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Abstract In CFTR, the chloride channel mutated in cystic fibrosis (CF) patients, ATP-binding-

induced dimerization of two cytosolic nucleotide binding domains (NBDs) opens the pore, and

dimer disruption following ATP hydrolysis closes it. Spontaneous openings without ATP are rare in

wild-type CFTR, but in certain CF mutants constitute the only gating mechanism, stimulated by

ivacaftor, a clinically approved CFTR potentiator. The molecular motions underlying spontaneous

gating are unclear. Here we correlate energetic coupling between residues across the dimer

interface with spontaneous pore opening/closure in single CFTR channels. We show that

spontaneous openings are also strictly coupled to NBD dimerization, which may therefore occur

even without ATP. Coordinated NBD/pore movements are therefore intrinsic to CFTR: ATP alters

the stability, but not the fundamental structural architecture, of open- and closed-pore

conformations. This explains correlated effects of phosphorylation, mutations, and drugs on ATP-

driven and spontaneous activity, providing insights for understanding CF mutation and drug

mechanisms.

DOI: 10.7554/eLife.18164.001

Introduction
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride ion channel which

belongs to the superfamily of ATP binding cassette (ABC) proteins (Riordan et al., 1989). Following

phosphorylation of the cytosolic regulatory (R) domain by cAMP-dependent protein kinase (PKA),

CFTR channels are gated by cytosolic ATP (Figure 1a). The ion pore within the TMDs opens upon

formation of a tight head-to-tail NBD dimer stabilized by two molecules of ATP occluded at the

dimer interface (Vergani et al., 2005); each nucleotide is sandwiched between the conserved

Walker A and B sequences of one NBD and the signature sequence of the other (Smith et al., 2002;

Chen et al., 2003). Pore closure accompanies NBD dimer disruption prompted by ATP hydrolysis at

the composite interfacial site harbouring the Walker motifs of NBD2 (site 2) (Vergani et al., 2005):

the other site (site 1) is catalytically inactive retaining ATP bound throughout multiple gating cycles

(Aleksandrov et al., 2002; Basso et al., 2003). As evidence of such strict coupling between NBD

and transmembrane domain (TMD) movements, a hydrogen bond between the side chains of NBD2

Walker-A threonine (T1246) and an arginine (R555) adjacent to the NBD1 signature sequence was

shown to form in open, but not in closed, channels (Vergani et al., 2005). These two positions have

co-evolved as a pair (Vergani et al., 2005), and in crystal structures of nucleotide-bound ABC NBD

dimers the analogous side chains also form a hydrogen bond, the arginine serving as hydrogen

donor and the threonine/serine side chain as acceptor (Smith et al., 2002; Chen et al., 2003). Fur-

thermore, by disturbing proper spacing between the donor and acceptor sites, both shortening of

the R555 and lengthening of the T1246 side chains (by single mutations R555K and T1246N,
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respectively) prevent, whereas the double mutation R555K-T1246N restores, the formation of this

stabilizing hydrogen bond (Vergani et al., 2005).

Wild-type (WT) CFTR channels open occasionally even in the absence of ATP (Szollosi et al.,

2010) (Figure 1a, inset), but it is unclear whether this reflects the occasional spontaneous formation

of the NBD dimer (Figure 1b, top), or occasional pore openings independent of NBD dimerization

(Figure 1b, bottom). The significance of this question goes beyond the scarcity of WT spontaneous

openings. Indeed, the strictness of coupling between NBD and TMD movements is a strongly

debated fundamental question, key for understanding the forces that drive the normal, ATP-depen-

dent functional cycle of ABC proteins (Vergani et al., 2005; Csanády et al., 2010; Kirk and Wang,

2011; Jih and Hwang, 2013; Okeyo et al., 2013). Moreover, ivacaftor, the only potentiator drug to

be approved so far for clinical use in CF patients, acts by promoting such spontaneous, ATP-inde-

pendent, openings of G551D CFTR, the third most common disease mutant (Bompadre et al.,

2007; Jih et al., 2013). However, mechanistic understanding of spontaneous gating has been lim-

ited by its vanishingly small open probability (Po), far too low to be reliably quantified (Figure 1a).

