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Abstract Transient Receptor Potential Melastatin 2 (TRPM2) is a Ca2+-permeable cation channel

essential for immunocyte activation, insulin secretion, and postischemic cell death. TRPM2 is

activated by ADP ribose (ADPR) binding to its C-terminal cytosolic NUDT9-homology (NUDT9H)

domain, homologous to the soluble mitochondrial ADPR pyrophosphatase (ADPRase) NUDT9.

Reported ADPR hydrolysis classified TRPM2 as a channel-enzyme, but insolubility of isolated

NUDT9H hampered further investigations. Here we developed a soluble NUDT9H model using

chimeric proteins built from complementary polypeptide fragments of NUDT9H and NUDT9. When

expressed in E.coli, chimeras containing up to ~90% NUDT9H sequence remained soluble and were

affinity-purified. In ADPRase assays the conserved Nudix-box sequence of NUDT9 proved essential

for activity (kcat~4-9s
-1), that of NUDT9H did not support catalysis. Replacing NUDT9H in full-length

TRPM2 with soluble chimeras retained ADPR-dependent channel gating (K1/2~1-5 mM), confirming

functionality of chimeric domains. Thus, TRPM2 is not a ’chanzyme’. Chimeras provide convenient

soluble NUDT9H models for structural/biochemical studies.

DOI: 10.7554/eLife.17600.001

Introduction
Transient receptor potential melastatin 2 (TRPM2) belongs to the TRP protein family and is predomi-

nantly expressed in brain neurons, spleen, bone marrow, leukocytes, phagocytes, pancreatic b cells,

and cardiomyocytes (Nagamine et al., 1998; Perraud et al., 2001; Togashi et al., 2006). It forms

Ca2+-permeable nonselective cation channels which are activated under oxidative stress, and con-

tribute to the Ca2+ signals that trigger cell migration and chemokine production in immune cells

(Yamamoto et al., 2008) and insulin secretion in the pancreas (Uchida et al., 2011). Under patho-

logical conditions, such as post-ischemic reperfusion injury (Hara et al., 2002; Kaneko et al., 2006)

and potentially in Alzheimer’s disease (Fonfria et al., 2005), TRPM2 activity leads to Ca2+ dysregula-

tion and cell death. On the other hand, reduced activity of TRPM2 might be linked to amyotrophic

lateral sclerosis and Parkinson’s disease dementia (Hermosura et al., 2008), as well as bipolar disor-

der (McQuillin et al., 2006).

TRPM2 forms homotetramers with a transmembrane architecture similar to that of voltage-gated

cation channels (Figure 1A). In addition, it contains a large cytosolic N-terminal domain of unknown

function specific to the TRPM subfamily, and a C-terminal coiled-coil region (CCR, Figure 1A) fol-

lowed by a small cytosolic domain (NUDT9H). The NUDT9H domain exhibits a high degree of

sequence similarity (~35% identity, ~45% similarity) to the soluble, Mg2+-dependent mitochondrial

pyrophosphatase NUDT9 (Shen et al., 2003), which catalyzes the hydrolysis of adenosine 5’-diphos-

phoribose (ADPR) into AMP and ribose 5-phosphate (R5P) (Figure 1B and C). TRPM2 is activated by

co-application of cytosolic ADPR and Ca2+ (Perraud et al., 2001; Sano et al., 2001; Csanády and

Törocsik, 2009), and the ADPR ligand was indeed shown to bind to the NUDT9H domain of the

Iordanov et al. eLife 2016;5:e17600. DOI: 10.7554/eLife.17600 1 of 20

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7554/eLife.17600.001
http://dx.doi.org/10.7554/eLife.17600
https://creativecommons.org/
https://creativecommons.org/
http://elife.elifesciences.org/
http://elife.elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


channel (Grubisha et al., 2006). Based on its crystal structure, the mitochondrial enzyme is com-

posed of two subdomains, termed Cap and Core (Figure 1C, blue and brown). The Cap subdomain

facilitates binding of the substrate ADPR, whereas the Core subdomain binds the substrate and

catalyses its cleavage to AMP and R5P (Shen et al., 2003; Perraud et al., 2003). The Core subdo-

main harbors the Nudix (nucleoside diphosphate linked moiety X) box - a conserved motif

(Bessman et al., 1996) responsible for recognition and hydrolysis of ADPR, present in a variety of

phosphohydrolases (Gabelli et al., 2001; Kang et al., 2003; Gabelli et al., 2007; Huang et al.,

2008; Messing et al., 2009; Boto et al., 2011) including both NUDT9 and NUDT9H (Perraud et al.,

2001).

The strong similarity between NUDT9 and NUDT9H raised the intriguing possibility that NUDT9H

itself might act as an enzyme with ADPR hydrolase (ADPRase) activity. Indeed, previous work

reported weak enzymatic activity for isolated NUDT9H (Perraud et al., 2001, 2003), compatible

with the slow timescale of channel gating (Csanády and Törocsik, 2009), classifying TRPM2 among

channel-enzymes (’chanzymes’). This small group of proteins, in which a single polypeptide chain

forms both a transmembrane ion pore and a catalytically active domain, includes two other members

of the TRPM subfamily (TRPM6 and TRPM7), and the Cystic Fibrosis Transmembrane Conductance

Regulator (CFTR) chloride ion channel. In CFTR catalytic (ATPase) activity is strictly coupled to chan-

nel gating, which therefore follows a nonequilibrium cyclic mechanism (Csanády et al., 2010). In

TRPM7 catalytic (phosphotransferase) activity is not linked to pore gating (Matsushita et al., 2005),

but instead serves to regulate expression of TRPM7-dependent genes (Krapivinsky et al., 2014). In

the case of TRPM2 the physiological role of the proposed ADPRase activity has not yet been clari-

fied, but we have previously shown that any hydrolytic activity of NUDT9H is not coupled to gating

of the TRPM2 channel itself (Tóth et al., 2014). Furthermore, our observation of intrinsic instability

of several pyridine dinucleotides at basic pH (Tóth et al., 2015) raised the possibility of a similar

eLife digest Ion channels are proteins that allow specific charged particles to move across the

membranes of cells – for example to travel in or out of a cell, or between different parts of the same

cell. Almost all ion channels are gated, meaning that they can open and close in response to

different signals. For instance, so-called ligand gated channels open in response to binding of some

small molecule, known as the "ligand". A small number of channel proteins are also enzymes,

meaning that they are able to catalyze chemical reactions, and these channel-enzymes are often

referred to as “chanzymes”.

TRPM2 is an ion channel found in humans that opens when a small molecule called ADPR binds

to a portion of the channel inside the cell. This channel is also thought to be a chanzyme because

the part that binds to ADPR is similar to an enzyme called NUDT9. The NUDT9 enzyme converts

ADPR into two other chemicals. When studied in biochemical assays, the enzyme-like part of TRPM2

– which contains a segment called a “Nudix box” – appeared to act in the same way, although this

activity was not linked to the opening and closing of the TRPM2 channel.

Iordanov et al. set out to re-examine whether TRPM2 is actually an enzyme by comparing the

activity of NUDT9 to the enzyme-like part of TRPM2. To test an enzyme’s activity, it typically needs

to be dissolved in water. However, the enzyme-like part of TRPM2 does not dissolve, and so it could

not be tested directly. Instead, Iordanov et al. identified which parts of TRPM2 make it insoluble and

replaced them with the equivalent parts from NUDT9 to create several new proteins. For all the

proteins tested, only those with the Nudix box from NUDT9 were active enzymes, while those with

the Nudix box from TRPM2 were not.

