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Neighbours of cancer-related proteins have key influence on
pathogenesis and could increase the drug target space for
anticancer therapies
Dezső Módos1,2,3,4, Krishna C. Bulusu5, Dávid Fazekas2,4, János Kubisch2, Johanne Brooks4,6,7, István Marczell8, Péter M. Szabó8,9,
Tibor Vellai2, Péter Csermely10, Katalin Lenti1, Andreas Bender5 and Tamás Korcsmáros 2,3,4

Even targeted chemotherapies against solid cancers show a moderate success increasing the need to novel targeting strategies. To
address this problem, we designed a systems-level approach investigating the neighbourhood of mutated or differentially
expressed cancer-related proteins in four major solid cancers (colon, breast, liver and lung). Using signalling and protein–protein
interaction network resources integrated with mutational and expression datasets, we analysed the properties of the direct and
indirect interactors (first and second neighbours) of cancer-related proteins, not found previously related to the given cancer type.
We found that first neighbours have at least as high degree, betweenness centrality and clustering coefficient as cancer-related
proteins themselves, indicating a previously unknown central network position. We identified a complementary strategy for
mutated and differentially expressed proteins, where the affect of differentially expressed proteins having smaller network
centrality is compensated with high centrality first neighbours. These first neighbours can be considered as key, so far hidden,
components in cancer rewiring, with similar importance as mutated proteins. These observations strikingly suggest targeting first
neighbours as a novel strategy for disrupting cancer-specific networks. Remarkably, our survey revealed 223 marketed drugs
already targeting first neighbour proteins but applied mostly outside oncology, providing a potential list for drug repurposing
against solid cancers. For the very central first neighbours, whose direct targeting would cause several side effects, we suggest a
cancer-mimicking strategy by targeting their interactors (second neighbours of cancer-related proteins, having a central protein
affecting position, similarly to the cancer-related proteins). Hence, we propose to include first neighbours to network medicine
based approaches for (but not limited to) anticancer therapies.
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INTRODUCTION
Cancer is increasingly being considered as a “systems” disease,
based on the observation that genetic changes and environ-
mental influence rewire cellular networks during carcinogenesis.1

Combinational classical chemotherapies, have been successfully
applied against fast proliferating haematological cancers, such as
acute myeloid or lymphoid leukaemia.2 However, chemotherapy
has only shown moderate effect against solid cancers like colon
cancer or non-small cell lung cancer.2 Hence, even today the most
effective therapeutic solution against solid cancers is in many
cases of surgery. Although the newest, targeted therapies of solid
cancer enhance patient survival, malignant cells often display fast
evolution, and thereby develop drug resistance.3 Therefore, to
achieve a higher success rate in curing solid cancers, new
therapeutic approaches are required, such as the identification
of suitable proteins that can serve as novel, alternative drug
targets for treatment. In the following two paragraphs, we
describe two sets of proteins that are in the major focus of

current anticancer research: proteins encoded by mutated genes,
and proteins having a differential expression in normal and
disease states.
The number of mutated genes, which are directly involved in

carcinogenesis, is very low compared to those encoded by the
whole genome. Vogelstein and his colleagues described 138 so
called driver genes,4 which are directly involved in cancer
progression. The Cancer Gene Census (CGC) database contains
547 such gene across various cancer types.5 Remarkably, few
driver genes having specific point mutations appear to be
sufficient to rewire signalling networks in cancer,1 which at the
same time shows that—at least from the mutational side—cancer
does not consist of an “infinite” number of different diseases, and
in many cases treatment options targeted against driver genes
might be transferred from one case to the next. Biological
knowledge and network-based approaches have been developed
to understand the mechanisms of driver gene influence. Pathway
analysis6–8 showed that most driver genes are part of central
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signalling pathways, like MAPK, TGF-β, JAK/STAT, Notch, Hedge-
hog and WNT,4,9 which are implicated in carcinogenesis, growth
and differentiation. However, in most cases, pathway analysis does
not explain why some pathway members are much more often
found to be mutated than others. To understand the selection
mechanism behind mutations, network-based studies were used
to estimate the importance of a mutated protein compared to
non-mutated ones in signalling and protein–protein interaction
networks.10–13 Proteins mutated in cancer were found having a
high number of interacting partners (i.e., a high degree of
connectivity), which indicates high local importance.10 Mutated
proteins are also often found in the centre of the network, in key
global positions, as quantified by the number of shortest paths
passing through them if all proteins are connected with each
other (i.e., they have high betweenness centrality; hereafter called
betweenness).11,12 Mutated proteins also have high clustering
coefficients, which means their neighbours are also neighbours of
each other.10,13 Moreover, neighbourhood analysis of mutated
proteins have been previously successfully used to predict novel
cancer-related genes.14,15 However, to the best of our knowledge,
no study has concentrated particularly on the topological
importance of first neighbours of mutated proteins in cancer,
and their usefulness as drug targets themselves.
The other frequently studied group of genes in cancer biology is

the set of differentially expressed genes (DEGs). Since microarray
and next generation sequencing data became widespread, an
increasing number of genes were found to differ in expression
between cancer systems and healthy cells, either by upregulation
or by downregulation.16,17 To find the most relevant DEGs for
disease occurrence and progression, one approach is to select
those DEGs that have the most central position in the net-
work.18,19 We note that these studies do not take into account the
interaction neighbourhood of DEG coded proteins if the
neighbour proteins have unchanged expression. Pathway analysis
is another approach to prioritize DEGs by identifying those DEGs
that have been annotated to function in cancer-related path-
ways.20 Although here the interactions of a DEG coded protein
provide the evidence for the pathway function, network and
pathway analysis based studies also do not consider the network
parameters or neighbourhood of proteins coded by DEGs. The
Cancer Genome Atlas (TCGA) and the International Cancer
Genome Consortium studies extended the scope of DEG analysis
by joint examination with mutated proteins.21 These studies were
successful to find different disease clusters in solid cancers.17,22

Nonetheless, these studies have not yet focused on the role of first
neighbours in cancer, other than that first neighbours could
connect cancer-related proteins.23

Prompted by the lack of a focused analysis of the neighbourhood
of cancer-related proteins, we compared the network features of
mutated genes and DEG coded proteins with their first neighbours.
We also aim to investigate whether these first neighbour proteins
could be considered as a potential set of novel anti-cancer drug
targets in particular in the area of solid cancers, which are in dire
need of new treatment modalities. To provide generalizable results,
we selected four solid cancer types with high mortality rate, namely
colon, breast, and hepatocellular carcinoma (HCC), as well as non-
small cell lung cancer (NSCLC). Given that the aim of this study was
to investigate general trends among first neighbours of cancer-
related proteins, all known subtypes of these cancers were included
in the analysis, listed in Supplementary Table 1. For each examined
cancer type, we then measured the network parameters of cancer-
related proteins and their first neighbours in multiple
protein–protein interaction and signalling network resources and
were able to show first neighbours have as high network centrality
parameters as cancer related proteins themselves. This led us to
evaluate the therapeutic applicability of the first neighbours in anti-
cancer treatment. To select the most relevant first neighbour
proteins for oncology, we suggest and provide examples for two

complementary strategies: (1) a drug target discovery approach
focusing specifically on the first neighbours of differentially
expressed proteins and presenting a network medicine-based
target selection approach; and (2) a drug repurposing approach
based on analysing existing drugs and compounds.