Recently, mutations in the third intracellular loop (position 978, between TM helices 8 and 9)

(Wang et al., 2010), and at the cytosolic end of pore-lining TM helix 6 (position 355) (Wei et al.,

2014), were both found to strongly enhance spontaneous activity. Furthermore, these ’gain-of-func-

tion’ effects proved additive in the double-mutant P355A–K978C, shifting spontaneous Po into a

range where quantitative biophysical studies become tractable (Wei et al., 2014). Here we exploit

this double mutant as a background to address the mechanism of spontaneous openings.

eLife digest A protein pore called the CFTR channel allows chloride ions to move through the

membrane of the cells that line the airways and some other parts of the human body. Mutations in

the genes that encode CFTR may reduce the number of pores at the cell surface or stop them from

working properly. When this happens, these cells cannot transport enough chloride, which causes

the disease cystic fibrosis. CFTR contains two regions that lie inside the cell known as nucleotide

binding domains (NBDs). These domains bind to the chemical energy molecule ATP, and when ATP

does bind, two NBDs associate to form a dimer and the pore in CFTR opens.

The CFTR channel can occasionally open in a spontaneous way that does not require ATP.

However, it was not clear whether NBDs also formed dimers when CFTR opened in this way. This is

because spontaneous opening could reflect NBDs occasionally forming a dimer without ATP binding

or it could occur when the pore occasionally opens without the NBDs forming a dimer.

To explore whether opening of the pore always requires NBD dimerization, Mihályi et al. studied

the behaviour of single human CFTR channels produced in frog eggs. Normal channels and mutant

ones (which show differences in spontaneous opening) were used, and the change in the way NBDs

interacted when the channels spontaneously opened or closed was investigated. Mihályi et al. found

that the NBD dimer forms when the pore spontaneously opens, demonstrating that this step

happens both with and without ATP.

The result demonstrates that NBD dimer formation and pore movement are strictly coupled and

that this is an inbuilt property of the CFTR protein. When ATP binds, this only changes how stable

the open-pore and closed-pore structures of CFTR are but does not alter the fundamental

architecture of the channel.

These new findings will be of interest to researchers studying a large group of transport proteins

related to CFTR called ABC proteins. Furthermore, a drug called ivacaftor stimulates spontaneous

opening of CFTR, and has recently been approved for clinical use to treat people with mutations in

CFTR. As such, the new findings will be also useful to help researchers understand how ivacaftor

stimulates the CFTR pore to open.

DOI: 10.7554/eLife.18164.002
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Results

Gain-of-function mutations allow quantitative characterization of
spontaneous CFTR gating
Whereas WT CFTR channel currents decline rapidly to baseline upon ATP removal (Figure 1a), in patches

containing P355A-K978C CFTR channels (Figure 1c) a readily measurable fraction of the chloride current

resisted even prolonged removal of bath ATP, but could be abolished by removal of permeating chloride

ions (red bars; see also Figure 1—figure supplement 1). Moreover, for WT CFTR, ATP-dependent cur-

rents are very small prior to exposure to PKA, and decline by ~50% when PKA is withdrawn (Figure 1a),

signalling strong phosphorylation dependence of its Po (Szollosi et al., 2010). In contrast, ATP-evoked

P355A-K978C CFTR currents were large already before exposure to PKA, and were little further

enhanced by the addition of – or reduced following removal of – the kinase (Figure 1c), suggesting a

large Po for unphosphorylated (pre-PKA) double-mutant channels in ATP, and close-to-maximal Po when

the channels were either fully phosphorylated (in PKA) or partially dephosphorylated (post-PKA). The

robust spontaneous activity of P355A-K978C channels in the absence of ATP allowed reliable sampling of

the characteristics of spontaneous gating in microscopic patches (Figure 2a), in which the number of

active channels could be confidently estimated from bracketing high-Po segments of recordings in ATP

(Figure 1—figure supplement 2). Thus, for pre-phosphorylated channels the P355A-K978C background

mutation increased spontaneous Po from 0.000053 ± 0.000021 (n = 5) to 0.15 ± 0.03 (n = 21) (Figure 1d,

WT vs. BG [background]), and Po in ATP from 0.11 ± 0.04 (n = 6) to 0.80 ± 0.02 (n = 14) (Figure 1d, striped

bars).