Iordanov et al. conclude that TRPM2 is a ligand gated channel and not a chanzyme, and that the

experimental conditions used in previous biochemical assays, and not TRPM2 activity, led to the

breakdown of ADPR. Finally, the TRPM2 channel is involved in cell damage following heart attacks

or stroke and may contribute to Alzheimer’s disease, Parkinson’s disease and bipolar disorder as

well. As such, knowing how TRMP2 behaves could guide efforts to develop new drugs for these

illnesses.

DOI: 10.7554/eLife.17600.002
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instability for ADPR, which might lead to false positive results when assessing the hydrolytic activity

of a putative slow ADPRase enzyme. It thus remained a question whether the NUDT9H domain truly

exhibits any enzymatic activity, not coupled to TRPM2 gating. One way to address this would be to

further analyze the TRPM2 ADPR-binding domain in isolation. However, in our hands NUDT9H

proved to be extremely insoluble (Tóth et al., 2014), despite its high degree of sequence similarity

to highly soluble NUDT9. For this reason we first constructed a series of chimeric proteins built from

complementary polypeptide fragments of the two homologous proteins, and correlated solubility

with NUDT9H sequence content. This approach allowed us to pinpoint the NUDT9H segments

responsible for its insolubility, and to purify and investigate soluble chimeric proteins which contain

up to ~90% of the native NUDT9H sequence. We then investigated enzymatic activities of such solu-

ble chimeras in isolation, as well as their capacities to substitute for native NUDT9H in conferring

ADPR-dependent gating to the full-length TRPM2 channel.

Figure 1. The ligand-binding NUDT9H domain in the context of TRPM2. (A) Topology map of a TRPM2 monomer,

showing the N-terminal TRPM homology region (dark blue), the six transmembrane helices which form the pore

domain (red and blue), and a C-terminal short coiled-coil region (CCR, yellow) followed by the NUDT9H domain

(gray) which is homologous to the soluble mitochondrial ADPRase NUDT9. (B) Hydrolysis of ADPR to AMP and

R5P: reaction catalyzed by mitochondrial NUDT9 and reportedly also by the TRPM2 NUDT9H domain. (C) Crystal

structure of mitochondrial NUDT9 (PDB ID: 1QVJ) illustrating Cap (blue) and Core (brown) subdomains of the

protein, with the hydrolysis product R5P (yellow) and two Mg2+ ions (magenta) bound.

DOI: 10.7554/eLife.17600.003
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Results

C-terminal residues of NUDT9H are responsible for its insolubility
In a previous attempt to purify and biochemically characterize the TRPM2 NUDT9H domain in isolation

we found it to be essentially insoluble, unlike its mitochondrial homologue NUDT9 (Tóth et al., 2014).

Because of this unexpected difference we further investigated the two proteins in an attempt to obtain

a soluble analogue of NUDT9H. Prompted by the strong similarity between them (Figure 2), we gener-

ated chimeric constructs by swapping homologous segments between NUDT9 and NUDT9H. The

crystal structure of mitochondrial NUDT9 ([Shen et al., 2003]; PDB ID: 1Q33) identified two subdo-

mains - a ’Cap’ and a ’Core’ (Figure 1C, blue and brown). Assuming structural similarity between

NUDT9 and NUDT9H, these two structurally distinct regions of NUDT9 provided the basis for generat-

ing the first chimeric constructs (Chi1/1A and Chi2/2A), obtained by exchanging the Cap and Core

segments of the two native proteins (Figure 3A). The NUDT9-Cap/NUDT9H-Core chimeras Chi1 and

Chi1A were insoluble, whereas the NUDT9H-Cap/NUDT9-Core chimeras Chi2 and Chi2A were solu-

ble, and Chi2 could be purified by Ni-affinity chromatography (Figure 3—figure supplement 1). The

low solubility of NUDT9H is thus caused at least in part by its Core subdomain.

The soluble Chi2 contains only ~41% of NUDT9H sequence (Table 1) and, notably, the catalyti-

cally important Nudix box in Chi2 originates from mitochondrial NUDT9. To obtain soluble con-

structs which more closely resemble NUDT9H, the point of transition from NUDT9H- to NUDT9-

sequence was advanced further downstream. For the next construct, Chi3 (Figure 3A), this switch

point was propagated about halfway through the Core segment, immediately after a well aligned,

conserved stretch of amino acids (Figure 2) which forms a reentrant loop structure, pivotal for

anchoring the Cap to the Core segment in NUDT9. A small fraction of this Chi3 chimera, which con-

tains ~77% of NUDT9H sequence (Table 1), including its Nudix box, remained soluble and could be

purified. We then advanced the transition point further downstream, about halfway through the

remainder of the NUDT9 sequence in Chi3. This new construct (Chi4) is formed by ~91% of NUDT9H

sequence (Figure 2, Figure 3A and B), but a small amount of it still remained in the soluble fraction

which allowed us to purify it. The low yields of soluble Chi3 and Chi4 could be robustly increased

Figure 2. Alignment of NUDT9H and NUDT9 sequences. Aligned (Corpet, 1988) sequences of NUDT9H and NUDT9, highlighting identical (red) and

similar (blue) residues. The approximate border between Cap and Core subdomains of the proteins is indicated by two black arrows. Black line

identifies the Nudix box, asterisks denote residues critical for the catalytic activity of NUDT9. Green arrows and labels indicate transition points for

sequence swapping in each chimera (see also Figure 3).

DOI: 10.7554/eLife.17600.004
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using a slower induction protocol (0.1 mM IPTG, 25˚C, overnight); and replacement of the hexahisti-

dine tag with a Twin-Strep tag (Chi3S and Chi4S) greatly improved protein purity, as confirmed by

SDS-PAGE (Figure 3—figure supplement 1) and mass spectrometry analysis of the purified Chi4S

sample. Indeed, using this slow induction protocol even some soluble NUDT9H protein could be

obtained and purified (Figure 3—figure supplement 1, right); however, this preparation precipi-

tated overnight at 4˚C. Thus, Chi4S remained the best NUDT9H model that we were able to obtain

in stable, soluble form (Table 1).

Figure 3. Representation of the various recombinant proteins used in this study. (A) Aligned block diagrams of

recombinant constructs with segment lengths realistically scaled to reflect their actual sizes (numbers of residues).

The Cap and Core segments of NUDT9 (blue) and NUDT9H (orange) are separated by a vertical black line. Gaps

emerging from the alignment of the two sequences (Figure 2) are presented as thick lines with the respective

color. The 15 amino-acid stretch from the upstream cytosolic linker sequence of TRPM2 (gray), present in some

chimeras, contains a native BlpI-site which allows subcloning the domain into full-length TRPM2. Some constructs

contain a C-terminal hexahistidine tag (green) or Twin-Strep tag (magenta). Nudix boxes within Core segments are

indicated as black lines (see also Table 1). (B) NUDT9 fragments replaced in the chimeras by NUDT9H sequence,

mapped onto surface representation of NUDT9 crystal structure (PDB ID: 1Q33). Coloring highlights progressive

replacement of NUDT9 sequence with NUDT9H sequence in chimeric constructs. The Cap subdomain (light

brown) is replaced in Chi2 and Chi2A. A fragment from the Core (orange), containing the Nudix box (red), is also

replaced in Chi3S. Additional Core fragment (dark brown) further extends the NUDT9H sequence in Chi4S, leaving

only 36 C-terminal amino acids from NUDT9 (blue).

DOI: 10.7554/eLife.17600.005

The following figure supplement is available for figure 3:

Figure supplement 1. Purified recombinant proteins.