RESULTS
Identification of cancer-related proteins and their first neighbours
We considered a protein cancer-related, if it was mutated or had a
differential expression in cancer. We collected mutation and
expression data from the CGC5 and the Gene Expression Omnibus
(GEO)24 resources, respectively. We defined a protein differentially
expressed in a given tissue, if the corresponding mRNA was either
present only in normal tissue and absent in cancerous tissue, and
vice versa. After calculating the mean and standard deviation of
our datasets, we determined proteins with expression levels below
the mean minus the standard deviation as not expressed to
discretise the gene expression to an on/off value (see Methods for
details). By combining the lists of mutated and differentially
expressed genes, for each examined cancer type separately, we
defined a protein as cancer-related if (1) its coding gene was listed
in the CGC as mutated in the given cancer type, and/or (2) its
corresponding mRNA was found to be differentially expressed
between the control and cancer tissues. We constructed tissue-
specific networks from the differential expression data as well to
examine the network effect of differently expressed cancer-related
proteins. An interaction from a signalling or protein–protein
interaction network was valid if both interactors from the given
network were expressed in a given tissue, regardless it was normal
or cancer.
First neighbours of cancer-related proteins were defined as

proteins (1) directly and physically interacting with cancer-related
proteins in human interactomes and signalling networks accord-
ing the network databases used (see below); and (2) which were
not cancer-related proteins themselves. We also defined as
“unaffected” those proteins that are neither first neighbours of
cancer-related proteins, nor cancer-related proteins themselves in
the given cancer type. The cancer type specific analysis is
important as some proteins classified as unaffected in one cancer
type can be cancer-related in another cancer type. Accordingly, it
is worth distinguishing from the many unaffected proteins those
that have a directed interaction towards a first neighbour as they
have a similar position as a cancer-related protein. We termed
these distinctive proteins as influencer proteins.
For the interaction and network data we used three detailed

signalling network resources, SignaLink 2,25 Reactome,26 and a
cancer signalling network compiled by Cui et al.10, as well as two
more global protein-protein interaction (PPI) networks, namely the
manually curated HPRD,27 resource and the integrated dataset
comprising DIP,28 IntAct,29 and BioGrid.30 All these networks have
different compilation protocols and thereby provide partially
different information. We performed all analyses separately with
each network resource, to avoid the study and curation bias of
using a single resource and to thereby provide more general
conclusions from this work. We developed cancer-specific and
tissue-specific networks by combining expression datasets with
network information (see Methods for details). We listed the protein
classifications for each cancer type in Supplementary Table 2.

First neighbours of cancer-related proteins have high local and
global centrality in the network
We found cancer-related proteins in locally and globally central
positions of networks across each cancer types (measured as
degree and betweenness, respectively) in agreement with
previous studies.10–13,18,19 Throughout the main text, we show
the results for colon cancer from the SignaLink network resource.
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All results for the other three cancer types with the other four
network resources are shown in the supplementary materials.
Interestingly, most of the cancer-related proteins are not directly
interacting with each other, i.e., cancer-related proteins do not
form one giant component in the graph (Fig. 1a. and Supple-
mentary Table 3; Exact test p > 0.05). Meanwhile, first neighbours
of the cancer-related proteins form a larger giant component
within the network than expected by chance compared to the
same amount of randomly selected proteins in the same network
(Fig. 1a, Exact test p < 0.001; for the other cancer types and other
databases, see Supplementary Table 3; for the methodological
details, see Methods). Cancer-related proteins are connected to
each other by their first neighbours, and these first neighbours
also connect the unaffected proteins. In other words, to signal to
another cancer-related protein, and further parts of the signalling
network, cancer-related proteins make extensive use of their first
neighbours (Fig. 1a). Therefore, the rewiring effect (i.e., the
number of affected biological processes) of cancer-related
proteins is significantly higher, if we consider those processes
that they reach through their first neighbours (p < 0.001 Bernoulli
test; see Supplementary Table 4 and Methods for details). For
example, through their first neighbours, colon cancer-related
proteins affect important processes implicated in carcinogenesis,
such as angiogenesis, autophagy, and DNA repair that are not
direct functions of the cancer-related proteins themselves.
In a similar fashion as cancer-related proteins, their first

neighbours also have higher degree, higher betweenness and
higher clustering coefficient, compared to either the whole
network or to the proteins unaffected by cancer (p < 0.001 in
both cases, Wilcoxon rank sum test; Fig. 1b, Supplementary
Table 5). Remarkably, compared to colon cancer-related proteins,
first neighbours have higher degree (p < 0.05, Wilcoxon rank sum
test), similar betweenness and higher clustering coefficient (p <
0.05, Wilcoxon rank sum test). Likewise, we found similar
significant differences in the network topology parameters of first
neighbours in the other three cancer types (breast, HCC, NSCLC)
(Supplementary Fig. 1. and Supplementary Table 5). In addition,
examining the other four (signalling and PPI) network sources
provided similar results to those from the SignaLink network
(Supplementary Table 5, and Supplementary Fig. 2). There was
only one minor exception; in the Reactome network the clustering
coefficient was not found to be different between the first
neighbours and the unaffected proteins (Supplementary Fig. 2b),
due to the high number of protein complexes within this
database.26

We also measured the network centrality parameters in the
non-tissue specific (original) networks. We found similar significant
differences to those measured in tissue-specific networks,
indicating that not only in context specific networks, but in
molecular networks in general we can observe the differences of
the network parameters of cancer-related proteins and their first
neighbours.
Next we tested with a randomization method the robustness of

first neighbour selection (see Supplementary Method). Encoura-
gingly, we found that in all four cancer types, the “real” first
neighbours were listed as first neighbours in the randomly
generated set more than the unaffected proteins (p < 0.01,
Wilcoxon rank sum test; Supplementary Fig. 3). Similarly, in three
out of the four cancer types, the “real” first neighbours were found
as first neighbours in the randomly generated set more than the
cancer-related proteins (p < 0.05; Wilcoxon rank sum test; Supple-
mentary Fig. 3). The only exception was NSCLC, where the reason
for the non-significant difference was due to three NSCLC-related
proteins (RET, EGFR, PPARγ) having a high degree (i.e., many first
neighbours expressed in the lung). In the other cancer types, these
three proteins are not cancer-related but first neighbours or
unaffected proteins, except for PPARγ, which is cancer-related in
breast cancer. Thus, we confirmed that most of the identified first

neighbour proteins can be listed based solely on the given
network, and their list is independent of the initial set of cancer-
related proteins. This observation emphasizes the relevance of
integrating expression data with interaction networks to generate
cell and context specific networks for such analysis.

