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Cardiac Computed Tomography Radiomics

A Comprehensive Review on Radiomic Techniques

Márton Kolossváry, MD,* Miklós Kellermayer, MD, PhD, DSc,w
Béla Merkely, MD, PhD, DSc,* and Pál Maurovich-Horvat, MD, PhD, MPH*

Abstract: Radiologic images are vast three-dimensional data sets in
which each voxel of the underlying volume represents distinct
physical measurements of a tissue-dependent characteristic.
Advances in technology allow radiologists to image pathologies
with unforeseen detail, thereby further increasing the amount of
information to be processed. Even though the imaging modalities
have advanced greatly, our interpretation of the images has
remained essentially unchanged for decades. We have arrived in the
era of precision medicine where even slight differences in disease
manifestation are seen as potential target points for new inter-
vention strategies. There is a pressing need to improve and expand
the interpretation of radiologic images if we wish to keep up with
the progress in other diagnostic areas. Radiomics is the process of
extracting numerous quantitative features from a given region of
interest to create large data sets in which each abnormality is
described by hundreds of parameters. From these parameters
datamining is used to explore and establish new, meaningful cor-
relations between the variables and the clinical data. Predictive
models can be built on the basis of the results, which may broaden
our knowledge of diseases and assist clinical decision making.
Radiomics is a complex subject that involves the interaction of
different disciplines; our objective is to explain commonly used
radiomic techniques and review current applications in cardiac
computed tomography imaging.
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Medical imaging has developed exponentially in the
past decades.1 Although new techniques are fre-

quently introduced for each imaging modality, in daily
clinical routine the interpretation of medical images is still
based mainly on qualitative image characteristics. State-of-
the-art scanners can achieve submillimeter spatial and
millisecond temporal resolution, significantly increasing the

amount of information gained from radiologic examina-
tions. Qualitative evaluation of medical images discards
vast amounts of information while relying on hard-to-
reproduce and greatly subjective expert opinion.2 For most
cases, this kind of image interpretation might be sufficient
for clinical judgment, but in the era of precision medicine,
when we seek to refine our taxonomy of diseases and cure
illnesses on the basis of subtle differences in the clinical and
pathologic manifestation of diseases,3 much more is
expected from radiology, the medical profession of imaging
pathologies.

Radiologic images are in fact extensive two-
dimensional or three-dimensional (2D or 3D) data sets in
which the quantitative values present in the pixels (or
volumetric pixels called voxels) are used to create a picture.
Each and every voxel is a measurement itself on the basis of
some physical characteristics of the underlying anatomic
structure, such as the attenuation of electromagnetic radi-
ation intensity that is used in computed tomography (CT).
These values can be assessed by visual inspection, as done
in daily clinical routine, or they can be analyzed using
advanced image analyses. Radiomics is the process of
extracting numerous quantitative features from a given
region of interest to create large data sets in which each
abnormality is described by hundreds of parameters. Some
of these parameters are commonly known and used by
radiologists, such as the mean attenuation value or the
longest diameter of a lesion, whereas others that quantify
the heterogeneity or shape of an abnormality are less
apparent. From these values novel analytical methods are
used to identify associations between the parameters and
the clinical or outcome data. Datamining is the process of
finding new, meaningful patterns and relationships between
the different variables. From these results, novel imaging
biomarkers may be identified that can increase the diag-
nostic accuracy of radiologic examinations and expand our
knowledge of the underlying pathologic processes (Fig. 1).

Our objective is to summarize commonly used image
analytical methods in radiomics and review current appli-
cations of these techniques in cardiovascular radiology.

IDEA BEHIND CORONARY CT RADIOMICS
Coronary lesions are complex pathologies made up of

several different histologic components. Each of the dif-
ferent tissues involved absorbs radiation to a different
extent; thus they are depicted as having different attenu-
ation values on CT. Basically, each voxel is a separate
measurement of how much radiation is absorbed in the
given volume; thus, CT can be used to evaluate the
underlying anatomic structure in vivo. Therefore, it is
rational to assume that distinct morphologies of different
coronary lesions appear differently in CT. As a result,
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numerous qualitative imaging markers have been identified
in coronary CT angiography (CTA).4,5 These character-
istics have been shown to be predictive indicators of sub-
sequent major adverse cardiac events (MACE),6,7 but they
are prone to interobserver and intraobserver variations due
to their qualitative nature. It would be highly desirable to
use quantitative image parameters instead of qualitative
markers to express different lesion characteristics. Radio-
mics offers mathematical objectivity in describing different
lesion characteristics such as heterogeneity, shape, etc.

