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Abstract 25 

ARHGAP25 is a Rac-specific GTPase activating protein that is expressed primarily in 26 

hematopoietic cells. The involvement of ARHGAP25 in regulating the recruitment of 27 

leukocytes to inflammatory sites was investigated in genetically modified mice. Using 28 

intravital microscopy we show that Arhgap25-deficiency affects all steps of leukocyte 29 

recruitment with a predominant enhancement of transendothelial migration of neutrophilic 30 

granulocytes. Increased transmigration of Arhgap25-deficient leukocytes is demonstrated in 31 

inflamed cremaster muscle venules, in a peritonitis model, and in an in vitro chemotaxis 32 

assay. Using bone marrow chimeric mice lacking ARHGAP25 in the hematopoietic 33 

compartment, we show that enhanced migration in the absence of ARHGAP25 is due to 34 

defective leukocyte function. In search for potential mechanisms of ARHGAP25-regulated 35 

migration of neutrophils, we detected an increase in the amount of active, GTP-bound Rac 36 

and Rac-dependent cytoskeletal changes in the absence of ARHGAP25 suggesting a critical 37 

role of ARHGAP25 in counterbalancing the Rac-activating effect of nucleotide exchange 38 

factors. Taken together, using Arhgap25-deficient mice we identified ARHGAP25 as a 39 

relevant negative regulator of leukocyte transendothelial migration.   40 
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Introduction 41 

In inflammation, neutrophil recruitment to sites of injury is essential for the fast and effective 42 

elimination of injurious agents. The first step of recruitment consists in the activation of 43 

vascular endothelial cells, which leads to increased expression of several cell surface 44 

molecules including selectins and integrin ligands (1, 2). These molecules are recognized by 45 

circulating leukocytes enabling the stepwise recruitment and extravasation of leukocytes into 46 

inflamed tissue. Capture to the inflamed endothelium is followed by rolling of leukocytes 47 

along the endothelium. Both capture and rolling are mediated by endothelial selectins and 48 

leukocyte expressed selectin ligands (3). During rolling, leukocytes get into intimate contact 49 

with the endothelial surface which enables binding of endothelium-expressed chemokines to 50 

their respective ligand on the leukocyte surface triggering firm arrest of leukocyte on the 51 

endothelium.  Thereafter, leukocytes begin to crawl along the vessel wall searching for an 52 

appropriate exit point for transmigration into tissue (diapedesis) (2, 4, 5). Extravasated 53 

leukocytes are directed by chemotactic agents to the pathogens to be eliminated (6). All these 54 

different types of movements require a precise spatial and temporal organization of the actin 55 

cytoskeleton (7-9). Although our knowledge on the involved receptors and signaling 56 

pathways has increased tremendously in the last decade (10), differences in the molecular 57 

organization of the actin cytoskeleton underlying the different types of movements are still 58 

poorly understood. 59 

Members of the Rac/Rho subfamily of small GTP-binding proteins are key regulators 60 

of the actin cytoskeleton (11). Their prevalence in the active, GTP-bound state depends on the 61 

balance between the three major regulatory proteins: guanine nucleotide exchange factors 62 

(GEFs) that promote the active state, GTPase activating proteins (GAPs) that counteract it, 63 

and guanine nucleotide dissociation inhibitors (GDI) that conserve the inactive state (12, 13). 64 

In case of the Rac/Rho subfamily, the potential number of GEFs and GAPs expressed in a 65 
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specific cell is especially high (14). The majority of these GEFs and GAPs are large proteins 66 

composed of several effector, interactive and regulatory domains that suggest multiple 67 

functions (13, 14). In neutrophils, a specific involvement of certain GEFs has been 68 

investigated for different neutrophil effector functions including chemotaxis and adhesion 69 

(15-17). In contrast, similar data on potentially interacting GAPs are still scarce (18-20). 70 

In a recent study, we have shown that ARHGAP25 is a Rac-specific GAP expressed 71 

primarily in hematopoietic cells (21). We also demonstrated that ARHGAP25 serves as a 72 

negative regulator of phagocytosis and related superoxide production (21, 22). The aim of the 73 

present study was to reveal the role of ARHGAP25 in the complex process of leukocyte 74 

recruitment during inflammation. We provide the first detailed description of the Arhgap25-/- 75 

mice, and show that loss of ARHGAP25 affects several steps along the recruitment cascade 76 

leading to a proinflammatory phenotype with elevated transmigration of neutrophils into 77 

inflamed tissue which is accompanied by increased Rac activity in neutrophils. 78 
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Materials and Methods 79 

Antibodies and reagents  80 

Anti-CD11b-PE and anti-Ly-6G-Pacific Blue were purchased from BioLegend, rat IgG2bκ-81 

PE isotype control and anti-CD18-FITC from BD Biosciences, rat IgG2a-APC isotype 82 

control, anti-CD11a-APC, anti-human Fcγ-biotin, Streptavidin-PECy5 and rat IgG2a-FITC 83 

isotype control from eBioscience, anti-CXCR2-APC, recombinant murine (rm) TNFα, rmE-84 

selectin/CD62E-Fc chimera and rmICAM-1/CD54-Fc chimera from R&D Systems, 85 

rmKC/CXCL-1 and rmCXCL12 from PreproTech, Ly-6G-PerCP-Cy5.5 and CD11b-PE from 86 

BD Pharmingen, mouse anti-Rac antibody from BD Transduction Laboratories, 87 

paraformaldehyde from Sigma-Aldrich. Anti-human ARHGAP25 polyclonal antibody was 88 

prepared as described previously.(21) Cross-reactivity with mouse ARHGAP25 was tested 89 

using the lysate of COS-7 cells transfected with human ARHGAP25-V5 and mouse Arhgap25-90 