Mutated proteins directly, differentially expressed proteins
indirectly, through their first neighbours affect biological networks
Encouraged by the finding that first neighbours of cancer-related
proteins display a central network position, we investigated the
relation between the network topology parameter of a cancer-
related protein and its first neighbour proteins. From this analysis
we found that cancer-related proteins have two distinct topology
patterns both in signalling and PPI networks: Mutated proteins
have a higher or same degree, betweenness and clustering
coefficient parameters compared to their first neighbours, while
differentially expressed proteins have lower degree and between-
ness than their first neighbours (Fig. 2a–b. and Supplementary
Figs 4, 5; see Supplementary Table 6. for all detailed statistics).
Thus, the network position of cancer-related proteins and the
topological parameters of their first neighbours are both
associated with the alteration type (mutation or differential
expression) of the cancer-related protein. We could formalise this
observation as two diverse, complementary strategies in carcino-
genesis: proteins with high network topology parameters have a
high chance to be either mutated themselves, or to be indirectly
affected through differentially expressed proteins.
We conclude from using integrative network analysis of four

different cancer types in three signalling and two PPI databases
that first neighbours (1) have central positions in signalling and
PPI networks; (2) connect cancer-related proteins; (3) act like
“glue” of the cancerous network to form a giant component; (4)
have a potential role in transducing a malignant effect of a cancer-
related protein to alter cellular functions; and (5) allow differen-
tially expressed proteins to exert their effects more extensively.
Based on these observations, we now suggest a strategy for
disrupting cancer-specific interactomes and signalling networks
by targeting first neighbour proteins of cancer-related proteins,
especially the first neighbours of differentially expressed proteins.
In the following we will provide two complementary ways and

examples for selecting the most potent first neighbours of cancer-
related proteins as drug targets: (1) A drug target discovery
approach focusing on first neighbours of differentially expressed
proteins for selecting novel drug targets from scratch; and (2) A
drug repurposing approach based on analyzing existing drugs and
compounds targeting first neighbours of cancer-related proteins.

Selecting novel anticancer targets using first neighbours of
differentially expressed proteins
While (mutated) proteins with high network topology parameters
have been the focus of drug discovery efforts in the past,31 the
results from the current study suggest first neighbours of
differentially expressed proteins play a similarly central role in
cancer networks. Hence, we propose first neighbours of differen-
tially expressed proteins as a novel way of selecting anticancer
drug targets in the future.
In colon cancer, there are 82 proteins classified as first

neighbours of differentially expressed proteins. To evaluate the
oncological relevance of these proteins, and also to validate our
classification process, we searched for scientific publications
regarding colon cancer and these 82 first neighbour proteins.
We found and manually checked 1820 publications. The validation
part of our analysis can be found in the Supplementary Notes. As
for the oncological relevance analysis of these 82 proteins, we
found 38 proteins (46%) to have indirect (31 proteins) or, in
specific cases, direct (7 proteins) implications in carcinogenesis.
Thus, nearly half of the first neighbours of differentially expressed
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Fig. 1 First neighbours have a central position in cellular signalling networks. a The signalling network of colon cancer (interactions based on
the SignaLink resource). Node sizes are proportional to their betweenness centrality network parameter. Green nodes represent cancer-
related proteins, orange nodes are their first neighbours and grey nodes represent the proteins that do not belong to any of these categories
(here termed as “unaffected” proteins). Based on cancer-relatedness, sub-graphs have been created, with their major network properties
shown below them. Note the different ratio of nodes in the giant component, which is the largest connected graph. (Exact test *** p< 0.001) b
Distribution of network topological properties for each subgraph: degree (local centrality), betweenness centrality (global centrality), and
clustering coefficient (neighbourhood connectivity). White dots represent median values, boxes stretch from the 25th percentile to the 75th
percentile, and whiskers are twice the length of the boxes. Wilcoxon rank sum tests have been used for statistical testing, with the whole
network serving as control. The level of significance is represented using the following scale: *p< 0.05, **p< 0.01, ***p< 0.001
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proteins are already been known or suspected to be associated
with colon cancer, while the other half (44 proteins) could be
considered as novel genes potentially relevant for anticancer drug
target discovery.
However, as we pointed out previously, the first neighbours of

differentially expressed proteins often have high degree and/or
high betweenness parameters, thereby their pharmacological
targeting could produce more side effects.32,33 Accordingly, these
proteins are rarely found in any cancer type mutated or
differential expressed, probably because most of them (such as
SMAD3, GSK3β, ERK1) are multi-functional and have a central
position. Therefore, to pharmacologically target these central first
neighbours, we suggest a cancer mimicking, indirect approach:
the less central interactors of these first neighbours could serve as
reasonable drug targets. In other words, either a differentially
expressed protein itself or other interactors of the first neighbour
could affect the central first neighbour protein with fewer side
effects. This network based reasoning is in agreement with current
drug target selection attempts focusing on differentially expressed
proteins based only on expression analysis.34 Moreover, by using
interaction data we can also extend the target space with proteins
classified in the first part of the Result section as influencer
proteins: non cancer-related or first neighbour proteins that have
a directed interaction towards a first neighbour. By this network
position, influencer proteins could efficiently affect these first

neighbour proteins, and thereby, they could be relevant novel
anticancer drug targets (Fig. 3a). Note that by their definition
influencer proteins are two steps away from a differentially
expressed protein, thus, their identification requires the integra-
tion of expression data and interaction data.
In order to investigate current research efforts into the direction

