databases, using the DisGeNet [44] and NCBI PheGenI [45] (for details, see S1

Appendix, for a related earlier work, see [2]). The interactome-based connectivity/separation

scores for comorbidities were computed by the supplied method and data from Menche

et al. [16] (see S1 Appendix).

gray diagonal. Middle figure b. as intermediate step towards structural dependencies represents the

hierarchical clustering of diseases based on the pairwise associations (χ2 p-values as distances are used by

the Ward method to compute a hierarchical clustering) resulting three main clusters, which follows the

expected disease groups. Bottom figure c. represents the disease networks, where the gold edges show the

sparse co=morbidities in BDMM while the purple dashed lines show indirect links defined by pairwise

methods. We used the following abbreviations for the disease names: ANXIETY: anxiety/panic attacks, CTS:

carpal tunnel syndrome, CFS: chronic fatigue syndrome, DIAB EYE: diabetic eye disease, HEADACHES NM:

headaches (not migraine), HEAD INJ: head injury, HIGH CHOL: high cholesterol, BD: mania/bipolar disorder/

manic depression, MS: multiple sclerosis, NERVOUS BREAK: nervous breakdown, ONP: other neurological

problem, PD: Parkinson’s disease, PN: peripheral neuropathy, POLIO: polio/poliomyelitis, PN DEP: post-

natal depression, TGN: trigeminal neuralgia.

https://doi.org/10.1371/journal.pcbi.1005487.g002

Fig 3. Sparsity of Bayesian direct morbidity maps of multimorbidities over the diseasome. Figure A shows the network of disorders based on χ2

independence tests whereas figure B represents the sparser BDMM of the same disorders. The node color denotes the different high level ICD-10

categories of the different disorders. The node size is proportional to the prevalence of the diseases. The two gray nodes with multiple connections are sex

and age.

https://doi.org/10.1371/journal.pcbi.1005487.g003
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Comorbidities and co=morbidities of depression

Beside of the investigation of direct and indirect status of comorbidities and the cross-compari-

son of pairwise and BDMM measures, we performed a more detailed medical evaluation of

BDMMs on psychiatric and metabolic disorders, especially on depression and its comorbidities.

Comorbidities of depression based on the scientific literature. We explored the rela-

tions between the set of 426 potential comorbid disorders of depression using shallow text-

Fig 4. The top 5000 connections based on different measures. The BDMM edge posteriors (purple) together with the transformed connection values

(odds ratios: red, risk ratios: blue and χ2 p-values: green). Dashed lines show the cut-off thresholds for the different measures. The given values show the

original OR, RR and χ2 p-values.

https://doi.org/10.1371/journal.pcbi.1005487.g004

Bayesian filtering of the diseasome: Comorbidities of depression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005487 June 23, 2017 8 / 23

https://doi.org/10.1371/journal.pcbi.1005487.g004
https://doi.org/10.1371/journal.pcbi.1005487


mining methods with 2 different corpora: relevant PubMed abstracts (http://www.ncbi.nlm.

nih.gov/pubmed) and PMC articles(http://www.ncbi.nlm.nih.gov/pmc/). The co-occurring

disease pairs with depression, defined by MeSH terms for major depressive disorder (see

Materials and methods), are listed in S1 Dataset. As expected, the well-known psychiatric

Fig 5. The scatterplot of BDMM posteriors together with transformed Bonferroni-corrected χ2 p-values. The different colors show the connections

which are significant by both methods (red), significant only based on parametric association (green) and not significant (blue). For the BDMM we used a

threshold of 0.95 whereas for the χ2 test a 0.05 threshold after Bonferroni-correction was applied. The density plots are scaled to 1 separately.

https://doi.org/10.1371/journal.pcbi.1005487.g005

Bayesian filtering of the diseasome: Comorbidities of depression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005487 June 23, 2017 9 / 23

http://www.ncbi.nlm.nih.gov/pubmed
http://www.ncbi.nlm.nih.gov/pubmed
http://www.ncbi.nlm.nih.gov/pmc/
https://doi.org/10.1371/journal.pcbi.1005487.g005
https://doi.org/10.1371/journal.pcbi.1005487


comorbidities of depression, such as bipolar disorder, schizophrenia and anxiety disorders

showed the highest rank in both corpora. Regarding metabolic disorders, diabetes mellitus

ranked highest, followed by obesity. The top ranks of somatic comorbid disorders included

neurodegenerative disorders, dementia, fibromyalgia, chronic fatigue, Parkinson’s disease,

