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Abstract: Administration of low-dose endotoxin (lipopolysaccharide, LPS) 24 h before a lethal
ischemia induces pharmacological late preconditioning. The exact mechanism of this phenomenon
is not clear. Here we aimed to investigate whether low-dose LPS exerts late effects on peroxynitrite
formation and activation of Akt, Erk, and STAT3 in the heart. Male Wistar rats were injected with LPS
(S. typhimurium; 0.5 mg/kg i.p.) or saline. Twenty-four hours later, hearts were isolated, perfused
for 10 min, and then used for biochemical analyses. LPS pretreatment enhanced cardiac formation
of the peroxynitrite marker 3-nitrotyrosine. LPS pretreatment also increased cardiac levels of the
peroxynitrite precursor nitric oxide (NO) and superoxide. The activities of Ca2+-independent NO
synthase and xanthine oxidoreductase increased in LPS-pretreated hearts. LPS pretreatment resulted
in significantly enhanced phosphorylation of STAT3 and non-significantly increased phosphorylation
of Akt without affecting the activation of Erk. In separate experiments, isolated working hearts were
subjected to 30 min global ischemia and 20 min reperfusion. LPS pretreatment significantly improved
ischemia-reperfusion-induced deterioration of cardiac function. We conclude that LPS pretreatment
enhances cardiac peroxynitrite formation and activates STAT3 24 h later, which may contribute to
LPS-induced late preconditioning.
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1. Introduction

Cardiovascular diseases including myocardial infarction are the leading cause of death in western
societies. Cardiac injury associated with myocardial infarction and subsequent reperfusion due
to therapeutic restoration of blood supply (i.e., ischemia-reperfusion injury) includes cell death,
life-threatening arrhythmias, and myocardial contractile dysfunction [1]. Preconditioning (PreC) is
a well-known phenomenon applied before a lethal ischemia to protect the heart [2]. The protection
is biphasic with an early phase (lasts for hours) and a late phase (starts 12 h after PreC stimuli
and lasts for ~72 h) [3]. The latter lasts longer and protects against myocardial stunning as well,
which makes the late phase of PreC clinically more relevant [4]. Late PreC can be elicited by a wide
variety of non-pharmacological (e.g., ischemia-reperfusion, heat stress, rapid ventricular pacing,
exercise) and pharmacological (e.g., endotoxin, cytokines, nitric oxide donors, opioids) stimuli [5,6].
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Pharmacological PreC is a non-invasive way to confer cardioprotection, therefore it has a great
preventive and therapeutic potential.

Administration of a low-dose endotoxin, lipopolysaccharide (LPS), 24 h before a test
ischemia-reperfusion has been shown to improve post-ischemic cardiac functional recovery thereby
exerting pharmacological PreC [7]. The exact mechanism of endotoxin-induced late PreC is not entirely
clear. Nitric oxide (NO) has been implicated as a mediator, and inducible NO synthase (iNOS) has
been identified as a major source of NO in endotoxin-induced late PreC in the heart [8–10]. Besides
NO, indirect evidence suggests that superoxide (O2

•−) may also be involved in endotoxin-induced
late cardioprotection [7,11]; however, the cardiac level of O2

•− after low-dose LPS pretreatment has
not been determined yet.

Furthermore, increasing evidence suggests that enhanced formation of cardiac peroxynitrite
(ONOO−), the reaction product of NO and O2

•−, plays a role in early [12,13] and late phase of
ischemia-induced delayed PreC as well [14]. However, data is still lacking regarding the delayed effect
of cardioprotective low-dose LPS on ONOO− formation in the heart.

Cardioprotective signalling pathways are barely investigated in late PreC elicited by LPS.
Reperfusion injury salvage kinase (RISK) and survival activating factor enhancement (SAFE) signalling
are well-known cardioprotective pathways [15,16] and have been implicated in the mechanism of
ischemic and certain-types of pharmacological late PreC [5,17]. In LPS-induced late PreC the activation
of Akt, a protein kinase of RISK pathway was shown to play a role [18]; however, the potential
implication of transcription factor STAT3—the key member of SAFE—has not yet been tested.

Therefore, here we investigated whether low-dose cardioprotective LPS has any delayed effect on
ONOO− formation in the heart. Furthermore, we tested the late effect of low-dose LPS treatment on
the activation of cardiac RISK (Akt, Erk) and SAFE (STAT3) pathways.

