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We have recently developed a novel in vitro model using HAT-7 rat ameloblast cells to

functionally study epithelial ion transport during amelogenesis. Our present aims were to

identify key transporters of bicarbonate in HAT-7 cells and also to examine the effects of

fluoride exposure on vectorial bicarbonate transport, cell viability, and the development

of transepithelial resistance. To obtain monolayers, the HAT-7 cells were cultured on

Transwell permeable filters. We monitored transepithelial resistance (TER) as an indicator

of tight junction formation and polarization. We evaluated intracellular pH changes by

microfluorometry using the fluorescent indicator BCECF. Activities of ion transporters

were tested by withdrawal of various ions from the bathing medium, by using transporter

specific inhibitors, and by activation of transporters with forskolin and ATP. Cell survival

was estimated by alamarBlue assay. Changes in gene expression were monitored by

qPCR. We identified the activity of several ion transporters, NBCe1, NHE1, NKCC1,

and AE2, which are involved in intracellular pH regulation and vectorial bicarbonate

and chloride transport. Bicarbonate secretion by HAT-7 cells was not affected by

acute fluoride exposure over a wide range of concentrations. However, tight-junction

formation was inhibited by 1mM fluoride, a concentration which did not substantially

reduce cell viability, suggesting an effect of fluoride on paracellular permeability and

tight-junction formation. Cell viability was only reduced by prolonged exposure to fluoride

concentrations greater than 1mM. In conclusion, cultured HAT-7 cells are functionally

polarized and are able to transport bicarbonate ions from the basolateral to the apical fluid

spaces. Exposure to 1mM fluoride has little effect on bicarbonate secretion or cell viability

but delays tight-junction formation, suggesting a novel mechanism that may contribute

to dental fluorosis.
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INTRODUCTION

Dental enamel is the hardest material in the human body
and its mineral concentration is also the highest. Its major
disorders result from either environmental or genetic conditions.
In both cases mineral formation can be greatly impaired.
Also dental caries and erosion are important enamel-loss
conditions where reconstruction would be the optimal solution.
Ameloblasts secrete enamel in a two-stage process. First a slightly
mineralized matrix structure is built. Then the remodeling of
this matrix results in a high level of mineralization (Robinson,
2014). Ameloblasts have epithelial tight junctions which close
the intercellular space allowing the preservation of great
concentration gradients between the apical and basal sides of the
cells. Calcium and phosphate ions are actively transported into
the mineralization space by an only partially understood process.

Acid/base balance is crucial during enamel hydroxyapatite
formation since the crystal growth depends upon a delicate
cellular control of the ionic composition and pH of the
extracellular fluid (Takagi et al., 1998). Hydroxyapatite formation
during the maturation stage of amelogenesis liberates an
enormous quantity of protons. Thus, sustained crystal growth
requires these protons to be neutralized (Smith, 1998; Josephsen
et al., 2010; Lacruz et al., 2010) by bicarbonate transported
directly into the enamel space. The available information about
electrolyte transport by ameloblasts is based almost exclusively
on expressional studies, immunohistochemistry, and chemical
composition analysis, with little functional support (Schroeder
and Listgarten, 1997; Bosshardt and Lang, 2005). Consequently,
the mechanistic models have hitherto been purely hypothetical.

We have therefore developed an in vitro model, using the
HAT-7 rat ameloblast cell line, to study epithelial ion transport
during amelogenesis (Bori et al., 2016). HAT-7 is a dental
epithelial cell line derived from the cervical loop epithelium
of a rat incisor (Kawano et al., 2002). Immunocytochemical
studies have shown that HAT-7 cells exhibit several ameloblast
characteristics, including the expression of amelogenin and
ameloblastin (Kawano et al., 2002) and also maturation-stage
ameloblast markers such as kallikrein-4 (Klk4) and amelotin.
We have to note, however that further studies are needed to
determine how well HAT-7 cells could serve as an optimal model
for maturation ameloblast function. In our preliminary, proof-
of-concept work (Bori et al., 2016) we demonstrated that our
2D in vitro model is suitable for functional investigations of
pH regulation, mineral transport, and tight-junction formation.
Confluent monolayers of HAT-7 cells grown on permeable
supports are functionally polarized, they express ion transporters
and tight-junction proteins and they mediate vectorial HCO−

3
transport.