proposed here, we investigated the potential list of such
influencer proteins in colon cancer. To avoid the interaction bias
of one resource and to provide more confident candidates, we
combined the five network resources we used in this study. We
listed the influencer proteins having at least one directed
interaction to a first neighbour of differentially expressed proteins
in colon cancer (Supplementary Table 7). Note that with this
approach influencer proteins having interaction to different first
neighbours in the different resources were also listed emphasizing
the relevance of these influencer proteins. We pointed out that
influencer proteins in colon cancer found in at least three different
resources could provide a reasonable number of proteins (197) for
further investigations (Fig. 3b, and Supplementary Fig. 6 for the
other cancer types). Supporting the oncological relevance of
influencer proteins, we found 128 drugs available against
influencer proteins and that is higher than expected by chance
(p < 0.001 χ2 test compared to rest of the proteins in the
databases). From the 128 drugs, 62 drugs are already under
clinical trial against cancer, and two (Dasatinib and Vandetanib)
are currently used in practice according to our literature survey.
Interestingly, half of these drugs are different ion channel
inhibitors, and most of them could be used in specific cancer
types. Such example is metformin, which causes energy deficiency
both in colon cancer cell lines and in prostate cancer35,36 by
targeting different NADH dehydrogenases (influencer proteins)
that are interacting with the Cytochrome b-c1 complex (first
neighbours of many cancer-related proteins). Interferon gamma
(IFN-γ) could also be an interesting treatment option targeting
influencer proteins, and as an immunotherapeutic agent, it is
under trial in colon cancer with combination of 5-fluoracil or
leucovirin.37 We present a detailed example with IFN-γ and its
receptor, IFN-γR below.

Examples of the cancer-mimicking strategy
By analyzing the list of all influencer proteins in all the four
examined cancer types, we highlight here examples for those
influencer proteins that were found in the highest number of
network resources. We present three specific cases in colon
cancer, and three other examples for each of the other three
cancer types we examined. IFN-γR a known drug target we found
as an influencer protein in four databases and FRAT1, a protein
listed as influencer in all five databases but not yet a drug target
demonstrate two different types of connectivity pattern in colon
cancer (Fig. 3c–d): (1) the influencer protein (IFN-γR) has the same
position as the cancer-related protein; (2) the influencer protein
(FRAT1) is affecting the cancer-related protein through the first
neighbour.
IFN-γR is a heterodimer of IFN-γR1 and IFN-γR2 that form the

receptor of the Interferon-γ cytokine, which is conventionally
associated with antitumor mechanisms during cell-mediated
adaptive immune responses.38 Another key cytokine receptor in
these immune responses is the IL10 receptor (IL10R), which is
highly expressed in the normal colon, but missing in colon cancer.
Both receptors are transducing their effect directly through JAK1
and STAT1 proteins38 that we found having central network
positions in the examined networks. In cancer, the lack of IL10R
decreases the production of antitumorigenic cytokines, and
thereby also the activity of the IFN-γ pathway. As IFN-γR is also
expressed in cancer and directly connected to the same first
neighbours (JAK1 and STAT1) as the cancer-related IL10R, IFN-γR
may substitute the role of IL10R upon IFN-γ treatment (Fig. 3c).

Fig. 2 Differences between first neighbours of mutated and
differentially expressed proteins in colon cancer. a,b Violin plot
showing the degree and betweenness centrality of mutated or
differentially expressed (DE) cancer-related (CR) proteins and their
respective first neighbours (FN) to unaffected proteins (UA) or to the
whole network in the signalling network of colon cancer (using the
SignaLink 2 database). White dots represent the median values.
Boxes stretch from the 25th percentile to the 75th percentile, while
the whiskers are twice the length of the boxes. Wilcoxon rank sum
tests was employed for the statistical analysis, with the unaffected
proteins (grey stars) and the whole colon cancer specific network
(red stars) as control. The level of significance is represented using
the following scale: *p< 0.05, **p< 0.01, ***p< 0.001. The plots
show that FN of DE proteins have higher network centralities than
their cancer-related counterparts, meanwhile mutated CR proteins
and their FN have similar centrality. Dark green—mutated CR
proteins, light green—DE cancer-related proteins; orange nodes
indicate the FN of mutated proteins, while light orange nodes are the
FNs of DE proteins
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Accordingly, IFN-γ has been used clinically to treat a variety of
malignancies.38 IFN-γ treatment is not always beneficial, and some
clinical trials against melanoma pointed out that signalling context
and tumour microenvironment factors could even turn IFN-γ to a
pro-inflammatory and thus a carcinogenic factor.38 Nevertheless,
studies agree that it could be a viable new therapeutic target for a
subset of malignancies.38

FRAT1 (Frequently Rearranged in Advanced T-cell lymphoma 1)
is a known proto-oncogene in some cancer types that promotes
the WNT signalling pathway by inhibiting GSK3β-mediated
phosphorylation of β-catenin.39,40 In normal colon, the expression
level of β-catenin is low, but its expression in cancer is high,
causing dedifferentiation. GSK3β, the first neighbour of β-catenin
is a central, highly multi-functional protein known as a key protein
difficult to inhibit without causing side effects and toxicity.41 In
glioblastoma and NSCLC cancer, previous studies found that the
decreased level of FRAT1 influences the GSK3β activity to
phosphorylate β-catenin and by that, inhibit the WNT path-
way.39,40 The role of FRAT1 in colon cancer is less known but
based on its function in other cancer types and its special
influencing position in colon cancer signalling, we point out its
relevance as a potential target in colon cancer therapy (Fig. 3d).
FRAT1 was one of the two proteins that have this special position
in all the five examined network sources (Fig. 3b). Nonetheless, a
recent in vitro study showed a somehow opposite role for FRAT1
in a metastasis suppressing pathway that highlight the impor-
tance of stage and context specific treatments as well as the need
for detailed and in vivo studies.42

DUSP3 (DUal Specificity protein Phosphatase 3) was the other
influencer protein that we found in all five databases for colon
cancer. DUSP3 is an influencer protein because it acts on ERK1 and
ERK2,43 two first neighbours of a colon cancer-related protein,
DUSP4, which is only expressed in colorectal cancer cells and not
in normal colon cells (Fig. 3e). DUSP3 and DUSP4 are both dual
specific phosphatases that dephosphorylate tyrosine and threo-
nine residues and inhibit ERK1 and ERK2. ERK1 and ERK2 are both
high network centrality first neighbours and they transduce cell
proliferative as well as pro-, and anti-apoptotic signals in a
coordinated manner in the MAPK pathway.44 The cancer-related
DUSP4 overexpression blocks ERK1/2 signalling, and this leads to
increased cell proliferation in colorectal cells.45 Expression of
DUSP3 is needed during intensive cell proliferation to inhibit the
active MAPK signal, and blocking DUSP3 by compounds leads to
cell cycle arrest.46,47 Therefore, DUSP3 could be a potential drug
target in colon cancer, similarly as it was proven in cervical cancer,
where targeting DUSP3 by small molecules led to decreased
proliferation.48 The concentration of compounds targeting DUSP3
was in nanomolar IC50 range (Fig. 3e), according to ChEMBL,
which makes them promising leads.48

