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Key Points

• Combining flow cytometry
and high-performance mass
spectrometry enables
phosphoproteomic analysis of
rare blood cell populations.

• ARHGAP25
dephosphorylation augments
activity and promotes blood
stem and progenitor cell
mobilization by enhancing
CXCL12 and Rac signaling.

Protein phosphorylation is a central mechanism of signal transduction that both positively

and negatively regulates protein function. Large-scale studies of the dynamic phosphory-

lation states of cell signaling systems have been applied extensively in cell lines and

whole tissues to reveal critical regulatory networks, and candidate-based evaluations of

phosphorylation in rare cell populationshavealsobeen informative.However, applicationof

comprehensive profiling technologies to adult stem cell and progenitor populations has

been challenging, due in large part to the scarcity of such cells in adult tissues. Here, we

combine multicolor flow cytometry with highly efficient 3-dimensional high performance

liquid chromatography/mass spectrometry to enable quantitative phosphoproteomic anal-

ysis from 200 000 highly purified primary mouse hematopoietic stem and progenitor cells

(HSPCs). Using this platform, we identify ARHGAP25 as a novel regulator of HSPC

mobilization and demonstrate that ARHGAP25 phosphorylation at serine 363 is an

importantmodulatorof its function.Ourapproachprovidesarobustplatformfor large-scale

phosphoproteomic analyses performedwith limited numbers of rare progenitor cells. Data

from our study comprises a new resource for understanding the molecular signaling

networks that underlie hematopoietic stemcellmobilization. (Blood. 2016;128(11):1465-1474)

Introduction

Hematopoietic stem cells (HSCs) are capable of self-regeneration and
differentiation to provide the full complement of hematopoietic cells
required during an organism’s lifetime. These cells are also the
functional units in bonemarrow (BM) transplantation, commonly used
as treatment of hematopoietic malignancies. HSCs are exceedingly
rare, which has placed technical limitations on comprehensive analyses
of their molecular and biochemical properties. Such analyses have
historically been limited to nucleic acid analyses, including genomic,
epigenetic, and transcriptional profiling,1-6 and although such ap-
proaches are clearly informative and have revealed key determinants of
HSC fate and function, messenger RNA levels often correlate poorly
with protein levels and provide no information on posttranslational
modification,7,8 which is often critical for regulating protein function.
Although targeted, candidate-based proteomic evaluation of hemato-
poietic stem and progenitor cells (HSPCs) has been accomplished,9-11

such approaches cannot support the identification of as yet unknown
pathways and targets important in HSPC biology and disease.
Interestingly, a recent study using mass spectrometry (MS) to compare

the proteomes of HSCs and more mature multipotent progenitor cells
identified only 47 differentially represented proteins,12 suggesting that
differences in self-renewal potential between stemcells and progenitors
may be effected by only a handful of proteins, or that protein activation
state, rather than expression level, is critical in establishing the differ-
ential properties of these primitive hematopoietic precursors. Such
differences in protein activation state may be particularly important in
cellular state changes in response to physiological stimuli, such as those
induced in HSPCs by pharmacologic mobilization.

Because phosphorylation is the dominant activity modifying
posttranslational modification in HSPCs,13,14 we sought to test this
hypothesis by developing a unique MS-based phosphoproteomic
screening platform to profile activated signaling networks in primary
HSPCs. Our platform uses flow cytometry to isolate highly purified
primary mouse HSPCs, followed by online 3-dimensional (3-D)
reversed-phase, strong anion exchange, reversed-phase (RP-SAX-RP)
liquid chromatography separation of derived tryptic peptides, which is
directly coupled to tandem MS. This system is capable of quantifying
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over 12 000 unique phosphopeptide sequences from 200 000 sorted
mouseBMHSPCs, representing a significant technical advance over
previously published reports in the stem cell field.12,15 By comparing
resting BM HSPCs to pharmacologically mobilized HSPCs, we
identified 178 differentially phosphorylated proteins of potential
importance for HSPC mobilization. Among these targets, we vali-
dated ARHGAP25, a recently described GTPase activating protein
(GAP) of the smallGTPaseRas-relatedC3 botulinum toxin substrate
1 (Rac1),16,17 as an important regulator ofHSPCmobilizationwhose
function is modulated by phosphorylation. Moreover, we showed
that phosphorylation of ARHGAP25 on serine 363 (S363) inhibits
its ability to catalyze Rac-GTP hydrolysis, and that deletion of
ARHGAP25 in Arhgap25 knockout mice augments chemotaxis of
HSPCs to CXCL12, which is a Rac-dependent process. Taken to-
gether, these results establish our approach as a robust and powerful
bioanalytical platform to discover new and important regulators of
HSPC biology.