Fig 6. The BDMM structural association and the transformed χ2 p-values. Disease-disease connections shown with less than the 0.95 BDMM edge

posterior. Green dots represents the connections significant by the χ2 independence test (p-value<0.05 after Bonferroni correction), whereas blue dots

denotes the remaining connections.

https://doi.org/10.1371/journal.pcbi.1005487.g006
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and migraine (for full list, see S1 Dataset). In addition, cerebral and cardiovascular disorders

(e.g. heart disease, hypertension) ranked high in the list of disorders based on co-occurrence

with depression.

Comorbidities of depression using non-systems based methods. Pairwise methods,

identified anxiety and other psychiatric conditions as the strongest comorbidities in line with

the literature (schizophrenia n = 94 and dementia n = 17 were too infrequent to be included in

this analysis). These disorders were followed by fibromyalgia, and migraine similarly to the

text-mining results. Cardiovascular (e.g. hypertension) and metabolic disorders (e.g. obesity,

high cholesterol, and diabetes) were also identified as comorbid disorders with depression. To

focus on the factors influencing our target disorder depression, we also applied logistic regres-

sion without interactions as a standard epidemiologic tool. S3 Dataset contains the coefficients

and p-values of the significant disorders corresponding the UK Biobank dataset. There were

many similarities with the pairwise χ2 method but whereas obesity and high cholesterol were

associated to depression, diabetes or other cardiovascular disorders were not. This suggests

that logistic regression may exclude mediated comorbidities (e.g. cardiovascular disorders may

seem comorbid with depression because obesity and high cholesterol independently increase

the risk of both depression and cardiovascular disorders). Painful disorders such as osteoar-

thritis, spondylitis, and back problem showed significant influences on depression in the logis-

tic regression analysis, which are also frequently investigated conditions in association with

depression [35, 36].

Fig 7. Subnetworks of pairwise and systems-based relations from both epidemiological and molecular levels. Solid lines show

the systems-based relations: separation scores with negative values in red and BDMM Pr> 0.05 in green (for exact values see Table S3

in S1 Appendix. Note, that all of them except two relations have posteriors above 0.999). Dashed lines represent the pairwise associative

metrics: relative risk with 95% confidence interval excluding 1 in dark blue (for details see S2 Dataset) and genetic overlap with

hypergeometric distribution p-value below 0.05 in light blue.

https://doi.org/10.1371/journal.pcbi.1005487.g007

Bayesian filtering of the diseasome: Comorbidities of depression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005487 June 23, 2017 11 / 23

https://doi.org/10.1371/journal.pcbi.1005487.g007
https://doi.org/10.1371/journal.pcbi.1005487


Co=morbidities of depression using systems-based multimorbidity maps. BDMM of

depression can be seen in Fig 8, which shows the co=morbidities of depression and the medi-

ated comorbidities, namely which disorders are not directly comorbid with depression but

comorbid through another direct condition.

In line with the scientific literature and recent genetic studies, our results demonstrated

that anxiety related disorders (anxiety, panic attack, stress, nervous breakdown), and postnatal

depression are highly comorbid with depression (with posterior probability Pr = 0.99) suggest-

ing common biological background. We noted that mania/bipolar disorder/manic-depression

was not co=morbid with depression, suggesting distinct pathogenesis, but both were directly

associated with nervous breakdown. Although nervous breakdown is not a psychiatric diagno-

sis, lay people often refer to it when in the face of stressful situation they could not function

properly in everyday life due to excessive anxiety and depressive symptoms; it can be regarded

as an indication of their severity. Similar stable co=morbidities emerged between psychiatric

disorders when reported depression was replaced in the BDMM by a derived depression cate-

gory based on the Mental Health Questionnaire data [46] (see S1 Appendix and S3 Fig). Tak-

ing into account the severity of depression provided further evidence that mania/bipolar

disorder/manic-depression, nervous breakdown and fibromyalgia are co=morbidities with

severe recurrent depression [46], while obesity was co=morbid with recurrent moderate

depression. Note, that anxiety showed strong co=morbidity with all depression subcategories

(see S1 Appendix and S4 Fig).