DOI: 10.7554/eLife.17600.006
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The Nudix box of NUDT9H does not support ADPR hydrolase activity
The solubility and relative stability of mitochondrial NUDT9 and three of our chimeric constructs

(Chi2, 3S, 4S) allowed purification of milligram amounts of these recombinant proteins to reasonable

homogeneity (Figure 3—figure supplement 1) and assessment of their enzymatic activities. Further-

more, despite its long-term instability, we also subjected freshly purified NUDT9H (Figure 3—figure

supplement 1, right) to enzyme activity assays. Following a 2-hr incubation of 1 mM of each protein

with 10 mM ADPR substrate and 16 mM Mg2+ (Perraud et al., 2003), TLC analysis of the reaction

mixtures confirmed that NUDT9 and Chi2 (which contain the NUDT9-type Nudix box) are both active

ADPRases, with turnover rates sufficient to cause complete – or near-complete – conversion of

ADPR into AMP and R5P within this time frame (Figure 4A and B; R5P is invisible on the TLC). In

contrast, Chi3S, 4S and NUDT9H (which contain the NUDT9H-type Nudix box, Figure 3A) all failed

to hydrolyze the nucleotide under the same conditions (Figure 4C–E): this same overall pattern was

observed for all six reaction conditions tested, which included three different pH values (6.5, 7.1 and

8.5) in the absence or presence of 100 mM NaCl (Figure 4A–E, reaction buffers 1–6).

The reported enzymatic activity of NUDT9H is about 100-fold lower than that of NUDT9

(Perraud et al., 2001, 2003). Closer inspection of the TLC plates of the inactive proteins indeed

revealed very weak AMP spots appearing in the reaction mixtures at basic pH (Figure 4C–E, lanes 3

and 6). The low sensitivity of the TLC technique requires the presence of at least 0.2–0.3 mM AMP for

visual detection (Figure 4F, top slice). Thus, assuming 2–300 mM AMP produced by 1 mM protein

within our 2-hr incubation would suggest apparent kcat values of 0.03–0.04 s�1 for Chi3S, 4S and

NUDT9H at pH 8.5 and 25˚C, in good agreement with the previous reports on NUDT9H (kcat ~0.06 s�1

at pH 9 and 37˚C). However, our prior observation of spontaneous degradation of several dinucleoti-

des at basic pH (Tóth et al., 2015) prompted us to consider inherent instability of ADPR at basic pH as

a possible reason for the observed slow AMP accumulation. Indeed, we found that ADPR undergoes

slow degradation to AMP and R5P at pH 8.5 (Figure 4F, middle slice; also see Figure 4—figure sup-

plement 2), highlighting that care must be taken to distinguish spontaneous hydrolysis from true enzy-

matic activity. At 25˚C and pH 8.5 ~20% of ADPR degraded spontaneously in 24 hr (Figure 4F, middle

slice, compare the two lanes marked by asterisks), indicating a decay time constant of ~100 h, and

thus ~2% degradation in 2 hr: this rate of spontaneous degradation indeed fully accounts for the weak

AMP spots observed for Chi3S, 4S, and NUDT9H at basic pH. More importantly, addition of either 0.1

or 1 mM Chi4S to ADPR-containing reaction mixtures at basic pH, either with (RB6) or without (RB3)

100 mM NaCl, did not affect the rate of spontaneous AMP accumulation (Figure 4F, bottom slice).

This clearly demonstrates that Chi4S does not possess any hydrolytic activity towards ADPR, most

Table 1. Properties of the recombinant proteins.

Construct M.W. (kDa) Theor. pI* % NUDT9H† ecOpt‡ Nudix§ Soluble Enzyme

NUDT9 34.0 6.88 0 Yes NUDT9 Yes Yes

NUDT9H 31.5 8.34 100 Yes NUDT9H No¶ No

Chi1 31.7 9.30 59 Yes NUDT9H No N/A††

Chi1A 32.3 9.16 59 No NUDT9H No N/A

Chi2 35.7 6.27 41 No NUDT9 Yes Yes

Chi2A 34.6 5.91 41 No NUDT9 Yes N/A

Chi3S 35.4 6.40 77 Yes NUDT9H Yes (25˚C)** No

Chi4S 35.8 7.16 91 Yes NUDT9H Yes (25˚C)** No

* - Theoretical pI of the construct (Protein Calculator v3.4).

† - Percentage of NUDT9H sequence (TRPM2 residues 1236-1503) contained in the construct. (The segment in brackets does not include the 15 amino-

acid upstream stretch from TRPM2).

‡ - Gene sequence optimized for expression in E.coli. ‘No’ denotes that the original, human nucleotide sequence (Nagamine et al., 1998) was used.

§ - Denotes the origin (NUDT9 or NUDT9H) of the Nudix box sequence in the construct.

¶ - Small fraction of the protein is soluble when expressed at 25˚C.
** - Small fraction of the protein is soluble when expressed at 37˚C, reasonably soluble when expressed at 25˚C.
†† - Not Available

DOI: 10.7554/eLife.17600.007
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Figure 4. Enzymatic activity of NUDT9, NUDT9H, and chimeras. (A–E) 10 mM ADPR (lane C1) and 10 mM AMP (lane C2) controls in water. Lanes 1–6

show reaction mixtures of 1 mM purified NUDT9 (A), Chi2 (B), Chi3S (C), Chi4S (D), or NUDT9H (E), incubated with 10 mM ADPR and 16 mM MgCl2 in 50

mM RB1-6, respectively, for 2 hr at room temperature. (F) Top slice: TLC-detection limit for AMP: 0.1–0.9 mM water-dissolved AMP in 0.1-mM

incrementing steps. Middle slice: ADPR self-degradation. The slice shows only the AMP position of (from left to right): 10 mM ADPR control (in water), 1

mM AMP control (in water), 10 mM AMP control (in water), and 1, 2, 5, 10, 15 and 20 mM ADPR incubated for 24 hr at room temperature in RB3 (pH 8.5)

(last six lanes). Bottom slice: ADPR self-degradation in the absence and presence of Chi4S, showing only the AMP position. From left to right: 10 mM

ADPR control (in water); 10 mM AMP control (in water); 10 mM ADPR in RB3 (pH 8.5); 10 mM ADPR in RB6 (pH 8.5/NaCl); 0.1 mM Chi4S + 10 mM ADPR

in RB3; 0.1 mM Chi4S + 10 mM ADPR in RB6; 1 mM Chi4S + 10 mM ADPR in RB3; 1 mM Chi4S + 10 mM ADPR in RB6. Except for the controls in lanes 1–

2, all samples also contained 16 mM MgCl2, and were incubated for 24 hr at room temperature. In all Panels 1-ml aliquots were loaded for each sample.

The three slices of Panel F can be seen as full-scale TLC plates in Figure 4—figure supplement 1.

DOI: 10.7554/eLife.17600.008

The following figure supplements are available for figure 4:

Figure supplement 1. Full-scale TLC images of the slices shown in Panel F on Figure 4.

DOI: 10.7554/eLife.17600.009

Figure 4 continued on next page
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likely due to critical substitutions in its Nudix box (Figure 2; cf., [Perraud et al., 2003]), and that the

observed slow accumulation of AMP is merely caused by ADPR instability at basic pH.