Enamel fluorosis is a developmental disturbance caused by
intake of supraoptimal levels of fluoride during early childhood
(Aoba and Fejerskov, 2002; Denbesten and Li, 2011). The
enamel defects consist of horizontal thin white lines, opacities
(subsurface porosities), discolorations, and pits of various sizes.
The molecular mechanism underlying enamel fluorosis is still
unknown. Possible explanations include direct toxic effects
of fluoride on ameloblasts, fluoride-related alterations in the

forming enamel matrix, reduced proteolytic activity due to
fluoride incorporation into growing enamel crystals, the potential
effects of fluoride on matrix pH, and incomplete barrier
formation at the mineralization front (Aoba and Fejerskov, 2002;
Denbesten and Li, 2011; Lyaruu et al., 2014). None of these
hypotheses can be directly proved because there is a lack of
appropriate experimental models.

Our newly developed HAT-7 ameloblast monolayer model
(Bori et al., 2016) may offer a reasonable basis for such studies.
We can hypothesize that fluorosis is due to a combination
of direct cytotoxic effects causing cell death, the delayed
development of tight junctions, which are necessary to form
a sealed barrier between apical and basolateral surfaces, and a
direct inhibitory effect of fluoride on vectorial calcium and/or
bicarbonate transport. The purpose of the present study was
(1) to identify the basolateral acid/base transporters affecting
intracellular pH regulation in our polarizedHAT-7 cell model, (2)
to assess whether acute fluoride exposure disturbs transepithelial
HCO−

3 secretion in this model, and (3) to assess viability,
development of transepithelial resistance, and gene expression of
tight-junction proteins of polarized HAT-7 cells in the presence
of fluoride.

MATERIALS AND METHODS

Cell Culture
To obtain polarized monolayers (Bori et al., 2016), HAT-7 cells
were seeded on permeable polyester Transwell culture inserts
with 0.4µmpore size and 1.12 cm2 surface area (Costar, Corning,
NY, USA) and were cultured in DMEM/F12 Ham medium
(Sigma-Aldrich, St. Louis, MO, USA) supplemented with 10%
HyClone fetal bovine serum (Thermo Scientific, Waltham,
MA, USA), 100 U/ml penicillin, 10µg/ml streptomycin
(Sigma), CaCl2 (2.1mM final concentration), and 10−5 mM
dexamethasone (Sigma) (Arakaki et al., 2012) as described
previously (Bori et al., 2016). They were grown in a humidified
atmosphere containing 5% CO2 at 37◦C.

Measurement of Transepithelial Electrical
Resistance
Transepithelial electrical resistance (TER) values of HAT-7 cells
grown on Transwell membranes incubated in 12-well plates were
measured using an epithelial volt-ohmmeter (EVOM, World
Precision Instruments, Hamden CT, USA) on 5 consecutive
days prior to microfluorometric measurements or during NaF
treatments. TER values give an indication of the paracellular
permeability to electrolytes, and thus tight-junction formation,
which are key characteristics of secretory and absorptive
epithelia. In multi-day fluoride exposure experiments, 24 h after
cell seeding on Transwells, the medium was changed to 0
(control), 0.3, 0.6, or 1mM NaF-containing medium.

Microfluorometry
Intracellular pH (pHi) in HAT-7 cells was measured by
microfluorometry as described previously (Szucs et al., 2006; Bori
et al., 2016). Briefly, the cells were loaded with a fluorescent
dye, BCECF-AM, that is sensitive to intracellular pH and
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therefore capable of indirectly measuring H+ and/or HCO−

3
movements through the cell membrane. Particular elements of
HCO−

3 transport can be identified by modifying the extracellular
environment (e.g., specific ion withdrawal, application of
transporter inhibitors).

Cells grown on Transwell membranes were mounted in a
minichamber on a Nikon Eclipse TE200 inverted fluorescence
microscope and were bilaterally superfused at 3 ml/min.
Illumination was alternated between 490 and 440 nm excitation
wavelengths. Fluorescence was measured every 5 s at 530 nm
using a photomultiplier tube and amplifier (Cairn Research,
Faversham, Kent, UK) and data were acquired using DASYLab
software (Measurement Computing, Norton, MA). Fluorescence
data were corrected for autofluorescence. Using calibration data
obtained with the nigericin/high potassium method (Thomas
et al., 1979) the ratio of fluorescence signals at the two excitation
wavelengths was converted to pHi.

