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Ischaemic heart disease, stroke and their pathological consequences are life-threatening conditions that account for about half
of deaths in developed countries. Pathology of these diseases includes cell death due to ischaemia/reperfusion injury, vascular
stenosis and cardiac remodelling. The growth factor midkine plays a pivotal role in these events. Midkine shows an acute
cytoprotective effect in ischaemia/reperfusion injury at least in part via its anti-apoptotic effect. Moreover, while midkine
promotes endothelial cell proliferation, it also recruits inflammatory cells to lesions. These activities eventually enhance
angiogenesis, thereby preventing cardiac tissue remodelling. However, midkine’s activity in recruiting inflammatory cells into
the vascular wall also triggers neointima formation, and consequently, vascular stenosis. Moreover, midkine is induced in
cancer tissues where it enhances angiogenesis. Therefore, midkine may promote tumour formation through its angiogenic
and anti-apoptotic activity. This review focuses on the roles of midkine in ischaemic cardiovascular disease and their
pathological consequences, that is angiogenesis, vascular stenosis, and cardiac remodelling, and discusses the possible
therapeutic potential of modulation of midkine in these diseases.
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Midkine in health and disease
The heparin-binding growth factor midkine is a 13kDa secre-
tory protein and comprises a family with another heparin-
binding growth factor, pleiotrophin. The major physiological
and pathological functions of midkine can be categorized into
five areas: (i) tissue protection; (ii) inflammation/immunity;
(iii) blood pressure; (iv) development; and (v) cancer
(Kadomatsu et al., 2013). This review will focus on the thera-
peutic potential of midkine in ischaemia/reperfusion injury
and cardioprotection, angiogenesis, vascular stenosis, and
cardiac remodelling, which are closely related pathologies.

Midkine protects the heart and brain from acute
ischaemia/reperfusion injury and infarction at least in part via
its anti-apoptotic effect (Qi et al., 2000; Horiba et al., 2006)
(Figure 1). Midkine promotes endothelial cell proliferation,
leading to angiogenesis (Choudhuri et al., 1997)and it also
enhances inflammatory cell infiltration to lesions (Takada
et al., 1997; Horiba et al., 2000; Sato et al., 2001) (Figure 1).
Inflammatory cells attracted by midkine include macrophages
and polymorphonuclear neutrophils (PMNs). Both these cell
types are implicated in angiogenesis (Murdoch et al., 2008).
The angiogenic activity of midkine is also well documented in
cardiac infarction, where midkine is expressed around the
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area of infarction and eventually prevents cardiac remodelling
through enhancing angiogenesis (Takenaka et al., 2009)
(Figure 1). Therefore, midkine may also improve long-term
outcome of myocardial infarction by inhibition of post-
infarction cardiac remodelling. On the other hand, the effects
on midkine mentioned earlier may also contribute to cancer
development (Figure 1). Indeed, in addition to angiogenesis,
tumour-associated macrophages attracted by midkine play a
role in immunosupression, resistance to chemotherapy, inva-
sion, and metastasis (De Palma and Lewis, 2013).

Vascular stenosis accompanies inflammatory cell infiltra-
tion into the vascular wall. Midkine-deficient mice exhibit
strikingly less inflammatory cell infiltration, which results in
suppression of neointima formation (Horiba et al., 2000)
(Figure 1). Exogenous midkine administered to midkine-
deficient mice restores neointima formation (Horiba et al.,
2000), while knockdown of midkine expression in wild-type
animals leads to suppression of neointima formation
(Hayashi et al., 2005; Banno et al., 2006).

Ischaemia/reperfusion injury followed by angiogenesis
and cardiac remodelling, as well as vascular stenosis share
some common mechanisms (e.g. inflammatory cell infiltra-
tion and expression of cytokines and growth factors). There-
fore, it is reasonable to suggest that the major functions of
midkine in cardiovascular disease merge in these events.