Enzymatic activity of NUDT9 and Chi2 is pH dependent
We noted slower enzymatic activity for Chi2 at pH 6.5 and 7.1 compared to 8.5 (Figure 4B), whereas

ADPR hydrolysis by NUDT9 appeared complete at all pH values (Figure 4A). To test whether such

pH dependence might also apply for NUDT9, but could not be observed at the chosen timescale of

2 hr, we analyzed for both enzymes the time course of AMP accumulation in ADPR-saturated reac-

tion mixtures at the three different pH values (in RB1, RB2 and RB3). Both NUDT9 and Chi2 showed

a clear preference for basic pH, causing AMP accumulation to be fastest at pH 8.5 and slowest at pH

6.5 (Figure 5A and B). The calculated kcat values (in s�1) quantify this pH dependence of catalytic

rates for both proteins (Figure 5C), and reveal higher sensitivity for Chi2 (~5.8-fold decrease from

pH 8.5 to 6.5) compared to NUDT9 (~1.4-fold decrease from pH 8.5 to 6.5). Spontaneous degrada-

tion of ADPR at basic pH (Figure 4F, middle slice) is not a major contributor to this pH dependence,

because the total duration of these kinetic experiments (~20 min) was too short for that effect to

become significant: correction for the ~30 mM AMP which forms spontaneously in 20 min at pH 8.5

would amount to a downward adjustment of those kcat values (Figure 5C, black bars) by only

~0.05 s�1. Furthermore, whereas we cannot exclude the possibility that the two proteins were

applied at slightly different concentrations, and that this may have caused the observed differences

in their absolute reaction rates, investigating pH dependence of activity of a given enzyme (i.e. the

same protein stock) is not subject to such limitations. Of note, the kcat of 9 s�1 for NUDT9 at pH 8.5

is very similar to previously reported values (~8 s�1, [Perraud et al., 2001, 2003]).

High-resolution colorimetric assay confirms enzymatic activity profiles
of NUDT9, NUDT9H, and chimeras
The TLC assay allows unambiguous identification of the reaction product AMP based on its chro-

matographic mobility, but its resolution is limited. As an independent approach, we therefore veri-

fied enzymatic activities at both 37˚C (Figure 6A) and room temperature (RT, Figure 6B) for

Figure 4 continued

Figure supplement 2. Spontaneous ADPR degradation at basic pH, monitored with TLC.

DOI: 10.7554/eLife.17600.010

Figure 5. Enzyme kinetics of Chi2 and NUDT9. (A) Representative TLC images showing the time courses (in minutes) of hydrolysis of ADPR (10 mM) by

0.5 mM Chi2 (top) or NUDT9 (bottom) at 3 different pH values (RB1, RB2 and RB3). The slices show only the position of the AMP spots. Control 1 (C1): 5

mM AMP in water. Control 2 (C2): 10 mM AMP in water. (B) AMP accumulation during ADPR hydrolysis by Chi2 (circles) and NUDT9 (triangles) at 3

different pH values. Densities of AMP spots (such as those shown in Panel A) were normalized to the density of the control AMP spot (5 mM) on the

same TLC sheet. For each time point mean ± SEM from 3 experiments is shown. Straight lines are linear regression fits to the averaged data points. (C)

Estimates of kcat (s
�1) for both proteins at each pH, calculated from the fitted slopes in B (mean ± SEM; mean values are also printed above each bar).

DOI: 10.7554/eLife.17600.011
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Figure 6. Enzymatic activity of NUDT9, Chi4S, and NUDT9H measured with the Pi assay. (A–B) Pi (in mM) liberated in sample mixtures containing, as

indicated, AP (5–6 U alkaline phosphatase), ADPR (1 mM), AMP (1 mM), R5P (1 mM), and either 5 or 50 nM protein (NUDT9, Chi4S, or NUDT9H), and

incubated for 30 min at pH 6.5, 7.1, 8.5, or 9.0 (color coded) at either 37˚C (A) or room temperature (RT) (B). Asterisks in A denote samples replotted

with an expanded ordinate in Panel C. Bars represent mean ± SEM from 3 independent experiments. (C) Expanded display of samples denoted with

asterisks in Panel A. (D) Estimated kcat values (in s�1) for NUDT9 under each experimental condition (pH and temperature), calculated (see

Materials and methods) from [Pi] liberated in the samples containing 5 nM NUDT9 (group 8) in Panels A and B.

Figure 6 continued on next page
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NUDT9, Chi4S, and NUDT9H using the more sensitive colorimetric detection of inorganic phosphate

(Pi), liberated from both ADPRase products (AMP and R5P) by co-applied alkaline phosphatase (AP)

(Rafty et al., 2002). As a validation of this coupled assay, no significant amounts of contaminating Pi

were found in either the applied stock of AP (5–6 U), or in 1-mM solutions of ADPR, AMP, or R5P

(Figure 6A–B, first four group of bars). Moreover, in the 30-min time frame of our incubation AP

released stoichiometric amounts (~1 mM) of Pi from either AMP or R5P (but not from ADPR), con-

firming that under our experimental conditions the AP reaction is not rate limiting for the coupled

assay (Figure 6A–B, groups 5–7), releasing 2 mM of Pi per mM ADPR hydrolyzed. When NUDT9 (5

or 50 nM) was co-applied with 1 mM ADPR and AP, the released Pi roughly scaled with the applied

amount of protein, signalling specific ADPR hydrolysis by NUDT9 (Figure 6A–B, groups 8–9). Com-

parison of released [Pi] for assays performed at pH values between 6.5 and 9.0 confirmed modest

but significant enhancement of NUDT9 activity at basic pH (Figure 6A–B, compare four colored bars

within groups 8–9). Molecular turnover rates (kcat), calculated from the 5-nM NUDT9 data, were in

the range of ~4–11 s�1 (Figure 6D), in good agreement with the estimates from the TLC assay

(Figure 5C). In contrast, co-applying 5 or 50 nM of either Chi4S or NUDT9H with 1 mM ADPR and

AP did not result in any significant Pi release (Figure 6A–B, groups 10–13; expanded in Figure 6C):

the small concentrations of Pi released in these assays (corresponding to the hydrolysis of ~1% of

the applied 1 mM ADPR) clearly reflect spontaneous ADPR hydrolysis (cf., Figure 6—figure supple-

ment 1), because they remained insensitive to a ten fold variation in Chi4S or NUDT9H concentra-

tion (Figure 6C, compare groups 4–5 and 6–7), and were not larger than the [Pi] released in the

absence of any ADPRase (Figure 6C, group 3).

Importantly, lack of catalytic activity for Chi4S and NUDT9H was not due to microaggregation of

these domains in a quasi-stable solution: size exclusion chromatograms for both proteins showed a

main monomeric peak and a smaller peak corresponding to a dimer, just as for highly soluble

NUDT9 (Figure 6—figure supplement 2, compare red and blue to black profile), while higher-stoi-

chiometry aggregates constituted only a minor fraction in each case. For the above functional assays

only the pooled fractions corresponding to the monomeric peaks were used.

Both enzymatically active and inactive chimeras are functional in the
context of full-length TRPM2
Enzymatic activity of purified Chi2 confirmed that it is a functional protein, similar to mitochondrial

NUDT9 (Figure 4A–B). To verify functionality also for enzymatically inactive Chi3(S) and Chi4(S), we

tested whether any of these constructs could substitute for the native NUDT9H domain in the con-

text of full-length TRPM2, to confer ADPR-induced gating upon the channel. For this purpose we

used the non-inactivating (Tóth and Csanády, 2012) T5L-TRPM2 pore mutant (hereafter ’TRPM2’),

and subcloned Chi2, Chi3 and Chi4 into TRPM2, replacing its native NUDT9H domain. The three

full-length chimeric channels (TRPM2-Chi2, TRPM2-Chi3 and TRPM2-Chi4) were then expressed in

Xenopus laevis oocytes, and tested for ADPR-dependent channel activation in inside-out patches.