The following solutions were used for perfusion: standard
HEPES-buffered solution containing (in mM) 137 NaCl, 5
KCl, 1 CaCl2, 1 MgCl2, 10 D-glucose, and 10 HEPES (4-
(2-hydroxyethyl)-1-piperazineethanesulfonic acid), equilibrated
with 100% O2; standard HCO−

3 -containing HEPES-buffered
solution containing (in mM) 116 NaCl, 25 NaHCO3, 5 KCl,
1 CaCl2, 1 MgCl2, 10 D-glucose, and 5 HEPES, equilibrated
with 5% CO2/95% O2. For Na+ withdrawal, Na+ was
replaced by equimolar N-methyl-D-glucamine (NMDG). For
Cl− withdrawal, Cl− was replaced with equimolar gluconate.
All solutions were adjusted to pH 7.4 at 37◦C. For inhibiting
specific transport processes 100µM DIDS was used to block
anion exchangers, 300µMamiloride to block Na+-H+ exchange,
500µM H2DIDS for Na+-HCO−

3 cotransport, and 100µM
bumetanide for NKCC. For stimulation of transport, 50µM
ATP was used to elevate intracellular calcium concentrations
and 10µM forskolin, in combination with 500µM IBMX (3-
isobutyl-1-methylxanthine), was used to elevate intracellular
cAMP levels. All reagents were purchased from Sigma (Sigma-
Aldrich, St. Louis, MO, USA), except H2DIDS and BCECF-AM
(both fromMolecular Probes, Eugene, OR, USA) andNaF (Molar
Chemicals, Hungary).

Cell Viability Assays
Cell viability was tested by alamarBlue assay (Thermo Scientific,
Waltham, MA, USA) according to the manufacturer’s protocol.
Cells (104 per well) were plated in 96-well plates, and experiments
started 24 h after plating. At this time the medium was
supplemented with various concentrations of NaF. After 48
and 96-h exposures to fluoride, the cells’ metabolic activity
was evaluated by measuring the alamarBlue fluorescence at
590 nm (with excitation at 560 nm) using a Perkin-Elmer LS50B
luminescence spectrometer. Each treatment was applied in six
parallel wells.

Quantitative PCR
The expression of tight-junction forming genes was estimated
by quantitative RT-PCR as described previously (Hegyesi et al.,
2015; Bori et al., 2016). Total RNA was isolated 3 days after
seeding fromTranswell samples incubated inmedium containing

0, 0.6, and 1mM NaF, by GeneJET RNA Purification Kit
(Thermo Scientific, Waltham, MA, USA). Approximately 1–
2 µg of total RNA was reverse transcribed by Maxima First
Strand cDNA Synthesis Kit for RT-qPCR (Thermo Scientific,
Waltham, MA, USA). The cDNA was then used in quantitative
PCR reactions. qPCR amplification was performed using the
ABI StepOne System with TaqMan Universal Master Mix II
and predesigned primers Tjp1: Rn02116071; Cldn1: Rn00581740;
Cldn4: Rn01196224; Cldn8: Rn01767199; Cldn16: Rn00590884;
and Cldn19: Rn01416537 (Applied Biosystems, Foster City, CA,
USA). Acidic ribosomal protein P0 (Rplpo: Rn00821065) was
used as internal control and the 11Ct method was used to
quantify gene expression with ABIPrism 2.3 software. Each
sample was measured in three biological replicates and in three
technical parallels.

Statistical Analysis
Data are presented as mean ± SEM. Statistical analyses
were performed using one-way or repeated-measures ANOVA,
followed by Dunnett’s post-hoc test. Unpaired t-tests were applied
when only two groups were to be compared. As transepithelial
resistance experiments resulted in large differences in SEM
values, thus not permitting parametric tests, the non-parametric
Kruskal-Wallis test and Dunn’s post-hoc test were used to
compare TER values.

RESULTS

Evidence for Activity of the Major
Basolateral Transporters Participating in
Intracellular pH Regulation in HAT-7 Cells
In our previous work we showed data suggesting the existence
of vectorial, basolateral-to-apical bicarbonate transport in HAT-
7 ameloblast cells but we did not identify the individual
transporters at the basolateral side (Bori et al., 2016).

Na+-H+ Exchanger Activity at the Basolateral

Membrane
The ammonium pulse technique (Boron and DeWeer, 1976) was
used to induce intracellular acidification, and the rate of recovery
of pHi from the acid load was measured in the absence of
HCO−

3 /CO2. Removal of Na+ from both sides of the epithelium
after the NH+

4 pulse completely blocked the recovery of pHi from
the acidification (Figure 1A), indicating the Na+ dependence of
the transporters responsible for pHi regulation. Na+ restoration
on the basolateral side caused a rapid recovery of pHi which
was sensitive to 300µM amiloride (Figures 1A,B) indicating the
existence of basolateral Na+-H+ exchanger (NHE) activity, most
probably due to NHE1 which is ubiquitously expressed at the
basolateral membrane of secretory epithelia.

