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Abstract

Resection of the bulk of a tumour often cannot eliminate all cancer cells, due to their infiltra-

tion into the surrounding healthy tissue. This may lead to recurrence of the tumour at a later

time. We use a reaction-diffusion equation based model of tumour growth to investigate how

the invasion front is delayed by resection, and how this depends on the density and behav-

iour of the remaining cancer cells. We show that the delay time is highly sensitive to qualita-

tive details of the proliferation dynamics of the cancer cell population. The typically assumed

logistic type proliferation leads to unrealistic results, predicting immediate recurrence. We

find that in glioblastoma cell cultures the cell proliferation rate is an increasing function of the

density at small cell densities. Our analysis suggests that cooperative behaviour of cancer

cells, analogous to the Allee effect in ecology, can play a critical role in determining the time

until tumour recurrence.

Author summary

Mathematical models of propagating fronts have been used to represent a wide variety of

biological phenomena from action potentials in neural cells to invasive species in ecology

and epidemic spreading. Here we show that when such models are used to predict the

effects of external perturbations the results can be very sensitive to certain details of the

local dynamics. For example, the post resection recurrence of tumour growth depends

strongly on the density dependence of the proliferation of cancer cells. This suggests that

targeting the cooperative behaviour of cancer cells could be an efficient strategy for delay-

ing the recurrence of diffuse aggressive brain tumours.
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Introduction

The growth of a malignant tumour is driven by the uncontrolled proliferation of cancer cells,

and their invasion into healthy tissue. While the primary therapy often involves the surgical

removal of the tumour, unfortunately, the surgery often leaves a small population of cancer

cells infiltrated into the surrounding tissue. After a remission period of variable duration, the

surviving cancer cells can initiate the recurrence of the disease. This is a particularly serious

concern for glioblastoma brain tumours characterised by a diffuse tumour boundary within a

complex, heterogeneous and relatively soft brain tissue [1, 2].

A major recent retrospective MRI study has shown that 77% of glioma patients relapsed

centrally within 2 cm of the original tumour mass, 18% patients relapsed more than 4 cm

from the original enhancement and 4% relapsed within the contralateral hemisphere

[3]. The median relapse time was 8 month for local relapses, and progressively longer for

distant relapses. The median time for contralateral relapses increased almost two-fold, to 15

months.

At the macroscopic level, invasive cancers with a diffuse boundary such as glioblastoma can

be described by mathematical models specifying the spatial and temporal changes in tumour

cell density [4–9]. Models of tumour invasion often utilise travelling front solutions of the

Fisher-Kolmogorov type reaction-diffusion equation [10–12]. Predictive quantitative models

of tumour growth have been proposed as a potential tool for patient specific computational

optimisation of treatment strategies such as localised radio- and combinatory chemotherapies

[13–19]. In combination with diagnostic imaging, such models aim to forecast the spatial and

temporal progression of the disease taking into account the heterogeneity of the tumour and

the tissue environment [13, 17].

To understand the dynamics that controls the initiation of recurrent tumour growth, in this

paper we investigate, using quantitative models, how surgical removal of the tumour affects its

delayed recurrence. In particular, we aim to identify key parameters of tumour cell populations

that determine how much the progression of cancer can be delayed by surgical resection. We

show that a density dependent proliferation of the cancer cells [20], particularly at low cell den-

sities, has a key impact on predicting the time until tumour recurrence.

Results

The model

We consider a population dynamics model of glioma invasion in which the population density

of cancer cells within a tissue is determined by the balance of proliferation, motility and cell

death. Tumour cells are known to engage in a rich variety of motility [21]. Yet, as we discuss

below, available experimental data suggest that at long time scales cancer cell movement is ran-

dom and well approximated as a diffusion process, similar to the behaviour observed in cell

cultures [22]. Thus, tumour spreading at a tissue scale is thought to be well described by a reac-

tion-diffusion equation of the form:

@C
@t
¼

@

@x
D
@C
@x

� �

þ CrðCÞ ð1Þ

where C(x, t) is the density of cancer cells at location x and time t. The diffusivity of the cells D
characterises their random motility, and the function r(C) describes the balance of the rate of

proliferation by cell division and cell death rate. In the simplest, and typically used, form of Eq

(1) the environment is steady and homogeneous (D and f are independent of x and t) and the
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proliferation term is the logistic function

rðCÞ ¼ r 1 �
C
K

� �

: ð2Þ

where ρ is the maximum population growth rate. Expression (2) assumes that, on average, the

balance of proliferation and death rates of cells, r(C), decreases with the cell density and van-

ishes when the density reaches the carrying capacity K. This behaviour reflects—in a simplistic

form—limitations of both biochemical resources and cell size as the cell density increases [13,

17, 23, 24].