Methods

Pharmacologic mobilization

Mice were housed in barrier facilities at the Joslin Diabetes Center and Harvard
School of Public Health, and were cared for according to Institutional Animal
Care andUseCommittee protocols of those institutions. ForHSPCmobilization,
mice were treated with cyclophosphamide (Cy) (Bristol-Myers Squibb, New
York, NY) on d–1 and received 4 subsequent daily doses of granulocyte colony-
stimulating factor (G-CSF) (Amgen, Thousand Oaks, CA), as described.18

Resting Lin2Sca-11c-Kit1 (LSK) HSPCs were isolated from the bones of
unmanipulated mice. Mobilized HSPCs were isolated from spleens of mice
16 hours after the 4th dose of G-CSF.

Flow cytometric analysis

Hematopoietic cells were stained with directly conjugated or biotinylated an-
tibodies followed by fluorophore-conjugated streptavidin, then analyzed or
sorted on a BD LSR II or BD Aria II (Becton Dickinson, East Rutherford, NJ).
Data were analyzed using FloJo software (Tree Star, Ashland, OR). For a listing
of the antibodies, see supplemental Methods, available on the BloodWeb site.

Sample processing for proteomics

Fluorescence-activated cell sorted samples were centrifuged and resuspended
in lysis buffer (7.2 M guanidine HCl [GuHCl] with 100 mM ammonium
bicarbonate), and thenflash frozenat280°C.After thawing, cellswere incubated
for 10 minutes at room temperature to allow additional lysis/denaturation, and
mixtures were spiked with 5 mcg carrier bovine serum albumin. Proteins were
reducedwith 10mMDithiothreitol (30minutes at 56°C) and then alkylatedwith
22.5mM iodoacetamide (30minutes at room temperature, protected from light).
After dilution to 1 M GuHCl with 100 mM ammonium bicarbonate, proteins
were digested overnight with 10 mcg trypsin (Promega, Madison, WI). After
digestion, peptide samples were acidified with 10% trifluoroacetic acid, desalted
usingC18-embedded 96-well plates (mElution plate;Waters,Milford,MA), and
dried by vacuum centrifugation. Samples were resolubilized in 100 mL of 70%
ethyl alcohol/30% 0.5 M triethylammonium bicarbonate buffer, added to 1 unit
of Tandem Mass Tag reagent (Thermo Fisher Scientific) dissolved in 40 mL
of anhydrous acetonitrile (Sigma-Aldrich), and incubated for 1 hour at room
temperature. Reactions were acidified, combined, and dried by vacuum
centrifugation. Labeled peptides were desalted as described previously and
phosphopeptides enriched by Fe31-nitrilotriacetate (NTA) immobilized metal
affinity chromatography (IMAC),19 except that the elution buffer consisted of
1:20 ammonia/waterwith 50mMGuHCl, 0.5mMEDTA, and 50 fmol/mL [glu-1]
fibrinopeptide B and angiotensin I.

3-D RP-SAX-RP–MS platform

Enriched phosphopeptides were analyzed by 3-D RP-SAX-RP as described,19

with modifications. The first and second dimension columns consisted of
6 cm 5 mm XBridge C18 and 6 cm POROS HQ, respectively, packed into
3603 150mmfused silica. Peptideswere separated into 9 fractions by eluting
peptides from the first and second dimension columns using acetonitrile and
ammonium formate (pH5 10). The elution sequence used 15%, 20%, 25%,
and 35% acetonitrile with 230 mM ammonium formate, with each organic
step followed by an injection of 675 mM ammonium formate to elute acidic
peptides from the second dimension SAXcolumn (8 total fractions). Finally, a
90% acetonitrile and 900 mM ammonium formate, 10% acetic acid elution
step was used to create a final elution fraction. After each fraction step,
peptideswere elutedwith a high performance liquid chromatography gradient
(OrbitrapVelos: 5% to 35%B in 60minutes;Orbitrap Fusion: 5% to 35%B in
240 minutes, A 5 0.2 M acetic acid in water, B 5 0.2 M acetic acid in
acetonitrile) resolved on the analytical column with integrated 1 mm emitter
tip (Orbitrap Velos: 360 3 30 mm fused silica packed with 12 cm 5 mm
Monitor C18 [Ontario, CA]; Orbitrap Fusion: 360 3 30 mm fused silica
packed with 50 cm 5mmMonitor C18), and electrosprayed (ESI voltage5
3.8 kV) into the mass spectrometer (Orbitrap Velos or Orbitrap Fusion;
Thermo-Fisher Scientific, San Jose, CA). A digital picoview platform (New
Objective, Woburn, MA) was used to automatically position the emitter tip in
spray or wash (ie, elute fraction) positions over the course of the experiment.