Na+-HCO−

3 Cotransporter Activity at the Basolateral

Membrane
In the presence of HCO−

3 /CO2, removal of Na+ from both
sides, after acid load, blocked the recovery of pHi (Figure 2A),
suggesting that the HCO−

3 transporters involved in pHi

regulation are also Na+ dependent and thus likely to include
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FIGURE 1 | Recovery of pHi in HAT-7 cells exposed to an acid load in the absence of HCO−

3 /CO2. (A) HAT-7 cells grown on Transwell membranes were exposed

bilaterally to 20mM NH4Cl followed by bilateral substitution of Na+ with NMDG+. Recovery of pHi (a) can be seen following basolateral restoration of external Na+.

Inhibition of pHi recovery (b) can be seen following restoration of Na+ in the presence of basolateral (BL) amiloride (300µM) in order to selectively block the NHE1

exchanger. (B) Mean dpH/dt (± SEM) values were calculated from the initial rates of increase in pHi following restoration of Na+ in the presence and absence of the

inhibitor (n = 9–22). *p < 0.05 compared with control.

the Na+-HCO−

3 cotransporter NBCe1. Na+ restoration on the
basolateral side caused a sharp increase in pHi, which was
partially amiloride sensitive (Figures 2B,D, p < 0.05 vs. control)
and therefore only partially attributable to NHE1. Additionally,
when the NBCe1 inhibitor H2DIDS (500µM) was applied
in addition to amiloride, further significant inhibition of pHi

recovery was observed (Figures 2C,D, p < 0.05 vs. amiloride
given alone). Thus, the pHi regulatory mechanisms following
intracellular acidification seem to involve both HCO−

3 uptake by
NBCe1, and H+ extrusion by NHE1 in HAT-7 cells.

Na+-K+-2Cl− Cotransporter Activity at the

Basolateral Membrane
A potentially important factor that may contribute to the partial
recovery of pHi from the alkalinization that occurs during
the NH+

4 pulse is the acidifying effect of NH+

4 uptake. This
could be mediated by the Na+-K+-2Cl− cotransporter (NKCC1)
which is known to transport NH+

4 in place of K+ (Paulais
and Turner, 1992b). Basolateral application of the NKCC1
inhibitor bumetanide (100µM) (Shumaker and Soleimani,
1999), significantly slowed the acidification that occurred during
the NH+

4 pulse (p < 0.05, Figure 3). This suggests that NKCC1
is present in HAT-7 cells and is consistent with our previous
RT-PCR data (Bori et al., 2016).

Anion-Exchanger Activity at the Basolateral

Membrane
Since anion secretion by ameloblasts involves Cl−/HCO−

3
exchange at the basolateral membrane (Lyaruu et al., 2008),
the next series of experiments was designed to test the activity
of anion exchangers in HAT-7 cells. Extracellular Cl− was
substituted with a non-transported anion, gluconate, and the

resulting change in pHi was recorded. Substitution of Cl−

reverses the normal concentration gradient for Cl−. If anion
exchangers are present, the resulting efflux of Cl− will be coupled
to a rapid uptake of HCO−

3 and this will result in a measurable
increase in pHi. Indeed, removal of basolateral Cl− from
the HEPES-buffered bath solution elicited an increase in pHi

(Figure 4), likely due to HCO−

3 influx, which was significantly
inhibited by the anion exchange inhibitor DIDS (100µM) (p
< 0.05 vs. control). This suggests that a DIDS-sensitive anion
exchanger, most probably AE2, is present at the basolateral
membrane of HAT-7 ameloblast cells.

Lack of Effect of Acute Fluoride Exposure
on Bicarbonate Secretion in HAT-7 Cells
Besides the cotransport of HCO−

3 through the basolateral
membrane by NBCe1 (using the Na+ gradient as a driving force),
cells can also accumulate HCO−

3 by the diffusion of CO2 into the
cells, its conversion to HCO−

3 and H+ by carbonic anhydrases,
and subsequent H+ extrusion by NHE1. We demonstrated in
our previous paper that when HCO−

3 uptake is blocked on the
basolateral side by NBCe1 and NHE1 inhibitors, the continuing
apical efflux of HCO−

3 leads to a slow intracellular acidification.
This can be further enhanced by simultaneous application of
Ca2+- and cAMP-mobilizing stimuli (ATP and forskolin/IBMX,
respectively) (Bori et al., 2016). In the present work we measured
this initial acidification rate, an index of HCO−

3 secretion, to
test whether acute NaF exposure has any effect on vectorial
HCO−

3 transport. We found that fluoride in the concentration
range 0.03–1.0mM did not affect HCO−

3 secretion evoked by
simultaneous stimulation with 50µMATP, 10µM forskolin, and
500µM IBMX (Figure 5).
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FIGURE 2 | Recovery of pHi in HAT-7 cells exposed to an acid load in the presence of HCO−

3 /CO2. HAT-7 cells grown on Transwell membranes were exposed

bilaterally to 20mM NH4Cl followed by bilateral substitution of Na+ with NMDG+. (A) Recovery of pHi following basolateral restoration of extracellular Na+.