Eq (1) with the logistic proliferation term (2) is the well known Fisher-Kolmogorov (FK)

equation. The FK equation has travelling front solutions of the form C(x, t) = C0(x − vt) where

v is the propagation velocity and C0 is the stationary population density profile of cancer cells,

as seen in a reference system co-moving with the front [25–27]. For sufficiently localised initial

conditions (e.g. with nonzero values restricted to a finite region) the asymptotic front speed is

2
ffiffiffiffiffiffiffi
Dr
p

and the characteristic front width is
ffiffiffiffiffiffiffiffiffi
D=r

p
.

Following the surgical intervention reactive gliosis appears at the site of surgery. In the

majority of the cases for a couple of months the resected area remains tissue free as evidenced

by follow-up imaging [28]. As such the cell spreading into this area can substantially be

delayed. Thus, in our model it is natural to represent tumour resection (or other localised pri-

mary treatments such as radiation therapy) by resetting cancer cell density C to zero in the

region where C is higher than a predefined detection threshold δ. Back-propagation of the

tumour into the area from which it was removed can be also prevented by no-flux boundary

conditions imposed at the contour of the threshold density. The modified cell density profile

is then used as initial condition for the same reaction-diffusion equation to generate the post-

resection dynamics in the altered spatial domain. We find that our results are quite insensitive

to whether or not the resected domain remains available for repopulation.

Numerical results: Logistic growth

Numerical solutions of Eq (1) with the logistic growth term (2) and resection are shown for a

one dimensional system in Fig 1. Surprisingly, we find that the resection does not lead to any

detectable delay of the propagation of the front: The post-resection front initiated by the trun-

cated, low cell density tail of the cancer cell distribution coincides with the unperturbed origi-

nal front (see also S1 Movie). This behaviour appears to be independent of model parameters

including the resection threshold δ.

To explain this counterintuitive behaviour we note that in the logistic proliferation term (2)

the cancer-free equilibrium state C = 0 corresponding to healthy tissue is linearly unstable.

Therefore the FK front is a so called “pulled front” [27, 29], where the dynamics of the low cell

density leading edge is not affected even by the complete removal of the population behind the

front. The complete absence of a delay in front propagation, however, questions the suitability

of FK equation to represent radical medical interventions, which are expected to delay the pro-

gression of cancer.

Glioblastoma cells exhibit a weak Allee effect in culture

Since after resection the density of cancer cells is low everywhere, the recurrence of the tumour

is mainly determined by the survival and proliferation of cancer cells at low cell densities. To

gain a qualitative insight into the density dependence of the cancer cell proliferation rate, we

performed a series of in vitro experiments.

Modelling cancer recurrence
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Glioblastoma cells were grown and imaged in sparse cultures for at least 4 days. Cultures

were seeded at low cell densities ranging from 3 to 100 cells/mm2, corresponding to an area

confluency (coverage) between 0.5 and 20% (see S3 and S4 Movies). We evaluated a time-lapse

image sequence s in terms of As(t), the total area covered by the cells as a function of time t
(Fig 2, see Methods for further details).

The growth rate bs(T) characterising the time period T� t� T + ΔT was obtained as a lin-

ear fit of the corresponding As(t) values:

AsðtÞ ¼ bsðTÞt þ const: ð3Þ

We have chosen the duration of the time period as ΔT = 30h, sufficiently short for the linear

approximation (3) to hold, and sufficiently long to detect slow changes in the area covered by

cells (Fig 2a).

The density-dependent average growth rate per cell, r(C) = f(C)/C, was obtained as

rðAÞ ¼ hbsðTÞ=AðTÞis;T:AsðTÞ�A ð4Þ

where the h. . .i average was calculated over parallel cultures s and time intervals for which the

initial As(T) coverage was sufficiently close to A.