2. Results

2.1. LPS Pretreatment Improves Post-Ischemic Cardiac Function and LDH Release: Evidence for
Delayed Cardioprotection

Cardiac performance was measured in isolated hearts subjected to global ischemia 24 h after
in vivo low-dose LPS (S. typhimurium; 0.5 mg/kg i.p.) or saline injection. Cardiac function of both
the control and LPS-pretreated groups was deteriorated during reperfusion after global ischemia
(Figure 1).
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Figure 1. LPS pretreatment improves post-ischemic cardiac function. The figure shows cardiac
functional parameters (A–H). Isolated rat hearts were subjected to 10 min equilibration period and
30 min normothermic global ischemia, followed by 20 min reperfusion, 24 h after in vivo 0.5 mg/kg
low-dose lipopolysaccharide (LPS) treatment. Values are expressed as mean ± S.E.M (n = 6–7). * p < 0.05
vs. before ischemia, # p < 0.05 vs. control, two-way ANOVA. LVDP: left ventricular developed pressure,
±dp/dtmax: first derivatives of LVDP, LVEDP: left ventricular end-diastolic pressure.



Molecules 2017, 22, 433 3 of 12

The post-ischemic aortic flow, coronary flow, cardiac output, heart rate, left ventricular developed
pressure, and its first derivatives (±dp/dtmax) were decreased (Figure 1A–G), while left ventricular
end-diastolic pressure was increased (Figure 1H) compared to the pre-ischemic values. However,
post-ischemic decline of aortic flow, cardiac output, left ventricular developed pressure, and +dp/dtmax

was significantly improved by LPS pretreatment (Figure 1A,C,E,F). Coronary flow, heart rate,
−dp/dtmax, and left ventricular end-diastolic pressure were not affected significantly by low-dose LPS
pretreatment after the ischemia (Figure 1B,D,G,H). There was no difference in cardiac performance
before the ischemia between control and LPS-pretreated animals (Figure 1). Post-ischemic LDH release
was significantly reduced by low-dose LPS treatment (Table 1). There was no difference in animal
weight, heart wet weight, and basal heart rate between the experimental groups (Table 1).

Table 1. Morphological parameters and LDH release.

Control LPS

Animal weight (g) 307 ± 5 301 ± 5
Heart wet weight (mg) 928 ± 25 927 ± 28
Basal heart rate (bpm) 299 ± 7 295 ± 11
LDH release (U/min)

Before ischemia 1.1 ± 0.2 1.5 ± 0.3
After ischemia 5.8 ± 0.7 * 2.3 ± 0.4 #

Values are expressed as mean ± S.E.M (n = 3–7 in each groups). * p < 0.05 vs before ischemia, # p < 0.05 vs control,
two-way ANOVA.

2.2. LPS Pretreatment Enhances Cardiac 3-Nitrotyrosine Formation

To assess the delayed effect of cardioprotective LPS on ONOO− formation, the level of cardiac and
serum 3-nitrotyrosine, a maker of ONOO− was measured. A low dose of LPS significantly enhanced
both the formation of cardiac (Figure 2A) and serum (Figure 2B) 3-nitrotyrosine 24 h after the in vivo
administration of LPS.
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Figure 2. LPS pretreatment enhances cardiac and serum 3-nitrotyrosine formation. Figure shows
cardiac (A) and serum (B) 3-nitrotyrosine levels 24 h after in vivo treatment of Wistar rats with
0.5 mg/kg lipopolysaccharide (LPS). Values are expressed as mean ± S.E.M. (n = 7–9). # p < 0.05
vs. control, unpaired t-test.

2.3. LPS Pretreatment Leads to Increased Level of Cardiac NO and O2
•−

In order to elucidate the source of enhanced cardiac ONOO− formation induced by low-dose LPS,
NO, and O2

•− the precursors of ONOO− were measured. The cardiac levels of both NO (Figure 3A)
and O2

•− (Figure 3B) were significantly increased in LPS-pretreated hearts.
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2.4. NOS and XOR Enzymes Contribute to Elevated NO and O2
•− Production Induced by LPS

To reveal the possible source of increased cardiac NO and O2
•− levels induced by low-dose LPS,

activity of NOS and XOR enzymes were measured. The activities of Ca2+-independent NOS and
XOR were significantly increased in LPS-pretreated hearts without affecting the Ca2+-dependent-NOS
activity (Figure 4A,B). SOD activity was not changed in response to LPS pretreatment (Figure 4C).
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(XOR) (B), and superoxide dismutase (SOD) (C) activities 24 h after in vivo 0.5 mg/kg LPS treatment.
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2.5. LPS Pretreatment Results in Enhanced Phosphorylation of STAT3

In order to elucidate the possible downstream targets of low-dose LPS, the activations of Akt,
Erk, and STAT3 were investigated 24 h after LPS pretreatment. Low-dose LPS significantly enhanced
cardiac STAT3 phosphorylation and non-significantly increased Akt phosphorylation without affecting
phosphorylation of Erk1/2 (Figure 5). Total STAT3 (both phosphorylated and non-phosphorylated
forms) was increased by approximately 20% due to LPS pretreatment (p = 0.044) (Figure 5A).