CLASSIFICATION OF RADIOMIC TECHNIQUES
Radiomic techniques can be grouped into 4 major

categories: (1) intensity-based metrics, (2) texture-based
analysis, (3) shape-based measures, and (4) transform-
based metrics. A summary of radiomic techniques can be
found in Table 1.

RADIOMIC TECHNIQUES

Intensity-based Metrics
Intensity-based metrics are often referred to as first-

order statistics, which means that statistics are calculated
from the voxel values themselves, not considering any
additional information that might be gained from analyzing
the relationship between the voxels. These statistics can be
calculated by selecting a region of interest and extracting
the voxel values from it. The values can then be analyzed
with the tools of histogram analysis. These statistics can be

grouped into three major categories that quantify different
aspects of the distribution: (1) average and variation, (2)
shape, and (3) diversity.

Metrics Representing the Average and Variation of the
Data

Most of these statistics are well known to medical
professionals and in some cases are used for describing the
characteristics of a coronary lesion: Mean—the most
important measure of central tendency that characterizes
the voxel values the best as its distance from all other values
is minimal. Median—the value that divides the sample into
two equal halves. Minimum and maximum—two extreme
values of the sample. Percentiles—divide the sample into a
given percentage of the data. Interquartile range—two
specific values that enclose the middle 50% of the data
points. These statistics describe the central tendency of the
voxel sample and provide an initial measure of data var-
iation, but they do not provide precise information about
the size and shape of the distribution. Several different
distributions may exist with the same central tendency but
different shapes. Therefore, these statistics are not enough
to describe the properties of coronary lesions, as distinct
plaque morphologies can have very similar values (Fig. 2).

Metrics Describing the Shape of the Distribution
The shape of a distribution is commonly described by

moments. Moments are a family of mathematical formulas
that capture different properties of the distribution. They
are defined as the average of: the voxel values (xi) minus a
derived statistic (c) raised to a given power (q). If c=mean
(m) and q=2, then we obtain variance, which provides a
measure of sample variation around the mean. The square
root of the variance is the standard deviation (SD). In cases
of normally distributed data the SD informs us where
approximately 68% of the data are located around the
mean. If c= m, q=3, and the moment is divided by SD3,
we obtain skewness, which quantifies how asymmetric the
distribution is around the mean. Negative skewness indi-
cates that a large portion of the data are to the right of the
mean, whereas positive skewness means the opposite. If
c=m, q=4, and the moment is normalized by SD4, we
obtain kurtosis, which enumerates how close our data
points are to the mean. Small values indicate that there are
few outliers present in the data and that most values are
within one SD of the mean, whereas higher values indicate
that a larger number of data points can be found away from

FIGURE 1. Pipeline of radiomics-based patient analysis. After image acquisition, new novel radiomics-based image characteristics are
extracted to quantify different lesion properties. The hundreds of variables are joined together to create “big data” databases. Data-
mining is used to find new meaningful connections between the parameters and the clinical outcome data. On the basis of the results,
new imaging biomarkers can be identified that have the potential to increase the diagnostic accuracy of radiologic examinations.

TABLE 1. Classification of Different Radiomic Techniques

Intensity-based metrics
Average and spread
Shape
Diversity

Texture-based metrics
Second-order statistics
Higher-order statistics
Laws’ texture energy

Shape-based metrics
1D, 2D, 3D
Minkowski functionals
Fractal dimension

Transform-based metrics
Fourier transform
Gabor transform
Wavelet transform
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the mean beyond one SD. In case of normally distributed
data, kurtosis is 3. Thus, it is reasonable to compare the
calculated kurtosis with this value to analyze how the data
points are distributed around the mean as compared with
the normal distribution.

Metrics Defining the Diversity of Values
The aforementioned statistics provided information

about the average, the variation, and the distribution of the
sample but not about the dissimilarity of the voxel values.
Concepts from information theory can be used to quantify
the heterogeneity of sample values. Energy quantifies the
overall magnitude of the intensities and is calculated by
squaring the values and then summing them. Uniformity
measures the similarity of the values and is calculated by
squaring the relative frequency of the given attenuation
values and then summing them. Entropy, a concept pro-
posed by Shannon in 1948, measures the information con-
tent of our data set.8 Events with higher probabilities (p)
carry less information because we can more easily guess
their outcome. Conversely, unlikely events carry more
information as their occurrence highlights specific instan-
ces. Entropy quantifies uncertainty by weighing the infor-
mation content of an event with its probability. The
entropy, hence information content, of a system is equal to
the sum of these values multiplied by �1. The higher the
entropy, the more heterogenous the data set. The amount
of entropy is commonly measured in bits.