For all three constructs cytosolic superfusion with ADPR and Ca2+ triggered macroscopic currents

(Figure 7B–D) resembling those of unmodified T5L-TRPM2 (Figure 7A), indicating successful ligand

binding to the chimeric domains: in 1 mM ADPR, the previously established half-saturating concen-

tration for TRPM2 (Tóth and Csanády, 2012), similar fractional currents were activated for TRPM2,

TRPM2-Chi3, and TRPM2-Chi4 (Figure 7A,C–E), indicating similar apparent affinities for ADPR. Frac-

tional activation of TRPM2-Chi2 by 1 mM ADPR was reduced (Figure 7B,E), reflecting a modest,

~3.5-fold increase in the K1/2 for ADPR-induced current activation in TRPM2-Chi2 (Figure 7H). The

time constants of current decay upon ADPR removal were two–three-fold shorter for the chimeric

constructs compared to TRPM2 (Figure 7F), whereas the relaxation time constants upon Ca2+

Figure 6 continued

DOI: 10.7554/eLife.17600.012

The following figure supplements are available for figure 6:

Figure supplement 1. Spontaneous ADPR degradation at basic pH, monitored with Pi assay.

DOI: 10.7554/eLife.17600.013

Figure supplement 2. Size exclusion chromatograms of NUDT9, HUDT9H, and Chi4S.

DOI: 10.7554/eLife.17600.014
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removal were nearly identical (Figure 7G). Overall, apart from moderate kinetic differences, all chi-

meric channel constructs were gated by ADPR similarly to TRPM2, indicating that their chimeric

ligand-binding domains are functional in the context of the full-length channel.

ADPR analog binds with similar affinities to purified Chi4S protein and
full-length TRPM2 channels
Although the electrophysiological experiments confirm functionality for chimeric ligand binding

domains in the context of a full-length TRPM2 channel expressed in frog oocytes, we sought to ver-

ify functionality also for Chi4S purified from E. coli, our best model of isolated NUDT9H. We found

that the fluorescent ADPR analog 1, N6-ethenoadenosine-5’-O-diphosphoribose (e-ADPR) binds to

the intact NUDT9H domain of full-length TRPM2, because it suppressed ADPR-evoked TRPM2 cur-

rents in a dose-dependent manner: this effect was more pronounced at low, submaximal [ADPR]

Figure 7. ADPR-induced channel activity of full-length TRPM2 chimeras. (A–D) Macroscopic currents in inside-out patches excised from Xenopus laevis

oocytes expressing (A) T5L-TRPM2, (B) T5L-TRPM2-Chi2, (C) T5L-TRPM2-Chi3, and (D) T5L-TRPM2-Chi4, elicited by superfusion with increasing

concentrations of ADPR in the presence of saturating Ca2+ (black bars). Membrane potential was �20 mV; current relaxation time courses following

removal of either Ca2+ or ADPR were fitted by single exponentials (colored lines) with time constants indicated. (E) Fractional current activation of the

constructs in A–D by 1 mM ADPR; mean steady currents in 1 mM ADPR were divided by those in 32 mM ADPR in the same patch (mean ± SEM, n�8). (F–

G) Time constants of current relaxation upon sudden removal of ADPR (F) or Ca2+ (G) for the constructs in A–D, obtained from single-exponential fits

(mean ± SEM, n�5). (H) Dose response curve of fractional current activation for T5L-TRPM2 (gray) and T5L-TRPM2-Chi2 (light blue); mean steady

currents in various test [ADPR] were divided by those in 32 mM ADPR in the same patch. Symbols represent mean ± SEM (n�5), solid lines are fits to the

Hill equation with midpoints printed in the panel.

DOI: 10.7554/eLife.17600.015
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(Figure 8A), suggesting a competitive inhibitory mechanism. Indeed, the dose response curve for

ADPR-activation (Figure 8B, blue symbols and fit line) was right-shifted in the presence of 100 mM e-

ADPR (Figure 8B, violet symbols), the fit (Figure 8B, violet fit line) suggesting a KI of 112 ± 24 mM

for e-ADPR binding to native NUDT9H.

To test whether binding of e-ADPR to a soluble protein might be revealed by a change in its fluo-

rescence properties, we first calibrated the dose dependence of e-ADPR fluorescence in free solu-

tion (Figure 8C, black symbols and fit line; see Materials and methods). Applying 100 mM Chi4S

caused a clear reduction in e-ADPR fluorescence (Figure 8C, red symbols), which reflected fluores-

cence quenching due to specific binding, because it was not observed upon addition of 100 mM

bovine serum albumin (BSA, gray symbols). Importantly, Chi4S showed no signs of aggregation even

at the high protein concentration used in the assay (Figure 8—figure supplement 1) excluding non-

specific effects of aggregated protein on fluorescence. Assuming negligible fluorescence for bound

e-ADPR, a safe upper estimate of free [e-ADPR] could be obtained from the calibration curve

(Figure 8C, red projection lines). A plot of free [e-ADPR] as a function of total [e-ADPR] (Figure 8D,

red symbols) was reasonably fitted (Figure 8D, red line) by a simple binding equation, (see

Materials and methods) yielding a Kd (upper) estimate of 111 ± 42 mM for e-ADPR binding to Chi4S:

in good agreement with the KI of the same analog for native NUDT9H (Figure 8B).

Discussion
The unique group of channel-enzymes (chanzymes), transmembrane proteins that combine ion-chan-

nel function with a catalytic activity within a single polypeptide chain, includes the CFTR chloride ion

channel, a member of the ATP Binding Cassette (ABC) protein family, and three members of the

TRPM channel family, TRPM2, 6, and 7. In the case of CFTR ATP hydrolysis by two cytosolic nucleo-

tide binding domains (NBDs) (Li et al., 1996) appears to be an evolutionary vestige inherited from

some ancestral ABC exporter (Gadsby et al., 2006): whereas in transporters the energy of ATP

hydrolysis is harnessed to drive a cycle of conformational changes that result in thermodynamically

uphill substrate transport, in CFTR ATP-binding induced dimerization of the two NBDs is strictly cou-

pled to opening, and dimer disruption following ATP hydrolysis to closure, of its transmembrane

anion-selective pore (Csanády et al., 2010; Vergani et al., 2005). Such a nonequilibrium cyclic gat-

ing mechanism is unique among ion channels which mediate downhill electrodiffusion of ions, and

confers specific properties on CFTR, including stimulation of channel open probability by catalytic-

site mutations (Vergani et al., 2003), or by drug-induced stabilization of energy barriers

(Csanády and Töröcsik, 2014). The other well studied chanzyme is the TRPM7 cation channel, which

contains a kinase domain fused to its cytosolic C-terminus (Runnels et al., 2001; Nadler et al.,

2001; Yamaguchi et al., 2001). In this protein the catalytic activity of the enzymatic domain does

not appear to be linked to gating of the channel pore, because phosphotransferase and channel

activities can be modulated independently of each other (Matsushita et al., 2005; Schmitz et al.,

2003) and the kinase domain is functional when expressed on its own (Clark et al., 2008). Neverthe-

less, recent work uncovered unexpected important specific functions of TRPM7 enzymatic activity:

the kinase domain is proteolytically cleaved and translocates to the cell nucleus where it regulates

gene expression by phosphorylating histones in the promoters of TRPM7-dependent genes. More-

over, Zn2+ dependent binding of the kinase domain to histone remodeling complexes provides a

functional link to the TRPM7 channel pore, a major Zn2+ influx pathway (Krapivinsky et al., 2014).

In the case of TRPM2 sequence similarity of its C-terminal NUDT9H domain to Nudix-family phos-

phohydrolases (Bessman et al., 1996) played an essential role in the discovery of the channel’s activ-

ating ligand, ADP ribose (Perraud et al., 2001; Hara et al., 2002; Sano et al., 2001). Early

demonstration of ADPR hydrolase activity for the isolated ligand binding domain NUDT9H classified

TRPM2 as a chanzyme (Perraud et al., 2001, 2003), and raised intriguing questions about the possi-

ble role of this activity: all the more as the reported slow turnover rate (~0.1 s-1) falls into the range

of channel gating rates (Tóth and Csanády, 2012). Of note, while this slower rate of catalysis of

NUDT9H, compared to NUDT9, was explained by lack of a conserved glutamate in its Nudix box

motif important for Mg2+ coordination, the actual catalytic base is highly variable in Nudix enzymes,

and has not yet been identified for either of these two proteins (Shen et al., 2003). However, when

introduced into NUDT9H, catalytic site mutations that abolish, or greatly diminish, ADPRase activity

of NUDT9 failed to affect the rates of pore gating, and TRPM2 channels were also readily gated by
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a non-hydrolyzable ADPR analog (Tóth et al., 2014). These findings ruled out a direct link between

the ADPRase cycle and gating of the TRPM2 channel pore itself, but did not eliminate the possibility

of some, as yet unidentified, role for this catalytic function. The present work therefore addressed

the putative enzymatic activity itself.