Cardioprotective and neuroprotective
effect of midkine

Ischaemic heart disease and ischaemic stroke as well as their
pathological consequences are life-threatening conditions
that account for about half of deaths in developed countries.
Therefore, therapeutic strategies to protect the heart and
brain against ischaemia/reperfusion injury are much sought
after (Ferdinandy et al., 2007; Broussalis et al., 2012;
Hausenloy et al., 2013). Midkine has the potential to protect
tissues for acute ischaemia/reperfusion injury. We have
shown that midkine protected neonatal rat cardiac myocytes
subjected to simulated ischaemia and reperfusion. Moreover,
acute intravenous bolus treatment with midkine reduced
infarct size in anaesthetized rats with coronary occlusion and
reperfusion. The cardioprotection of midkine showed a bell-
shaped dose–response relationship in both studies (Figure 2).
Similarly, in Horiba et al.’s (2006) study, infarct size and apo-
ptotic markers in midkine-deficient mice were significantly
increased as compared with wild-type mice showing that
endogenous midkine expression is cardioprotective. In this
study, intramuscular injection of midkine into the peri-
infarct area significantly reduced infarct size. Ishiguro et al.
showed that acute intracoronary bolus injection of midkine

Figure 1
Physiological and pathological effects of midkine. Hypoxia, inflammation and other pathological processes, including tumours, promote midkine
(MK) expression. Midkine exerts its functions, including promotion of anti-apoptosis, cell proliferation and cell migration. The anti-apoptotic
activity promotes cardiac myocyte protection and may also enhance tumour growth. The cell proliferation activity includes endothelial cell
proliferation, which induces angiogenesis. Angiogenesis in turn protects against cardiac remodelling; however, it may also promote tumour
growth. The cell migration (chemoattractant) action of midkine targets PMNs, macrophages and vascular SMCs. Infiltration of PMNs and
macrophages enhances endothelial cell proliferation, leading to angiogenesis. Macrophages infiltrated in tumour tissues contribute to immuno-
suppression, resistance to chemotherapy, invasion and metastasis, all of which support tumour growth. Infiltration of macrophages in the vascular
wall and migration of vascular SMCs play indispensable roles in vascular stenosis. Green arrows indicate potential therapeutic effects of midkine,
while red arrows represent possible harmful effects of chronic midkine treatment.
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reduced infarct size and myocardial apoptotic markers and
improved myocardial function in pigs with coronary occlu-
sion and reperfusion (Ishiguro et al., 2011). Intraventricular
administration of midkine in the brain significantly reduced
brain infarction after middle cerebral artery occlusion in rats
(Harvey et al., 2004). In an elegant study, Takada et al. showed
that in male spontaneously hypertensive rats, injection of an
adenoviral midkine construct attenuated cerebral ischaemic
damage, 2 days after distal middle cerebral artery occlusion
(Takada et al., 2005). In this study, midkine reduced the
number of TUNEL-positive cells and cleaved caspase-3-
positive cells in the peri-ischaemic area of the cerebral cortex
and in the caudoputamen. Similarly, infarct size reduction
and anti-apoptotic effects were observed by Ishikawa et al. in
male spontaneously hypertensive rats with photochemical
occlusion of the distal MCA, 7 days after the ischaemic insult
(Ishikawa et al., 2009). These results show that midkine is able
to protect the heart and brain tissue from acute ischaemic
injury at least in part via its anti-apoptotic effect. Moreover,
by the ability of midkine to stimulate angiogenesis, it inhibits

tissue remodelling and may, thereby, further improve long-
term outcome of myocardial infarction (see below).