V5 constructs (see Fig. S1 for details). All other reagents were of research grade. 91 

 92 

Mice 93 

The Arhgap25-/- mouse strain used for this research project was created from ES cell clone 94 

(EPD0085_1_C10) obtained from the NCRR-NIH supported KOMP Repository 95 

(www.komp.org) and generated by the CSD consortium for the NIH funded Knockout Mouse 96 

Project (KOMP). Methods used on the CSD targeted alleles have been published in (23). 97 

Arhgap25-/- mice had a C57BL/6 genetic background and were maintained in a homozygous 98 

breeding colony. Genotyping was performed according to KOMP’s instructions using the 99 

following primers: Common-loxP-F: 5’-GAGATGGCGCAACGCAATTAAT-3’; CSD-100 

Arhgap25-SR1: 5’- GCATGAGGCAGCTGTTCTTAGTTACC-3’; CSD-Arhgap25-GF4: 5’-101 

TGCACACGGTGGCATCTCTACTAAAG-3’. Analysis of blood parameters was carried out 102 

with a haemocytometer. To reveal differences in body weight between wild type and 103 
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Arhgap25-/- mice, 5-week-old animals (3 males/genotype and 2 females/genotype) were 104 

weighed for 14 weeks. Arhgap25-/- and control wild-type bone marrow chimeras were 105 

generated using bone marrow cells from adult donors as described previously (24, 25). 106 

Arhgap25-/- bone marrow cell suspensions were injected intravenously into lethally irradiated 107 

(11.5-Gy) recipients carrying the CD45.1 allele on the C57BL/6 genetic background. An 108 

equal number of control chimeras were also generated using Arhgap25-expressing 109 

(Arhgap25+/+) bone marrow cells and will be referred to as wild-type chimeras. Efficiency of 110 

repopulation of the hematopoietic compartment by donor-derived cells was more than 98%, 111 

tested 4 weeks after transplantation by flow cytometry: we tested the expression of CD45.2 112 

(donor) allele in the granulocyte gate determined by Ly-6G-staining, as described previously 113 

(24, 25) (data not shown). Bone marrow chimeras were used 4-8 weeks after transplantation. 114 

Mouse strain carrying the CD45.1 allele on the C57BL/6 genetic background (B6.SJL-Ptprca) 115 

was purchased from The Jackson Laboratory (Bar Harbor, ME). Mice were kept in 116 

individually sterile ventilated cages (Tecniplast, Buguggiate, Italy) in a conventional facility. 117 

Age and gender-matched animals were used for all the experiments. Animal experiments were 118 

approved by the Regierung von Oberbayern, Germany, AZ 55.2.1.54-2532-76-12, and by the 119 

Governmental Office of Pest County, Hungary (22.1/S321/3/2011). 120 

 121 

Intravital microscopy of the mouse cremaster muscle 122 

Mice were pretreated with intrascrotal injection of 500 ng rmTNFα per mice. After 2 h, mice 123 

were anesthetized and trachea and carotid artery were cannulated. Scrotum was opened, the 124 

cremaster muscle exteriorized, spread over a cover glass and superfused with 35 °C 125 

bicarbonate-buffered saline as described (26). Parameters of rolling, adhesion and crawling 126 

were determined using an Olympus BX51WI intravital microscope equipped with a saline 127 

immersion objective (40/0.8 NA, Olympus) and a CCD camera (model CF8/1, Kappa). All 128 



For P
ee

r R
ev

iew
. D

o n
ot d

ist
rib

ute
. D

es
tro

y a
fte

r u
se

.

7 
 

scenes were recorded by the Virtual Dub software for later offline analysis. Systemic blood 129 

samples (~ 50 µL) were collected through the carotid artery catheter before and during the 130 

experiment and analysed using a haemocytometer. The offline analysis of venular diameter 131 

and vessel segment length of postcapillary venules (between 20-40 µm in diameter) was 132 

carried out with Fiji software (27). Leukocyte rolling flux fraction was calculated from the 133 

number of rolling cells that crossed a perpendicular line through a given vessel within 1 min 134 

in relation to the total number of circulating leukocytes (28). Velocities of rolling and 135 

crawling were measured using MTrackJ plugin of Fiji software. Other experimental 136 

parameters (centerline blood flow velocity, shear rate, systemic cell counts) are shown in 137 

Table SI. 138 

 139 

TNFα-induced peritonitis model 140 

Mice were treated with intraperitoneal injection of 5 µg rmTNFα in a final volume of 100 µL. 141 

Three hours after treatment, mice were sacrificed and peritoneal cavity was washed with 5 mL 142 

ice-cold PBS supplemented with 20 mM HEPES and 10 mM EDTA. Ly-6G+ infiltrated cells 143 

were analysed with BD FACSCalibur device. Cell counts were determined using Flow-Count 144 

Fluorospheres (Beckman Coulter).   145 

 146 

Histology 147 

Three hours after intrascrotal injection of rmTNFα (500 ng in 200 µL/mouse) or sterile PBS 148 