(B) Inhibition of pHi recovery following restoration of Na+ in the presence of basolateral (BL) amiloride (300µM). (C) As for panel B but with the amiloride-containing BL

solution supplemented with H2DIDS (500µM) in order to block the NBCe1 cotransporter. (D) Mean dpH/dt ± SEM values calculated from the initial rates of increase

in pHi following restoration of Na+ in the presence and absence of the inhibitors (n = 5–7). *p < 0.05 compared to control, #p < 0.05 compared to amiloride alone.

Development of Transepithelial Resistance,
Cell Viability, and Gene Expression in
HAT-7 Cells Exposed to Fluoride
The formation of tight junctions is essential for ameloblast
polarization and differentiation (Bartlett and Smith, 2013) and
it creates an intercellular barrier that separates the apical and
basolateral spaces, thus enabling transepithelial ion gradients
to exist across the epithelium. We monitored tight-junction
formation and polarization by measuring the transepithelial
resistance (TER) of HAT-7 cells cultured on Transwell
membranes for 5 days, performing daily TER measurements

while the cells were exposed to various concentrations of NaF.
The cells became confluent, covering the whole surface of
the Transwell membranes, after 3–5 days in the presence of
fluoride at concentrations up to 1mM (phase-contrast images
in Figure 6A). Over the 5-day period TER development was
not significantly affected the by presence of 0.3 or 0.6mM
NaF. However, we detected an almost full inhibition of TER
development by 1mM NaF (p < 0.05 vs. zero fluoride control,
Figure 6B).

Tight-junction forming gene expression in HAT-7 cells
cultured on Transwell membranes in differentiationmediumwas
evaluated by quantitative RT-PCR (Figure 6C). Unexpectedly,
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FIGURE 3 | Compensation of pHi change in HAT-7 cells exposed to an alkali load in the absence of HCO−

3 /CO2. (A) HAT-7 cells grown on Transwell membranes

were exposed bilaterally to 20mM NH4Cl, during which time partial pHi compensation (a) was observed. Inhibition of pHi compensation can be seen (b) in the

presence of basolateral (BL) bumetanide (100µM), a selective blocker of the NKCC1 cotransporter. (B) Mean dpH/dt ± SEM values were calculated from the rate of

pHi decrease during NH4Cl exposure in the presence and absence of the inhibitor (n = 8–13). *p < 0.05 compared to control.

FIGURE 4 | Increase in pHi in HAT-7 cells upon Cl− withdrawal in the presence of HCO−

3 /CO2. (A) HAT-7 cells grown on Transwell membranes were exposed

basolaterally to Cl−-free HCO−

3 -containing HEPES solution. An increase in pHi (a) can be seen, most probably as a result of HCO−

3 influx. Upon restoration of

basolateral Cl−, pHi recovers to the baseline. Basolateral administration of DIDS (100µM) prior to a second Cl− withdrawal inhibited the increase in pHi (b) suggesting

the presence of a HCO−

3 /Cl− exchanger. (B) Mean dpH/dt (± SEM) values were calculated from the initial rates of increase in pHi following removal Cl− in the

presence and absence of the inhibitor (n = 9–11). *p < 0.05 compared to control.

fluoride exposure did not inhibit the expression of the junctional
complex genes Tjp1, Cldn1, Cldn4, Cldn8, Cldn16, and Cldn19
at mRNA level at all. Instead, a moderate but significant increase
was observed in their expression. These data suggest that fluoride
impedes tight junction assembly, rather than the expression of its
key protein components.

The cytotoxicity of NaF was determined using the alamarBlue
viability assay and this showed that the metabolic activity of

HAT-7 cells was not altered by NaF concentrations of up to
0.6mM (Figure 6D). With 1mM fluoride, the concentration
that impeded tight junction formation, metabolic activity was
only slightly reduced. However, cell viability was preserved,
as judged by the photomicrographs taken at day 5, which
show full confluency of the cells (Figure 6A). In contrast,
3mM NaF was totally toxic, killing the cells after just 48 h
(Figure 6D).
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FIGURE 5 | Effects of fluoride on HCO−

3 secretion by HAT-7 cells stimulated with ATP and forskolin. Basolateral HCO−

3 uptake in HAT-7 cells grown on Transwell

membranes was inhibited by simultaneous basolateral (BL) application of 500µM H2DIDS and 300µM amiloride (Ami). Amiloride was also included in the apical (AP)

perfusate to inhibit any apical NHE activity. Representative pHi traces obtained (A) in unstimulated control conditions, (B) in cells stimulated with ATP (50µM), forskolin

(10µM), and IBMX (500µM), and (C) in stimulated cells exposed to 1mM NaF. (D) Mean dpH/dt ± SEM values calculated from the initial rates of decrease in pHi in

unstimulated cells (control) and cells stimulated with ATP, forskolin and IBMX, and pretreated with a range of NaF concentrations. *p < 0.05 compared with control.