Experimental results from two glioblastoma cell lines suggest that in the low density regime

the cell growth rate r(C) increases with the population density C while it decreases at larger

densities (Fig 2). This non-monotonous behaviour is in contrast with the logistic model which

assumes a monotonously decreasing growth rate. In ecology such behaviour is known as the

Fig 1. Space-time plot showing the numerical solution of the reaction-diffusion Eq (1) with the logistic growth term (2) in non-

dimensional form (ρ = 1, D = 1, K = 1). The initial condition is localised at x = 500 and resection is applied at t = 30 with a threshold δ = 0.1.

After the intervention the simulation is continued using the truncated cancer cell profile as initial condition. (left): The resected region is removed

from the domain by imposing no-flux boundary conditions. (right): The density is set to zero within the resected region, but back-propagation

remains possible.

https://doi.org/10.1371/journal.pcbi.1005818.g001
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Allee effect [30, 31], and can arise as a result of some sort of cooperative behaviour among

individuals that becomes less efficient at low population density. In cultures of cancer cells

such cooperative behaviour can likely arise due to autocrine growth factors, diffusive signalling

molecules produced and secreted by cells that enhance growth and proliferation of other cells

[32]. Mathematical and computational models of cellular mechanisms leading to the develop-

ment of Allee effect in the context of tumour growth has been described in recent studies [33,

34], and properties of travelling front solutions in a model of tumour invasion with strong

Allee effect was studied in [35].

Computational model with Allee effect

Motivated by our experimental observations of non-monotonous density-dependent survival

and proliferation of tumour cells, we replace the logistic growth rate (2) with a quadratic net

cell proliferation rate

rðCÞ ¼ r
C
K
þ b

� �

1 �
C
K

� �

: ð5Þ

Fig 2. Allee effect in glioblastoma cell cultures. A: U87 glioblastoma cells in culture, detected by our segmentation

algorithm (blue). (B): Confluency (area covered by cells) A as a function of culture time t in parallel cultures of the U87 cell

line seeded at various densities, specified in the plot. Each line represents an average of n = 12 microscopic fields of the

same culture. The standard error of the mean is indicated by the shaded areas. The dashed lines are linear fits over two 30

h long time periods, each starting at a confluency value of 20%. (C,D): Average growth rates r for various confluency

values A, for two glioblastoma cell lines, GBM1 (C) and U87 (D). To obtain each value r, we pooled data from three distinct

experiments, each monitoring 4 parallel culture dishes seeded at various densities. Thus, each r value incorporates data

from 40-100 microscopic fields.

https://doi.org/10.1371/journal.pcbi.1005818.g002
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We choose this functional form as being the simplest that describes a non-monotonous density

dependent proliferation. The Allee effect can be categorised by the sign of the parameter β as

“strong” when β< 0, or “weak” otherwise. In the case of strong Allee effect the spatially uni-

form population dynamics is bistable and there is a critical density CT = −βK below which the

growth rate is negative. For β> 0, the case of weak Allee effect, the cell reproduction rate

increases with cell density, but it is always positive and there is no critical survival density.

The existence of a minimal density required for the survival of cancer cells would imply

that the tumour can be eliminated completely if the resection threshold is sufficiently low

(δ< −βK). This is, however, very rare in the case of glioblastoma [36]—suggesting that this dis-

ease exhibits a weak Allee effect: 0� β� 1.

We used the cell proliferation function (5) and repeated the tumour growth and resection

simulations in one dimension (Fig 3). According to our expectations, in the modified model

the resection can indeed substantially delay the propagation of the tumour (see also S2 Movie).

Fig 4 shows the integral of cancer cell population density C(x, t) within the area outside the

resection, for different values of the resection threshold δ. Note, that after resection there is a

lag phase during which the total number of cancer cells is almost constant. The lag phase is fol-

lowed by a sharp transition to a linear increase indicating a front moving with constant speed.

From this graph we can determine the length of the remission period, τ, as a delay relative to

the original unperturbed front. The remission period thus increases substantially as the resec-

tion threshold is reduced.