(200 µL/mouse), cremaster muscles were exteriorized, mounted on adhesive slides 149 

(Superfrost, Thermo Scientific) and fixed in 4% (w/v) paraformaldehyde for at least 48 h at 150 

4°C. Then samples were washed 3x5 min in 0.1 M Phosphate buffer (0.1 M NaH2PO4, 0.1 M 151 

Na2HPO4 mixed in 81:19 ratio, pH 7.4) supplemented with 5% (v/v) ethanol and stained with 152 

Giemsa’s azure eosin methylene blue solution (Merck) for 4 min. After a rinse with water, 153 
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slices were differentiated with 0.03% (v/v) acetic acid for 10 min, and immersed in ascending 154 

alcohol series from 70% (v/v) to absolute alcohol, in each for 3 min. Draining was carried out 155 

with xylol (2x5 min), followed by sealing with rectangular coverslips using Eukitt (Sigma-156 

Aldrich). Whole mounts were analyzed with a Zeiss microscope equipped with an oil 157 

immersion objective (100x/1.4 NA, Zeiss). Whole mounts of bone marrow chimeras were 158 

analyzed with a Leica DMI 6000 B microscope equipped with an oil immersion objective 159 

(63x/1.25 NA, Leica).  160 

After 3 hours of TNFα challenge peritoneal tissue samples were taken and fixed in 4% 161 

(w/v) phosphate-buffered paraformaldehyde for 48 hours. The tissue samples were paraffin-162 

processed, embedded, and 4 µm sections cut with a Microm HM340E rotary microtome 163 

(Thermo Fisher Scientific). Cut sections were then used for hematoxylin and eosin (H&E) 164 

staining. Representative pictures were captured with a Nikon ECLIPSE Ni microscope 165 

equipped with 10x/0.30 NA and 40x/0.75 NA dry objectives (Nikon) and a Nikon DS-Ri2 166 

camera. Images were processed with NIS Elements v4.50 Imaging Software (Nikon). 167 

 168 

Ex vivo flow chamber assay 169 

Glass capillaries (Rectangular Boro Capillaries, 0.04x0.40mm, VitroCom) were coated 170 

overnight with rmE-selectin (CD62E Fc chimera, 20 µg/mL) or a combination of rmE-171 

selectin and rmICAM-1 (ICAM-1 Fc chimera, 15 µg/mL) or a combination of  rmE-selectin 172 

and rmICAM-1 and rmKC/CXCL-1 (15 µg/mL) at 4°C followed by blocking with 5% (w/v) 173 

casein (Sigma-Aldrich) in PBS for 2h. Carotid artery catheter was connected directly to one 174 

end of the chamber; while the other end was left open to regulate blood flow (shear stress 175 

level was at 3-4 dyn/cm2). One representative field was recorded for 5 min using an Olympus 176 

BX51WI intravital microscope equipped with a water immersion objective (40/0.8 NA, 177 
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Olympus) and a CCD camera (model CF8/1, Kappa). Rolling velocity was determined using 178 

MTrackJ plugin of Fiji software. 179 

 180 

Transwell migration assay 181 

In vitro migration of neutrophils was tested using a Transwell (Corning) assay with inserts of 182 

3 µm pore size coated with 10% fetal bovine serum (FBS) for 1 hour at 37°C. Isolated cells 183 

were pretreated with 50 µg/mL TNFα for 10 min in a 37°C incubator humidified with 5% 184 

CO2. For chemoattractant, 50ng/mL CXCL12 was used per well, containing 1x106 cells. After 185 

1 hour incubation at 37°C, transmigrated cells were counted using an acid phosphatase assay 186 

(29). 187 

 188 

Determination of leukocyte adhesion proteins and filamentous actin 189 

Neutrophils were isolated from bone marrow with percoll gradient centrifugation as described 190 

previously (30). To determine cell surface expression of several receptors involved in 191 

neutrophil migration, 100 µL whole blood was obtained retro-orbitally from wild type and 192 

knock out mice pretreated with 500 ng TNFα intrascrotally for 2 h. Alternatively, 193 

transmigrated cells were collected from the Transwell plate.  Then, whole blood or 194 

transmigrated neutrophil samples were transferred into 5 mL centrifuge tubes. Samples were 195 

washed once with 3 mL HBSS+ medium (Hank’s Balanced Salt Solution (Sigma-Aldrich) 196 

supplemented with 1 mM CaCl2, 1 mM MgCl2, 0.1% (w/v) glucose, 10 mM HEPES and 197 

0.25% (w/v) Bovine Serum Albumin (BSA), pH 7.4) and centrifuged with 350g for 5 min at 198 

RT. Cells were stained with the indicated antibodies diluted in FACS buffer (PBS containing 199 

1% (w/v) BSA), for 20 min at 4°C. After staining, 1 mL FACS Lysing Solution (BD 200 

BioSciences) was added to the samples and cells were fixed on ice for 10 min. Then cells 201 

were centrifuged with 350 g for 5 min at RT, resuspended in 300 μL FACS buffer and 202 
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analyzed by flow cytometry (Beckman Coulter Gallios). For actin-staining, 1x106 bone 203 

marrow derived neutrophils were fixed with 4% (w/v) paraformaldehyde for 20 min at RT 204 

and centrifuged with 500 g for 5 min at RT. Cells were permeabilized with 0.1% (v/v) Triton-205 