In breast cancer, DUSP4 is not a cancer-related protein but it is
situated in an influencer position according to all five databases. In
breast, DUSP4 acts also on ERK1/2 along with a breast cancer-
related protein, DUSP6 (Fig. 4a, Supplementary Fig. 6). During the
progression of breast cancer, DUSP6 expression decreases
according to our and others data.49 Thus, during cancer
progression due to the less active DUSP6, ERK1/2 becomes more

active. Interestingly, DUSP4 alone can still limit the ERK1/2 over
activation leading to cancer stem cell formation and epithelial
mesenchymal transition (EMT) instead of cell-cycle arrest.50 The
inhibition of DUSP4 could prevent the EMT in breast cancer,50 as
well as causing cell cycle arrest, similarly as the inhibition of
DUSP3 in colorectal cancer.46 Therefore, DUSP4 inhibitors (such as
the CHEMBL 2146956 compound, which inhibits DUSP4 with an
IC50 of 2.29 μm) are under intensive experimental investigations.
In NSCLC, a Notch pathway modulator called LFNG (lunatic

fringe) was found as an influencer in all the five databases (Fig. 4b,
Supplementary Fig. 6). LFNG can effect the incoming signals of
both NOTCH1 and NOTCH2 receptors in a context dependent
manner.51 NOTCH2 is a first neighbour of the NSCLC-related
Midkine (MDK) protein, which is expressed only in NSCLC and not
in normal lung, and it is a known NSCLC biomarker.52 MDK can
also cause neuroblastoma through activating specifically
NOTCH2.53 LFNG acts like a double-edged sword: by promoting
both the Delta1 ligand activated NOTCH1/2 receptors and
decreasing the Jagged1 ligand activated NOTCH1 signalling, it
contributes to the normal and tumour suppressor effect of
NOTCH1.51 However, if the NOTCH2 specific MDK is expressed (as
in NSCLC) and acts together with LFNG, the overall role of LFNG is
shifted to promote cancer progression, mostly through a NOTCH2
dependent EMT.54 A drug selectively targeting the NOTCH2
activating function of LFNG may alter the malignant effect of MDK.
The application of such “edgetic” drugs has increased in recent
years, especially for difficult but promising drug targets (like
LFNG).31,55 This edgetic drug has the potential to promote and
maintain the tumour suppressive inhibition of LFNG on the
Jagged1-NOTCH1 signalling, while blocking the LFNG-NOTCH2
stimulatory interaction. This NOTCH1 dependent tumour suppres-
sive effect of LFNG was confirmed in pancreatic cancer supporting
that LFNG could be a potential target of specific anti-cancer
treatments.56

In HCC, we found SOCS3 (Suppressor Of Cytokine Signalling 3)
as an influencer of the JAK2 signalling in all five databases (Fig. 4c,
Supplementary Fig. 6). JAK2 is a first neighbour with high network
centrality parameters of the HCC-related IL7R protein. IL7R is
expressed in HCC but not in normal liver cells, and can activate
JAK2 to increase cell growth.57 SOCS3 is a negative regulator of
the JAK/STAT signalling pathway, and can inhibit JAK2 itself.58

Therefore, inhibition of JAK2 by SOCS3 could result in decreased
proliferation. A possible way to increase SOCS3 expression in HCC
would be using adenoviral infection of hepatocellular carcinoma
cells containing the SOCS3 gene. This was found to cause lysis in
hepatocellular carcinoma cell lines, but not in normal liver cells
indicating that further experimental studies on SOCS3 could
increase its future applicability as a cancer cell specific anti-cancer
agent.59

Drugs already targeting first neighbours of cancer-related
proteins: a drug repurposing approach
Alternatively, direct targeting of central proteins is a feasible
strategy in certain cases to destroy cancer cells, if the applied drug
does not lead to serious side-effects.31 Based on the presented

-
Fig. 3 The potential role and number of influencer proteins. a The model of action of an influencer protein, which directly affects a first
neighbour of a differentially expressed cancer-related protein. Network centrality differences are indicated by the size of the circles. Influencer
proteins having lower network centrality parameters could be better drug targets than those first neighbours that are too central and multi-
functional. b The number of influencer proteins of colon cancer in the overlap of the five network resources used in the current study. The
number of proteins that are already drug targets are shown in parenthesis. c–e The effect of three influencer proteins, IFN-γR, FRAT1 and
DUSP3 in the JAK/STAT, WNT and MAPK signalling, respectively, in normal, cancer and treated cases. At all three examples influencer proteins
could be better targets than the first neighbours of differentially expressed cancer-related proteins, which are too central proteins making
them difficult to pharmacologically target. Note the colour codes for the proteins: Green node: cancer-related, expressed protein; green empty
node: Cancer-related, not expressed protein; orange node: first neighbour protein; grey node: unaffected protein, influencer; arrow:
stimulation; blunted arrow: inhibition. For the sake of clarity we present the heterodimer of IFN-γR1 and IFN-γR2 as “IFN-γR”

Neighbours of cancer-related proteins
D Módos et al

7

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2017)  2 



importance of first neighbour proteins in cancer, these, often
central proteins, can also be considered as anticancer drug targets
if efficient drugs (or compounds) can target them without causing
major side-effects. Therefore, we investigated the currently used
drugs and existing compounds with activity against cancer-related
proteins and their first neighbours in the SignaLink network to
point out and select potential new anti-cancer drugs (Fig. 5a). For
this step we employed compound data from the ChEMBL
resource,60 and considered a compound to be a drug if it was
listed as an ‘approved drug’ according to ChEMBL (see Methods
for details). To provide information on the cancer specificity of the
targets, we also analysed the occurrence of cancer-related
proteins and their first neighbours in different cancer types
(Fig. 5b–c).
An analysis of approved drugs identified 223 drugs acting on

first neighbour proteins and 122 drugs targeting cancer-related

proteins (Fig. 5d–e). Importantly, from the 223 drugs against the
first neighbours, only 27 (12%) have currently annotated indica-
tions in cancer, based on the anatomical therapeutic chemical61