The Orbitrap Velos was programmed to operate in data-dependent mode
such that the 10 most abundant precursors in each MS scan (target 5 5E5,
maximum fill time 5 500 ms, and resolution 5 120 K) were subjected to
collision-activated dissociation (CAD) (isolation5 2.4 Da, normalized collision
energy5 35%, target5 5E3, maximum injection5 25 ms) and higher-energy
collisionaldissociation(HCD)(isolation52Da,normalizedcollisionenergy545%,
resolution5 7500 K, target5 5E4, and maximum injection5 100 ms). The
Orbitrap Fusion was operated in data-dependent mode whereby the 15 most
abundant precursors in eachMS scan (target5 5E5,maximum injection5500ms,
and resolution5 120 K) were subjected to CAD (isolation5 quadrupole, 1.6 Da
isolation width, multiplier detection, target 5 5E3, maximum injection 5 50 ms,
and normalized collision energy5 35%) andHCD (isolation5 quadrupole, 1.6Da
isolationwidth, imagecurrentdetection, resolution515K,normalizedcollision
energy 5 40%, target 5 5E4, and maximum injection 5 100 ms). On each
instrument, dynamic exclusion was enabled with a repeat count of 1 and exclu-
sion duration of 30 seconds.

Data processing and phosphosite identification

Data files were directly assessed and converted to .mgf using multiplierz
scripts20,21 and searched against a forward/reverse human National Center for
Biotechnology Information refseq database using Mascot 2.2.1. Search param-
eters specified a precursor ion tolerance of 10 ppm and product ion tolerances of
0.6 Da and 25 mmu for CAD and HCD spectra, respectively. Parameters also
included trypsin specificity, up to two missed cleavages, fixed carbamidome-
thylation, and TMT labeling (N-term, K), as well as variable oxidation (Met) and
phosphorylation (Ser, Thr, Tyr).Multiplierz scripts were further used to down-
load search results into .xls format,filter the data to,1%false discovery rate, and
extract TMT reporter ion intensities. Reporter ion intensities were corrected for
isotopic impurities according to the manufacturer’s specifications, and further
corrected for differences in injection times and source protein variation as
described.22,23 These data were used as input for further bioinformatic analysis.
Raw data files were deposited in the PRoteomics IDEntifications database.

Bioinformatic analysis of identified phosphopeptides

Corrected reporter ion intensities of identified phosphopeptides were summed at
the phosphoprotein residue level and normalized between samples by dividing
by each sample’s total reporter ion intensities, or using the trimmed mean of
M-values method from the edgeR Bioconductor package. Batch variation
between experiments was removed using the RUVSeq Bioconductor package24

and the normalized, batch-corrected phosphoresidue counts analyzed with the
non-negative matrix factorization (NMF) Bioconductor package.25 The number
of signatures (factorization rank) that best described the sampleswas estimated by
running trial runs of 50 iterations each for factorization ranks of 2 to 5, all with the
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same seed. Consensus matrix heatmaps from these trials indicated that a
factorization rank of 2 allowed clustering of consensus blocks by sample type.
Multiple NMF algorithms were assessed and the nonsmooth NMF algorithm26

selected, because it converged with the lowest approximation error. Using these
parameters, theNMFalgorithmwas runwith a random seed for 1250 iterations to
allow full convergence. Signature phosphopeptide residues were extracted and
then filtered by “featurescore” (described as gene_score27) to select residuesmost
specific to each signature. Finally, a mixture expression profile heatmap, which
summarizes the relative contributionof each signature to each sample,was used to
assign signatures to the sample classes.

Arhgap252/2 mice

Arhgap252/2mice (CSD28473) were obtained as cryopreserved embryos from
the trans-National Institutes of Health (NIH) Knockout Mouse Project (KOMP)
Repository (www.komp.org),28 recovered using standard techniques andhoused
as above.

BM transplantation

BMmononuclear cells from age- and gender-matchedmale or femalemicewere
retro-orbitally injected (1 3 106 cells per recipient) into anesthetized, lethally
irradiated (950 rads) congenic (CD45.11) recipients. Recipients received
trimethoprim-sulfamethoxazole in their drinking water for 4 weeks posttrans-
plant to prevent infection.