DISCUSSION

The CO2/HCO−

3 equilibrium is central to the proper regulation
of extracellular pH by ameloblasts during enamel mineralization
(Lacruz et al., 2010, 2012, 2013; Bronckers et al., 2016). A major
finding in our previous work was that HAT-7 cells grown as
a monolayer on Transwell membranes are capable of apical-
to-basolateral HCO−

3 secretion (Bori et al., 2016). To identify
the acid/base transporters responsible for basolateral HCO−

3
accumulation in the cytosol during secretion, we first examined
the recovery of pHi following an acid load in the absence
of HCO−

3 /CO2. This was dependent on basolateral Na+ and
was almost completely blocked by basolateral application of
amiloride, suggesting the presence of NHE1 at this membrane.
This is consistent with the observation that the presence of
a basolateral Na+/H+ exchanger, usually NHE1, is an almost
universal feature of the epithelial cells of the gastrointestinal
tract (Kiela et al., 2006). Under physiological conditions, in
the presence of HCO−

3 /CO2, NHE1 contributes to bicarbonate
accumulation within the cells, because it shifts the carbonic-
anhydrase catalyzed reaction toward the production of HCO−

3

ions by removing H+ from the cell. The importance of
this mechanism can be clearly seen in other HCO−

3 -secreting
epithelia such as those of the salivary glands and pancreas
(Steward et al., 2005).

Besides H+ extrusion, Na+-HCO−

3 co-transporters (NBCs)
may also contribute to HCO−

3 uptake. In our study the presence
of a basolateral Na+-HCO−

3 cotransporter was revealed in acid-
loading experiments performed in the presence of HCO−

3 /CO2.
The recovery of pHi was Na+ dependent, and was only
partially inhibited by amiloride. The simultaneous application
of amiloride and H2DIDS resulted in a significantly greater
inhibition suggesting that a basolateral NBC also contributes
to the cytosolic HCO−

3 supply. Moreover, when NHE activity
was measured in HCO−

3 -free (HEPES-buffered) medium, the
pHi recovery from acidosis (control) and its inhibition by NHE
inhibitor was substantially lower than recovery rate and its
inhibition by the NHE inhibitor in HCO−

3 -containing medium,
further suggesting the existence of an NHE-independent
mechanism. These data are consistent both with our RT-PCR
evidence for NBCe1 expression in HAT-7 cells (Bori et al., 2016)
and with previous reports of tissue staining in mid-maturation
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FIGURE 6 | Effects of fluoride on transepithelial resistance, tight-junction protein expression and cell viability of HAT-7 cells. (A) Phase-contrast images of HAT-7 cells

grown on Transwell membranes in control medium at day1 and 5 (control), or in the same medium supplemented with 1mM NaF. (B) Transepithelial resistance (TER)

of the cells cultured on Transwell membranes for 5 days in the absence (solid black) and presence of 0.3mM (solid gray), 0.6mM (broken gray), or 1mM NaF (broken

black line). A significant difference in TER was observed after 5 days when cells cultured with 1mM NaF were compared to controls: *p < 0.05. (C) Quantitative

RT-PCR data showing expression of tight-junction genes Tjp1, Cldn1, Cldn4, Cldn8, Cldn16, and Cldn19 genes, normalized to mitochondrial Rplpo gene expression

in HAT-7 cells treated as described above (n = 3 for each gene). Changes in gene expression following treatment with 0.6mM (gray) and 1mM (black) NaF are

compared to controls (white): *p < 0.05; error bars show 95% confidence intervals. (D) Concentration dependence of the effect of NaF on the metabolic activity of

HAT-7 cells treated for 48 h (black circles, continuous line) and 96 h (empty rectangles, broken line) (n = 6 for each NaF concentration).

ameloblasts (Jalali et al., 2015). The basolateral localization of
NBCe1 in these cells is similar to that observed in secretory
epithelia in rat (Zhao et al., 1994) and guinea-pig (Ishiguro et al.,
2000) pancreatic ducts, and also in rat (Gresz et al., 2002), and
guinea-pig (Li et al., 2006) salivary glands.