Figure 1. The P355A-K978C double mutation increases both spontaneous and ATP-dependent Po. (a,c) Inward

macroscopic (a) WT and (c) P355A-K978C CFTR currents at �80 mV, and their dependence on ATP and PKA (black

bars). In (a) a 30 s segment of spontaneous current (gray box) is magnified in the inset. In (c) bath chloride (green

bars) was repeatedly replaced by gluconate (red bars) to determine baseline current (gray dashed line). (b) Two

alternative mechanisms of spontaneous gating in cartoon representation. TMDs (gray), TMD-NBD interface formed

by intracellular loops (light violet), NBD1 (green), NBD2 (blue), membrane (yellow). (d) Spontaneous Po (solid bars)

and Po in 2 mM ATP (striped bars) for WT and P355A-K978C (’background’, BG) CFTR (n = 5–21).

DOI: 10.7554/eLife.18164.003

The following figure supplements are available for figure 1:

Figure supplement 1. Replacement of bath chloride with gluconate abolishes CFTR currents at -80 mV.

DOI: 10.7554/eLife.18164.004

Figure supplement 2. High ATP-dependent Po due to background mutation facilitates counting channels.

DOI: 10.7554/eLife.18164.005
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The site-2 NBD interface is tightly dimerized in the spontaneous open-
channel state
This double-mutant CFTR background allowed us to study, using the thermodynamic double mutant

cycle formalism (Materials and methods), changes in energetic coupling associated with spontaneous

gating between the same two NBD-interface side chains previously used (Vergani et al., 2005) to

demonstrate NBD dimer formation and disruption in CFTR channels opening and closing in ATP.

Figure 2. Arg 555 and Thr 1246 become energetically coupled upon spontaneous pore opening. (a–d), Microscopic currents at �80 mV, and their

dependence on ATP and PKA (black bars), for (a) the P355A-K978C background construct, and for this background construct carrying (b) the R555K or

(c) T1246N single mutations or (d) the R555K-T1246N double mutation. (e–g), Spontaneous open probabilities (e, n = 19–21), opening rates (f, n = 15–

19), and closing rates (g, n = 15–19) of the background construct (black bars), and of constructs carrying additional R555K (blue bars), T1246N (red bars),

or R555K-T1246N (violet bars) mutations. (h–j), Thermodynamic mutant cycles showing mutation-induced changes (h) in the stability of the spontaneous

open state relative to the closed state, and (i–j) in the height of the activation free energy barriers for spontaneous opening (i) and closure (j). Each

corner is represented by the side chains at positions 555 and 1246; k, Boltzmann’s constant, T, absolute temperature.

DOI: 10.7554/eLife.18164.006
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Mutating either the arginine at position 555 to a lysine, or the threonine at position 1246 to an

asparagine, resulted in a large reduction in spontaneous Po (Figure 2b–c 0.034 ± 0.007 (n = 18) and

0.044 ± 0.009 (n = 19), respectively, Figure 2e, blue and red bar), that is, in the closed-open equilib-

rium constant in the absence of ATP. This reduction in the stability of the open (O) state relative to

the closed (C) state ( DDG�
ðO�CÞ = +1.82 ± 0.39 kT and +1.54 ± 0.39 kT, respectively, in R555K and

T1246N single mutants; Figure 2h, numbers on top-across, and left-downward, arrows of the mutant

cycle) is due to the loss in both single mutants of microscopic interactions, between the targeted

side chain and the rest of the protein, that in WT channels combine to increase the stability of the

open state.

If the side chains of residues R555 and T1246 did not interact in WT CFTR, or if their interaction

were to remain unaltered during spontaneous gating, then any impact on the spontaneous channel

activity of mutating either single position should be independent of the nature of the side chain

found at the other position: that is, mutational effects at the two positions should add energetically.

Any non-additive behaviour would signal gating-associated dynamic changes in the interaction

energy between the R555 and T1246 side chains. In stark contrast to the single mutants, the double

mutant R555K-T1246N (Figure 2d) displayed a high spontaneous Po (0.11 ± 0.02 (n = 20);

Figure 2e, violet bar), comparable to that of the background construct. Thus, the effects on

the spontaneous Po of either single mutation depended strongly on the nature of the residue at the

other position: the spontaneous open-channel state was destabilized relative to the closed-channel

state when the R555K mutation was introduced into a WT background (blue vs. black bar in

Figure 2e), but was stabilized when the same mutation was introduced into a T1246N background