Glutathione S-transferase (GST)-fusion protein production and

GTPase assays

Fragments encoding the pleckstrin homology (PH) domain, GAP domain,
coiled-coil domain (CC), and full-length ARHGAP25 were generated from
leukocyte complementary DNA as described previously.7,8,17 The interdo-
main (ID) region was cloned from the full length GST-ARHGAP25 using
the following primers: forward: 59-ATAGGATCCCCCCCTGCCCAGA
AAAATGACC-39, reverse: 59-CCGCTCGAGTGGACTGGCAAGAGTA
TCTCCCTT-39, and inserted into the pGEX4T-1 vector. Thereafter, GST
fusion proteins were produced in Escherichia coli. Mutation of S363 to
alanine was performed with site-directed mutagenesis using the following
primers: forward: 59-CCCTGGCACCCCCTGCCCAGAAAAATGACC-39
and reverse: 59-CAGGGGGTGCCAGGGGTATATCCTTGGACTTGG-39.
GTPase activity was measured by nitrocellulose filter-binding assay as pre-
viously described.9-11,17

In vitro phosphorylation assays

A total of 100 mg of the indicated GST fusion proteins were phosphorylated
with 200 mL of cytosolic extract from primary human neutrophils12,29

pretreated with 20 ng/mL TNF-a in the presence of 30 mL kinase buffer
(20 mM Tris-HCl, pH 5 7.4, 10 mM MgCl2, 1 mM Dithiothreitol, 1 mM
Phosphatase Inhibitor Cocktail [Sigma-Aldrich, Natick, MA], 0.1 mM Na-
EGTA, 20 mM nonradiolabeled adenosine triphosphate [ATP]), and 10 mCi
[g-32P]-ATP. After 30 minutes incubation at 37°C, samples were boiled for 5
minutes and subjected to sodium dodecyl sulfate–polyacrylamide gel electro-
phoresis. The gels were stained with Coomassie blue, dried, and mounted on a
Bio-Rad GS-525 Molecular Imager. Images were captured with Multi-Analyst
software (version 1.1; Bio-Rad, Hercules, CA) over a 48-hour exposure.
Phosphorylation of ARHGAP25 constructs for GTPase assays was performed
identically, but in the presence of 1 mM ATP and without radiolabeled ATP.

Transwell chemotaxis assay

BM cells were harvested from Arhgap252/2 or wild-type (WT) mice, enriched
for progenitors using CD117 MicroBeads (Miltenyi Biotec, San Diego, CA),
counted, and plated at 23 106 per well into the top chambers of 24-well, 5 mm
pore polycarbonate membrane Transwell supports (Corning, Kennebunk, ME).
All conditions were plated in triplicate; 20 ng/mL rmCXCL12 (R&D Systems,
Minneapolis,MN)was then added to the appropriate wells before incubation for
1 hour at 37°C. Subsequently, counting beads were added to the bottom wells.
Beads and transmigrated or control cells were recovered from the bottom wells,
and unmigrated cells were recovered from the top wells. Recovered cells were

stained with antibodies to lineage markers and Sca-1, c-Kit, CD150, and CD48
(supplemental Methods), and analyzed by flow cytometry.

Results

Phosphoproteomic interrogation identifies differential

phosphorylation of ARHGAP25 in pharmacologic mobilization

of mouse HSPCs

In adultmammals,HSPCs reside predominantly in theBM,where they
continuously receive signals from a complex and heterogeneous
microenvironment.13,14,30,31Underhematopoietic stress or after growth
factor stimulation, HSPCs expand dramatically and migrate into and
out of the central BM compartment.12,15,32,33 Circulating HSCs rapidly
re-engraft into distant BM sites and contribute to ongoing marrow
hematopoiesis,16,17,34 as well as to peripheral immune responses.18,35

The mechanisms underlying HSPC mobilization are not well un-
derstood, despite its importance in hematopoietic homeostasis and in
clinical harvesting of HSPC donors. Additionally, for many targets,
messenger RNA and protein levels are discordant during pharmaco-
logic mobilization,7,19 highlighting the importance of protein-level
analysis in understanding this process. Onemajor obstacle to extensive
proteomic characterization, however, is the relative rarity of these cells
in the BM microenvironment. We reasoned that combining multipa-
rameter flow cytometry and multidimensional fractionation MS would
enable phosphoproteomic interrogation of signaling pathways that
mediate HSPC mobilization in vivo. To do this, we paired high-speed
multicolor flow cytometric cell sorting with a recently described
MS-based 3-D,RP-SAX-RPphosphoproteomic analysis platform.19,36

Fe-NTA IMACwas used to improve detection of phosphopeptides and
minimize background, and isobaric stable isotope labels were used to
enable sample multiplexing (Figure 1).