Figure 8. Full-length TRPM2 and the isolated Chi4S protein bind e-ADPR with similar affinities. (A) Macroscopic inward T5L-TRPM2 current in inside-out

patch excised from Xenopus laevis oocyte, elicited at -20 mV by repeated exposures to saturating Ca2+ (black bars) and 1 or 100 mM ADPR (blue bars),

in the absence or presence of 100 mM e-ADPR (red bars). (B) Dose-dependence of TRPM2 activation by ADPR in the absence (blue symbols and fit line)

and presence (violet symbols and fit line) of 100 mM e-ADPR (mean ± SEM, n�7). Printed parameters KADPR, n, and Ke-ADPR reflect the apparent affinity

and Hill slope for ADPR binding, and KI for e-ADPR binding, respectively, obtained from the fits (see Materials and methods). (C) Fluorescence intensity

(arbitrary units, Ex: 310 nm, Em: 420 nm) of e-ADPR at various total concentrations in the absence of protein (black symbols), or in the presence of 100

mM of either BSA (gray symbols) or Chi4S (red symbols). Symbols plot mean ± SD from four, two, and two independent titrations, respectively, for buffer

(black), BSA (gray), and Chi4S (red). Black line is a smooth fit of the black symbols by a three-parameter empirical mathematical function, and was used

as a calibration curve to determine free [e-ADPR] in the presence of Chi4S, assuming negligible fluorescence of the bound analog (red projection lines).

(D) Plot of upper estimate of free [e-ADPR] as a function of total [e-ADPR] in the presence of 100 mM Chi4S (red symbols), fitted (red line) to a simple

binding equation (see Materials and methods) to obtain an upper estimate of Kd (see panel). Black line illustrates free [e-ADPR] expected in the

absence of binding.

DOI: 10.7554/eLife.17600.016

The following figure supplement is available for figure 8:

Figure supplement 1. Lack of effect of five-fold concentration on Chi4S solubility.

DOI: 10.7554/eLife.17600.017
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To circumvent the problem of low solubility of NUDT9H we sought to establish a chimeric model

which resembles the native protein sequence as closely as possible. The region responsible for the

low solubility of NUDT9H could be confined to its ~60 C-terminal residues: replacing the entire span

(Chi3S), or even just the downstream half (Chi4S) of this C-terminal segment with homologous

NUDT9 sequence (Figure 3) was sufficient to confer solubility upon NUDT9H. The C-terminus of

NUDT9 is surface exposed ([Shen et al., 2003]; PDB ID: 1Q33; 1QVJ), free to interact with other pro-

tein molecule(s), and presumably the same is true for the C-termini of the chimeras and NUDT9H.

Therefore, among other reasons, the cumulative charge of the C-terminus may play an important

role in determining their aggregation propensity during expression in the bacterial cytoplasm (at

around neutral pH). The theoretical total charges of the ~60–70 C-terminal residues of our constructs

(ignoring affinity tags) are �8.1 (NUDT9, Chi2 and Chi3), +0.9 (NUDT9H), �2.9 (Chi4) at pH 7.0. It is

thus possible that the relative charge-neutrality of the C-terminus of NUDT9H contributes to its

insolubility.

Such low solubility, when expressed in isolation, for a cytoplasmic protein domain like NUDT9H –

in striking contrast to its very soluble mitochondrial homologue – is somewhat unexpected. A likely

explanation is that NUDT9H natively exists in the context of tetrameric TRPM2, and must share an

interface with other channel regions which transduces ligand binding into pore opening. Whether

NUDT9H interacts with the large N-terminal domain of the channel, with the cytosolic loops connect-

ing the transmembrane helices, and/or with other NUDT9H domains remains to be elucidated, but it

is tempting to speculate that the C-terminal ~20% of NUDT9H sequence might be directly involved

in such interactions. Consistent with such an interpretation, incremental replacement of NUDT9H

segments with corresponding NUDT9 sequences (TRPM2(-NUDT9H) fi TRPM2-Chi4 fi TRPM2-Chi3

fi TRPM2-Chi2) causes a parallel graded decrease in the stability of the open-channel state, as

reflected by a speeding of channel closure upon ADPR removal (Figure 7F; gray fi red fi dark blue

fi light blue bars).

NUDT9, the soluble chimeric constructs generated by sequence swapping, and even some

NUDT9H could be purified and tested for enzymatic activity. These experiments revealed a dis-

tinct pattern directly correlated with the origin of the Nudix box in each protein: constructs pos-

sessing the Nudix box of NUDT9 (NUDT9 and Chi2) were active ADPR hydrolases, whereas those

containing the Nudix box of NUDT9H (Chi3S, Chi4S and NUDT9H) were inactive (Figures 4 and

6). Notably, our soluble chimeric model most similar to the native NUDT9H sequence, Chi4S, is

~90% identical to NUDT9H (including the Nudix box region) and clearly capable of ligand bind-

ing (Figures 7D,8C–D), but did not exhibit any sign of enzymatic activity under the various reac-

tion conditions tested.

Previous studies reported a weak enzymatic activity for the isolated NUDT9H domain of TRPM2

(Perraud et al., 2001, 2003). While we did also detect slow accumulation of AMP when Chi3S, Chi4S,

or NUDT9H was incubated with ADPR under alkaline conditions, we fully attribute those results to

inherent instability of ADPR at basic pH. Indeed, we observed gradual accumulation of AMP even in

protein-free samples of ADPR incubated in alkaline buffers (Figures 4F,6C, Figure 4—figure supple-

ment 2, and Figure 6—figure supplement 1) and, assuming an exponential decay time course, esti-

mated a time constant of ~100 hr for spontaneous ADPR hydrolysis at 25˚C and pH 8.5. Spontaneous

degradation of ADPR at basic pH (~0.3% and ~2% within 20 min and 2 hr, respectively, at 25˚C and pH

8.5; ~1% within 30 min at 37˚C and pH 9 [Figure 6—figure supplement 1]) did not significantly distort

the results of the 20- to 30-min enzyme kinetics measurements for the active constructs (Figures 5C

and 6D), but fully accounted for the weak AMP signals for our inactive constructs observed after 2-hr

incubations using TLC (Figure 4C–E, lanes 3 and 6), or already after 30-min incubations using the

more sensitive Pi detection assay (Figure 6A–C): this phenomenon fully explains the reported weak

activity of NUDT9H at 37˚C and pH 9 (Perraud et al., 2001, 2003). Of note, spontaneous degradation

affects enzymatic ADPR hydrolysis assays only at basic, but not at neutral or slightly acidic pH at which

ADPR is inherently stable (Figure 4C–E, lanes 1, 2, 4, 5; Figure 4—figure supplement 2, and Fig-

ure 6—figure supplement 1).