Applications and Potential Drawbacks
Even though the concept of radiomics is new, there

have been several prior studies exploring the use of quan-
titative metrics for describing coronary disease. One of the

first quantitative metrics was the Agatston score.9 The
calcium score of a coronary lesion is calculated by taking
the area of the lesion and multiplying it by a weighting
factor depending on the maximum intensity of the calcified
plaque. This simple metric has been demonstrated to be a
very good indicator of future MACE and has additive value
beyond the traditional risk factors for calculating car-
diovascular risk.10,11

Unfortunately, there is only limited information about
the prognostic value of coronary CTA-derived quantitative
intensity-based parameters. Nevertheless, it seems that
adding quantitative plaque characteristics to the Framing-
ham risk score and qualitative reading results of medical
experts increases the diagnostic accuracy of predicting acute
coronary syndrome (area under the curve: 0.64 vs. 0.79,
P<0.05, respectively).12

Quantitative intensity-based metrics have many
potential drawbacks. Hounsfield units (HU) are often seen
as absolute values, but the truth is that there is a significant
amount of variation that can be attributed to different
effects. Willemink et al13 showed that using scanners of
different vendors significantly changes the observed
Agatston scores of ex vivo hearts (median values: Philips:
353, Toshiba: 410, GE: 469, Siemens: 332; P<0.05). This
variation had a significant effect on patient risk strat-
ification, as 6.5% of intermediate-risk patients were
reclassified into either a higher-risk or a lower-risk group.
In addition, image reconstruction algorithms also affect the
observed HU values both in native CT scans and in coro-
nary CTA scans.14–16 All of these effects limit the use of
CTA for identifying different tissue components, which
would be crucial for identifying vulnerable plaques.
Marwan et al17 showed that different plaque components

FIGURE 2. Pipeline for calculating first-order statistics on two representative examples of coronary lesions. First the coronary arteries
need to be segmented. Then histograms need to be created showing the relative frequency of given HU values. From these, different
statistics can be calculated. The image also justifies the use of several different parameters to reflect a lesion, as the average attenuation
values and the standard deviations are the same, whereas only higher moments can differentiate between these 2 plaques.
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identified by intravascular ultrasound have overlapping HU
values on CTA. Thus, the detection of different tissue
compartments of plaques is troublesome. This observation
led to the use of different cutoff values for different plaque
components.18,19 Furthermore, these results are all based
on thousands of voxels sampled on many different indi-
viduals. Therefore, if we can see such fluctuations in our
values at a population level, then individual variations
greatly exceed these, and thus the use of intensity-based
metrics for personalized patient-based management
becomes highly limited.

All in all, although intensity-based metrics describe the
HU distribution of the abnormality, the absence of quan-
tification standards, the uncertainty of reproducibility, and
the effects of image reconstruction raise major concerns
about the utilization of these metrics for patient
management.

Texture-based Metrics
The above-mentioned parameters discarded all spatial

information and used only the absolute values of the voxels
themselves, even though we know that the spatial relation
of different plaque components has a major effect on plaque
vulnerability.20 Plaque composition is expressed by the
spatial relationship of the voxels on CTA. This relationship
is hard to conceptualize using mathematical formulas. A
solution emerged in the 1970s, when scientists were pre-
sented with the problem of identifying different terrain
types from satellite images. The field of texture analysis was
born and has been evolving ever since. Texture is the broad
concept of describing patterns on images. Patterns corre-
spond to the systematic, spatial repetition of some physical

characteristics such as intensity, shape, or color. Texture
analysis attempts to quantify these concepts by the use of
mathematical formulas based on the spatial relationship of
the voxels.

Second-order Statistics
In 1973, Haralick et al21 proposed the idea of gray-

tone spatial dependencies matrix, commonly known as
gray-level co-occurrence matrix (GLCM), for the texture
analysis of 2D images. GLCMs are second-order statistics,
which means that statistics are calculated from the spatial
relationship of two pixel values and not from the values
themselves. The goal of these matrices is to quantify how
frequently similar value voxels are located next to each
other within a given direction and distance and to derive
statistics from this information.

In cardiac radiomics, first the coronary arteries need to
be segmented to determine the inner and the outer vessel
wall boundaries and thereby locate the coronary lesions.
Then the HU values of the voxels need to be discretized into
a given number of groups, as voxels with exactly the same
values occur only very rarely in an image. Our GLCM will
have exactly the same number of columns as rows, which
equals the number of HU groups we discretized our image
to. Next, a direction and a distance need to be determined
to examine texture. Direction is usually described with an
angle. By convention, voxels to the east of a reference voxel
are at 0 degrees, the ones to the north-east are at 45 degrees,
the ones to the north are at 90 degrees, and the ones to the
north-west are at 135 degrees. One only needs to calculate
the statistics in these four directions, as the remaining four