Angiogenic effect of midkine

Vasculogenesis represents de novo vessel formation through
differentiation of angioblasts, while angiogenesis requires
pre-existing vessels, from which new vessels are formed
through proliferation of endothelial cells (Poole and Coffin,
1989; Risau, 1997). Vasculogenesis occurs in developing
embryos, but can also occur during vascular repair in adults;
the latter is accomplished through differentiation of endothe-
lial progenitor cells (Asahara et al., 2011). Stepwise develop-
ment of vessels is undertaken during embryogenesis. The
yolk sac and the embryo proper undergo distinct vasculogen-
esis. These steps of vasculogenesis are precisely regulated by
transcriptional programmes and cell–cell and cell–tissue
interactions (Marcelo et al., 2013; Park et al., 2013). The role
of midkine in vasculogenesis has not yet been studied exten-
sively; however, there are no reports in the literature showing
that midkine-deficient mice would exhibit any gross abnor-
mality of vascular formation. In contrast, midkine is involved
in angiogenesis.

While vasculogenesis is the principal mechanism of vessel
formation, angiogenesis is the predominant means of vascu-
larization for all organs. In addition, angiogenesis occurs in a
variety of pathological settings, such as cancer and inflam-
mation, and often plays critical roles in their pathogenesis.
The relationship between angiogenesis and midkine was first
demonstrated by the promotion of proliferation of HUVECs
by midkine purified through a heparin-affinity column from
midkine-transfected MCF-7 breast cancer cells (Choudhuri
et al., 1997). Midkine-expressing MCF-7 cells promoted
angiogenesis in the rabbit corneal assay, compared with non-
expressing MCF-7 cells. Midkine overexpression in MCF-7
cells also enhanced not only tumour growth, but also angio-
genesis in a subcutaneous xenograft model (Choudhuri
et al., 1997). Furthermore, Weckbach et al. have recently
reported that hypoxia induced midkine production by
HUVECs (Weckbach et al., 2012)and that exogenous
midkine induced neovascularization in a chorioallantoic
membrane assay (Weckbach et al., 2012). Although it is
well known that endothelial cells and resident tissue cells
are essential for angiogenesis, inflammatory cells, such as
PMNs and monocytes/macrophages, also play important
roles (Murdoch et al., 2008). For example, M2-polarized mac-
rophages are essential for angiogenesis (Mantovani et al.,
2013) and PMNs secrete molecules important for angiogen-
esis, such as VEGF, oncostatin M and MMP9 (Tazzyman et al.,
2009). In this context, it should be noted that midkine acts as
an chemoattractant for inflammatory cells in a variety of
conditions involving inflammation (Horiba et al., 2000; Sato
et al., 2001; Banno et al., 2006).

Midkine inhibits cardiac remodelling
Midkine expression was progressively increased after myocar-
dial infarction in a mouse model of ligation of the left coro-
nary artery (Takenaka et al., 2009). Midkine-deficient mice
showed a higher mortality compared with wild-type mice.

Figure 2
Cardioprotective effects of midkine. (A) Viability of cultured neonatal
cardiac myocytes after a 4 h simulated ischaemia followed by 2 h of
simulated reperfusion. Midkine and vehicle were applied during
simulated ischaemia. (B) Infarct size data of adult male anaesthetized
Wistar rats subjected to 30 min coronary occlusion followed by
120 min reperfusion induced by in vivo coronary occlusion. Midkine
or its vehicle were administered 5 min before the induction of ischae-
mia. Data are expressed as means ± SEM. *P < 0.05, significantly
different from vehicle-treated group; one-way ANOVA, followed by
Fisher’s LSD post hoc test.
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Exogenous administration of midkine improved survival and
left ventricular function in both wild-type and midkine-
deficient mice. Notably, this treatment enhanced angiogen-
esis in the peri-infarct zone. Similar results were obtained in a
rat model of chronic cardiac infarction (Fukui et al., 2008). In
this study, recombinant midkine was injected into hearts, 2
weeks after induction of myocardial infarction. Six weeks
later, cardiac remodelling was significantly and dose-
dependently attenuated by midkine treatment. Midkine
treatment facilitated angiogenesis in the infarcted area, and
the viable muscle area after myocardial infarction dose-
dependently increased. Despite this increase of viable muscle
area, midkine-treated hearts showed significantly less cardio-
myocyte hypertrophy than vehicle-treated hearts. These
results show that midkine prevents cardiac remodelling, at
least in part, through its angiogenic activity.