The dependence of the remission period length τ on the resection threshold δ (Fig 5) is

qualitatively different depending on the type of Allee effect considered. In the case of strong

Allee effect, the delay time becomes infinite at a finite critical resection threshold. In the

Fig 3. Space-time plot, similar to Fig 1, obtained with Allee effect as described by the quadratic cell proliferation function (5). ρ = 1,

D = 1, K = 1, β = 0, δ = 0.1.

https://doi.org/10.1371/journal.pcbi.1005818.g003
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borderline case when β = 0 we find a power law behaviour where the delay is inversely propor-

tional to the square of the resection threshold. For weak Allee effect with β> 0 the remission

period length appears to follow a power law similar to the β = 0 case for larger values of the

threshold δ, and crosses into a logarithmic function when the resection threshold is low.

Fig 4. Total number of cancer cells as a function of time for different values of the resection threshold

δ (ρ = 1, D = 1, K = 1, β = 0). A rough estimate of the time unit based on the experimentally observed in vitro

proliferations rates is about 2–3 days. Note, that the case β = 0, shown in these simulations, gives an upper

limit of the delay time, for nonzero β the values can be significantly lower.

https://doi.org/10.1371/journal.pcbi.1005818.g004

Fig 5. The remission time τ caused by resecting the tumour as a function of the resection threshold δ for weak and strong Allee effects.

https://doi.org/10.1371/journal.pcbi.1005818.g005
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Theory

In order to explain the inverse quadratic power law dependence of the recurrence delay on the

resection threshold δ for the case β = 0, we look for approximate solution of Eq (1) using the

exponential tail [37] of the truncated front δ exp(−ax), where x> 0, a ¼
ffiffiffiffiffiffiffiffiffi
r=D

p
, as initial con-

dition after resection. Since we are considering the low density tail of the cancer cell distribu-

tion left from the resected tumour (C(x)/K� 1), we can neglect the limitation of growth due

to the finite carrying capacity. First we compare the relative magnitude of the diffusion and

proliferation terms right after resection by substituting the initial concentration into the Eq (1)

@C
@t
� dre� ax þ r

d
2

K
e� 2ax ð6Þ

From this we can see that if the resection threshold is small, δ/K� 1, then at this initial state

the diffusion term dominates over cell proliferation. This is also visible in the numerical

simulations, which show that the population density peak at the resection boundary quickly

decreases at the beginning as the cancer cell population is dispersed (S2 Movie).

Although the full diffusion-proliferation equation cannot be solved explicitly, we can use

this observation regarding the dominance of diffusion, and find an approximate solution valid

for the initial period of time, by neglecting the proliferation term. The solution of the diffusion

equation using the exponential post-resection profile as initial condition is

Cðx; tÞ ¼
d

2
1 � erf

ffiffiffiffiffi
rt
p
�

x
2
ffiffiffiffiffi
Dt
p

� �� �

e� axþrt: ð7Þ

For large t, that is relevant in the small resection threshold limit (δ! 0), the argument of

the error function is dominated by the first term, and using the asymptotic form of the com-

plementary error function 1 � erf ðxÞ � ð1=
ffiffiffi
p
p
Þe� x2

=x we obtain the following approxima-

tion:

Cðx; tÞ �
d

2
ffiffiffiffiffiffiffi
prt
p e

�

x2

4Dt : ð8Þ

In Eq (8) we recovered a Green’s function of the diffusion equation in which the total popu-

lation size remains constant.

Now we can use this approximate solution and substitute it back into the full diffusion-pro-

liferation equation, to compare again the relative magnitudes of the diffusion and proliferation

terms.

@C
@t
� D

d

2
ffiffiffiffiffiffiffi
prt
p e

�

x2

4Dt x2

4D2t2
�

1

2Dt

� �

þ
D2d

2

4Kpt
e
�

x2

4Dt x2

2D2t2

� �
ð9Þ

At the time when the contribution of cell proliferation becomes comparable to the diffusion

term, the purely diffusive approximation breaks down. At this point the proliferation of cancer

cells becomes non-negligible since diffusion is no longer efficient enough to disperse the can-

cer cell population to keep their density low at which reproduction is slow as imposed by the