X-100 for 5 min at RT, then stained with Alexa-488-phalloidin (Life Technologies) in 1:500 206 

dilution for 20 min at RT. Filamentous actin amount was analyzed with BD FACSCalibur 207 

device. To investigate actin-polymerization in time, 1x106 bone marrow derived neutrophils 208 

were stimulated with 50 ng/mL TNFα from 0 to 15 min at 37 °C. After stimulation, cells were 209 

fixed and labelled with Alexa-488-phalloidin as detailed above. 210 

 211 

Soluble ICAM-1 binding assay 212 

For each sample, 1.5x106 cells were resuspended in 30 μl HBSS+ and prewarmed at 37°C for 213 

1 min. Pre-complexed master mix containing rmICAM-1-human Fc in 20 μg/mL, anti-human 214 

IgG1-biotin in 10 μg/mL, Streptavidin-PE-Cy5 in 1:100 dilution and the indicated stimulus 215 

were also prewarmed for 10 min at 37°C. Then, 10 μL pre-complexed master mix was added 216 

to 30 μL cell suspension and incubated for 3 min at 37°C. Reaction was stopped with 900 μL 217 

ice-cold FACS Lysing Solution, samples were transferred on ice and fixed for 10 min. Cells 218 

were washed with 2 mL HBSS+ and centrifuged with 350 g for 5 min at 4 °C. Then cells were 219 

stained with anti-Ly-6G-Pacific Blue in 1:600 dilutions for 20 min at 4°C. After a washing 220 

step (350 g, 5 min at 4°C in 2 mL HBSS+), cells were resuspended in 300 μL HBSS+ and 221 

analyzed by flow cytometry (Beckman CoulterGallios). 222 

 223 

Measurement of the amount of active Rac 224 

The cellular levels of GTP loaded Rac were determined with pull-down assay using GST 225 

fusion proteins containing the GTPase-binding domain of p21-activated kinase (PAK) (GST-226 

PBD) as described (31, 32). GST-PBD has been expressed in Escherichia coli. For pull-down, 227 
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bone marrow-derived neutrophils were activated with 50 ng/mL TNFα in HBSS+ medium at 228 

37 °C for 10 min. Basal Rac-activation was determined from resting cells. Whole cell lysates 229 

were run on SDS-PAGE, blotted onto nitrocellulose (33) and stained with anti-Rac antibody 230 

in 1:5000 dilution. Bound antibody was detected with enhanced chemiluminescence using 231 

horseradish peroxidase-conjugated anti–mouse-Ig (from sheep) secondary antibody (GE 232 

Healthcare) used in 1:5000 dilution. ImageJ software was used for densitometry analysis. 233 

 234 

Statistical analysis  235 

All data were analyzed and plotted using SigmaPlot 11.0 Software (Systat Software, Inc.). 236 

Pairwise comparison of experimental groups was carried out with paired t-test or Mann-237 

Whitney Rank Sum Test or two way ANOVA followed by a Tukey post-hock test, depending 238 

on the condition. All P-values<.05 were considered statistically significant.  239 
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Results 240 

 241 

Arhgap25 knockout mice 242 

Arhgap25 knockout mice were generated by the CSD consortium for the NIH funded 243 

Knockout Mouse Project (KOMP) inserting the L1L2_Bact_P cassette upstream of the 6th 244 

exon of the Arhgap25 gene. The cassette contains the following sites and sequences in the 245 

given order: FRT, lacZ, loxP, neomycin (under the control of the human beta-actin promoter), 246 

SV40 polyA, FRT, loxP. A third loxP site was inserted downstream of the 6th exon (23). 247 

Fertile homozygous mice (Arhgap25-/-) were obtained with the expected Mendelian ratios 248 

(data not shown) and did not show any obvious phenotype. No ARHGAP25 protein could be 249 

detected in either bone marrow derived neutrophils or in the spleen of Arhgap25-/- mice (Fig. 250 

S1A, B). Blood panel (e.g. circulating cell counts, hematocrit, mean corpuscular hemoglobin, 251 

mean corpuscular hemoglobin concentration) of Arhgap25-/- mice did not differ from the wild 252 

type (Arhgap25+/+) (Table I, Table SII). We assessed the body weight of male and female 253 

mice during a 130 days period and in 3 independent experiments. Body weight of male 254 

Arhgap25-/- mice was decreased compared to wild type but in the case of female mice, no 255 

difference was observed (Fig. S2). 256 

 257 

Reduced leukocyte rolling velocity and prolonged crawling in the absence of 258 

ARHGAP25 259 

Using intravital microscopy, we first investigated leukocyte rolling, adhesion and crawling in 260 

TNFα-stimulated cremaster muscle venules of WT (Arhgap25+/+) and Arhgap25-/- mice in 261 

vivo. Microvessel diameters, wall shear rates, centerline blood flow velocities and circulating 262 

leukocyte counts were similar between wild type and Arhgap25-/- mice (Table SI). While we 263 

observed no difference in leukocyte rolling (Fig. 1A), mean leukocyte rolling velocity was 264 
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markedly decreased in the absence of ARHGAP25 (Fig. 1B). Furthermore, we analyzed the 265 

number of adherent leukocytes and found no difference in adhesion between Arhgap25-/- and 266 