Tumourigenic effect of midkine
Anti-angiogenic therapy for cancer was proposed by Judah
Folkman in 1971 (Folkman, 1971), more than 10 years before
the vascular permeability factor, now known as VEGF, was
isolated in 1983 (Senger et al., 1983). The N-terminal amino
acid sequence of VEGF was determined in 1989 (Ferrara and
Henzel, 1989). VEGF and its receptor VEGFR2 are major regu-
lators of angiogenesis. Besides VEGF, many other growth
factors, such as fibroblast growth factor (FGF) and PDGF, are
involved in tumour angiogenesis (Claesson-Welsh, 2012).
Most types of cells in the tumour microenvironment produce
VEGF which promotes vascular growth and sprouting by
accelerating endothelial cell proliferation. PDGF is produced
by endothelial cells, and attracts pericytes to support the
vasculature, while FGF is expressed by tumour cells and
enhances endothelial cell growth in tumours. Tumour blood
vessels, however, are incomplete and leaky compared with
normal blood vessels. This is in part due to incomplete
perivascular support and high expression of VEGF, which
stimulates endothelial cell proliferation, rounds up cells,
breaks cell–cell junctions and consequently increases vascular
permeability (Baluk et al., 2005; Fukumura and Jain, 2007).
The leaky tumour vasculature increases interstitial pressure,
which then becomes a barrier against anti-tumour drug deliv-
ery to tumour tissues. Nevertheless, tumour blood vessels do
transport nutrients and oxygen to tumour tissue, and thus,
support growth of tumour cells.

The anti-VEGF antibody bevacizumab was the first anti-
angiogenic agent drug to be approved for cancer therapy by
the Food and Drug Administration (FDA) in 2004 (Grothey
and Galanis, 2009; Van Meter and Kim, 2010; Kieran et al.,
2012). Although most VEGF blocking therapies require adju-
vant chemotherapy, as demonstrated in the first trial of beva-
cizumab for metastatic colon cancer (Hurwitz et al., 2004),
anti-angiogenic therapy is effective. However, the majority of
patients eventually succumb to their disease. Resistance to
anti-angiogenic therapy relies on tumour plasticity. Thus,
sensitivity to anti-angiogenic therapy decreases with progres-
sion of disease, probably because of changes in the charac-
teristics of tumour cells with accumulated mutations or intra-
tumour heterogeneity (Bergers et al., 1999; Gerlinger et al.,
2012). Tumour cells may also acquire vasculogenic mimicry,
with tumour cells differentiating to endothelial cell-like cells
and/or pericyte-like cells (Ricci-Vitiani et al., 2010; Cheng

et al., 2013). Furthermore, tumour cells are switched to
respond more to compensatory growth factors such as FGF
and PDGF rather than to VEGF if the VEGF axis is blocked
(Casanovas et al., 2005); (Orimo et al., 2005; Crawford et al.,
2009). Therefore, identification of these angiogenic factors
and verification of the mechanisms of their actions are
important for further development of cancer therapy.