Allee effect. This leads to a sudden rapid increase of total cell mass initiating tumour recur-

rence represented by a new propagating front. Thus we can use the time needed for the prolif-

eration term to reach the magnitude of the diffusion term as an estimate for the remission

time, τ. Using x = 0 as a reference point where the cancer cell density is maximal, and
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balancing the two terms at t = τ we obtain

1

2t

d

2
ffiffiffiffiffiffiffiffi
prt
p ¼ r

d

2
ffiffiffiffiffiffiffiffi
prt
p

d

2K ffiffiffiffiffiffiffiffi
prt
p

� �

ð10Þ

which leads to

t ¼
1

pr

K
d

� �2

; ð11Þ

in agreement with the numerically observed τ(δ) * δ−2 for the case β = 0 which represents an

upper limit for the finite recurrence time with weak Allee effect β> 0.

Discussion

We have shown that the model of tumour invasion based on logistic cell proliferation cannot

describe the delayed progression of cancer due to resection and therefore it may not describe

correctly the typical outcome of clinical interventions that substantially reduce population

density of tumour cells. We propose that the key element, that determines the time until

tumour recurrence, is the Allee effect, which results from positive cooperative behaviour of the

cancer cells.

The Allee effect at the level of a tumour cell population may reflect diverse processes at the

cellular level. A number of signalling pathways that include autocrine components, such as

TGFalpha/EGF/EGFR, PDGF/PDGFR, HGF/SF and CXCL12/CXCR4 ligand/receptor sys-

tems, have been identified in glioma and glioblastoma [32]. Thus, glioblastoma cells can both

produce the diffusive factor and respond to its presence with the appropriate receptors that

activate cell proliferation. In addition, interactions between tumour cells and the surrounding

stromal cells may also depend on the concentration of growth supportive paracrine factors

and thus on the local cell density [38]. Furthermore, the matrix remodelling capacity, includ-

ing the deposition of fibrillary collagen that promote glioma cell invasion, is also influenced by

the density of tumour cells [39]. Finally, multicellular spheroid models of tumour growth often

exhibit resistance against various treatment modalities [40].

Our mathematical model that includes the Allee effect provides the following insight into

the dynamics of the tumour cell population: After resection the proliferation of cancer cells is

very slow therefore their distribution is mainly determined by random motility which spreads

the cells into the low density regions faster than they could reproduce leading to progressively

lower densities. The process is eventually halted by the density distribution of the cells near the

resection boundary becoming almost uniform in space. Without a cell density gradient ran-

dom cell motility cannot further reduce cell density and the slow proliferation eventually

catches up and leads to the recurrence of the invasion front. In accord with this analysis, the

radiologically and histologically assessed cellularity, i.e. the density of tumour cells in the tis-

sue, is one of the most important histological prognostic factors in glioblastoma multiforme—

more predictive than the total tumour burden or proliferation index of the surgical specimen

[41–43]. A counterintuitive prediction of our analysis is that reduced cell motility would pro-

mote an earlier local recurrence of the disease. Experimentally, this hypothesis could be tested

by comparing the migratory activity of patient derived glioma cells and the time of recurrence

using a major glioblastoma cohort in order to decrease the impact of other potential confound-

ing factors like genetic background or extent of resection.

Glioblastoma cells are known to follow extracellular matrix rich structures, myelinated

tracks and tissue inhomogeneities such as blood vessels or white matter tracts (axon bundles).

However, only 20-30% of glioma recurrence is non-local (occurs at a distance greater than 2
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cm from the original tumor centroid) [3, 44]. Thus, remissions clearly involving directed cell

migration in great excess to local diffusivity happen, but our simple model representing cell

motility as a diffusive process deals with the majority of cases. While to the best of our knowl-

edge there is no single tracking data available for glioblastoma cells in situ or in brain slice

explants, in the latter experimental model cells often spread in a spatially isotropic pattern that

appears to be consistent with a diffusive spreading [45, 46]. Thus, while glioma motion may be

anisotropic and directed at sub-millimetre scales, the complexity of the brain tissue may result

in an approximate diffusive spreading at larger scales.