Chloride ions are usually required for HCO−

3 transport in
secretory epithelia (Demeter et al., 2009a), and they are most
likely also essential in pH modulation during enamel formation

(Bronckers, 2017). There is a strong positive correlation between
calcium content and chloride content during ongoing enamel
maturation and ameloblast modulation. Lower than normal Cl−

content leads to hypomineralization (Bronckers et al., 2015).
CFTR-null and AE2-null mice show strongly affected phenotypes
in their enamel structure (Sui et al., 2003; Bronckers et al., 2015).
Importantly, cells have to first accumulate Cl− intracellularly
in order to secrete it across the apical membrane. NKCCs are
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electroneutral symporters that move Na+, K+, and Cl− ions into
the cell by secondary active transport. NKCC activity can be
detected by microfluorometry because of its ability to carry NH+

4
ions in place of K+ (Paulais and Turner, 1992b). In this study,
we observed a bumetanide-sensitive decrease in pHi during
NH4Cl exposure in HAT-7 cells. Therefore, the cotransporter
(most probably NKCC1)may be an important contributor to Cl−

uptake across the basolateral membrane of HAT-7 ameloblast
cells, as it is in a number of other secretory epithelia including
the pancreatic ductal cell lines Capan-1 and HPAF (Szucs et al.,
2006; Demeter et al., 2009a) and salivary acinar cell line Par-C10
(Demeter et al., 2009b), where Cl− secretion is largely dependent
on basolateral NKCC1 activity (Paulais and Turner, 1992a;
Melvin et al., 2005). Our study represents the first functional
evidence that NKCC1 could have a role in Cl− accumulation in
ameloblasts. Furthermore, it is in line with the recent observation
that NKCC1 is expressed during amelogenesis in papillary cells
by immunohistochemistry (Jalali et al., 2017).

Another major class of HCO−

3 transporters are the anion
exchangers (AEs). The Na+-independent AEs of the SLC4 family
accomplish the electroneutral exchange of Cl− with HCO−

3 ions.
According to our Cl− substitution experiments, a Cl−/HCO−

3
exchanger is present at the basolateral membrane of HAT-7 cells,
as confirmed by the inhibitory effect of DIDS. This is most
likely to be the AE2 exchanger, whose expression we detected
previously in polarized HAT-7 cells by immunocytochemistry
(Bori et al., 2016) and which is expressed at the basolateral
membranes of most epithelial cells (Romero et al., 2004).
In salivary acinar cells, the basolateral Cl−/HCO−

3 exchanger
provides an important additional pathway for the accumulation
of intracellular Cl− against its electrochemical gradient (Melvin
et al., 2005; Demeter et al., 2009b). This basolateral location
in HAT-7 cells is also consistent with previous reports of the
basolateral expression of AE2 in maturation ameloblasts (Lyaruu
et al., 2008, 2014).

A high level of fluoride exposure is known to impair enamel
formation and can result in hypomineralization (Denbesten
et al., 1985; Smith et al., 1993; Bronckers et al., 2009). The
exact mechanism is unknown and multiple factors might
contribute to this phenomenon. Fluoride may affect ion secretion
by ameloblasts, the developmental and functional states of
ameloblasts unrelated to ion secretion, and it could also
contribute to the physical events of mineralization. To test the
first possibility, we investigated how fluoride exposure affects
transcellular HCO−

3 secretion in HAT-7 cells. We have recently
demonstrated that HAT-7 cells can accumulate HCO−

3 ions
through the basolateral membrane and in turn secrete them
through the apical membrane (Bori et al., 2016). Our present
data clearly show that acute exposure to a wide range of fluoride
concentrations causes no change in the rate of acidification of
the cells when basolateral HCO−

3 uptake is blocked. These data
indicate that fluoride has no acute inhibitory effect on HCO−

3
secretion, which we consider to be a crucial requirement for
mineralization (Varga et al., 2015).

The investigation of the effect of fluoride on ameloblast
monolayer formation and function yielded interesting, and
somewhat unexpected results. In our hands fluoride application

up to 1mM resulted in no, or very little, change in HAT-7 cell
viability. However, increasing the fluoride concentration to 3mM
resulted in an almost complete loss of the cells, independent
of the exposure period (2–5 days). Our findings are consistent
with recent observations on HAT-7 cells by other investigators
(Zhang et al., 2016) and with studies of the mouse LS8 ameloblast
cell line (Kubota et al., 2005; Zhang et al., 2006, 2007; Sharma
et al., 2008). Collectively, these studies suggest that ameloblast
survival is not seriously affected up to millimolar concentrations,
but further increases in the fluoride concentration result
in rapid deterioration over a very narrow concentration
range.