(violet vs. red bar in Figure 2e). The difference between DDG�
ðO�CÞ along two parallel sides of the

mutant cycle quantifies the change in interaction strength between the two target side chains that

accompanies a spontaneous pore opening (DDGintðO�CÞ; see Materials and methods), and revealed a

significant (p = 0.0004) change of –2.90 ± 0.49 kT (Figure 2h, center) in R555-T1246 interaction

energy between ATP-free closed- and open-channel states. In principle, the negative sign

of DDGintðO�CÞ is compatible with the existence of either a stabilizing interaction in the spontaneously

formed open-channel state, or a destabilizing interaction in the closed state. However, earlier work

reported a lack of interaction between the R555 and T1246 side chains in closed channels, regard-

less of the presence of ATP in site 2 (Vergani et al., 2005). Thus, the only plausible explanation is a

stabilizing interaction, consistent with the formation of a hydrogen bond, in the spontaneous open

state in WT channels that is lost in both single mutants, but is restored in the double mutant. The

inevitable implication of these findings is that the NBD dimer interface must tighten within site 2

upon pore opening, whether or not bound ATP is present.

The site-2 NBD interface is already tightened in the transition state for
spontaneous pore opening
Conformational transitions between stable open-channel (burst) and closed-channel (interburst)

states of CFTR reflect passages across the transition (T‡) state (Figure 3a), a high free-energy tran-

sient conformation. The rates of spontaneous opening and closure of each molecular channel type,

obtained as the inverse of the mean interburst (tib) and burst (tb) durations, respectively, report on

transition-state stability: mutation-induced fractional changes in spontaneous opening and closing

rates quantitate changes in transition-state free energy relative to the closed (DDG�
ðT�CÞ) and open

(DDG�
ðT�OÞ) ground states, respectively. Specifically, the difference between such DDG� values along

two parallel sides of a mutant cycle quantify the changes in coupling strength between the two tar-

get side chains upon reaching the transition state during opening (DDGintðT�CÞ, Figure 2i) or closure

(DDGintðT�OÞ, Figure 2j). Kinetic analysis revealed that the reduced spontaneous open probabilities

of both single mutants R555K and T1246N (Figure 2e, blue and red bar) were caused predominantly

by a markedly reduced opening rate (Figure 2f, blue and red bar), which was restored in the double

mutant (Figure 2f, violet bar). Consequently, a significant (p = 0.0001) negative value of –2.30 ±

0.46 kT (Figure 2i, center) was obtained for the change in coupling free energy between the target

side chains upon reaching the transition state from the closed state (DDGintðT�CÞ). In contrast, closing

rates were little affected by the mutations (Figure 2g), yielding a value of +0.62 ± 0.34 kT for

DDGintðT�OÞ, not significantly different from zero (Figure 2j, center). These results imply that in WT
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channels the hydrogen bond between the R555 and T1246 side chains is already formed in the tran-

sition state for spontaneous opening, its strength being little further altered when the protein

reaches the stable open state (Figure 3b). Thus, the NBD dimer interface tightens within site 2

already in the transition state for unliganded opening (Figure 3a, center), just as it does during

the opening of ATP-bound channels (Vergani et al., 2005; Sorum et al., 2015).

Discussion
While ATP-driven CFTR pore openings are known to be coupled to the formation of a tight NBD

dimer (Vergani et al., 2005), the mechanism of spontaneous openings, observable in the absence of

ATP, is unknown. Here we show that spontaneous openings are also linked to tightening of the NBD

interface around composite site 2, just as in the presence of bound ATP. Such strict coupling

between NBD and pore movements – regardless of the absence or presence of ATP – strongly con-

strains mechanistic models of ATP-dependent channel gating, and understanding of the underlying

driving forces, which are likely conserved among ABC proteins. It also helps explain modulatory

effects of mutations, or of physiological or pharmacological gating regulators. For example, the

G551D CF mutation converts ATP at site 2 into an inhibitory ligand, due to electrostatic repulsion

Figure 3. Mechanism of spontaneous pore openings, and energetic effects of bound ATP and gain-of-function

mutations. (a) Cartoon representation of domain organization in closed (C), transition (T‡), and open (O) states,

during spontaneous gating. Color coding as in Figure 1b, blue and red circles identify target positions. (b)

Changes in energetic coupling between the target positions associated with spontaneous gating in the

background construct. (c) Free energy profiles of gating for WT (orange line) and P355A-K978C (black line) CFTR in

the absence of ATP, and of hydrolysis-deficient K1250R CFTR in saturating ATP (gray line) (Vergani et al., 2005).