WT mice (Fig. 1C). Next, we investigated leukocyte crawling along the inflamed 267 

endothelium. Individual crawling paths of >140 cells were analyzed per group (Fig. 1D and 268 

E). We did not observe any difference in crawling directionality or accumulated distance 269 

between WT and ARHGAP25-/-mice (Fig. 1D-F). However, we found a significant increase in 270 

crawling velocity and Euclidean distance in Arhgap25-/- mice compared to WT mice (Fig. 1G 271 

and H) suggesting that ARHGAP25 is regulating leukocyte crawling in vivo. 272 

 273 

Lack of ARHGAP25 augments transendothelial migration in vivo. 274 

Next, we studied leukocyte extravasation in TNFα-stimulated cremaster muscle whole mount 275 

preparations of WT and Arhgap25-/- mice. As shown in Fig. 2A-B, Arhgap25+/+ leukocytes 276 

were found mainly in the vessels and the extravasated cells were scattered in the tissue. In 277 

contrast, a large number of Arhgap25-/- leukocytes lined up around the vessel from which they 278 

extravasated (Fig. 2C-D). Transendothelial migration was quantified and we found a 279 

significant increase in leukocyte extravasation in Arhgap25-/- compared to WT mice (Fig. 2E). 280 

Intrascrotal injection of PBS as a control caused no significant difference between WT and 281 

Arhgap25-/- mice (P= 0.194, data not shown). Further analysis of the different leukocyte 282 

populations extravasated into the inflamed cremaster muscle tissue revealed that the major 283 

component of extravasated leukocytes were neutrophilic granulocytes (PMN), followed by 284 

monocytes and lymphocytes (marked as “Others”) and eosinophils (Fig. 2F). Increased 285 

leukocyte extravasation upon TNFα stimulus was confirmed in an acute peritonitis model. 286 

Analyzing the H&E stained sections of inflamed peritoneal tissue, elevated leukocyte 287 

infiltration was observed in Arhgap25-/- mice compared to WT (Fig. 3A). Specific analysis of 288 
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Ly-6G+ neutrophil count in peritoneal lavage revealed a significant increase in case of 289 

Arhgap25-/- neutrophils compared to WT (Fig. 3B).  290 

 291 

Leukocyte rolling and adhesion under ex vivo conditions and in vitro Transwell 292 

migration assay.  293 

As Arhgap25-/- mice are complete knockout mice, the question arose, whether the observed 294 

alterations are due to functional changes in leukocytes or endothelial cells. To investigate the 295 

contribution of leukocytes on the recruitment phenotype observed in Arhgap25-/- mice, we 296 

performed ex vivo flow chamber assays and assessed rolling and adhesion of leukocytes in 297 

flow chambers coated with adhesion relevant proteins. In flow chambers coated with 298 

recombinant murine (rm)E-selectin, we saw a 2.5-fold increase in the number of rolling 299 

Arhgap25-/- leukocytes compared to wild type leukocytes (Fig. 4A). Next, we analyzed 300 

leukocyte adhesion in flow chambers coated with rmE-selectin alone, with rmE-selectin and 301 

rmICAM-1, and with rmE-selectin, rmICAM-1 and rmCXCL-1. Similar to the in vivo results 302 

we found no difference in the number of adherent cells between the different groups (Fig. 303 

4B). However, when we analyzed leukocyte rolling velocities, lack of ARHGAP25 resulted in 304 

a significant decrease in rolling velocity (Fig. 4C) in flow chambers coated with rmE-selectin 305 

or with rmE-selectin and rmICAM-1 surface (Fig. 4C). 306 

Taken together, we were able to reproduce under ex vivo conditions the pattern of 307 

rolling and adherence observed in ARHGAP25-deficient animals under in vivo conditions 308 

suggesting that loss of ARHGAP25 in leukocytes accounts for the observed pro-inflammatory 309 

phenotype.  310 

In order to test the role of ARHGAP25 in cell migration under in vitro conditions, we 311 

determined neutrophil migration toward CXCL12 in a Transwell assay. As shown in Fig. 4D,  312 
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 Arhgap25-/- neutrophils pretreated with TNFα for 10 min showed a significant increase in 313 

transmigration compared to WT. 314 

 315 

Verification of altered leukocyte function in bone marrow chimeras 316 

In view of the decisive role of the adhesive surface provided in vivo by the endothelial cells 317 

we wanted to verify our flow chamber data in bone marrow chimeric mice. These animals 318 

express the CD45.1 allele and carry Arhgap25-/- or Arhgap25+/+ hematopoietic cell 319 

populations that express CD45.2. Using these animals, we investigated the extravasation of 320 

leukocytes in cremaster muscle whole mounts after 3 h local stimulation with TNFα. CD45.2-321 

expressing Arhgap25-/- leukocytes were able to transmigrate more efficiently in CD45.1-322 

expressing WT recipients than Arhgap25+/+ cells (Fig. 5A-D). Similar to the results presented 323 

in Fig. 2, we found a threefold increase in leukocyte extravasation in chimeric mice with 324 

Arhgap25-/- hematopoietic cells compared to chimeric mice where WT hematopoietic cells 325 

had been transferred (Fig. 5E). Similar to the results obtained in complete knock-out animals, 326 

mainly neutrophilic granulocytes were responsible for the increase in extravasation followed 327 

by mononuclear cells (marked as “Others”) and eosinophils (Fig. 5F). 328 

These results substantiate that the alteration of leukocyte transendothelial migration 329 

observed in the absence of ARHGAP25 is due to primary changes in the hematopoietic 330 

compartment but not in endothelial or other non-hematopoietic cell compartment.  331 