The degree of midkine expression correlates with
microvessel density in salivary gland tumours (Ota et al.,
2010). Midkine expression is high in human neurofibromas,
schwannomas and various nervous system tumours associ-
ated with neurofibromatosis type 1 or 2 suppressor gene,
where midkine expression can be detected in endothelial cells
of tumour blood vessels, but not in normal blood vessels
(Mashour et al., 2001). Finally, midkine stimulates prolifera-
tion of human systemic and brain endothelial cells in vitro
(Mashour et al., 2001). These observations suggest that
midkine is involved in cancer progression through its
angiogenic activity. Consistent with this idea, a high expres-
sion of midkine correlates with a poor prognosis in patients
with invasive bladder cancers (O’Brien et al., 1996). Levels
of midkine expression are significantly correlated with
microvessel density, tumour size, clinical stage and prognosis
in oral squamous cell carcinoma (Ruan et al., 2007). Midkine
overexpression also enhances tumour growth and micro-
vessel density of human UM-UC-3 bladder cancer cells in
both subcutaneous and orthotropic xenograft models. It
also increases their sensitivity to anti-angiogenic therapy
(Muramaki et al., 2003). Moreover, midkine antisense oligo-
nucleotides inhibit not only proliferation of HUVECs, but
also angiogenesis induced by HEPG2 human hepatocellular
cancer cells in chorioallantoic membranes (Dai et al., 2007).

Mice deficient in midkine are useful tools in the investi-
gation of the role of host midkine in tumour progression.
Salama et al. reported that lung metastasis of Lewis lung car-
cinoma cells was less in midkine-deficient mice (Salama et al.,
2006). Because the Lewis lung carcinoma cells do not signifi-
cantly express midkine, this result suggests that midkine is
also a host factor regulating metastasis. Furthermore, Kishida
et al., have recently reported that midkine-deficient mice
show significantly less tumourigenesis of neuroblastoma in
MYCN transgenic mice, which spontaneously develop neu-
roblastoma (Kishida et al., 2013). Although angiogenesis has
not been examined in these models, it would be an intriguing
subject of future studies.

Midkine induces vascular stenosis
Atherosclerosis is the primary cause of life-threatening events
such as stroke and heart attack. Low-density lipoprotein
(LDL) diffuses passively through the endothelial cell junction
and enters the space between the endothelium and internal
elastic lamina, the so-called intima. High serum concentra-
tions of LDL in blood therefore increase the chance of LDL
entering the intima, where it is trapped by proteoglycans in
the extracellular matrix and undergoes oxidation through
interaction with reactive oxygen species, including hydrop-
eroxyeicosatetraenoic acids, the products of 12/15 lipoxyge-
nase (Lusis, 2000).

Minimally oxidized LDL stimulates endothelium to
produce chemoattractants such as CCL2 (MCP-1) and M-CSF,
and as a result, recruits monocytes to the intima. Monocytes
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recruited to the intima become activated macrophages that
produce M-CSF, other cytokines and proteoglycans, laying
the groundwork for further inflammation. Highly oxidized
LDL forms aggregates that are engulfed by macrophages via
scavenger receptors such as scavenger receptor A and CD36
(Lusis, 2000; Moore and Tabas, 2011). Engulfment of oxidized
LDL turns macrophages into foam cells. Foam cells undergo
apoptosis and secondary necrosis, leading to formation of
a necrotic core rich in extracellular lipids. On the other
hand, activated macrophages and infiltrated T-cells produce
cytokines and growth factors, which stimulate proliferation
of smooth muscle cells (SMCs). The SMCs migrate from their
original space underneath the internal elastic lamina to the
intima. As a result, the intimal region significantly expands
and becomes so-called neointima.

Finally, fibrous plaques consisting of extracellular lipids,
SMCs and SMC-derived extracellular matrix are formed.
Thrombosis associated with fibrous plaques is the major cause
of acute coronary events, as well as of stroke. It is triggered by
the rupture of a plaque. In addition, new vessel formation
occurs in the plaque. This angiogenesis is induced by local
ischaemia and inflammation, and is promoted by monocytes
recruited to the arterial wall (Jaipersad et al., 2013).

Midkine expression is increased in the rat common
carotid artery after intraluminal balloon injury (Horiba et al.,
2000). In addition, ligation of the common carotid artery
induces neointima at the site of ligation in wild-type mice,
but this neointimal formation is diminished in midkine-
deficient mice. Exogenous midkine restores neointima
formation in midkine-deficient mice. Midkine promotes
macrophage migration in vitro and, consistent with this, leu-
kocytes are less recruited to the vascular wall in midkine-
deficient mice. Midkine also promotes migration of SMCs in
vitro. These data suggest that midkine plays a pivotal role in
neointima formation (Horiba et al., 2000).