Effect of onset time on co=morbidities of depression. To explore the effect of onset

time, we applied the same methodology on a filtered dataset, which excluded instances of dis-

eases that occurred after the onset of depression. Anxiety related disorders and postnatal

depression remained highly comorbid with depression (with posterior probability Pr = 0.99).

Fig 8. The Bayesian direct morbidity map around depression containing the neighbors of depression at

maximum distance of two. The thickness of lines denote the strength of the link for being a member of the

network above the cut-off threshold of posterior probability Pr = 0.05. Sex and age are not shown in the figure as

these nodes would bring along many nodes which are related to depression only through these. Colors indicate

higher level ICD-10 categories.

https://doi.org/10.1371/journal.pcbi.1005487.g008
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Obesity in the full dataset showed a firm (Pr = 0.99) comorbidity with depression regardless of

which depression definition was used (Fig 9 and S3 Fig). Although the time of onset of obesity

is unknown, we retained it as a variable preceding depression, and found similar posteriors in

both models suggesting its direct relevance for and possibly biological overlap with depression.

Interestingly, both high cholesterol and hypertension were indirectly associated with depres-

sion in the full analysis, but showed strong direct comorbidity with depression when occurring

before depression suggesting biological overlap in a subset of patients, although the effect of

environmental factors, such as lifestyle, diet or medication may further increase the risk of

depression in this subpopulation. Regarding diabetes and type 2 diabetes our results showed

that these are not co=morbid disorders with depression but more likely obesity, high choles-

terol, hypertension mediate their high co-occurrence with depression (Fig 9).

Another interesting cluster of comorbid disorders are irritable bowel syndrome (IBS), fibro-

myalgia (FM), chronic fatigue syndrome (CFS) and migraine; all of them showed strong link

with depression based on the text-mining data (S1 Dataset). The BDMM showed that they are

strongly co=morbid with depression in the full analysis but when the onset is before depression

these strong relationships were absent. (S5 Fig). The high posteriors in the full analysis, and

their sharp decrease in the restricted analysis may indicate that these disorders are heteroge-

neous themselves: in some subgroups of disorder the symptoms are part of the depression phe-

notype with high biological overlap but other subgroups maybe independent of depression or

adversities that non-specifically predispose to depression. Similar patterns emerged for insom-

nia, gastro-oesophageal reflux (gord) / gastric reflux, prolapsed disc/slipped disc, and gastritis/

gastric erosions suggesting that in some circumstances they are directly related to depression

but in others they are independent of depression (see web tool, Co=MorNet:bioinformatics.mit.

bme.hu/UKBNetworks). When we changed the depression definition to the one defined by low

mood and anhedonia, ignoring somatic symptoms [46], only chronic fatigue and fibromyalgia

showed co=morbidity with depression, especially with severe depression, suggesting that IBS,

migraine, and other above mentioned somatic disorders may have specific relevance for depres-

sion dominated by somatic symptoms (for further detail see S3 and S4 Figs and S1 Appendix).

Discussion

Large-scale cohort studies collecting life style, environmental, physiological, clinical and

molecular level data, provide unprecedented opportunity for understanding health, pre-

Fig 9. BDMM onset time dependence. BDMM of depression and metabolic disorders and hypertension. a: demonstrates co=morbidities with onset time

prior to depression, while b. showing the BDMM computed on the full data regardless of onset time.

https://doi.org/10.1371/journal.pcbi.1005487.g009
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disease states, multimorbid conditions and progressions, especially to use epidemilogical level

information to complement molecular level discoveries [2, 3, 8–13, 47]. However, the hypothe-

sis-free, omic level use of comorbidites is hindered by multiple factors, such as by errors and

biases in disease coding and collection of clinical information and by confounders like thera-

pies, drug consumption or paradoxically the shared genetic factors themselves. A further

imminent challenge is the presence of disease-mediated or disease-confounded comorbidity

relations, i.e. indirect with respect to the selected diseases. In network science, algebraic solu-

tions were proposed to attenuate indirect relations [19], but these solutions do not take into

account the complex system of probabilistic dependencies between morbidities. We proposed

to use probabilistic graphical models, specifically Bayesian networks to discriminate direct and

indirect relations, because their semantics perfectly captures this aspect [43, 48, 49]. Indeed,

the exact probabilistic treatment of a direct relation with respect to a given set of variables

relies on the practical assumption of stability [48, 50], less demanding than assumptions for a

causal interpretation [51].