To validate this novel platform in a biological context, we per-
formed a pilot studywith 23 105 cells per condition, phosphoenriched
and analyzed using our recently described 3-D liquid chromatography-
MS/MS platform.19-21,36 This was used to compare phosphoproteomic
profiles generated from resting or pharmacologically mobilized LSK
HSPCs harvested from the BM or spleen of C57BL/6 mice. Mobili-
zation was induced using sequential administration of Cy and G-CSF
(daily for 4 days), which elicits HSPC expansion in and then egress
from the marrow, increasing the numbers of HSPCs in the blood,
spleen, and liver.18,22 In order to identify phosphorylation substrates
associatedwith progenitor cellmobilization,we compared 23105BM
HSPCs fromuntreatedmicewith an equal number ofmobilizedHSPCs
isolated from the spleens of Cy/G-treated animals.When performed in
biological triplicate, this analysis identified 3664 unique phosphopep-
tide sequences present in all samples, representing 1954 distinct
phosphoproteins (supplemental Table 1; “pilot”). Encouraged by these
results, we performed 2 additional analyses in 6-plex format, each in
biological triplicate. For additional coverage of the phosphoproteome,
these phosphopeptides were analyzed on a higher-performance
OrbitrapFusionmass spectrometer23,37 coupled to an improvedversion
of our multidimensional fractionation platform.24,38,39 In these analy-
ses,we identified 12 323 and 12 168 unique phosphopeptide sequences
present in all samples, representing 4001 and 3997 distinct phospho-
proteins (supplemental Table 1; “first analysis” and “second analysis”).
Across all 3 sets, 15 230 unique phosphopeptides and 4993 phospho-
proteins were identified. The phosphopeptide ratios followed a normal
distribution (Figure 2A). Overall, 1018 phosphopeptides differed in
relative amount by .2 standard deviations (SD) between mobilized
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and resting cells. Of these, 572 phosphopeptide species were .2 SD
more abundant inmobilizedHSPCsand446were.2SD less abundant
(Figure 2A; supplemental Table 1).

Hierarchical clustering analysis of data sets independently (not
shown) or together (Figure 2B) demonstrated the existence of a durable
phosphoproteomic signature of mobilization in primary HSPCs. To
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Figure 1. Bioanalytical platform for quantitative

interrogation of signaling pathways in HSPCs.

Two 3 105 highly purified primary murine HSPCs were

sorted by flow cytometry, lysed, and trypsin-digested,

followed by Fe31NTA-IMAC phosphopeptide enrich-

ment and isotope labeling with TMT reagents. Phos-

phopeptides were quantified by fully automated 3-D

RP-SAX-RP chromatography, coupled to a ThermoFisher

Orbitrap mass spectrometer. Data analysis and visualiza-

tion was performed using a combination of multiplierz and

R scripts. LC-MS, liquid chromatography–MS.
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identify the individual components of this signature, we first identified
from each data set those proteins containing phosphopeptides signif-
icantly different in abundance (with a Benjamini-Hochberg false
discovery rateof q,0.1) betweenmobilized and restingHSPCs.At the
protein level, 885 phosphoproteins exhibited statistically significant
differences in phosphopeptide abundance in at least 1 data set, and 225
phosphoproteins exhibited statistically significant differences in at least
2 data sets (supplemental Table 2). To further identify in an unsuper-
visedmanner, which phosphosites contributedmost significantly to the
differences between resting and mobilized HSPCs, we used NMF25,40

to extract phosphoprotein residue signatures that could distinguish
between the biologic subclasses in each independent experiment. This
analysis defined two phosphopeptide clusters that efficiently distin-
guished resting HSPCs from mobilized HSPCs (Figure 2C). Each
groupwas then deconvoluted to generate contribution-weighted protein
lists, or signatures, corresponding either to the mobilized or the
resting state (Figure 2D; supplemental Table 3). These signatures
were compared with the Benjamini-Hochberg–generated lists of
differentially phosphorylated proteins to identify 178 phosphopro-
teins likely to play an important role in mobilization (Figure 2D;
supplemental Tables 2 and 3). These data provide the most compre-
hensive phosphoproteomic profile to date of HSPC mobilization, an
aspect of HSPC biology that has not previously been extensively
interrogated at the protein level.

Given the prominence of cytoskeletal features in the consensus
phosphoproteomic profile of mobilized HSPCs and the importance of
cytoskeletal rearrangement to motility,26,41,42 we focused on proteins
with cytoskeletal interactions.Oneprotein thatwashighlydifferentially
phosphorylated in mobilized and resting HSPCs was ARHGAP25,
which has recently been described as a hematopoietically-expressed
Rac-GAP that inactivates Rac, and inhibits monocyte and neutrophil
phagocytosis.17,27,43 Because theRacGTPase has awell-described and
central role in HSC mobilization and engraftment,42 we reasoned that
ARHGAP25 may play an important role in these processes.