The diffusion term of Eq (1) may also incorporate density-dependent effects. The random

motility of cancer cells may also depend on the local cell density, hence affecting the diffusion

parameter D. When D vanishes for small population densities, the diffusive FK fronts are

replaced by compact fronts with a well defined boundary [47, 48]. Similarly, expansion of an

adhesive tumour mass without substantial random motility would be described by an advec-

tion term. Although, such generalisations are likely to be relevant for other malignancies, the

diffuse infiltrate characteristics of glioblastoma are best explained by a diffusive process with a

finite D at vanishing densities.

Recent improvements in imaging technology offer the promise of treatments specifically

optimised both for the individual patients and tumours at the specific locations. We demon-

strated that predictive models of tumour progression, necessary to evaluate and design such

treatments, must include the Allee effect of tumour cell population dynamics. In this paper we

considered a highly simplified one-dimensional model. In reality the strongly non-uniform tis-

sue environment distorts the shape of the tumour and influences the cell’s ability to migrate.

Although this will not modify the main qualitative observations regarding the relationship

between tumour recurrence time and the Allee effect, such inhomogeneities and tissue anisot-

ropies need to be taken into account when optimising treatment modalities in a patient spe-

cific manner. While surgery always aims to remove most of the tumour cells, our results

indicate that interfering with autocrine feedback regulation of growth control at low cell densi-

ties may effectively prolong remission after surgery. As areas with maximal cell densities (and

not the total tumour burden) determine remission time, radiotherapy optimisation must also

critically depend on the Allee effect.

Methods

Cell culture

Two human glioblastoma cell lines (U87 and GBM1) were investigated in this study. U87 is a

standard cell line from American Type Culture Collection (ATCC, HTB-14), GBM1 was estab-

lished from a giant cell variant of glioblastoma multiforme at the National Institute of Neuro-

surgery in Budapest, Hungary as described previously [22]. Cell lines were maintained and

studied in Dulbecco’s Modified Eagle Medium (DMEM, Lonza) containing L-glutamine, sup-

plemented with 10% fetal bovine serum (Invitrogen) and penicillin-streptomycin-amphoteri-

cin B (Lonza). Cells were grown in non-precoated culture dishes at 37˚C in a humidified, 5%

CO2, 95% air atmosphere. Confluent cultures were washed twice with PBS (Invitrogen) and

incubated with trypsin-EDTA (Sigma) to obtain cell suspensions. Cells were seeded in low

densities (3, 10, 30 cells/mm2) into 35 mm Petri dishes (Greiner).

Time lapse imaging

Time-lapse recordings of the cell cultures were performed on a computer-controlled Leica

DM IRB inverted microscope equipped with a Marzhauser SCAN-IM powered stage and a

10x N-PLAN objective with 0.25 numerical aperture and 17.6 mm working distance. The
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microscope was coupled to an Olympus DP70 colour CCD camera. Cell cultures were kept in

a stage-top mini incubator at 37˚C in humidified 5% CO2 atmosphere. Phase contrast images

were collected every 10 minutes from each microscopic field for durations up to 3-4 days.

Image analysis

Recorded phase-contrast images were analysed by segmentation and particle image velocime-

try (PIV) algorithms implemented in Octave and Python. To detect cell occupied area a global

threshold was applied to the local standard deviation of intensity on each image [49]. The code

used for segmentation and confluency calculation are available at http://github.com/aczirok/

cellconfluency.

Supporting information

S1 Movie. Movie showing the front propagation before and after resection using the logis-

tic proliferation term. Blue curve is the original unperturbed front and Red dashed curve

is the post-resection front. Note, that in this case the post-resection front coincides with the

unperturbed one, i.e. the front propagates without any delay. The parameters are D = 1, ρ = 1,

K = 1, the resection time is ts = 20 and resection threshold is δ = 0.1.

(AVI)

S2 Movie. Movie. Same as S1 Movie. except that the proliferation term is replaced with the

cubic function including the Allee effect (β = 0). In this case the resection is followed by a latent

remission period and the recurrent front is substantially delayed relative to the original front.

The parameters are D = 1, ρ = 1, K = 1, the resection time is ts = 70 and the resection threshold

is δ = 0.1.

(AVI)

S3 Movie. Movie. Segmented time-lapse phase-contrast image sequence of the U87 cell line.

(MP4)

S4 Movie. Movie. Segmented time-lapse phase-contrast image sequence of the GBM1 cell line.

(MP4)
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