Black and gray downward arrows illustrate the energetic effects of the background double mutation and of the

presence of ATP bound in both composite sites.

DOI: 10.7554/eLife.18164.007
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between the g-phosphate of ATP bound to the Walker motifs, and the introduced negative charge

in the signature sequence (Lin et al., 2014). Such an effect would not be expected if the opposing

NBD interfaces did not approach each other in the open-channel state, but is readily explained by

openings being strictly linked to NBD dimer formation even in the G551D mutant. Furthermore,

although reported low-probability ATP-independent pore openings of a CFTR construct lacking

NBD2 (CFTR residues 1–1197; [Wang et al., 2007]) can clearly not be linked to NBD dimer forma-

tion, the present results argue that upon pore opening its remaining NBD-TMD coupling machinery

undergoes movements similar to those that accompany NBD dimerization when neither ’limb’ is

truncated.

Because of the tightened NBD interface, the ATP binding sites of open CFTR channels are likely

inaccessible to the bulk solution even in the absence of bound ATP, just as in its presence

(Chaves and Gadsby, 2015), suggesting that ATP binding/unbinding can take place only in the

closed-channel state. Two immediate corollaries ensue. First, the ATP-free open-channel state is

unlikely to be an integral component of the ATP-dependent gating cycle (Szollosi et al., 2010; but,

cf. Jih et al., 2013). Second, despite suggested similarities (Wang et al., 2010; Kirk et al., 2011;

Okeyo et al., 2013), the principles that drive gating of CFTR channels are fundamentally different

from those of ligand-gated channels, such as the nicotinic acetylcholine receptor. Ligand-gated

channels obey cyclic equilibrium mechanisms in which ligand binding/unbinding can occur both in

the closed- and the open-channel state, and the activating effect of the ligand is based on the ther-

modynamic principle of detailed balance which constrains the product of the equilibrium constants

around a cycle to be unity: thus, opening (’isomerization’) is driven by the concurrent conformational

change of the ligand binding site which increases its affinity for the ligand (Grosman and Auerbach,

2001). But in CFTR the ligand binding site is occluded in open channels, so that an open-state ’bind-

ing affinity’ cannot be defined (the rates for both ATP binding and unbinding are zero). Thus, even

when disruption of ATP hydrolysis forces CFTR channels to gate at equilibrium, that gating follows a

reversible linear sequence (cf., Figure 3a), rather than a cycle subject to the principle of detailed

balance.

Strong correlation between effects on unliganded and liganded channel activity, and energetic

additivity of such effects, has been reported for a range of diverse ’allosteric modulators’ acting on

various regions of the channel. For instance, both unliganded and liganded Po is increased in a physi-

ological context by R-domain phosphorylation, presumably by altering R-domain interactions with

the TMDs (Wang et al., 2010), or in a therapeutic context by the CF drug ivacaftor, believed to tar-

get the TMDs (Jih et al., 2013). Further, distinct mutations in intracellular loops increase

(Wang et al., 2010; Wei et al., 2014) or decrease (Wang et al., 2014) Po for both unliganded and

liganded CFTR. The present results suggest a simple, unified explanation for all these findings: ener-

getic stabilization or destabilization of the inherent open-channel-state structure (Figure 3a, right),

which we show here is similarly organized in the absence or presence of ATP.

Comparison of gating parameters for WT CFTR and our background mutant reveals the mecha-

nism by which gain-of-function mutations promote spontaneous activity (Figure 3c, black vs. orange

free energy profiles). The increase in spontaneous Po by the P355A-K978C double mutation

(Figure 1d, BG vs. WT) amounts to a stabilization of the spontaneous open state by ~8.1 kT

(Figure 3c, right black arrow), and is due not only to an increased frequency of openings but also to

a slower rate of closure, because spontaneous tb is substantially prolonged (from 60 ± 9 ms (n = 5)

to 1566 ± 235 ms (n = 19)), suggesting an increase in DDG�
ðT�OÞ of ~3.3 kT relative to WT. Together,

these data imply that these gain-of-function mutations stabilize the transition state by far less (only

by ~4.8 kT; Figure 3c, left black arrow) than the open state, as expected for perturbations that affect

protein positions which have not yet reached their fully open-like conformations in the transition

state. This is consistent with a similar finding for an NBD-TMD interface position during ATP-depen-

dent opening (Sorum et al., 2015). Thus, just as for ATP-bound channels, the pore is likely still

closed in the high-energy evanescent transition state for spontaneous openings (Figure 3a, center

cartoon).