ARHGAP25 regulates HSPC mobilization by strengthening

CXCL12 signaling

A deficiency in ARHGAP25 function could be predicted to increase
Rac activity, and previous studies have demonstrated that defective
Rac activity in HSPCs results in poor homing and engraftment to the
BM.42 Thus, we hypothesized that an absence of ARHGAP25 func-
tion might impede HSPC egress from the BM by enhancing Rac
activity. To test the role of ARHGAP25 deficiency in mobilization,
we obtained ARHGAP25-deficient mice from the KOMP. Indeed,
althoughArhgap252/2mice have comparableBMandperipheral blood
cell numbers to control mice at baseline, they have higher numbers of
BMHSPCs and lower numbers of peripheral blood HSPCs at rest than
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Figure 2. Phosphoproteomic interrogation iden-

tifies novel activated protein pathways in primary

murine HSPCs. Resting BM (rest) or mobilized (mob)

LSK HSPCs were harvested and sorted as described in

“Methods.” (A) Comprehensive phosphoproteomic anal-

ysis of 2 3 105 primary murine resting or mobilized

HSPCs was done in triplicate, and this experiment was

repeated 3 times. In total, this analysis identified 15 230

unique phosphopeptides and 4993 phosphoproteins.

The phosphopeptide ratios followed a normal distri-

bution and there was not a marked change in total

phosphopeptide quantity with mobilization. Overall,

1018 phosphopeptides differed in relative amount by

.2 SD between mobilized and resting cells. Of these,

572 phosphopeptide species were .2 SD more

abundant in mobilized HSPCs (red), and 446 were .2

SD less abundant (green). Red trace shows Gaussian

overlay. (B) Unsupervised hierarchical clustering anal-

ysis of all 18 samples demonstrates that mobilization

results in durable phosphoproteomic changes in pri-

mary murine HSPCs. Mob1/rest1, mob2/rest2, and

mob3/rest3 represent individual experiments; a, b, and

c denote biological replicates within experiments. Sam-

ple phosphoprofiles consistently clustered with other
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controls, and this difference is maintained after pharmacologic mobi-
lization (Figure 3A). Thus, ARHGAP25 deficiency results in defective
mobilization of HSPCs. To test whether this effect relates to
ARHGAP25 deficiency in the hematopoietic compartment specifically,
we performed transplants of Arhgap252/2 BM into lethally irradiated
congenic mice. After allowing hematopoietic reconstitution for 16
weeks, recipientswere analyzed.Aswas seen inwhole-bodyknockouts,
mice lacking ARHGAP25 in the hematopoietic compartment only
showed increased numbers ofHSPCs in theBManddecreased numbers
in the peripheral blood (Figure 3B). Transplant recipients reconstitute
with lower and more variable numbers of BM and circulating HSPCs
than untransplanted counterparts44-46 (compare Figure 3B and 3A),
making analysis of peripheral blood LSK populations in reconstituted
mice technically challenging. However, a trend was observed toward
defective mobilization after stimulation with Cy and G-CSF in mice
transplanted with Arhgap252/2 BM as compared with mice trans-
planted with WT BM (Figure 3B). Taken together, these data indicate
that ARHGAP25 activity is important for regulating both physiologic
and pharmacologically induced HSPC mobilization.

The CXCL12-CXCR4 interaction is central to BM retention of
HSPCs,33,47,48 and CXCL12 signaling is known both to activate Rac
and recruit it to the cell membrane, thereby facilitating chemotaxis.49-51

We therefore reasoned thatArhgap252/2HSPCsmight exhibit increased
responsiveness toCXCL12 signaling as comparedwithWTHSPCs.We
confirmed that Arhgap252/2 LSK cells exhibited more effective
chemotaxis to a CXCL12 gradient than their WT counterparts in a

transwell migration assay (Figure 4A). To verify that this effect was not
a result of increased CXCL12 receptor density on HSPCs, we evaluated
the expression of CXCR4,which is the primary ligand for CXCL12.48,52

Cell-surface expression of CXCR4 onArhgap252/2 and control HSPCs
was not significantly different, either at baseline (MFI of CXCR4
on Arhgap252/2HSPCs, 2866 44; MFI on control HSPCs, 3456 49;
P5 .13) or after CXCL12 stimulation (MFI Arhgap252/2, 2266 12;
MFI control, 412 6 142; P 5 .08) (n 5 8 mice for each condition;
Figure 4B). There also was no significant difference in surface
expression of the alternate CXCL12 receptor ROBO4 by flow
cytometric analysis (MFI, 63656 241 for Arhgap252/2 HSPCs vs
MFI, 59716 711 for control HSPCs; P5 .37) (n5 4 mice for each
condition). These findings indicate that ARHGAP25 deficiency
affects HSPC mobilization not by altering expression of CXCL12-
binding receptors, but by strengthening BM CXCL12-mediated
retention signals, presumably through increased Rac activation.