The catalytic properties of our two enzymatically active recombinant proteins (NUDT9 and Chi2)

were largely similar. NUDT9 appeared slightly faster than Chi2, which may be attributed either to

slight structural mismatch between ‘foreign’ Cap and Core segments in Chi2, or to errors in estimat-

ing their concentrations. Both enzymes exhibited a modest but clear pH-dependence, with a prefer-

ence towards basic pH (Figure 5C, and Figure 6D). Perhaps NUDT9, which natively resides in
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mitochondria, might have adapted to this environment, and Chi2, which contains ~60% of the

NUDT9 sequence (the entire Core subdomain), presumably shares most of its preferences. In con-

trast, the cytosolic NUDT9H domain of plasma-membrane resident TRPM2 faces the neutral pH of

the cytosol. For this reason, care was taken to test the NUDT9H-like proteins (Chi3S, Chi4S and

NUDT9H) in buffers at different pH values (Figures 4 and 6).

When introduced into full-length TRPM2 in place of the native NUDT9H domain, chimeric con-

structs Chi2, Chi3 and Chi4 supported ADPR-induced channel activity which resembled that of intact

TRPM2 channels, except for a somewhat reduced apparent affinity of TRPM2-Chi2 (Figure 7). One

possible reason for this small defect is that the other constructs contain catalytically inactive Nudix

domains, whereas ADPR hydrolysis by Chi2 might reduce fractional saturation of this domain at low

(~1 mM) ADPR concentrations. Alternatively, the significantly larger portion of non-native (i.e.

NUDT9-like) sequence in Chi2 (the entire Core subdomain) might compromise formation of the

proper interface responsible for transducing ligand binding into channel opening. Nevertheless, all

full-length chimeric TRPM2 constructs formed functional channels, demonstrating that NUDT9/

NUDT9H chimeric domains are properly folded and competent to bind ADPR and gate the channel.

Importantly, TRPM2-Chi4 is almost identical in sequence to the background T5L-TRPM2, its channel

behaviour is almost indistinguishable from that of T5L-TRPM2, and we have clearly shown that its iso-

lated ligand-binding domain (Chi4S) – although capable of binding an ADPR analog with a similar

affinity as the intact NUDT9H domain of a full-length TRPM2 channel (Figure 8) – is not catalytically

active. Based on these results, we conclude that the NUDT9H domain of TRPM2 is not an ADPR

hydrolase, and that TRPM2 is a simple ligand-gated channel, not a ’chanzyme’, despite the fact that

its ligand binding domain is clearly a member of the family of Nudix enzymes. One potential advan-

tage of its broken enzymatic activity might be increased ligand occupancy at low ADPR concentra-

tions. The Chi4S construct developed here is a convenient soluble model of NUDT9H which might

be useful for future structural and biochemical studies.

Materials and methods

Molecular biology
Except for Chimera 2 (Chi2), all recombinant proteins for bacterial expression were synthesized and

incorporated into the pJ411 plasmid which bears kanamycin resistance (DNA2.0, Menlo Park, CA,

USA). Chi2 was obtained by PCR-amplification of Chi2A cDNA using forward primer (5’-TTTAAC

TTTTAGGAGATAAACATATGCCGGATGCTGAG, NdeI site underlined) and reverse primer (5’-

AACGTCTGCTCGAGCAACGCATGGCAGTCAGCTTCAGA, XhoI site underlined), and subcloned

into the pET21c vector. NUDT9, NUDT9H, Chi1 and Chi2 had C-terminal hexahistidine tags, while

Chi3S and Chi4S had C-terminal Twin-Strep tags. The N-termini of Chi1A, Chi2, Chi2A, Chi3, and

Chi4 included an upstream stretch of 15 TRPM2 residues which contained a native BlpI-site

(Figure 3A, gray). The pJ411 plasmids harboring the individual constructs were transfected into

inducible E.coli, strain BL21 (DE3).

The noninactivating TRPM5-like pore mutant of TRPM2 (T5L-TRPM2) was contained in the

pGEMHE vector (Tóth and Csanády, 2012). The NUDT9H domain of TRPM2 was replaced by

Chi2A, Chi3 or Chi4 using the native BlpI-site upstream of the domain and an XbaI-site downstream

of the Stop-codon in each chimeric construct. Single-base mutations to generate Stop-codons imme-

diately upstream of the hexahistidine tags of Chi3 and Chi4 were then introduced (QuickChange II,

Agilent Technologies, Santa Clara, CA, USA), yielding TRPM2-Chi3 and TRPM2-Chi4; TRPM2-Chi2

lacked a His-tag because it was derived from Chi2A.

All constructs were sequence-verified. The TRPM2/pGEMHE plasmids were linearized with NheI

(New England Biolabs, Ipswich, MA, USA) and transcribed in vitro using T7 polymerase; cRNA was

stored at �80˚C.

Protein expression and purification
The soluble proteins (NUDT9 and Chi2) were expressed and purified as previously described for mito-

chondrial NUDT9 (Tóth et al., 2014). In brief, bacterial cultures were grown at 37˚C in Luria-Bertani

medium supplemented with the appropriate antibiotic and induced with 1 mM isopropyl-b-D-1-thio-

galactopyranoside (IPTG) upon reaching OD600 of ~0.7. After 3 hr of incubation, cells were harvested
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and lysed with sonication in 20 mM Tris (pH 8.5 with HCl) / 200 mM NaCl. The cleared supernatant

was incubated with Ni-Sepharose 6 Fast Flow resin (GE Healthcare Hungary, Hungary) for 3 hr under

gentle rotation. The resin was then washed with lysis buffer supplemented with 20 mM imidazole, and

the protein eluted with a buffer containing 20 mM Tris (pH 8.5 with HCl), 100 mM NaCl, and 400 mM

imidazole.

Chi3S, Chi4S and NUDT9H were little soluble to insoluble when expressed at 37˚C, the majority

of the proteins ending up in inclusion bodies, but gave tractable (~1–5%) soluble fractions when

induced with 0.1 mM IPTG at 25˚C overnight. NUDT9H was then purified as NUDT9. Chi3S and

Chi4S were purified using Strep-Tactin chromatography following the manufacturer’s instructions

(IBA GmbH, Göttingen, Germany).

Following affinity chromatography, all proteins were subjected to a gel filtration purification step

in 20 mM Tris (pH 8.5), 100 mM NaCl (Superdex 200 10/300 GL, GE Healthcare Hungary). Affinity

tags were not removed. Protein concentrations were determined spectrophotometrically using theo-

retical molar extinction coefficients (eo ~ 55,000 M�1cm�1 at l = 280 nm). Protein purity was visually

checked with SDS PAGE. Protein identity was confirmed by the band position, the main peak posi-

tion on the gel filtration profile, and, in the case of Chi4S, also by mass spectrometry (Proteome Fac-

tory AG, Berlin, Germany). NUDT9 and Chi2 were flash-frozen in liquid nitrogen and kept at �20˚C
until used. Chi3S, Chi4S and NUDT9H were kept at 4˚C, and immediately used for experiments.

Enzymatic activity assay using thin-layer chromatography (TLC)
ADPRase activities of mitochondrial NUDT9, NUDT9H, and the purified chimeric constructs (Chi2,

Chi3S, Chi4S) were quantitated by densitometric detection of the AMP product on TLC sheets. The

20-ml reaction mixtures contained 0.1, 0.5 or 1 mM purified protein, 10 mM Na-ADPR (Sigma-Aldrich,

St. Louis, MO, USA), 16 mM MgCl2, and 50 mM reaction buffer (RB). The reaction buffers used

were: 50 mM MES, pH 6.5 with NaOH (RB1); 50 mM HEPES, pH 7.1 with NaOH (RB2); 50 mM Tris,

pH 8.5 with HCl (RB3); RB1 + 100 mM NaCl (RB4); RB2 + 100 mM NaCl (RB5), and RB3 + 100 mM

NaCl (RB6). For the enzyme kinetics experiments on NUDT9 and Chi2, aliquots from the reaction

mixtures were collected at the indicated time points; 3 independent experiments were performed

for both proteins and each condition, and data are presented as mean ± SEM. For other experi-

ments, the total incubation time was as indicated in the figures legends. All incubations were at

room temperature (~25˚C). For TLC, 1-ml aliquots of reaction mixtures were placed on Polygram SIL

G/UV254 plates (Macherey-Nagel, Düren, Germany), dried and developed in 0.2 M NH4HCO3 in eth-

anol:water 7:3 (vol/vol). Nucleotides were visualized under UV light. Densitometry of nucleotide

intensities was done using ImageJ software.