FIGURE 3. Pipeline for calculating GLCM. First the coronary arteries need to be segmented. Then the voxels need to be extracted from
the images. Next the images need to be discretized into n different value groups. Then a given direction and distance is determined to
calculate the GLCM (distance 1, angle 0 degrees). Raw GLCMs are created by calculating the number of times a value j occurs to the
right of value i. This value is then inserted into the ith row and jth column of the raw GLCM. To achieve symmetry, the transpose is
added to the raw GLCM. Next, the matrix is normalized by substituting each value by its frequency. This results in the normalized
GLCM. Afterward, different statistics can be calculated from the GLCMs. To get rotationally invariant results, statistics are calculated in
all four directions and then averaged.
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directions are exact counterparts of the above. For exam-
ple, if our angle equals 0 degrees, and the distance equals 1,
then the raw GLCM is created by calculating the number of
times a value j occurs to the right of value i. This number is
then put into the ith row and jth column of the raw GLCM.
If we were to calculate the GLCM in the opposite direction
(at 180 degrees), we would get very similar results so that
the rows and columns are interchanged as compared with
the original GLCM (at 0 degrees), as asking how many
times we find a voxel value j to the right of voxel value i is
the same as asking how many times we will find a voxel
value i to the left of voxel value j. Thus, for convenience, we
add the transposed matrix (rows and columns are inter-
changed) to our original raw GLCM matrix to receive a
symmetrical GLCM matrix (a value in the ith row and jth
column equals the value in the jth row and ith column). As
the absolute numbers are not too informative, we normalize
the matrix by dividing all the values in the matrix by the
sum of all values in the GLCM to receive relative fre-
quencies instead of absolute numbers. The pipeline for
calculating GLCMs can be found in Figure 3.

These matrices contain a lot of information on their
own. The values on the main diagonal represent the prob-
abilities of finding identical-value voxels. The further away
we move from the main diagonal, the greater the difference
between the intensity values. One extreme would be to have
only elements on the main diagonal, which would mean
that only similar-value voxels are present in that given
direction and distance. Another extreme would be if all
elements of the GLCM have the same value. In this case the
intensity values occur randomly in the image.

Haralick et al proposed 14 different statistics that can
be determined from the GLCMs, but many more exist. All
derived metrics weigh the entries of the matrix by some
value depending on what property one wants to emphasize.
Angular second moment/uniformity/energy squares the
elements of the GLCM and then sums them up. The fewer
the different values present in the matrix, the higher the
value of uniformity. Contrast is calculated by multiplying
each value of the GLCM by the difference in the attenu-
ation values squared for that given row and column (i� j)2

and then adding up all the numbers. We receive greater
weights when there is a large difference between the

intensity values of the neighboring voxels. A weight of 0 is
obtained for elements on the main diagonal when the two
voxel intensities are equal. Therefore, contrast quantifies
the degree of different HU value voxels present in a given
direction and distance. Homogeneity/inverse difference
moment uses the reciprocal value of the previous weights.
This way, elements closer to the main diagonal receive
higher weights, whereas values farther away receive smaller
values.

As texture is an intrinsic property of the image, we
should not obtain different results even if the image is
rotated by 90 degrees. Therefore, to achieve rotationally
invariant results, statistics are calculated on the four
GLCMs and then averaged.

Higher-order Statistics
Whereas second-order statistics examine the relation-

ship between two voxels, higher-order statistics assess the
relationship between three or more voxels. The easiest
concept proposed by Galloway21 is the gray-level run-
length matrix (GLRLM) that assesses how many voxels are
next to each other with the same value. The rows of the
matrix represent the attenuation values and the columns the
run lengths. The pipeline for calculating GLRLMs can be
found in Figure 4.

Galloway proposed 5 different statistics to emphasize
different properties of these matrices. Short runs emphasis
divides all values by their squared run length and adds them
up. The number of short run lengths will hence be divided
by a small value, whereas the number of long run lengths
will be divided by a large value. Accordingly, the short run
lengths will be emphasized. Long runs emphasis carries out
just the opposite: instead of dividing the values it multiplies
the entries with the squared run length and then adds them
up. Gray-level nonuniformity squares the number of run
lengths for each discretized HU group and then sums them
up. If the run lengths are equally probable in all cases of
intensities, it takes up its minimum. Run length non-
uniformity carries out just the opposite: it squares the
number of run lengths for each run length and then adds
them. This measures how equally distributed the run
lengths are for all lengths. All these measures can be nor-
malized by the sum of the elements in the GLRLM. Run

FIGURE 4. Pipeline for calculating GLRLM. First, the coronary arteries need to be segmented. Next, the voxels need to be extracted
from the images. Then, the images need to be discretized into n different value groups. Next, a given direction (angle 0 degrees) is
determined. GLRLMs are created by calculating the number of times an i value voxel occurs next to each other in the given direction.
The ith row and jth column of the GLRLM represents how many times it occurs in the image, that i value voxels are next to each other
j times. To get rotationally invariant results, the statistics calculated in different directions are averaged.
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percentage simply adds the elements of the GLRLM and
divides it by the number of voxels. It is smallest in cases
when there are only a few long run lengths. These statistics
can also be calculated in all 4 directions. To obtain rota-
tionally invariant results, we average them.