Based on this probabilistic foundation of directness (“BDMM edge”), we constructed

BDMMs using a subsample from the UK Biobank cohort to make visible the essential relations

generating the multimorbidity patterns. We investigated BDMMs internally by comparing the

BDMM edge posteriors and the structurally implied associative relations (the BDMM struc-

tural association posteriors), we cross-compared BDMMs with wide-range of pairwise comor-

bidity measures, we compared BDMMs against genetic overlap and interactome-based

comorbidity scores. Additionally, we examined the comorbidity relations of psychiatric and

metabolic disorders, specifically for depression in BDMMs.

Co=morbidities versus structural and parametric associations

First of all, results indicate that the UK Biobank dataset is sufficiently large for the construction

of BDMMs for this variable set, as the BDMM edge posteriors are peaked at 0 and 1 (see upper

part in Fig 5), indeed, with the thresholds 0.05 and 0.95 we can efficiently separate the statisti-

cally significant comorbid relations to direct (co=morbid) and indirect relations. Notably,

BDMMs eliminated more than 80% of comorbidity relations as indirect ones (320 direct con-

nections from 1714 candidate relations). Interestingly, a recent work using a priori disease cat-

egories for restricting comorbidity relations, controlling for confounding with incidence

characteristics and using two independent data sets similarly reported nearly 90% elimination

ratio [12]. Note that all co=morbid connections were also confirmed by standard statistical

methods (the right-lower quadrant is empty in Fig 5), which implies the technical condition

that the distribution of the BDMM posteriors is stable [48–50]. In Fig 6 we further evaluated

the connections with significant Bonferroni-corrected χ2 p-values but below the 0.95 edge pos-

terior threshold. This shows that most of these connections have high BDMM structural asso-

ciation posterior, which suggest that BDMM indeed filtered mediated and confounded

relations. There are 31 connections which have a significant pairwise association score but no

structural association (BDDM structural association posterior < 0.1). These disorder pairs

rarely occur together in patients (mean co-occurrence:8.45, with standard deviation: 4.9, and

quantiles: 5, 7, 10.5 for the 25%, 50% and 75% respectively). In case of the χ2 test we applied

Yates’ continuity correction but for such weak connections even with the large UK Biobank

dataset the BDMM approach was not able to catch that weak dependency structure.

Co=morbidities: Shared genetics and the molecular interactome

Our results demonstrated that the interactome-based score provided similar maps as BDMM

co=morbid diseases, in sharp contrast to the associative genetic overlap scores which followed
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the pattern of the pairwise disease relative risk (see Fig 7, S2 Fig and Table S3 in S1 Appendix).

Note that the interactome-based score and co=morbidity are analogous as both use a systems-

based approach on different levels (molecular and epidemiologic level respectively). For

detailed description of the molecular level methods and results see S1 Appendix and [2, 16].

Psychiatric disorders as co=morbidities with depression

The high comorbidity between mood disorders and anxiety or stress related disorders is well

known, and twin studies suggested that these comorbidities originated mainly from shared

genetic risk factors [52, 53]. Our results showed another expected aspect, namely that this rela-

tionship is independent of the order of the onset of these disorders. This observation is in line

with a longitudinal study which showed that generalised anxiety disorder (GAD) and major

depressive disorder (MDD) are strongly comorbid with an equal probability of GAD or

MDD occurring first or simultaneously suggesting they might not be distinct disorders [54].

Although overlapping genetic risk factors for anxiety and depression have not yet been identi-

fied, common genetic vulnerability has been found for other comorbid psychiatric disorders

[32, 33, 55]. Our BDMM further indicate strong and stable co=morbidity between depression,

anxiety, stress, postnatal depression and nervous breakdown, pointing toward interactome-

level overlaps; this reinforces the need to find potential common biological mechanisms [56].