Enzymatic activity assay using colorimetric detection of inorganic
phosphate (Pi)
The ADPRase activities of the same proteins were additionally tested with a more sensitive assay

based on colorimetric detection of Pi (Pi assay) liberated from both ADPRase products AMP and R5P

by co-applied alkaline phosphatase (AP) (Rafty et al., 2002). AP liberates Pi from AMP and R5P, but

not from intact ADPR: thus, Pi is produced from hydrolyzed ADPR at a molar ratio of 1:2. In brief,

150-ml reaction volumes containing 5 or 50 nM purified protein, 5–6 U bovine AP, 1 mM Na-ADPR,

16 mM MgCl2, and 50 mM reaction buffer at various pH values (MES 6.5, HEPES 7.1, Tris 8.5, and

Tris 9.0) were incubated for 30 min at either 37˚C or room temperature. The reaction was stopped

and Pi visualized by adding 850 ml coloring solution (6:1 vol/vol ratio mixture of 0.42% ammonium

molybdate tetrahydrate in 1N H2SO4 and 10% L-ascorbic acid) followed by incubation for 20 min at

45˚C. Optical density was then measured at 820 nm (NanoPhotometer P300, Implen GmbH, Munich,

Germany). Coloring solution was freshly made, and standard curve (0.050–2 mM KH2PO4) obtained,

daily. Reactions with 1 mM AMP or R5P (instead of ADPR) served as positive controls. All reagents

were from Sigma-Aldrich. Assays were performed in triplicates and data are displayed as mean ±

SEM.

Molecular turnover rates (kcat) for NUDT9 were calculated from the [Pi] released in samples con-

taining 5 nM NUDT9, in which [ADPR] remained >0.9 mM (i.e., saturating [Perraud et al., 2003])

throughout the 30-min incubation period, using the equation kcat = 0.5[Pi]released/5 nM/1800 s.
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Ligand binding assay based on quenching of e-ADPR fluorescence
The ligand binding ability of purified Chi4S protein was assessed using fluorescence quenching of

the ADPR analogue 1, N6-ethenoadenosine-5’-O-diphosphoribose (e-ADPR - BIOLOG Life Science

Institute, Bremen, Germany). A 350-ml volume of 100 mM Chi4S protein in 20 mM Tris (pH 8.5)/

100 mM NaCl buffer, supplemented with 16 mM MgCl2, was titrated by increasing concentrations

of e-ADPR. Fluorescence emission scans (350–700 nm) were recorded at a fixed excitation wave-

length of 310 nm (Hitachi F-7000, Hitachi High Technologies, Maidenhead, UK). Fluorescence emis-

sion for e-ADPR peaks at ~410 nm. Protein-free buffer or 100 mM bovine serum albumin (BSA;

instead of Chi4S) were used as controls. Data are shown as mean ± S.D. of two independent

experiments.

Dose dependence of fluorescence (Em = 420 nm) of free e-ADPR (in buffer) was fitted by an

empirical non-linear function to produce a smooth calibration curve, used to obtain upper estimates

of free [e-ADPR] in the presence of 100 mM Chi4S protein and various total [e-ADPR], assuming negli-

gible fluorescence for the bound, relative to the free, form of the analog. The plot of free vs. total [e-

ADPR] was fitted by the simple binding equation

"-ADPR½ �
free

¼ 0:5 "-ADPR½ �
total

� P½ �
total

�Kdþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

"-ADPR½ �
total

� P½ �
total

�Kd

� �2
þ4Kd "-ADPR½ �

total

q

� �

;

where [P]total is the total concentration of Chi4S protein (100 mM), and Kd is a free parameter. Given

that the values of free [e-ADPR] are upper estimates, this approach provides an upper estimate of

the Kd.

Because for the binding assay the Chi4S preparation had to be concentrated by ~five-fold to

reach ~100 mM (3.6 mg/ml), the effect of such a concentration step on Chi4S solubility was verified

by subjecting five-fold concentrated Chi4S protein to a second round of size exclusion chromatogra-

phy. The elution profile of this second run (Figure 8—figure supplement 1, dashed blue profile)

resembled that of the first run, showing a main monomeric peak with a smaller peak corresponding

to a dimer. Importantly, larger aggregates did not reappear. This confirms that the signal observed

in the fluorescent binding assay is not due to non-specific effects of aggregated protein.

Isolation and injection of Xenopus oocytes
Oocytes isolated from anaesthetized Xenopus laevis were digested with collagenase, injected with

10–70 ng cRNA, and stored at 18˚C. Recordings were done 2–3 days after injection.

Excised inside-out patch-clamp recordings
The tip of the patch pipette was filled to ~1 cm height with 140 mM Na-gluconate, 2 mM Mg-gluco-

nate2, 10 mM HEPES (pH 7.4 with NaOH); free [Ca2+] ~4 mM. The pipette electrode was placed into

a 140-mM NaCl-based solution carefully layered on top. Bath solution contained 140 mM Na-gluco-

nate, 2 mM Mg-gluconate2, 10 mM HEPES (pH 7.1 with NaOH), and either 1 mM EGTA (to obtain

’zero’ (~8 nM) Ca2+) or 1 mM Ca-gluconate2 (to obtain 125 mM free Ca2+) (Csanády and Törocsik,

2009). Na-ADPR was used at final concentrations of 0.32, 1, 3.2, 10, 32, 100, or 1000 mM, and the

Na+ salt of e-ADPR at 100 mM. Macroscopic TRPM2 currents were recorded at 25˚C at a membrane

potential of �20 mV. Currents were amplified, filtered at 2 kHz (Axopatch 200B), digitized at 10 kHz

(Digidata 1322A), and stored to disk (Pclamp9, Molecular Devices, Sunnyvale, CA, USA).

Dose dependence of ADPR-induced current activation, expressed as the ratio of mean macro-

scopic currents observed in the presence of various test [ADPR] (I) and 32 (or 100) mM ADPR (Imax) in

the same patch, was fitted to the Hill equation (I/Imax = [ADPR]n/(Kn+[ADPR]n). Dose dependence of

ADPR-activation in the presence of 100 mM e-ADPR was expressed as the ratio of the currents

observed in the presence of various test [ADPR] + 100 mM e-ADPR (I) and 100 mM ADPR alone (Imax)

in the same patch, and was fitted to the Hill equation substituting K’ = K(1+[e-ADPR]/KI) instead of K

(K and n fixed to their control values). Macroscopic current decay time courses following removal of

ADPR or Ca2+ were fitted by single exponentials using the method of least squares.

Statistics
Data are displayed as mean ± SEM from n independent experiments, as specified in each figure leg-

end. All data were included in the analysis. Enzyme activities were assayed in at least three

Iordanov et al. eLife 2016;5:e17600. DOI: 10.7554/eLife.17600 17 of 20

Research article Biochemistry Biophysics and Structural Biology

http://dx.doi.org/10.7554/eLife.17600


independent experiments. Gating parameters for full length TRPM2 and chimeric channels were esti-

mated from current recordings obtained from at least five patches in each case. These numbers of

technical replications allowed us to limit SEM to �20% of the mean for each measured parameter.
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