GLCMs and GLRLMs have inspired many to create
their own matrices on the basis of some other rule. These
are, but not limited to, gray-level gap length matrix,22 gray-
level size zone matrix,23 neighborhood gray-tone difference
matrix,24 or the multiple gray-level size zone matrix.25

Laws’ Texture Energy Measures
Laws26 suggested a different method for quantifying

texture. He proposed a method to emphasize different
features in the image. The procedure is carried out by
convolution, which is the multiplication of the voxel values
by values within a neighborhood defined by a weighted
kernel, which results in a new image. Depending on the
kernel weighting we can filter out certain properties while
emphasizing others. Laws proposed 5 different 1D kernels
that emphasize some characteristic, such as ripples or edges.
These 1D kernels can be used to create 2D and 3D kernels
that can alter radiologic images. We can calculate any
statistics—for example, energy—on these new images to
summarize them.

Applications and Potential Drawbacks
Texture-based metrics have been used extensively for

classifying tumor heterogeneity,27–29 but these measures
have not been implemented in cardiac radiology. This is
mainly because coronary lesions are very small as compared
with tumors. Most of the aforementioned statistics are only
robust in cases of large data sets; thus, the limited spatial
resolution of current scanners just might not be sufficient
for texture analysis. Furthermore, whereas tumors are
rotationally invariant, and hence any anatomic plane can
characterize their heterogeneity well, atherosclerotic lesions
are not. Therefore, heterogeneity needs to be assessed along
the coronary artery or in 3D.

Shape-based Metrics
Atherosclerotic plaques are complex 3D structures

situated along the coronary arteries. The spatial dis-
tribution and localization of different plaque components
can also have an effect on plaque vulnerability.

1D Metrics
1D metrics are based on measuring the distance

between 2 points. These parameters are commonly used in
clinical practice to describe the magnitude of an abnor-
mality. On coronary arteries the diameter stenosis is used to
assess the severity of a lesion, or the length to quantify the
extent of a plaque. Diameters measured in different direc-
tions can be used to derive new statistics that can resemble
some new property. For example, the ratio of the longest
and the shortest diameters describes the roundedness or
ellipticity of a lesion.

2D Metrics
2D metrics are calculated on cross-sectional planes

and are used to calculate different parameters that are
based on areas. These parameters are most often used to
approximate some 3D property of the abnormality. For
example, the 1D metric diameter and the 2D metric area are
all considered approximations of the 3D metric volume.

Accordingly, cross-sectional plaque burden is used to
approximate full vessel volume–based plaque burden in
coronary CTA.

3D Metrics
3D metrics attempt to enumerate different aspects of

volumetric shape. The geometrical properties of shapes
have been thoroughly examined in the field of rigid-body
mechanics. All objects have so-called principal axes or
eigenvectors. These mutually perpendicular axes cross each
other at the center of mass. The force applied to the axes act
independently, meaning that if we push or rotate the object
along or around any of these principal axes our object will
not move or rotate in any other direction. These eigenvec-
tors also have eigenvalues that can be seen as weights
proportional to the amount of mass or in our case the HU
intensity located in that given principal axis. The eigen-
vectors can be used to quantify different shape-based
metrics—for example, roundedness, which is the difference
between the largest eigenvalues of the smallest enclosing
and the largest enclosed ellipse.

Minkowski Functionals
Minkowski functionals originate from integral geom-

etry.30 They can be used to calculate different properties of
geometrical objects, such as the Euler characteristic or
genus, which is a parameter describing the connectivity of
the data points. Connectivity is estimated by calculating the
number of voxel groups with information minus the
enclosed regions where there is no signal.31 By taking a
different threshold of our image we can calculate different
parameters for each image. These values can be used to
describe the connectivity of different intensity values in the
image.