Midkine antisense oligodeoxynucleotides transfected by
means of lipofection to the vascular wall suppressed neoin-
tima formation after the rabbit carotid artery balloon injury
(Hayashi et al., 2005). Increased midkine expression is also
found in jugular vein-to-carotid artery interposition vein
grafts in rabbits (Figure 3) (Banno et al., 2006). Controlled
release of siRNA to rabbit midkine, which is accomplished by
wrapping the grafted vein with atelocollagen containing the
siRNA, markedly suppressed inflammatory cell infiltration
and SMC proliferation, and consequently suppressed neoin-
tima formation. Indeed, this method of perivascular applica-
tion of siRNA using atelocollagen efficiently delivers siRNA to
the vascular wall (Figure 3) (Banno et al., 2006). The same
animal model was used to evaluate the effect of statin in
vascular stenosis, with pitavastatin suppressing midkine
expression, and consequently, neointima formation (Fujita
et al., 2008).

Compared with balloon injury, stenting induces more
prolonged inflammation and more macrophage infiltration
in the vascular wall. Midkine expression is also increased in
the neointima when induced by a bare metal stent, which is
implanted in the atheromatous lesion of hypercholestero-
lemic rabbits. The main source of midkine expression is mac-
rophages in this model (Narita et al., 2008). These data
suggest that midkine is important for pathogenesis of vascu-
lar restenosis not only after ballooning and vein grafting, but

also after stenting, and can be a target of therapy for these
conditions.

Midkine signalling

Hypoxia-inducible factor-1α (HIF-1α)
and midkine
Hypoxia induces midkine protein expression in human
PMNs, monocytes and HUVECs (Weckbach et al., 2012). In a
hind limb ischaemia model, a striking angiogenesis was
observed in wild-type mice, but not in midkine-deficient
mice (Weckbach et al., 2012). CAST/eiJ mice, which are sus-
ceptible to hypoxia and show increased muscularization of
small pulmonary arteries after chronic hypoxia, exhibited an
increase in midkine expression in the hypoxic lung. Double
transgenic mice, in which midkine expression is specifically
induced upon doxycycline administration in the lung epithe-
lium, demonstrated that midkine increases muscularization
of small pulmonary arteries (Reynolds et al., 2004).

Hypoxia induces HIF-1α. While HIF-1α is susceptible to
proteasomal degradation via the E3 ligase von Hippel–Lindau
(VHL) protein in a normoxic condition, HIF-1β, which is a
stable protein and constitutively expressed, protects HIF-1α
from proteasomal degradation by forming a complex with it.
Therefore, the chance of complex formation is increased in

Figure 3
Suppression of neointima formation by knockdown of midkine.
Increased midkine expression was found in jugular vein-to-carotid
artery interposition vein grafts in rabbits (Banno et al., 2006). To
accomplish a controlled release of siRNA to the grafted vein, the drug
delivery system of atelocollagen mixed with siRNA was put around
the vein. Because atelocollagen is solidified at around 37°C, the vein
was wrapped with this mixture. Midkine siRNA (MKsiRNA), but not
control siRNA (SCRsiRNA), markedly suppressed neointima forma-
tion. This figure was modified from Banno et al., 2006. with permis-
sion. CCA, common carotid artery; ECA, external carotid artery; ICA,
internal carotid artery; SCR, scramble; VG, vein graft. Arrows indicate
internal elastic lamina.
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hypoxic conditions and the complex is transported to the
nucleus, where it binds to the so-called HIF-responsive
element (HRE) and drives gene expression. Reynolds et al.
found a HRE in the promoter of the midkine gene, and
demonstrated that if the HRE is mutated, midkine expression
is no longer induced by hypoxia (Reynolds et al., 2004).