Phosphorylation of ARHGAP25 at S363 regulates its function

Wenext sought to identify themechanism throughwhichARHGAP25
influences Rac activity and, thereby, HSPCmobilization. ARHGAP25
has 3 known functional domains: a PH domain, a GAP domain, and a
CC domain; it also possesses a 200-amino acid ID of unknown func-
tion located between its GAP domain and its CC domain.16 The vast
majority of phosphorylation events, both in our screen (Figure 4C) and
in the literature,53.54 occur in the ID region of Arghap25 and are of
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(A) Mice lacking ARHGAP25 had significantly higher

percentages of LSK HSPCs in their BM than controls

(left), and lower proportions of HSPCs in their peripheral

blood (center), suggesting increased central compart-

mentalization. This continued to be true after mobilization

with Cy/G (right), indicating that ARHGAP25 is required

for optimal mobilization. Each dot represents an individ-

ual mouse. (B) To confirm that this finding is due to

intrinsic activity of ARHGAP25 in hematopoietic cells,

Arhgap252/2 BM was transplanted into lethally irradiated

recipient mice. After 16 weeks of hematopoietic recon-

stitution, recipients of Arhgap252/2marrow were found to

have increased percentages of LSK cells in the BM (left)

and decreased percentages in the peripheral blood

(center), demonstrating that ARHGAP25 function is in-

trinsic to the hematopoietic system in this context. After

Cy/G treatment, diminished mobilization was again seen

in recipients of Arhgap252/2 marrow as compared with

controls (right). These differences did not reach statistical

significance, however, in part because recipients of

control marrow reproducibly mobilized far less well than
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individual mouse. ctrl, control.

1470 WANG et al BLOOD, 15 SEPTEMBER 2016 x VOLUME 128, NUMBER 11

For personal use only.on February 16, 2018. by guest  www.bloodjournal.orgFrom 

http://www.bloodjournal.org/
http://www.bloodjournal.org/site/subscriptions/ToS.xhtml


unknown functional significance. Our phosphoproteomic analyses
consistently showed statistically significant increased phosphorylation
of ARHGAP25 on S363 in resting HSPCs. In contrast, other phospho-
residues in ARHGAP25 were not increased (supplemental Table 1),
suggesting that S363 phosphorylation is specific andmay be functionally
significant. Because ARHGAP25 function augments HSPC mobiliza-
tion, and ARHGAP25 deficiency promotes BM retention, we surmised
that phosphorylation of S363 would negatively regulate ARHGAP25

function. To test this notion, we created a nonphosphorylatable single
amino acid mutant (S→A) of S363 and expressed this construct as a
GST-fusion protein. Exposure of ARHGAP25-GST fusion proteins
to neutrophil cytosolic extract resulted in significant phosphoryla-
tion in the ID region (Figure 4C). However, in contrast to WT
ARHGAP25, which manifested a 38% decrease in Rac inactivation
upon phosphorylation with neutrophil cytosol, ARHGAP25S363A

inhibition of Rac activity was not significantly altered by treatment with
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neutrophil cytosol (Figure4D).Thus, phosphorylationofARHGAP25at
S363 suppresses its ability to act as a GAP for Rac (Figure 4D).

Discussion

Protein phosphorylation occurs on more than one-third of all proteins,55

and is the dominant activity modifying posttranslational modification
in blood cells.13,14 Protein-level determinants of function are poorly
reflected in genomic and transcriptional analyses,7,8 so protein-focused
interrogations are critical to our understanding of cellular biology.
HSPCs are rare, and understanding their phosphoprotein landscape
has been hindered by the inability to perform comprehensive
analyses from small numbers of cells. We describe a novel strategy
for combining flow cytometric enrichment of rare HSPCs with
highly efficient, multidimensional MS to discover new protein
signaling pathways important in HSPC function.

The platform described here provides a new discovery tool for
proteomic pathways. This platform expands the accessible proteomic
space beyond that available through candidate-based strategies such as
cytometry by time-of-flight (CyTOF)56 and reverse phase protein array
analysis.57Although bothCyTOF and reverse phase protein array anal-
ysis are powerful tools, with CyTOFproviding single-cell resolution to
pathway regulation,11,58 these technologies can only interrogate known
targets. In contrast, our platform evaluates both known and unknown
pathways at a level of phosphoproteome coverage superior to prior
MS-based technologies.12

Application of our platform to primarymurineHSPCs identified the
Rac-GAP ARHGAP25 as a regulator of HSPC mobilization and spe-
cifically nominated phosphorylation of S363 as a biologically relevant
modulator of ARHGAP25 activity. Subsequent validation studies
confirmed that the phosphorylation status of ARHGAP25 on S363 is
critical, because maintenance of S363 in an unphosphorylated state is
required forARHGAP25’sGAPactivity.Furthermore, phosphorylation
of S363 inhibits the ability of ARHGAP25 to suppress Rac-dependent
downstream functions. Moreover, we demonstrate that inhibition of
ARHGAP25 activity leads to an augmentation of CXCL12 signaling.