(ATC) classification (Supplementary Table 8a–d). Thus, the
remaining 196 drugs serve as an already existing pool for
repurposing existing drugs as novel anti-cancer agents. According
to our PubMed literature survey (see Methods), 83 of these 196
drugs are already under clinical trials as potential anticancer
agents. 60 of these potential anticancer drugs are glucocorticoid
steroids targeting the glucocorticoid receptor NR3C1, which is a
first neighbour of the cancer-related protein PPARG in breast
cancer and NSCLC. Pharmacological targeting of immune signal
modulating proteins such as NR3C1 and PPARG were found
efficient to decrease the lymphangitic metastasis formation of
breast cancer and NSCLC.62 Another relevant example is
tamoxifen, an anti-oestrogen targeting the oestrogen receptors,

Fig. 4 Influencer proteins in breast cancer, NSCLC and HCC. a–c Effect of three further influencer proteins, DUSP4, LFNG and SOCS3 in breast
cancer, non-small cell lung and in hepatocellular carcinoma, respectively. As in Fig. 3, we compared the probable effect of the influencer
proteins on cancer-related proteins in normal, cancer and treated cases. DUSP4 effects ERK signalling (a), LFNG stimulates the Notch pathway
(b), while SOCS3 is an inhibitor of the JAK/STAT pathway (c). Note the colour codes for the proteins: Green node: cancer-related, expressed
protein; green empty node: Cancer-related, not expressed protein; orange node: first neighbour protein; grey node: unaffected protein,
influencer; arrow: stimulation; blunted arrow: inhibition
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which are the first neighbours of the breast cancer-related HER2
(ERBB2) protein. Accordingly, tamoxifen is already being used as
an endocrine modulating treatment against breast cancer.34

Alternatively, a source for new anticancer drugs could be
compounds targeting first neighbour proteins that have not yet
been applied in oncology. The number of compounds in
ChEMBL60 against cancer-related proteins or first neighbours
thereof, below a bioactivity cut-off of 500 nM, is 30 times higher
than that of approved drugs against cancer-related proteins or
their first neighbours (Fig. 5a; Supplementary Table 9). Thus, these
compounds represent a large collection of potentially relevant

agents for anticancer treatments provided they will be safe and
efficient in preclinical, toxicology and clinical studies. Interestingly,
the ratio between compounds targeting cancer-related or first
neighbour proteins are the same as for the approved drugs
(p > 0.05 χ2 test; Fig. 5a). The targeting landscape of these
compounds is not homogenous as we observed cancer-specific
differences in their distribution (Fig. 5f,g). Remarkably, we found
675 compounds (9.9%) of the total number of compounds
targeting first neighbour proteins present in all four examined
cancer types. The ratio of these compounds is higher than
expected (p < 0001 Bernoulli test to the percentage of targeted
first neighbour proteins of all four cancer types), thereby giving a
rationale for their experimental testing across all areas (Fig. 5g;
Supplementary Table 10). To provide evidence for the applicability
of some of these compounds, we checked the literature, and for
those 33 compounds that have an exact name we found 10 of
them are already under clinical trial against various cancer types.
One such example is midostaurin, which targets multiple kinases,
including MAPK9. MAPK9 is a first neighbour of a colon cancer-
related protein, β-catenin, and inhibition of MAPK9 was found to
down-regulate β-catenin.63 Supporting the probably beneficial
affect of midostaurin, a previous in vitro study found that
midostaurin sensitized colon cancer cells against chemotherapeu-
tic agents.64

DISCUSSION
In this work we have shown that the first neighbours of cancer-
related proteins have at least as central a position in various
human signalling and PPI networks as the corresponding cancer-
related proteins themselves (Fig. 1, Supplementary Fig. 1,
Supplementary Table 5). Except for few direct connections,
cancer-related proteins are connected through their first neigh-
bours (Supplementary Table 3), and they can affect more Gene
Ontology biological processes via their first neighbours than alone
(Supplementary Table 4).
When we examined signalling systems in cancer, we found two

distinct strategies how mutations and differentially expressed
genes affect the network. Firstly, mutated proteins have higher or
similar network centralities such as degree or betweenness,
compared to those of their first neighbours. Secondly, differen-
tially expressed proteins have lower network parameters than
their first neighbours. Thus, mutated cancer-related proteins
appear to exert a more direct effect onto the cellular signalling
and PPI networks, whereas the differentially expressed proteins
may (also) exert their effects indirectly via their first neighbours
(Fig. 2). This dichotomy points out the importance of an indirect
influence on proteins whose altered function is required during

Fig. 5 Number of proteins involved in a particular cancer, as well as
drugs and compounds acting on cancer-related and their first
neighbour proteins. a, Stacked columns show the number of
proteins involved in a particular cancer, as well as the number of
drugs and compounds acting on cancer-related proteins and their
first neighbours, respectively. All stacked columns were compared to
the cancer-related/all proteins ratio (Bernoulli test: p< 0.001).
Focusing on first neighbours could provide a twofold increase of
testable drugs and compounds for anticancer therapy. b–g The
venn diagrams show the distribution of available drugs and
compounds against the different cancer types. The colours
represent each examined cancer type: pink standing for breast, blue
for NSCLC, brown for HCC and tan for colon cancer. b The
distribution of cancer-related proteins. c, The distribution of first
neighbour proteins. d, The distribution of drugs against cancer-
related proteins. e, The distribution of drugs against first neighbour
proteins. f, The distribution of compounds against cancer-related
proteins. g, The distribution of compounds against first neighbour
proteins
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carcinogenesis but are too essential to be mutated (i.e., mutation
of their encoding genes could decrease the viability of cancer
cells). Interestingly, differentially expressed proteins can influence
these central proteins in a tissue and context specific way, without
interfering with all the functions of the central protein.65 The idea
that central nodes of a network are often influenced by their
neighbours is supported also by two recent studies on a fish
community network and a 14 million people phone call net-
work.66,67 By analysing these biological and social networks, the
authors point out the role of so called influential nodes that are
directly connected to high degree nodes of the network.
Current strategies in oncology mainly target mutated cancer-