 332 

Potential mechanism of altered leukocyte function  333 

To examine, whether ARHGAP25 has a regulatory role in the expression of adhesion relevant 334 

molecules and signaling events during neutrophil recruitment, we investigated cell surface 335 

expression and ligand binding ability of receptors and molecules involved in leukocyte-336 

endothelial cell interactions. As shown in Fig. 6A, ARHGAP25 deficiency did not affect the 337 
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expression of β2 integrins (CD18, CD11a and CD11b), L-selectin (CD62L), PSGL-1, 338 

chemokine receptor CXCR2 or CD44. In vitro analysis of adhesion molecule expression after 339 

direct chemotactic migration of neutrophils did not reveal any difference between WT and 340 

Arhgap25-/- cells either (data not shown).  Lack of ARHGAP25 also did not result in any 341 

difference in rmICAM-1 binding to LFA-1 in resting cells. As stimulation of bone marrow-342 

derived neutrophils leads to integrin activation and increased ligand binding (34), we also 343 

investigated binding of rmICAM-1 to neutrophils stimulated with CXCL1 or PMA.  344 

Compared to unstimulated controls, PMA caused a significant increase in rmICAM-1 binding 345 

to LFA-1 on both Arhgap25-/- and wild type neutrophils. However, ARHGAP25-deficiency 346 

did not influence rmICAM-1 binding to stimulated neutrophils. (Fig. 6B). 347 

Our previous study indicated that ARHGAP25 has a regulatory role in neutrophilic 348 

functions through its GAP activity on Rac1 (21). In addition, our in vitro studies demonstrate 349 

that it has a GAP activity on Rac2 as well (data not shown). Therefore, we investigated the 350 

presence of active Rac in bone marrow-derived neutrophils. Interestingly, we observed no 351 

difference in Rac-activity between ARHGAP25-/- and wild type cells in the resting state (Fig. 352 

6C). In contrast, treatment of neutrophils with TNFα resulted in a marked decrease of active 353 

Rac in the presence of ARHGAP25, while the lack of ARHGAP25 completely abolished this 354 

alteration (Fig. 6C).  355 

As Rac is known to be a key regulator of actin-polymerization during leukocyte 356 

migration (35, 36), we measured filamentous actin (F-actin) in Arhgap25-/- and wild type BM 357 

neutrophils. In resting ARHGAP25-deficient cells, increased F-actin was observed compared 358 

to wild type cells (Fig. 6D). Similar difference could be revealed upon stimulation with TNFα 359 

(Fig. 6E). Taken together, we suggest that ARHGAP25 affects actin-polymerization and 360 

depolymerization through its GTPase activating effect on Rac.  361 
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Discussion 362 

The present study provides a detailed characterization of leukocyte recruitment during 363 

inflammation in vivo in ARHGAP25-deficient mice. Alterations have been uncovered for 364 

several steps along the recruitment cascade, indicating a role for the protein in those 365 

processes. Most remarkable is the increase of transmigrating neutrophils observed both in the 366 

inflamed cremaster muscle and the inflamed peritoneal cavity. No striking changes were 367 

found in circulating leukocyte counts between wild type and Arhgap25-/- animals excluding 368 

differences in circulating leukocyte numbers for the observed alterations in leukocyte 369 

recruitment in the absence of ARHGAP25. 370 

Alteration of leukocyte migration may be the result of primary changes in circulating 371 

leukocytes, the endothelial cells, or both. Based on the following observations, we believe that 372 

in case of ARHGAP25-deficient animals, the altered migration is caused by leukocytes: i) 373 

ARHGAP25 was shown to be expressed primarily in hematopoietic cells (21) ii) all the 374 

trafficking alterations observed in living animals could be reproduced with isolated cells 375 

under ex vivo or in vitro condition iii) the difference between the movements of Arhgap25+/+ 376 

and Arhgap25-/- cells was reproduced in bone marrow chimeric animals in vivo, where the 377 

deficiency affected only the hematopoietic but not the endothelial or other peripheral cells. 378 

In control experiments it was verified that ARHGAP25-deficiency had no influence on 379 

the expression of the major leukocyte adhesive proteins and receptors or ligand binding of β2 380 

integrins. On the other hand, stimulation of neutrophils with TNFα resulted in a significant 381 

decrease in measurable GTP-bound Rac which was abolished by absence of ARHGAP25. The 382 

observed increase in the amount of filamentous actin indicates the biological relevance of 383 

enhanced Rac activity (Fig. 6). Deficiency in various RacGEFs was reported to result in 384 

decreased amount of GTP-bound Rac and a decrease in phagocyte migration (16, 37, 38), i.e. 385 

changes opposite to our findings in animals lacking ARHGAP25. We thus ascribe the 386 
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alteration of leukocyte trafficking in ARHGAP25-deficient animals to cytoskeletal 387 

reorganization due to elevation of RacGTP concentration. In human endothelial cells 388 

(HUVECs), TNFα was shown to induce actin-rearrangement through activation of Rho family 389 

small G-proteins (39) and several studies reported the role of TNFα in neutrophil priming and 390 

its involvement in neutrophil effector functions and inside-out signaling (40-43). Our findings 391 

strongly suggest that the leukocyte-specific RacGAP ARHGAP25 is a critical player in 392 