Taken together, our results identify phosphorylation of ARH-
GAP25 on S363 as an important modulator of HSPC mobilization,
and suggest a new candidate to target for improving stem cell
mobilization (Figure 5).

Our platform was designed to identify phosphorylation events that
reflect differences in cell state, in contrast to the faster and more
transient phosphorylation events observed in conventional cellular
receptor signaling.55,59-61 Indeed, theHSPCsweprofiledwereharvested
from mice 16 hours after their last G-CSF treatment. This may explain
why our screens did not robustly identify phosphorylation events
immediately downstream of G-CSF signaling, or events imme-
diately downregulated by decreased signaling through known
HSPC tethering interactions such as CXCR4, VLA-4, or c-Kit.62,63

However, our platform could easily be modified to capture such events,
and stimulation-response time-courses are being explored in other
contexts.

It is also important to note that all of our experiments to date
employed the C57BL/6 mouse line, using a particular mobilization
regimen. Because different strains of mice have significantly varied
responses to different mobilizing stimuli,64,65 it will be of interest in the
future to interrogate other mouse strains and mobilization regimens
using this platform,which could help to explain interstrain and interagent
differences in mobilization responses. Moreover, we expect that this
platformwill be useful inmapping important activated phosphoprotein
pathways in benign and malignant HSPCs in humans, and that it
will help to identify attractive targets for therapeutic intervention
in patients.
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3. Forsberg EC, Passegué E, Prohaska SS, et al.
Molecular signatures of quiescent, mobilized and
leukemia-initiating hematopoietic stem cells.
PLoS One. 2010;5(1):e8785.

4. Sun D, Luo M, Jeong M, et al. Epigenomic
profiling of young and aged HSCs reveals
concerted changes during aging that reinforce
self-renewal. Cell Stem Cell. 2014;14(5):673-688.

5. Beerman I, Bock C, Garrison BS, et al.
Proliferation-dependent alterations of the DNA
methylation landscape underlie hematopoietic
stem cell aging. Cell Stem Cell. 2013;12(4):
413-425.

6. Vedi A, Santoro A, Dunant CF, Dick JE, Laurenti
E. Molecular landscapes of human hematopoietic
stem cells in health and leukemia. Ann NY Acad
Sci. 2016;1370(1):5-14.

7. Petit I, Szyper-Kravitz M, Nagler A, et al. G-CSF
induces stem cell mobilization by decreasing bone
marrow SDF-1 and up-regulating CXCR4. Nat
Immunol. 2002;3(7):687-694.

8. Lu R, Markowetz F, Unwin RD, et al. Systems-
level dynamic analyses of fate change in murine
embryonic stem cells. Nature. 2009;462(7271):
358-362.

9. Kornblau SM, Qutub A, Yao H, et al. Proteomic
profiling identifies distinct protein patterns in acute
myelogenous leukemia CD341CD38- stem-like
cells. PLoS One. 2013;8(10):e78453.

10. Gibbs KD Jr, Gilbert PM, Sachs K, et al. Single-
cell phospho-specific flow cytometric analysis
demonstrates biochemical and functional
heterogeneity in human hematopoietic stem and
progenitor compartments. Blood. 2011;117(16):
4226-4233.

11. Bendall SC, Simonds EF, Qiu P, et al. Single-cell
mass cytometry of differential immune and drug
responses across a human hematopoietic
continuum. Science. 2011;332(6030):687-696.

12. Cabezas-Wallscheid N, Klimmeck D, Hansson J,
et al. Identification of regulatory networks in HSCs
and their immediate progeny via integrated
proteome, transcriptome, and DNA methylome
analysis. Cell Stem Cell. 2014;15(4):507-522.

13. Warr MR, Pietras EM, Passegué E. Mechanisms
controlling hematopoietic stem cell functions
during normal hematopoiesis and hematological
malignancies. Wiley Interdiscip Rev Syst Biol
Med. 2011;3(6):681-701.

14. Kim AD, Stachura DL, Traver D. Cell signaling
pathways involved in hematopoietic stem cell
specification. Exp Cell Res. 2014;329(2):227-233.

15. Unwin RD, Smith DL, Blinco D, et al. Quantitative
proteomics reveals posttranslational control as a
regulatory factor in primary hematopoietic stem
cells. Blood. 2006;107(12):4687-4694.

16. Katoh M, Katoh M. Identification and
characterization of ARHGAP24 and ARHGAP25
genes in silico. Int J Mol Med. 2004;14(2):
333-338.
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