Finally, what can we infer about the mechanism by which binding of the natural ligand ATP pro-

motes CFTR channel opening? The presence of bound ATP does not alter the global arrangement

of conformations: rather ATP acts as a ’molecular glue’ to stabilize the transition state and the open

state. Because ATP-induced openings are terminated by ATP hydrolysis (Csanády et al., 2010),
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energetic interpretation of ATP-binding induced gating effects cannot be based on the comparison

of WT gating in the presence and absence of ATP (Figure 1d, WT+ATP vs. WT). However, compar-

ing gating parameters for spontaneous activity of WT CFTR and ATP-driven activity of hydrolysis-

incompetent mutant CFTR channels offers some insight into the impact of ATP binding on gating

energetics (Figure 3c, gray vs. orange free energy profiles). Mutations that disrupt ATP hydrolysis in

site 2 all prolong tb and reduce CFTR gating to an equilibrium, by forcing the channels to close back

through the same high-energy transition state they had traversed upon opening (cf. Figure 3a)

(Vergani et al., 2005; Csanády et al., 2010; Sorum et al., 2015). For instance, comparison of Po

and tb of the site 2 Walker-A mutant K1250R CFTR in saturating ATP (Po ~ 0.6, tb = 9323 ms

[Vergani et al., 2005]) with those of spontaneously gating WT CFTR suggests that the presence of

bound ATP stabilizes the open-channel state by ~10.3 kT (Figure 3c, right gray arrow) and

increases DDG�
ðT�OÞ by ~5.1 kT, respectively, which implies that bound ATP stabilizes the transition

state by only ~5.2 kT (Figure 3c, left gray arrow). Thus, intriguingly, although the NBD interface is

already tightened within site 2 in the ATP-bound transition state (Vergani et al., 2005; Sorum et al.,

2015), the ’molecular glue’ effect of bound ATP is further strengthened when the channel reaches

the stable open state. The implication is that some rearrangements must still occur within the dimer

interface between the transition state and the open state. One possibility is that, in the transition

state, site 1 has not yet reached its full open-channel-like conformation. Perhaps the site 2 ’glue’

bonds fully already in the transition state, whereas bonding of the site 1 ’glue’ is completed only in

the open-channel state. Further work will be needed to address the precise timing of site 1 motions

during channel opening, and their contributions to CFTR gating energetics.

Materials and methods

Molecular biology
Mutations introduced (Stratagene, QuikChange) into pGEMHE-CFTR were confirmed by automated

sequencing; cDNA was transcribed in vitro (Ambion, mMessage T7) and cRNA stored at �80˚C.

Isolation and injection of Xenopus oocytes
Oocytes were isolated from anaesthetized adult female Xenopus laevis frogs following Institutional

Animal Care Committee guidelines, injected with 0.1–10 ng cRNA in a fixed 50 nl volume, and

stored at 18˚C as described (Szollosi et al., 2010). Current recordings were obtained 1–3 days after

injection.

Excised inside-out patch recording
The patch pipette solution contained (in mM): 136 NMDG-Cl, 2 MgCl2, 5 HEPES, pH = 7.4 with

NMDG. Bath solution contained (in mM): 134 NMDG-Cl, 2 MgCl2, 5 HEPES, 0.5 EGTA, pH = 7.1

with NMDG, and was freshly supplemented with 3 mM DTT to prevent thiol oxidation of the cyste-

ine side chain engineered into position 978. MgATP (2 mM) was added from a 400 mM aqueous

stock solution (pH = 7.1 with NMDG). The catalytic subunit of PKA (300 nM, Sigma) was applied for

~1 min to activate CFTR channels. Experiments were done at 25˚C. Currents were recorded at a

membrane potential of �80 mV, digitized at 10 kHz, and recorded to disk after on-line Gaussian fil-

tering at 2 kHz.