TNFα-induced, Rac-mediated actin reorganization in neutrophils. Two recent reports provide 393 

important information on its physiological role: ARHGAP25 was shown to be required for 394 

actin depolymerization in the course of phagocytosis (21, 44), and it was demonstrated to 395 

undergo significant changes in its phosphorylation pattern and GAP activity upon biological 396 

stimulation (45). TNFα-initiated modulation of the phosphorylation pattern of ARHGAP25 397 

with subsequent alterations of its GAP function may provide the link between the cytokine 398 

effect and the actin cytoskeleton rearrangement.  399 

Taken together, our data indicate that ARHGAP25 is a critical negative regulator of 400 

Rac activity and leukocyte transmigration. This qualifies ARHGAP25 as an interesting drug 401 

target in autoimmune disorders (e.g. rheumatoid arthritis and multiple sclerosis) where 402 

leukocyte recruitment is unwanted. 403 
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Figure legends 551 

 552 

Fig.1. Measurement of leukocyte rolling and crawling in TNFα-stimulated mouse 553 

cremaster muscle venules. Intravital microscopy was conducted to investigate leukocyte 554 

recruitment in the mouse cremaster muscle 2 hours after injection of rmTNFα  (500 ng/mouse 555 

intrascrotally). (A) Leukocyte rolling flux fraction (%) is presented as mean+SEM of 33 556 

vessels from 10 wild type mice and 42 vessels of 12 Arhgap25-/- mice. Mean rolling velocity 557 

of leukocytes (µm/s) (B) was quantified and is shown as bar chart (mean+SEM of 166 558 

Arhgap25+/+ cells and 190 Arhgap25-/- cells), ***: P< .001 compared to Arhgap25+/+. (C) 559 

Number of adherent cells per mm2 vessel wall is given as mean+SEM of 10 (Arhgap25+/+) 560 

and 12 (Arhgap25-/-) separate experiments. (D, E) Leukocyte crawling paths of individual 561 

leukocytes of Arhgap25+/+ (n=163 cells) and Arhgap25-/- (n=154 cells) mice. Direction of 562 

blood flow is indicated by arrows. (F) Accumulated distance of leukocytes. Mean+ SEM of 8 563 

wild type and 7 Arhgap25-/- mice. (G) Mean crawling velocity presented as mean+SEM of 564 

163 Arhgap25+/+ and 154 Arhgap25-/- cells. **: P< .01 compared to Arhgap25+/+. (H) 565 

Euclidean distance determines the length of section between starting and end points of 566 

crawling pathways. Mean+SEM of 8 (Arhgap25+/+) and 7 (Arhgap25-/-) separate experiments 567 

are shown.*: P< .05 compared to Arhgap25+/+.   568 

 569 

Fig. 2. Transmigration of leukocytes under in vivo conditions. (A-D) Representative 570 

images of Giemsa-stained cremaster muscle whole mounts from Arhgap25+/+ and Arhgap25-/- 571 

mice 3 hours after 500 ng intrascrotal rmTNFα injection. Images were captured with a Leica 572 

DMI 6000 B microscope equipped with a 10x/0.30 NA dry objective (Leica) and a Leica DFC 573 

480 camera. ROIs with high leukocyte infiltration (rectangles) are captured with 40x objective 574 

and shown in the right side of the panel (B,D). Bars represent 100 µm. (E) Quantification of 575 
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total number of extravasated cells per mm2 microvessel wall surface. (F) Distribution of 576 

extravasated cell types (PMN: neutrophilic granulocytes, Eos: eosinophilic granulocytes, 577 

Others: lymphocytes, macrophages and basophilic granulocytes). Mean+SEM of 3 578 

(Arhgap25+/+) and 7 (Arhgap25-/-) separate experiments.***: P< .001 compared to 579 

Arhgap25+/+. 580 

 581 

Fig. 3. TNFα-induced leukocyte infiltration into the peritoneal cavity.  582 

(A) Hematoxylin and eosin staining of peritoneal tissues 3 hours after intraperitoneal injection 583 

of TNFα. Left side of the panel indicates 2 representative images from Arhgap25+/+ and 2 584 

from Arhgap25-/- mice captured with a 10x objective. ROIs with high leukocyte infiltration 585 

(rectangles) are captured with 40x objective and shown in the right side of the panel. Bars 586 

represents 50 µm. Results shown are representatives of multiple experiments and of multiple 587 

sections and fields. (B) Ly-6G+ cell count measured from peritoneal lavage of Arhgap25+/+ 588 

and Arhgap25-/- mice 3 hours after TNFα administration. Data represent mean+SEM of 6 589 

separate experiments. *: P< .05 compared to Arhgap25+/+. 590 

 591 

Fig. 4. Leukocyte rolling and adhesion under flow conditions and transmigration in a 592 

Transwell assay. (A-C) Ex vivo flow chamber assay. Blood cells of Arhgap25+/+ and 593 

Arhgap25-/- mice were perfused through glass capillaries coated with different cell surface 594 

molecules as indicated in panel B.  Number of rolling (A) and adherent (B) leukocytes per 595 

field of view (FOV) and mean rolling velocity (C) of wild type and Arhgap25-/- animals are 596 

shown. Rolling was assessed in E-selectin coated chambers (A). E: rmE-selectin; I: rmICAM-597 