related proteins themselves. However, given the two strategies of
cells to drive cancer elucidated in this work, we now highlighted
the option to select first neighbours of differentially expressed
proteins as drug targets. There are fewer drugs currently on the
market, on a per protein basis, against first neighbours than
against cancer-related proteins themselves; however the total
number of drugs targeting first neighbours outnumbers those
targeting cancer-related proteins (223 vs. 122 drugs, Fig. 5). The
presented approach provides a twofold increase of testable drugs
and compounds for anticancer therapy (Fig. 5a). Nonetheless, not
all first neighbours can be used as drug targets, and not all drugs
targeting a first neighbour could be efficient anti-cancer agents
due to the complexity of the signalling network, the biochemical
properties of the targets, and the highly central role of some of
the first neighbours. Thus, proper selection is needed, for which
we showed two complementary approaches to select the most
suitable first neighbours: (1) mimicking the strategy employed by
carcinogenesis and selecting those (non cancer-related) proteins
that directly influence first neighbours of differentially expressed
proteins having too central a position to be targeted directly, and
(2) finding existing drugs and compounds targeting first
neighbours in a drug repurposing setting. The two proposed
strategies require further experimental analysis in a context
(cancer) specific manner due to the biological complexity of both
cancerous processes and signalling networks.
In our study, we examined four different types of solid cancers

and employed five different and independent network resources,
to show a general phenomenon. The above conclusions hold
across the datasets and annotations we have used. Nevertheless,
the presented study has its limitations. In particular, the definition
of cancer-related proteins in this work covered mutated and
differentially expressed proteins, while not taking into account
copy number variation and epigenetic (e.g., methylation) data. We
used the widely accepted CGC as a collection of cancer type
specific cancer-causing mutation; however, CGC does not contain
mutations that could contribute to cancer progression without
cause cancer directly.68 The expression data used to define
differentially expressed proteins in this work were generated by
microarray studies, and thus, recently produced RNAseq and
protein chip datasets were not considered. This may have
introduced a methodological bias. However, we think this bias
would be minor, since the number of microarrays we have
employed was rather large, comprising a total of 1558 arrays. To
validate our external dataset based classification process, with an
extensive literature search, checking 1820 papers, we analysed 82
proteins classified as first neighbours of cancer-related proteins in
colon cancer, and found only 7 proteins (8.5%) that could have
been classified as cancer-related if their properties have been
listed correctly in the applied mutation and expression datasets
(Supplementary Notes). Therefore, we consider the applied
datasets well curated and their coverage appropriate for such a
systems-level analysis.
Our study focused on cancer type specific carcinogenic

alterations and due to the lack of sufficient amount of data, we
could not take cancer heterogeneity (i.e., cell-cell differences
within a cancer type) into account. As for the network annotations

we have used, we only considered PPI and signalling interactions,
and not regulatory connections via transcription factors and
microRNAs. Although these data are also available in the SignaLink
2 database,25 it is lacking in other network resources, thereby
making the comparison of results rather difficult. Also the
available cancer-specific expression datasets for miRNAs and data
on active transcriptional processes are limited. Although tumour
microenvironment and inter-cellular communication between
different cancer cells and other cell types, such as fibroblasts are
important in carcinogenesis, most of the available molecular
interaction data is intracellular. Given those reasons, we in this
work focused on the PPI and signalling level within a cancer cell,
as here we have substantially more data from different sources
available, thereby allowing us to obtain conclusions, which appear
to hold more generally (and which are independent on one
particular annotation).
That cancer-related proteins share significant characteristics

from the network perspective has been found originally by earlier
studies10–13 and most of those findings could be reproduced here.
The only exception contrary to previous studies69,70 is that here
cancer-related proteins did not form a connected graph. There are
two explanations for this apparent discrepancy; on the one hand,
we applied a much stricter definition to select cancer-related
proteins, and on the other hand all of the networks we used were
tissue-specific, which was not the case in previous studies. As a
supporting example for the need of tissue specific studies,
previously in glioblastoma first neighbours was found to act like
linkers of the network allowing cancer-related proteins to affect
more biological processes.71 We extended this observation to four
other solid cancer types. The applicability of interaction data to
extend the set of disease-related genes was already successfully
applied in previous studies.14,15 A recent analysis focusing on the
network modules of disease-related genes (diseasomes) identified
potential disease genes by using various network data.69

Compared to this diseaseome study,69 our approach focused only
on the direct physical interactors of cancer-related proteins, and
did not extend the scope based on regulatory connections and the
module structure of the network. By selecting specific interaction
data and simpler measurements of the network, the presented
study straightforwardly points out cancer-specific key proteins, not
listed before based solely on mutation and differential expression
screens.
In the field of graph theory, it is known that randomly selecting

nodes in a graph and then looking for their first neighbours result
in identifying high degree and high betweenness nodes.72

Accordingly, we found the same in our study by selecting
cancer-related proteins and checking the network parameters of
their first neighbours (Supplementary Table 5). Interestingly, most
of these first neighbours were also found in a randomization test
when we randomly selected a set of proteins and looked for their
first neighbours (Supplementary Fig. 3). Therefore, to classify a
protein as a first neighbour is independent of the original list of
cancer-related proteins, and depends mostly on the network
topology. Surprisingly, this phenomenon has never been analysed
and presented before as a systems-level feature of carcinogenesis.
Thus, in the current study we connected a general graph-theory
phenomena with actual cancer and drug discovery related
problems.
In conclusion, with five different networks and in four cancer

types we have shown that first neighbour proteins are at least as
central locally and globally (i.e., have similar degree and
betweenness) as the cancer-related proteins themselves. While
mutated proteins in central positions may have a more direct
effect on the cellular network, differentially expressed proteins,
which mostly localize to less central positions but often next to a
major protein, appear to impact the network more extensively via
these first neighbours. This observation opens up new strategies
for target selection, and hence, anticancer drug discovery.
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METHODS
Cancer type
We selected four different solid cancer types (colon, non-small cell lung,
breast and hepatocellular carcinoma). As our aim was to indicate general
tissue specific carcinogenic properties, we used all the known subtypes of
these cancers, including (1) hyper mutated and non-hypermutated colon
cancers; (2) lung adenocarcinomas, large cell carcinomas, and squamous
cell carcinomas (3) HER2 positive, basal, luminal A and luminal B breast
cancers; and (4) hepatitis B or hepatitis C, cirrhosis or other agent causing
hepatocellular carcinoma data. We did not distinguish between left sided
and right sided colon cancer to provide a more general feature for this
cancer type.