HIF-1α plays an indispensable role in the maintenance of
stem cells. For example, haematopoietic stem cells (HSCs) are
kept quiescent in the stem cell niche, which is a hypoxic zone
of the bone marrow. While HIF–1α-deficient mice exhibit loss
of quiescence of HSCs, as well as a decrease in HSCs during
stress such as aging and bone marrow transplantation, VHL-
deficient mice show overstabilization of HIF-1α and trans-
plantation impairment, suggesting an appropriate HIF-1α
level is required for HSCs to maintain cell-cycle quiescence
(Takubo et al., 2010). HIF-1α is also an important factor in
chronic lymphocytic leukemia (CLL). CLL is the most
common adult leukaemia in developed countries and
decreased apoptosis of malignant cells is its main feature. CLL
cells accumulate in hypoxic zones of bone marrow where
these cells overexpress HIF-1α. HIF-1α then induces expres-
sion of three important factors, VEGF, macrophage migration
inhibitory factor (MIF) and midkine (Shachar et al., 2012).
VEGF stimulates proliferation of CLL cells and inhibits their
apoptosis, whereas MIF promotes HIF-1α stabilization and
VEGF expression. MIF also enhances IL-8 expression, which
in turn induces Bcl-2 expression, which consequently inhib-
its apoptosis and VLA-4 integrin, which facilitates CLL cells’
homing, retention and survival in the bone marrow (Shachar
et al., 2012). Furthermore, MIF induces midkine expression in
CLL, in which serum midkine levels are high, regardless of
the disease stage (Cohen et al., 2012). Midkine thus plays a
major role against apoptosis in CLL.

On the other hand, it is possible that midkine might
regulate HIF-1α expression. Under hypoxic conditions,
midkine binds to its receptor, the LDL receptor-related
protein 1 (LRP1). Akt is activated downstream of LRP1, and
expression of HIF-1α and haem oxygenase-1 is increased.
These consequently protect mouse embryonic stem cells from
hypoxia-induced apoptosis (Lee et al., 2012).

Midkine signalling to support inflammation,
angiogenesis and anti-apoptosis
Midkine receptors so far identified include anaplastic lym-
phoma kinase (ALK), protein tyrosine phosphatase, receptor-
type, Z polypeptide 1 (PTPRZ1), LRP1, integrins, nucleolin
and proteoglycans. Some of them might make a complex,
depending on cellular context (Muramatsu, 2010; Kadomatsu
et al., 2013).

LRP1 was identified through the midkine-affinity column,
and mediates the actions of midkine on neuronal cell survival
(Muramatsu et al., 2000). It also endocytoses midkine,
leading to intracellular binding to nucleolin and then trans-
location to the nucleus, which plays an indispensable role in
cell survival (Shibata et al., 2002). Intracellular trapping of
midkine with a specific peptide named midkine-trap results
in midkine-LRP1 aggregation in the endoplasmic reticulum,
and suppression of LRP1 translocation to the cell surface
(Sakamoto et al., 2011). It also enhances PDGF-mediated cell
migration and PDGF receptor β phosphorylation in response
to exogenous PDGF-BB. This phenomenon supports the

report that LRP1 binds to and inhibits PDGF receptors
(Boucher et al., 2003). LRP1-deficient mice show enhanced
migration of SMCs to the neointima region and enhanced
atherosclerosis (Boucher et al., 2003). Midkine promotes
migration of not only macrophages but also of SMCs in the
milieu of neointima formation (Horiba et al., 2000). Because
both midkine and PDGF are important for neointima forma-
tion, further investigation of the midkine-LRP1-PDGF axis
would provide new insights into the pathogenesis of vascular
stenosis.