Fractal Dimension
Fractal geometry quantifies self-symmetry by exam-

ining repeating patterns at different scales. Objects with no
fractal properties scale their characteristics exponentially
depending on the dimension. For example, if we enlarge a
line by 2, considering that the line is a 1D object, its length
will increase to 21. If we scale one side of a square by 2, then
the area of the square will increase by 22 as it is a 2D object.
A cube’s volume would increase to 23 if we increased all of
its sides by 2. However, fractals act differently. If we were to
enlarge a line that has fractal properties by 2, then its length
would not be twice as long as it would be for a line without
fractal properties, but longer. This is because when we
magnify an object with fractal properties we start to see
more and more details, which affects the length of the given
object. This can be better seen when trying to measure the
length of a coastline. When we magnify our image more
and more, we begin to see more and more details, which
affects the total measured length, and therefore the total
length of the coastline increases.

Fractal dimensions measure the self-symmetry of
objects and quantify how the detail of the object changes as
we change our scale.32 Rényi dimensions can be used to
calculate fractal dimensions generally. The box-counting
dimension or Minkowski–Bouligand dimension is the
easiest concept. We calculate how many voxels are occupied
by the object. We repeat this at increasing scales. Then we
plot the number of voxels containing the object versus the
reciprocal of the scale on a log–log plot. The slope of the
line will be equal to the box-counting dimension.33,34
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Applications and Potential Drawbacks
In clinical routine, mainly 1D metrics are used to

assess plaque stenosis severity and other characteristics of
coronary lesions. Stenosis severity is commonly expressed
as diameter stenosis, which is the ratio of the smallest lumen
diameter to a reference value. Several studies have inves-
tigated the effect of diameter stenosis on subsequent out-
come, but long-term effects still remain a question.35 Lesion
length, another 1D metric, has also been investigated and
has been shown to correlate with MACE in patients
undergoing percutaneous coronary intervention.36 2D
metrics based on cross-sectional area are used to describe
positive remodeling, which is the vessel cross-sectional area
at maximal stenosis divided by the mean of the proximal
and distal reference sites’ cross-sectional areas.37 The
remodeling index has been shown to be an independent
vulnerability feature of vulnerable plaques.38 Among 3D
metrics, volume is used to express the magnitude of coro-
nary disease. Versteylen et al12 showed that total plaque
volume, total noncalcified volume, per-plaque maximal
volume, noncalcified percentage, and plaque burden are
significantly larger in acute coronary syndrome patients as
compared with that in nonacute coronary syndrome
controls.

Shape-based metrics have the advantage of being
easily comprehensible, and many of them can be calculated
in daily clinical routine. The only concern is that coronary
lesions grow along coronary arteries; thus, when we are
trying to observe the shape of a lesion, we might be meas-
uring some aspect of the coronary geometry. Therefore, it is
hard to assess plaque shape independent of coronary
geometry. This actually might not be a problem, as the
effect of coronary curvature on plaque vulnerability has
been extensively investigated through computational fluid
dynamics and appears to affect plaque formation and
vulnerability.39

Transform-based Metrics
An image is a vast number of pixel/voxel values dis-

tributed along spatial coordinates, hence in the spatial
domain. The image can be transformed into the so-called
frequency domain without losing any information. The
spatial-domain and frequency-domain representations of
an image carry identical information, but they emphasize
different features and offer different computational possi-
bilities. In the frequency domain, the pattern and rate at
which the image intensity values change along spatial
directions are used to present the image rather than by
assigning intensity values to spatial coordinates.

Fourier and Gabor Transforms
Fourier transform decomposes the spatial-domain

data set into a fundamental sine wave and its harmonics
along the two dimensions of an image. The 2D Fourier
transform (or most commonly the fast Fourier transform)
displays the amplitude of the Fourier component, repre-
sented in grayscale or color, as a function of frequency.
Once converted into the frequency domain, spatial
information—that is, the spatial location of specific
frequencies—is lost. The Gabor transform, so named after
the Hungarian-born physicist Dénes Gábor, is a special
case of the Fourier transform in which spatial and
frequency information can be treated simultaneously; thus
space-dependent frequency features can also be extracted.
In Gabor transform, the Fourier transform is preceded by

filtration with a Gaussian kernel (or a sinusoidally modu-
lated Gaussian function called Gabor wavelet; see below).
Whereas fast Fourier transform allows the identification
and hence the filtration of specific frequencies (eg, ones
related to noise), Gabor transform provides access to image
features such as edges, texture, blobs, and even face rec-
ognition. Carrying out the inverse transformations converts
the transforms back to the spatial domain.