Multimorbidity pattern of metabolic disorders and hypertension with

depression

Epidemiologic studies repeatedly report high comorbidity between depression and metabolic

disorders [57], depression and diabetes [58], depression and cardiovascular disorders [37],

depression and hypertension [59, 60], and depression and obesity [61, 62]. However, there

have been several contradictory results, and this suggests a more complex relationship. Indeed,

recent GWAS results found no shared genetic risk between these disorders and depression

[55]. Nevertheless, based on the UK Biobank cohort data, obesity was co=morbid with depres-

sion while cardiovascular disorders, hypertension, high cholesterol and diabetes, including

type 2 diabetes were only indirectly related to depression. When we excluded occurrences after

the onset of depression the direct relationship between obesity and depression remained as

expected but entirely new links with high posterior probability emerged suggesting a strong

relationship between the consequences of metabolic syndromes and depression. Studies of the

genetic relationship between obesity and depression suggest that atypical depression, charac-

terised by increase in appetite and weight, is associated with genetic risk factors and polygenic

risk scores of increased BMI and triglycerides, while typical depression, with decreased appe-

tite and weight, show more similarities with other psychiatric disorders [63, 64]. Thus, in line

with our results comorbid obesity and metabolic disorders may identify a specific subtype of

depression with a distinct biological background. Caution is required in inferring shared biol-

ogy for co=morbid disorders given our current lack of knowledge about relevant GxE interac-

tions. Although metabolic disorders are only co=morbid with depression when they precede

it, a variety of non-biological associations of mediators may be at play. We cannot currently

exclude the possibility that lifestyle factors, such as diet, physical activity and stress, or medica-

tion used to treat hypertension, hypercholesterolaemia and obesity may contribute to the later

development of depression [65]. As a specific example, a previous study demonstrated that

current psychological distress amplified the effect of genetic risk of high BMI [66]. Patients

with increased genetic risk to become overweight showed worse physical outcome (higher

BMI), and quite probably more comorbid psychological symptoms, when life stress was pres-

ent. Furthermore, it has been reported that statins, drugs with cholesterol-lowering effect, have
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antidepressant effect in patients with comorbid depression and coronary artery disease while

the same drugs can have pro-depressive effect or no effect on depression when comorbidities

and depression subtypes were not taken into account [67].

Multimorbidity pattern of IBS, FM, CFS and migraine with depression

Migraine [34], IBS [68], FM [69], and CFS [70] are highly comorbid with depression based on

epidemiologic studies. It is therefore puzzling that they involve different etiological mecha-

nisms. In addition, their symptoms often overlap making it difficult to apply diagnostic catego-

ries. We found that these disorders were not relevant when they occurred before depression

but were highly co=morbid in the full analysis. The probable explanation is that in general,

these disorders are related to consequences of depression and only specific subtypes of these

disorders can be expected to have causal relations, e.g. shared biological background with

depression. For example, a genetic risk score analysis demonstrated that migraine with comor-

bid depression was more genetically related to depression than to pure migraine, which sug-

gests that migraine might develop as a consequence of different polygenic backgrounds [71].

Similarly, a large general population cohort study confirmed that FM, CFS and IBS increase

the odds of depression and anxiety but that most patients who suffer from FM, CFS and IBS

have no mood or anxiety disorder [72].

Limitations

One of the main limitations is that all disorders were self-reported, although trained nurses

evaluated and corrected all entries during face-to-face interviews. The second one is that the

applied treatments or medications were not included in the analysis which could highlight

comorbidities due to the side effect of treatments. We will address this problem in follow-up

studies. Note that we only used a subset of the UK Biobank dataset selecting those participants

who filled out the Mental Health Questionnaire and provided online dietary information,

which may introduce confounding through selection bias. However, limiting our study to this

subpopulation enabled us to test different definitions of depression and will allow us to con-

nect this comorbidity network to relevant environmental risk factors.

Conclusion

The use of large-scale health data sets, such as the UK Biobank dataset hold the promise of

complementing and guiding the molecular level research of complex diseases. Adopting an

intermediary approach between statistical association analysis and causal discovery we investi-

gated the use of Bayesian networks in the Bayesian model averaging framework to explore

direct probabilistic relations with respect to a given set of variables, i.e. to eliminate confound-

ers and mediatory effects by a systems-based approach.