Mutation data
The CGC,5 database was used to retrieve tissue specific mutation data of
the four different kind cancer we used (Downloaded: 15 January 2015). The
keywords we searched for are listed in the Supplementary Table 1 ordered
by cancer type. Entrez genes were mapped to Uniprot accessions (ACs)
with the UniProt mapping service.73

Microarray data
For the expression data, we extracted all available Affymetrix HGU133
plus2 chip microarray datasets from GEO,24 web resource, for the four
selected cancer types, if normal tissue controls were also available
(downloaded in August, 2014). The microarray studies we used for this
study are listed in Supplementary Table 11. We renormalized the chip
reads with the Robust multi-array average method.74 All chips were
normalized to each other. After that, the probe sets were matched to
UniProt ACs, using the probe set showing the highest level of expression in
case more than one mapped to the same ID. We used these expression
values to determine the expressed genes for each network in each normal
tissue and each cancer type.

Network resources
We used three signalling network resources for the analysis: the SignaLink
2 signalling network resource,25 the Reactome database,26 and the
signalling network from the study by Cui et al. 2007.10 In addition, we
used two PPI networks: The manually curated HPRD database,27 and a
combined network of a more diverse and more up-to-date set of resources:
IntAct,3 DIP,28 and BioGRID.30 For SignaLink 2, where predicted and
integrated information is also available, we used only the manually curated
pathway data, which is fully independent from the other sources. All
databases were downloaded on 27 January 2015. We mapped the protein
identifiers to UniProt ACs with the Uniprot mapping service.73 It allowed
the merging of the three resources. We used only reviewed UniProt ACs
(Swissprot). If there was multiple Swissprot ACs for one protein, we kept
them all. Proteins that were not mapped to such an accession have been
discarded. We have not used other big integrated PPI resources, such as
STRING, as most of the resources we used here are present in STRING as
well.75 Thus, analyzing the different sources separately provides more
information on the different origin of data.

Tissue and cancer-specific networks
Using the collected expression data, and the different signalling and PPI
databases, we constructed the tissue specific healthy and cancerous
signalling and PPI networks. After calculating the mean and standard
deviation of expression per cancer, we defined that proteins are
considered not expressed if their mRNA expression levels were below
the mean minus the standard deviation in the given network. We
considered a protein differentially expressed in a given tissue, if the
corresponding mRNA was either present only in normal tissue and absent
in cancerous tissue, or other way around. Thus, simple overexpression of
otherwise normally expressed genes were not considered to select only
the outstanding expressional differences. In this way, our analysis was
more sensitive to the genes having lower expression. Interactions between
proteins were considered if both interacting proteins were present in
either healthy or cancerous tissue. In this way we got a tissue-specific
network, where we can see the network effect of cancer-related differently
expressed proteins.

First neighbour proteins
First neighbours of cancer-related proteins were defined as proteins (1)
directly and physically interacting with cancer-related proteins (according
the network databases used, see below), and (2) which were not cancer-
related protein themselves. Thus, if a cancer-related protein was also first
neighbour of another cancer-related protein it was considered only as
cancer-related protein to avoid the overlap and allow the analysis of the
clear first neighbours that have not been related to the given cancer
before.

Gene ontology analysis
The gene ontology (GO) analysis aim was to determine, whether the
cancer related proteins could reach more processes with their first
neighbours, than expected. Gene Ontology information (gene_association.
goa_human) was downloaded from Gene Ontology website (on 2 June
2015). Only biological processes (BP) were considered. The cancer-related
proteins were annotated first, then the first neighbours, which got only
those GO BPs that were not annotated before to a cancer protein. This way
we could focus on the added functions from first neighbour proteins. After
that, we measured with Binomial test whether first neighbours have more
GO BPs than expected based on their ratio from the network. This
approach is stricter than considering all GO BPs that were annotated to
both cancer-related and first neighbour proteins.

Giant component analysis
We used exact statistics to determine the giant components percentage.
We perturbed the nodes annotation 1000 times and calculated the giant
component ratio. After that we used a Z score based outlier statistical test
to determine the data’s significance.

Network topology parameters
We measured three major network parameters for each node (proteins): (1)
degree, which is the number of its interactions; (2) betweenness centrality,
which is another importance measure that is equal to the number of
shortest paths from all nodes to all others that pass through the node of
interest, and (3) clustering coefficient, which measures how the neighbours
of the node of interest are also connected to each other (form a cluster).
We used the Igraph,76 Python plugin to calculate the parameters for

each network. Edges in all networks are presented without weight, and
self-loops have been removed. Though some of the signalling networks
contained direction for an interaction, due to the lack of general
comparisons, we measured the network parameters without taking
direction into account. We measured the parameters in the non-tissue
specific, original networks as well.

Randomization analysis
We investigated that the first neighbour proteins central role remains if we
randomly selected proteins for our analyses. For 100 times, in the cancer
type specific networks of SignaLink, we randomly selected the same
number of proteins as the original set of cancer-related proteins contained.
Then, for all 100 cases in each cancer type, we listed the first neighbour
interactors of the randomly selected proteins. Finally, we measured the
occurrence of each protein in the network as first neighbour and
compared this list with the previously identified, “real” list of first
neighbours.

Drug and compound analysis
Data on drugs and compounds were downloaded from the ChEMBL
Database77 version 20. We considered a compound as drug if it had been
subjected to Phase 4 clinical tests according to ChEMBL. We used those
compounds, which are targeting proteins in SignaLink database. We have
implemented a relatively strict bioactivity cut-off of 500nM (IC50, Ki, Kd)
during our filtering process to identify these compounds, which indicates
good activity with a strong potential for therapeutic applications.
Importantly, these compounds could provide opportunities for structure/
scaffold similarity studies to identify a recurring sub-structure, the
knowledge from which could be utilized in structure/fragment-based
drug designing studies. Drug indications have been classified according to
the ATC database.61
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Literature mining methods
We used Biopython78 to query PubMed and download the abstracts of the
articles. We searched for the drug or compound name (used in ChEMBL)
plus “cancer” and “treatment” as further keywords. We limited our PubMed
search for clinical trials.

Statistics
Wilcoxon rank-sum test and Kolmogorov-Smirnov tests have been con-
ducted for nonparametric hypothesis testing. Throughout the text, only
Wilcoxon rank-sum test results were presented, as Kolmogorov–Smirnov
tests results have appeared to be concordant. The results of all statistics can
be found in the supplementary tables. The whole network was used as
control, except when noted. We used Binomial tests to compare to a given
percentage. If it is not mentioned otherwise, the compared ratio is first
neighbour proteins to all proteins. We used the Numpy and SciPy packages
for Python for statistical analysis.79

Other programs
For creating the network figures, version 3.1 of Cytoscape80 was used.
Violin plots have been made with the vioplot R package,81 while
supplementary boxplots have been constructed with the help of the
matplotlib python package.82
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