Wavelet Transforms
Wavelet transforms are similar to Fourier transforms

in that they also convert the image into the frequency
domain, but spatial information is retained.40 Wavelet
transforms are rooted in the so-called windowed Fourier
transform, in which a window function is translated across
the original function, the image in our case. The width of
the window determines both the spatial resolution (local-
ization precision) and the frequency resolution (global
image features): the narrower the window, the greater the
localization precision (poorer the frequency resolution) and
vice versa, in a way similar to the Heisenberg uncertainty
principle. If the window has a fixed size and contains a
Gaussian function, then the Gabor transform is obtained
(see above) providing fixed space-frequency resolution. To
achieve multiresolution, a scalable and translatable func-
tion called the wavelet is applied. The use of wavelets assists
in the denoising, compression, and fusion of images.

Applications and Potential Drawbacks
Fourier and Gabor transforms are widely used in

image processing for filtering the images of different spatial
frequencies and for extracting certain features. Wavelet
transforms are increasingly being used to describe different
properties of the spatial and frequency components of
medical abnormalities.41 Numerous statistics can be gained
from these transforms by setting different parameter values;
therefore, thorough investigation of predictors is needed to
account for model overfitting.

Potential Difficulties of Implementing Radiomics
in the Clinical Routine

Radiomics is a captivating new discipline with the
potential to increase our knowledge in medicine and the
efficacy of our clinical decisions. However, first, standard-
ized acquisition protocols and data analysis techniques
need to be established to provide a robust framework for
radiomics analysis. Recently the Radiological Society of
North America (RSNA) initiated the Quantitative Imaging
Biomarkers Alliance (QIBA) to facilitate the development
and deployment of radiomics. Similarly, the European
Society of Radiology (ESR) introduced the European
Imaging Biomarkers Alliance (EIBALL) to improve the
standardization and performance of quantitative imaging
parameters. Once these standards are well established,
radiomics still has to overcome its technical complexity to
be useful in daily clinical routine. User-friendly automated
software solutions need to be developed that can extract
and evaluate these new imaging biomarkers without
increasing the burden on the radiologist. Furthermore, we
must not forget that radiomics creates huge data sets that
need to be analyzed, which is very time-consuming and
potentially further increases the workload of radiologists.
Therefore, robust software solutions need to be developed
capable of implementing radiomics in the daily clinical
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routine without increasing the clinical load. Without this,
radiomics might remain a toll of the researchers.

CONCLUSIONS
The demand for radiologic examinations is increasing

worldwide. However, not only the number but also the
complexity of new imaging modalities greatly increases the
burden of radiologists. Furthermore, in the new millennium
where everything is about acquiring more and more infor-
mation, the interpretation of radiologic images needs to be
reformed. Although visual inspection might be suitable for
clinical diagnosis, there is a growing need for quantitative
image analysis techniques that can further increase our
understanding of diseases and the precision of our exami-
nations. Radiologic examinations are vast spatial data sets,
where every voxel is a measurement itself. The emerging
field of radiomics tries to utilize this information by
quantifying spatial and textural properties that are difficult
to discern by the naked eye. These new imaging biomarkers
have the potential to objectify our interpretation of medical
images and increase the diagnostic accuracy of our exami-
nations. However, as with all new technologies, we cur-
rently lack sufficient scientific results supporting these
claims. The expectations of radiomics are high, but if suc-
cessful the consequences might be even higher.

REFERENCES

1. Thomas A, Banerjee AK, Gardner-Thorpe C. The history of
radiology. 1st ed Oxford: Oxford University Press; 2013. xiii,
222 pp.

2. Jones BK, Buckwalter AJ, McCarthy FE, et al. Reliability of
histopathologic and radiologic grading of cartilaginous neo-
plasms in long bones. J Bone Joint Surg Am. 2007;89:
2113–2123.

3. Barabasi AL, Gulbahce N, Loscalzo J. Network medicine: a
network-based approach to human disease. Nat Rev Genet.
2011;12:56–68.

4. Maurovich-Horvat P, Hoffmann U, Vorpahl M, et al. The
napkin-ring sign: CT signature of high-risk coronary plaques?
JACC Cardiovasc Imaging. 2010;3:440–444.

5. Maurovich-Horvat P, Ferencik M, Voros S, et al. Compre-
hensive plaque assessment by coronary CT angiography. Nat
Rev Cardiol. 2014;11:390–402.

6. Otsuka K, Fukuda S, Tanaka A, et al. Napkin-ring sign on
coronary CT angiography for the prediction of acute coronary
syndrome. JACC Cardiovasc Imaging. 2013;6:448–457.

7. Shannon CE. A mathematical theory of communication. The
Bell Syst Tech J. 1948;27:379–423.

8. Agatston AS, Janowitz WR, Hildner FJ, et al. Quantification
of coronary artery calcium using ultrafast computed tomog-
raphy. J Am Coll Cardiol. 1990;15:827–832.

9. Polonsky TS, McClelland RL, Jorgensen NW, et al. Coronary
artery calcium score and risk classification for coronary heart
disease prediction. JAMA. 2010;303:1610–1616.