1; CXCL1: rmKC/CXCL1. Mean+SEM of 4 separate experiments. *: P< .05, **: P< .01, ***: 598 

P<.001 compared to Arhgap25+/+. (D) In vitro transmigration of Arhgap25+/+ and Arhgap25-/- 599 

bone marrow neutrophils pretreated with TNFα toward CXCL12 in an FBS-coated Transwell 600 
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system. Data represent mean+SEM of 4 independent experiments. *: P< .05 compared to 601 

Arhgap25+/+. 602 

 603 

Fig. 5. Leukocyte transmigration in bone marrow chimeric mice carrying Arhgap25-/- or 604 

Arhgap25+/+ hematopoietic cells. (A-D) Representative images of a Giemsa-stained 605 

cremaster muscle whole mount. Microscopic analysis was performed 3 hours after 500 ng 606 

intrascrotal rmTNFα injection. Images were captured with a Leica DMI 6000 B microscope 607 

equipped with a 10x/0.30 NA dry objective (Leica) and a Leica DFC 480 camera. ROIs with 608 

high leukocyte infiltration (rectangles) are captured with 40x objective and shown in the right 609 

side of the panel (B,D). Bars represent 100 µm. (E) Quantification of total number of 610 

extravasated cells per mm2 microvessel wall surface. (F) Distribution of transmigrated cell 611 

types (PMN: neutrophilic granulocytes, Eos: eosinophilic granulocytes, Others: lymphocytes, 612 

macrophages, basophilic granulocytes). Mean+SEM of 3 separate experiments. *: P< .05 613 

compared to Arhgap25+/+.  614 

 615 

Fig. 6. Investigation of the potential mechanism of altered migration in Arhgap25-/-cells. 616 

(A) Cell surface expression of molecules relevant in leukocyte-endothelial cell interactions 617 

during recruitment. Mean fluorescence intensity relative to isotype control is presented. 618 

Mean+SEM of 5 separate experiments. Panel B shows binding of ICAM-1 to LFA1. Bone 619 

marrow-derived neutrophils were co-incubated with fluorescently labeled rmICAM-1. Bound 620 

ICAM-1 was detected with flow cytometry. Data are presented as mean fluorescence intensity 621 

ratio relative to unstimulated cells. CCXL1: rmKC/CXCL1, PMA: Phorbol 12-myristate 13-622 

acetate. Mean+SEM of 4 separate experiments is shown. *: P< .05, **: P< .01.  (C) GTP-623 

bound active Rac amount in resting and stimulated bone marrow-derived neutrophils. 624 

Stimulation was carried out with 50 ng/mL TNFα in HBSS+ medium at 37 °C for 10 min. 625 
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After lysis, active Rac was pulled down with PBD-GST-glutathione-sepharose beads. Bar 626 

chart presents densitometric analysis of 6 (unstimulated) and 3 (TNFα-treated) separate 627 

western blot experiments. Under the graph, a representative western blot experiment is shown. 628 

Active and total Rac were decorated with anti-Rac antibody in 1:1000 dilution. (D, E) 629 

Filamentous actin amount of bone marrow-derived neutrophils. Actin was stained with Alexa-630 

488-Phalloidin in 1:500 dilution and measured with flow cytometry. Pane D shows F-actin 631 

content in resting neutrophils from Arhgap25-/- mice as mean fluorescence intensity of 632 

phalloidin relative to Arhgap25+/+. Mean+SEM of 4 separate experiments is present. **: P< 633 

.01 compared to Arhgap25+/+. (E) Changes in relative F-actin content of neutrophils treated 634 

for 5, 10 and 15 minutes with 50 ng/mL TNFα. Mean fluorescence intensity of phalloidin is 635 

expressed relative to unstimulated (0 min) control in each genotype. Mean±SEM of 6 separate 636 

experiments is shown. *: P< .05 compared to Arhgap25+/+. 637 
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Table I. Blood parameters in Arhgap25+/+ and Arhgap25-/- mice.  

Parameter Arhgap25+/+ Arhgap25-/- 

Red blood cells, 106/uL 10.75 ± 0.08 10.69 ± 0.22 

Hematocrit, % 52.78 ± 0.6 53.58 ± 1.57 

MCH, pg 14.83 ± 0.06 14.55 ± 0.03 

MCHC, g/dL 30.23 ± 0.14 29.05 ± 0.27 

Reticulocytes, 103/µL 421.53 ± 32.01 469.35 ± 12.73 

Platelets, 103/µL 807.00 ± 11.88 1017.25 ± 53.07 

WBCs, 103/µL 5.72 ± 1.17 6.11 ± 0.59 

Neutrophils, 103/µL 2.06 ± 0.27 2.32 ± 0.38 

Lymphocytes, 103/µL 3.54 ± 1.20 3.60 ± 0.49 

Monocytes, 103/µL 0.013 ± 0.005 0.085 ± 0.035 

Eosinophils, 103/µL 0.103 ± 0.020 0.093 ± 0.011 

Basophils, 103/µL 0.005 ± 0.003 0.008 ± 0.003 

 

Data presented as mean ± SEM, n= 4 in each genotype. WBCs: white blood cells, MCH: 

mean corpuscular hemoglobin, MCHC: mean corpuscular hemoglobin concentration. 
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