We demonstrated the applicability of BDMMs, especially their principled capability of dis-

criminating direct and indirect comorbidities. In summary, PGMs offer maximally sparse

dependency models and utilize the omic nature of the epidemiologic data jointly modelling all

the morbidities; while the Bayesian approach through posteriors provides an explicit represen-

tation for the uncertainties in a dataset. Thus the Bayesian direct morbidity maps provide

sparse, systems-based, omic-wide perspectives.

From a clinical perspective, our results also highlight that the direct and indirect subtypes

of comorbidities support a finer biological interpretation, namely an interactome-based

detailed interpretation using molecular mechanisms corresponding to direct relations,

whereas genetic overlap using associative gene sets may only reflect indirect comorbidities. In

addition, re-running the analysis by including only instances of disorders which preceded
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depression, we delineated comorbid disorders of depression with more refined causal roles

that could specify subgroups of depressed patients with more homogenous background.

The investigation of Bayesian direct morbidity maps also demonstrated, that even large-

scale datasets such as UK Biobank, are still limited for non-ambiguous identification of com-

plex dependency patterns such as multimorbidities [73]. However, the applied Bayesian statis-

tical framework offers an automated, normative solution for the multiple hypothesis testing

problem and the application of probabilistic graphical models in the Bayesian framework sup-

ports the versatile post-processing of the results and their efficient communication and shar-

ing. The results of our research highlight the advantages of Bayesian systems-based modelling,

which could be vital to cope with the growing heterogeneity of new health data sets containing

full personal genetic information with high dimensional data about lifestyle, environmental

factors and sequential decisions on drug therapies [8, 74].

Materials and methods

Databases

In the present study we used the UK Biobank (http://www.ukbiobank.ac.uk/ and [75] cohort

where subjects’ chronic illness history together with onset age were ascertained by trained

nurses during face-to-face interviews and were processed by experts resulting in 525 different

disease categories. The investigated subset in this study consisted of 117,392 participants

(female: 64,320; male: 53,072) who provided the extended Mental Health Questionnaire

(http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100060) and the online diet questionnaire

data together with the extensive baseline dataset. We used the UK Biobank original disease cat-

egories with at least 1‰ prevalence in the selected subset, which resulted in n = 247 diseases

including depression (n = 6040). In addition, we coded obesity in cases where BMI were equal

or greater than 30kg/m2, for further analyses. For statistical analysis, sex was included into the

data set, and age was binned into 3 equal frequency categories with thresholds 60 and 68 years.

Then we applied the different pairwise measures and logistic regression together with Bayesian

systems-based modelling to compare the models computed on these datasets (see below and in

S1 Appendix). To investigate the effect of disease onset, self-reported disease onset data was

used to filter the dataset. 6,040 patients affected by depression, provided onset data whose

comorbid illnesses were eliminated if they occurred after the onset of depression. After

removal of diseases with prevalence less than 1‰ the dataset contained 241 diseases. We

extended the dataset with sex, age and BMI-based obesity. The data were analysed using same

statistical methods as with the non-filtered dataset. To test the stability of comorbid relation-

ships with depression we also used an alternative depression definition instead of self-reported

depressive disorder. Depression and its severity was defined by the Mental Health Question-

naire data [46], for definition see S1 Appendix. These alternative depression categories were

analysed with Bayesian systems-based modelling.

Statistical methods

We applied text-mining and conventional statistical methods to explore comorbid relations,

see S1 Appendix. For these computations we used in-house written R scripts together with the

statistical programs included in the stats package of R [76]. To overcome the limitations of

these conventional methods, we applied a Bayesian network Markov Chain Monte Carlo

(BN-MCMC) method to explore the overall system of dependencies-independencies, visual-

ized as an undirected graph with weighted edges [20, 21, 23–25, 42]. The weighted edges

correspond the a posteriori probabilities (Pr) of direct, nonmediated “co=morbidity” relations,

the weights are in the [0, 1] interval and the higher values show stronger relationship. The
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systems-based approach using Bayesian networks prunes the indirect, mediated connections

between morbidities, thus resulting in a sparse co=morbidity map compared to pairwise asso-

ciation networks (for detailed description of the method and for further types of dependency

relations, see S1 Appendix and Table S1 in S1 Appendix).