In terms of cell migration that may be relevant to angio-
genesis, vascular stenosis and cardiac remodelling, other
receptors may also be involved. PTPRZ1 was identified as a
midkine receptor for the migration of neuronal cells (Maeda
et al., 1999). PTPRZ1 is a proteoglycan carrying chondroitin
sulfate, and its affinity to midkine strikingly decreases if this
long sugar chain is removed (Maeda et al., 1999; Qi et al.,
2001). PTPRZ1, PI3-kinase and MAPK pathways are coordi-
nately involved in midkine-mediated cell migration (Qi et al.,
2001). With regard to neointima formation, it is noteworthy
that one of the characteristics of the intima is that it is rich
proteoglycans, which show high affinity for LDL (Lusis, 2000;
Moore and Tabas, 2011). Midkine might be retained in the
intima through binding to proteoglycans in the extracellular
matrix, leading to enhanced inflammation.

Midkine-mediated inhibition of myocardial remodelling
through enhanced angiogenesis has been demonstrated in a
coronary artery occlusion model (Takenaka et al., 2009). On
the other hand, midkine also protects myocytes from reper-
fusion injury (Horiba et al., 2006). In this case, midkine pro-
tects cells from apoptosis. This mechanism of action might be
relevant to the involvement of midkine in cancer develop-
ment. PTPRZ1-deficient mice exhibit a reduced proportion
and number of mature B cells. Midkine enhances survival of
B cells of wild-type mice compared with those of PTPRZ1-
deficient mice; it also enhances survival of CLL cells, while
the antibody-blocking PTPRZ1 induces apoptosis of these
cells (Cohen et al., 2012). In addition, as described earlier,
LRP1 plays a critical role in cell survival (Shibata et al., 2002).
LRP1 might also trigger HIF-1α expression, which in turn
promotes expression of midkine and other important genes
for cancer development (Lee et al., 2012).

Midkine-mediated migration of macrophages and PMNs
might enhance angiogenesis, but midkine may also directly
promote proliferation of HUVECs (Choudhuri et al., 1997). In
this context, ALK may mediate the midkine signal. Midkine
binds to ALK and promotes its phosphorylation, consequently
activating PI3-kinase and MAP kinase signal transduction in
various cell lines, including HUVECs (Stoica et al., 2002).
Alternatively, midkine may act on the crosstalk between
endothelial cells and SMCs (Sumi et al., 2002). Midkine pro-
motes proliferation and stratification of HUVECs when cul-
tured with human aortic SMCs in collagen gel. Midkine acts on
SMCs and enhances secretion of IL-8, which in turn causes
stratification of endothelial cells (Sumi et al., 2002).

Conclusions

Midkine exerts acute cardioprotection and neuroprotection
against ischaemia/reperfusion injury and inhibits cardiac
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remodelling at least in part via its anti-apoptotic and angio-
genic effect. These events require inflammatory cell infiltra-
tion and expression of cytokines and growth factors. Midkine
is a common and indispensable factor in these contexts.

Evidence shows that acute treatment with midkine
induces tissue protection in ischaemia/reperfusion injury
thereby reducing infarct size and provides long-term benefit
in the prevention of cardiac remodelling. Therefore, after
clinical translation of these results, midkine therapy may be
useful in the treatment of acute myocardial infarction for
cardioprotection and prevention of long-term consequences
of myocardial infarction, such as heart failure. Moreover,
because the beneficial effects of midkine on cardiac function
and mortality in cardiac failure/remodelling models have
been shown when midkine was applied 2 weeks after the
coronary occlusion, potential midkine therapy may be also
useful not only in the prevention, but also in the treatment of
cardiac remodelling. Nevertheless, long-term midkine treat-
ment might lead to some adverse effects such as vascular
stenosis, inflammation, and possibly tumour formation.

Taken together, midkine is a promising biological drug
candidate for different cardiovascular diseases. Further eluci-
dation of the mechanisms of midkine action, its chronic
toxicity and safety profile, optimal therapeutic dosing
regimen and duration, as well as optimal targeted tissue deliv-
ery is necessary for rational development of midkine therapy.
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