10. McClelland RL, Jorgensen NW, Budoff M, et al. 10-year
coronary heart disease risk prediction using coronary artery
calcium and traditional risk factors: derivation in the MESA
(Multi-Ethnic Study of Atherosclerosis) with validation in the
HNR (Heinz Nixdorf Recall) Study and the DHS (Dallas
Heart Study). J Am Coll Cardiol. 2015;66:1643–1653.

11. Versteylen MO, Kietselaer BL, Dagnelie PC, et al. Additive
value of semiautomated quantification of coronary artery
disease using cardiac computed tomographic angiography to
predict future acute coronary syndrome. J Am Coll Cardiol.
2013;61:2296–2305.

12. Willemink MJ, Vliegenthart R, Takx RA, et al. Coronary
artery calcification scoring with state-of-the-art CT scanners

from different vendors has substantial effect on risk classi-
fication. Radiology. 2014;273:695–702.

13. Szilveszter B, Elzomor H, Karolyi M, et al. The effect of
iterative model reconstruction on coronary artery calcium
quantification. Int J Cardiovasc Imaging. 2016;32:153–160.

14. Precht H, Kitslaar PH, Broersen A, et al. Influence of Adaptive
Statistical Iterative Reconstruction on coronary plaque anal-
ysis in coronary computed tomography angiography.
J Cardiovasc Comput Tomogr. 2016;10:507–516.

15. Fuchs TA, Fiechter M, Gebhard C, et al. CT coronary
angiography: impact of adapted statistical iterative reconstruc-
tion (ASIR) on coronary stenosis and plaque composition
analysis. Int J Cardiovasc Imaging. 2013;29:719–724.

16. Marwan M, Taher MA, El Meniawy K, et al. In vivo CT
detection of lipid-rich coronary artery atherosclerotic plaques
using quantitative histogram analysis: a head to head
comparison with IVUS. Atherosclerosis. 2011;215:110–115.

17. Takahashi S, Kawasaki M, Miyata S, et al. Feasibility of tissue
characterization of coronary plaques using 320-detector
row computed tomography: comparison with integrated
backscatter intravascular ultrasound. Heart Vessels. 2016;31:
29–37.

18. Brodoefel H, Reimann A, Heuschmid M, et al. Character-
ization of coronary atherosclerosis by dual-source computed
tomography and HU-based color mapping: a pilot study. Eur
Radiol. 2008;18:2466–2474.

19. Virmani R, Burke AP, Farb A, et al. Pathology of the
vulnerable plaque. J Am Coll Cardiol. 2006;47(Suppl):
C13–C18.

20. Haralick RM, Shanmugam K, Dinstein I. Textural Features
for Image Classification. IEEE Transactions on Systems, Man,
and Cybernetics. 1973;SMC-3(6):610–621.

21. Galloway MM. Texture analysis using gray level run lengths.
Comput Graphics Image Process. 1975;4:172–179.

22. Xinli W, Albregtsen F, Foyn B. Texture Analysis Using Gray
Level Gap Length Matrix Selected Papers From the 9th
Scandinavian Conference on Image Analysis: Theory and
Applications of Image Analysis II:Theory and Applications of
Image Analysis II. Uppsala, Sweden: World Scientific Publish-
ing Co., Inc.; 1995:65–78.

23. Thibault G, Fertil B, Navarro C, et al. Shape and texture
indexes application to cell nuclei classification. IJPRAI. 2013;
27:1357002.

24. Amadasun M, King R. Textural features corresponding to
textural properties. IEEE Trans Syst Man Cybern. 1989;19:
1264–1274.

25. Thibault G, Angulo J, Meyer F. Advanced statistical matrices
for texture characterization: application to cell classification.
IEEE Trans Biomed Eng. 2014;61:630–637.

26. Laws KI. Textured Image Segmentation. University of South-
ern California, 1980. Textured Image Segmentation. Univer-
sity of Southern California: Pages: viii, 1–178.

27. O’Connor JP, Rose CJ, Waterton JC, et al. Imaging intra-
tumor heterogeneity: role in therapy response, resistance, and
clinical outcome. Clin Cancer Res. 2015;21:249–257.

28. Davnall F, Yip CS, Ljungqvist G, et al. Assessment of tumor
heterogeneity: an emerging imaging tool for clinical practice?
Insights Imaging. 2012;3:573–589.

29. Parmar C, Rios Velazquez E, Leijenaar R, et al. Robust
Radiomics feature quantification using semiautomatic volu-
metric segmentation. PLoS One. 2014;9:e102107.

30. Minkowski H. Volumen und Oberfläche. Math Ann.
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