Transformations. We transformed odds ratios, risk ratios and χ2 p-values to the [0, 1]

interval and we inverted the scale of χ2 p-values as follows.

Tðw2
pÞ ¼

�
log10ðw

2
pÞ

ldðpÞ� þ 1
if w2

p 6¼ 0

1 if w2
p ¼ 0;

ð1Þ

8
>><

>>:
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pi>0
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2
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depression indicator.

(TIF)

S4 Fig. Bayesian direct multimorbidity map (BDMM) using multivariate depression analy-

sis.

(TIF)

Bayesian filtering of the diseasome: Comorbidities of depression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005487 June 23, 2017 18 / 23

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005487.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005487.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005487.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005487.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005487.s005
https://doi.org/10.1371/journal.pcbi.1005487


S5 Fig. Bayesian direct multimorbidity map (BDMM) for depression, irritable bowel syn-

drome, chronic fatigue, fibromyalgia and migraine.

(TIF)

S1 Dataset. The results of text-mining for both corpuses, PMC and PubMed.

(XLSX)

S2 Dataset. The results of the classical statistical measures for all pairs of factors including

sex and age.

(XLSX)

S3 Dataset. Results of logistic regression.

(XLSX)

S4 Dataset. The Bayesian direct multimorbidity map (BDMM) results.

(XLSX)

Acknowledgments

This research has been conducted using the UK Biobank Resource under Application Number

1602.

Author Contributions

Conceptualization: BD GJ PA GB.

Data curation: PM PA GJ.

Formal analysis: PM PA BB.

Funding acquisition: BD GJ PA.

Investigation: PM PA BB.

Methodology: PM PA.

Project administration: GJ PA BD.

Software: PM PA.

Supervision: BD GB GJ PA.

Validation: GJ PA.

Visualization: PM PA GJ.

Writing – original draft: PM PA GJ.

Writing – review & editing: PM PA GJ BD BB GB.

References

1. Feinstein AR. The pre-therapeutic classification of co-morbidity in chronic disease. J Chronic Dis. 1970;

23(7):455–468. https://doi.org/10.1016/0021-9681(70)90054-8 PMID: 26309916

2. Rzhetsky A, Wajngurt D, Park N, Zheng T. Probing genetic overlap among complex human pheno-

types. Proc Natl Acad Sci USA. 2007; 104(28):11694–11699. https://doi.org/10.1073/pnas.

0704820104 PMID: 17609372

3. Hidalgo CA, Blumm N, Barabási AL, Christakis NA. A dynamic network approach for the study of

human phenotypes. PLoS Comput Biol. 2009; 5(4):e1000353. https://doi.org/10.1371/journal.pcbi.

1000353 PMID: 19360091

Bayesian filtering of the diseasome: Comorbidities of depression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005487 June 23, 2017 19 / 23

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005487.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005487.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005487.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005487.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005487.s010
https://doi.org/10.1016/0021-9681(70)90054-8
http://www.ncbi.nlm.nih.gov/pubmed/26309916
https://doi.org/10.1073/pnas.0704820104
https://doi.org/10.1073/pnas.0704820104
http://www.ncbi.nlm.nih.gov/pubmed/17609372
https://doi.org/10.1371/journal.pcbi.1000353
https://doi.org/10.1371/journal.pcbi.1000353
http://www.ncbi.nlm.nih.gov/pubmed/19360091
https://doi.org/10.1371/journal.pcbi.1005487


4. Krueger RF, Markon KE. Reinterpreting comorbidity: A model-based approach to understanding and

classifying psychopathology. Annu Rev Clin Psychol. 2006; 2:111. https://doi.org/10.1146/annurev.

clinpsy.2.022305.095213 PMID: 17716066

5. Smith DJ, McLean G, Martin D, Martin JL, Guthrie B, Gunn J, et al. Depression and multimorbidity: a

cross-sectional study of 1,751,841 patients in primary care. J Clin Psychiatry. 2014; 75(11):1,478–

1208.

6. Middeldorp C, Cath D, Van Dyck R, Boomsma D. The co-morbidity of anxiety and depression in the per-

spective of genetic epidemiology. A review of twin and family studies. Psychol Med. 2005; 35(05):611–

624. https://doi.org/10.1017/S003329170400412X PMID: 15918338
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