When we studied the effects of fluoride on the development
of transepithelial resistance, we found substantially delayed TER
development in doses below those producing cytotoxic levels.We
hypothesized that the delay in tight-junction formation might
be a consequence of changes in the expression of one or more
tight-junction proteins. Thus, we investigated the expressional
changes in Tjp1, Cldn1, Cldn4, Cldn8. Importantly, we have
shown previously that the expression profiles of these proteins
show some relationship with the normal development of TER in
HAT-7 cells (Bori et al., 2016). We also evaluated the expression
of Cldn16 and Cldn19, since their crucial role in ameloblast
tight-junction formation has been recently indicated; their
mutation causing familial hypomagnesaemia with hypercalciuria
and nephrocalcinosis and amelogenesis imperfecta (Bardet et al.,
2016; Yamaguti et al., 2017). To our surprise, fluoride exposure
did not inhibit the expression of junctional-complex protein
genes Tjp1, Cldn1, Cldn4, Cldn8, Cldn16, and Cldn19 at all.
Instead, a moderate but significant increase was observed in
their expression. These data suggest that fluoride impedes tight-
junction assembly, rather than the expression of its protein
constituents. Regarding themechanism, several types of signaling
pathways and proteins have been linked to tight junction
assembly. The fluoride-sensitive RhoA-ROCK signaling is crucial
in controlling epithelial polarity and adhesion of ameloblasts
(Otsu and Harada, 2016), also directly regulating E-cadherin
expression (Xue et al., 2013) which is fundamental for tight
junction formation (Matter and Balda, 2003). Further studies
will determine whether these elements are really linked together.
This is particularly important, since the amelogenesis stage
mimicked by the proposed polarized HAT-7 model should be
better characterized in the future, particularly with respect of
tight junctions at protein levels as the lack of this is a major
limitation of the present study.

Our present findings indicating delayed tight-junction
assembly might offer an alternative, or additional, explanation
for dental fluorosis. Our data do not diminish the importance
of the many other postulated mechanisms, such as delayed
removal of matrix proteins in fluorosed maturation enamel
(Denbesten et al., 1985; Smith et al., 1993), increased binding
of amelogenins to fluoride-containing hydroxyapatite crystals
(Tanimoto et al., 2008), reduced KLK4 expression by ameloblasts
(Suzuki et al., 2014), increased SATB1 protein content and
enhanced Gαq activity (Zhang et al., 2014), decreased trafficking
of NCKX4 Ca2+-transporter to the apical membrane (Bronckers
et al., 2017). To some extent, many or all of these mechanisms
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FIGURE 7 | Schematic representation of the effects of fluoride on HCO−

3 secretion, tight junction formation, and cell death of HAT-7 cells. Bilateral exposure of 2D

monolayers of HAT-7 cells differentiated on Transwell membranes to low-range (0–50µM), mid-range (100–1,000µM) fluoride and high fluoride concentration (3mM)

resulted in differential changes in ameloblast function.

may contribute to hypomineralization depending on the
actual local concentrations of fluoride. Nonetheless, the delay
in tight-junction formation, could also be very important
when one considers the structural and functional cycling of
ameloblasts. Ruffle-ended ameloblasts cyclically turn into
smooth-ended ameloblasts and vice versa during amelogenesis
(Smith, 1998; Josephsen et al., 2010). In rats, a cycle lasts
about 8 h, during which the cells are in the ruffle-ended state
for about 4 h before abruptly changing to the smooth-ended
phenotype for about 2 h. Afterwards, the ruffled border of the
cell membrane facing the enamel is gradually rebuilt and the
tight junctions are translocated and reassembled (Smith, 1998;
Josephsen et al., 2010). If the disassembly and reassembly of
tight junctions is as important as this model suggests, any
delay in their turnover could have serious consequences for
the amelogenesis process itself. Since the present observations
were obtained in an in vitro cellular model, our hypothesis is
only tentative, but we certainly believe that it deserves further
investigation. However, we have to state that the polarized
HAT-7 model needs to be further characterized, and other
cellular models, including human ameloblast models have to
be developed to support the validity of the above proposed
hypothesis.

In conclusion, our HAT-7 model is a useful tool for
the functional analysis of ameloblast pH regulation and the
associated ion transport mechanisms. We have verified the
activity of several key transporters affecting the pH regulation
and vectorial HCO−

3 and Cl− transport by these cells.
Furthermore, we have provided evidence that HCO−

3 secretion
is not affected by a wide range of fluoride concentrations.
However, the formation of tight junctions is severely delayed by

1mM fluoride, a concentration which does not have substantial
cytotoxic effects (Figure 7). This hitherto unknown effect of
fluoride may prove to be an important factor in the development
of dental fluorosis.
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