For macroscopic recordings of P355A-K978C CFTR, baseline current was estimated by brief

replacements of bath chloride ions with gluconate (Figure 1c, red bars); at �80 mV no CFTR cur-

rents are observable under such ionic conditions (Figure 1—figure supplement 1). For microscopic

recordings channels were pre-phosphorylated by PKA, and gating in the absence of ATP was

observed for 5 min, bracketed by 2.5 min exposures to ATP. The number of active channels was esti-

mated based on the high-Po bracketing segments (cf., Figure 1—figure supplement 2). To allow for

loss of ATP even from the higher affinity site 1, which retains ATP for tens of seconds (Tsai et al.,

2010), spontaneous gating parameters were extracted from the last ~4 min stretches of the 5 min

ATP-free segments; precise starting points for the quasi-steady segment to be analyzed were chosen

in each patch based on visual inspection.
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Kinetic analysis of microscopic patches
Segments of current recording were digitally filtered at 50 Hz, and idealized by half-amplitude

threshold crossing. Open probabilities in the absence (Figure 2e) and presence (Figure 1—figure

supplement 2) of ATP were calculated from the events lists as the time-average of the fraction of

open channels. Spontaneous channel opening and closing rates were calculated as described

(Vergani et al., 2005), from ATP-free segments containing no more than 7 superimposed channel

openings. A closed-open-blocked (C-O-B) kinetic scheme, which separates brief (~10 ms) flickery clo-

sures (to state B) from long (>1 s) interburst closures (to state C), was fitted by maximum likelihood

to the set of dwell-time histograms for all conductance levels, to obtain microscopic transition rates

rCO, rOC, rOB, and rBO, while accounting for a fixed dead time of 6 ms (Csanády, 2000). Mean burst

(tb) and interburst (tib) durations were calculated as tb=(1/rOC) (1+rOB/rBO) and tib=1/rCO, and chan-

nel opening and closing rates defined as 1/tib and 1/tb, respectively.

Mutant cycle analysis
Changes in interaction strength between pairs of residues associated with various steps of the gating

cycle were estimated using mutant cycle analysis, as described previously (Vergani et al., 2005). For

a conformational transition from state A to state B of the protein, energetic coupling (DDGint)

between positions 1 and 2 is defined as the difference between mutation-induced changes in the

stability of state B relative to state A along parallel sides of the mutant cycle, i.e.,

DDGint ¼ DDG
0 X0Y!X0Y0ð Þ
B�A �DDG

0 XY!XY0ð Þ
B�A ¼ DDG

0 XY0!X0Y0ð Þ
B�A �DDG

0 XY!X0Yð Þ
B�A (1)

Here the superscripts refer to the pairs of residues found at target positions 1 and 2 of the four

studied constructs (e.g., XY: residue X at position 1 and residue Y at position 2; XY’: residue X at

position 1 and residue Y’ at position 2; etc.), and arrows represent substitutions in a particular back-

ground (e.g., XYfiXY’: mutation of position 2 from Y to Y’, with X at position 1).

If states A and B are stable (’ground’) states of the protein, then the energetic stability of state B

relative to state A can be calculated from the measured equilibrium constant (Keq) as DG0
B�A ¼

�kTlnKeq (k is Boltzmann’s constant,T is absolute temperature), and hence the two terms in Equa-

tion 1 are obtained as follows:

DDG
0 X0Y!X0Y0ð Þ
B�A ¼ DG

0 X0Y0ð Þ
B�A �DG

0 X0Yð Þ
B�A ¼�kT ln Keq X0Y0ð Þ=Keq X0Yð Þ

� �

;

and

DDG
0 XY!XY0ð Þ
B�A ¼ DG

0 XY0ð Þ
B�A �DG

0 XYð Þ
B�A ¼�kT ln Keq XY0ð Þ=Keq XYð Þ

� �

:

In this study, we used the equilibrium constant between the spontaneous closed- and open-chan-

nel state, Keq ¼Po=ð1�PoÞ (Figure 2h).

Analogously, mutation-induced changes in activation free energy barriers, calculated from frac-

tional changes in transition rates, can also be substituted into Equation 1. For instance, for the tran-

sition AfiT‡fiB (T‡ is the transition state) the two terms for Equation 1 are obtained as follows:

DDG
0 X0Y!X0Y0ð Þ
T�A ¼�kTln rAB X0Y0ð Þ=rAB X0Yð Þð Þ;

and

DDG
0 XY!XY0ð Þ
T�A ¼�kT ln rAB XY0ð Þ=rAB XYð Þð Þ;

where rAB is the transition rate from state A to state B. In this study, we calculated mutation-induced

changes in activation free energy barriers for channel opening (DDG0
T�C) and closing (DDG0

T�O) from

the fractional changes in opening and closing rates, respectively (Figure 2i–j). All DDGs are given as

mean ± SEM. Estimates of SEM for DDGo values were obtained as follows. All DDG values are func-

tions of the form DDG¼ kTln u=vð Þ of two independent random variables u and v which represent a

specific gating parameter (Keq, rCO, or rOC) of two different channel constructs. Assuming that u and

v are normally distributed with mean m ðmu;mvÞ and variance s
2 (s2

u, s
2

v), the variance of ln u=vð Þ is

given by
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var ln u=vð Þð Þ ¼
R

¥

�¥

R

¥

�¥ ln
2
u=vð Þ � 1

2p
� e

� u�muð Þ2

2s2u � e
� v�mvð Þ2

2s2v dudv�
R

¥

�¥

R

¥

�¥ ln u=vð Þ � 1

2p
� e

� u�muð Þ2

2s2u � e
� v�mvð Þ2

2s2v dudv

� �2

The above integrals cannot be performed analytically, but the functions ln u=vð Þ and ln
2
u=vð Þ can

be expanded into power series around (mu;mv). Taking the terms only up to second order, the inte-

grals can be performed, giving the approximation

var ln u=vð Þð Þ»
s
2

u

m2
u

þ
s
2

v

m2
v

þ
1

2
�
s
2

u

m2
u

�
s
2

v

m2
v

�
1

4
�

s
4

u

m4
u

þ
s
4

v

m4
v

� �

The power series approximations hold as long as su �mu, sv �mv; thus,

for su ¼ 0:2mu;sv ¼ 0:2mv this estimate of the variance for ln u=vð Þ is still quite accurate, and was used

to obtain var DDG0

B�A

� �

values. Since the numbers of observations for each pair of constructs (e.g.,

nXY and nXY’) was similar, standard errors were calculated using the mean values for n. E.g.,

SEM DDG
0 XY!XY0ð Þ
B�A

� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var DDG
0 XY!XY0ð Þ
B�A

� �

=�n

r

, where �n¼ nXY þ nXY0ð Þ=2.

Variances for energetic coupling were obtained as

var DDGintð Þ ¼ var
�

DDG
0 X0Y!X0Y0ð Þ
B�A

�

þvar DDG
0 XY!XY0ð Þ
B�A

� �

. Finally, since the numbers of observations

for each corner of a cycle (nXY, nXY’, nX’Y, nX’Y’) were similar, standard errors for energetic coupling

were calculated as SEM DDGintð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var DDGintð Þ=�n
p

, where �n ¼ nXY þ nXY0 þ nX0Y þ nX0Y0ð Þ=4.

The values of DDGint obtained from the above two types of mutant cycle are conventionally inter-

preted to reflect the change in the strength of the interaction (in WT) between the two target resi-

dues X and Y upon transiting from stable ground state A either to stable ground state B, or to

transition state T‡, respectively. This interpretation assumes that the native interaction between resi-

dues X and Y is destroyed in both single mutants and the double mutant (valid, e.g., for side chain

truncations) (Horovitz, 1996). However, if an interaction is restored in the double mutant X’Y’, then

the measured DDGint reports the sum of the changes in interaction strengths for residue pairs X-Y (in

WT) and X’-Y’ (in the double mutant). Choosing such mutations (e.g., (Vergani et al., 2005); present

study) provides a convenient signal amplification which facilitates separating the signal from noise.

Statistics
All data are presented as mean ± S.E.M, estimated from current recordings obtained from n (�5)

patches as specified in each figure legend. All data were included in the analysis. Statistical signifi-

cance was quantified using Student’s t test, and differences are reported as significant for p<0.05.
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mia
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Sorum B, Czégé D, Csanády L. 2015. Timing of CFTR pore opening and structure of its transition state. Cell 163:
724–733. doi: 10.1016/j.cell.2015.09.052
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