Molecules 2017, 22, 433 5 of 12
Molecules 2017, 22, 433 5 of 12 

 

 
Figure 5. LPS pretreatment results in enhanced phosphorylation of STAT3. Figure shows 
representative images (A) and quantification (B) of western blots of possible cardiac pathways in 
LPS-induced delayed preconditioning. Analysis was performed 24 h after in vivo 0.5 mg/kg low-dose 
lipopolysaccharide (LPS) treatment. Values are expressed as mean ± S.E.M. (n = 7 in each groups).  
# p < 0.05 vs. control, unpaired t-test. p-STAT3: phospho(Tyr705)-STAT3, p-Akt: phospho(Ser473)-Akt, 
p-Erk1/2: phospho(Thr202/204)-Erk1/2, GAPDH: glyceraldehyde 3-phosphate dehydrogenase 

3. Discussion 

In our present study, we showed that low-dose LPS pretreatment induces late PreC by 
improving post-ischemic cardiac function and LDH release in isolated rat hearts. Moreover, we 
demonstrated for the first time in the literature that low-dose LPS pretreatment enhanced cardiac 
and serum 3-nitrotyrosine, a marker of ONOO− formation. The precursors of ONOO−, NO and O2•−, 
were also increased in the heart as a result of LPS pretreatment. Our work revealed that enhanced 
Ca2+-independent NOS and XOR activities contribute to elevated levels of cardiac NO and O2•−.  
In addition, we also demonstrated an enhanced delayed phosphorylation of STAT3 after low-dose 
LPS pretreatment. 

Ischemic PreC is a widely used method to protect the heart against ischemia-reperfusion  
injury [17,19]; however, the approach is invasive so it is limited to use as a preventive intervention in 
daily life. Pharmacological preconditioning may confer significant benefits thereby having a great 
potential in the clinical field including prevention of cardiovascular diseases. We demonstrated that in 
vivo low-dose LPS injection ameliorated post-ischemic cardiac function and LDH release in isolated 
rat hearts subjected to ischemia-reperfusion 24 h after the treatment. Our results are in accordance 
with literature data showing that endotoxin exerts late PreC by improving post-ischemic cardiac 
recovery [7,9,11]. Nevertheless, the molecular mechanism of endotoxin-induced delayed PreC is barely 
investigated. Since peroxynitrite has emerged as a potential mediator of cardioprotection [13,20,21], we 
focused on LPS-induced delayed cardiac ONOO− formation in our present study. 

Although enhanced peroxynitrite formation contributes to the pathophysiology of cardiovascular 
diseases by inducing oxidative- and nitrative stress [22], Lefer et al. has demonstrated that peroxynitrite 
inhibits leukocyte-endothelial cell interaction, which improves post-ischemic myocardial function [23]. 
Moreover, several further studies have shown that enhanced formation of cardiac ONOO− plays a 
role in the early phase [12,13] as well as the late phase of ischemia-induced delayed PreC [14]. In the 
LPS-induced late PreC of the brain, ONOO− has emerged as an early mediator [24]. We showed that 
low-dose LPS pretreatment enhances cardiac 3-nitrotyrosine, a marker of ONOO−, thereby indicating 
a possible role for ONOO− in endotoxin-induced late PreC. 

Peroxynitrite arises from the non-enzymatic reaction of NO with O2•−. In order to elucidate the 
source of enhanced cardiac ONOO− formation induced by LPS, here we measured both precursors 
and found that cardiac levels of both NO and O2•− were increased in low-dose LPS-pretreated hearts. 
NO has been already implicated as a mediator of the endotoxin-induced cardiac late PreC [8–10,25,26] 
and our finding is consistent with these studies. NO can be produced by three isoforms of NO 
syntheses: the Ca2+-independent inducible NOS (iNOS) and the Ca2+-dependent endothelial and 

Figure 5. LPS pretreatment results in enhanced phosphorylation of STAT3. Figure shows representative
images (A) and quantification (B) of western blots of possible cardiac pathways in LPS-induced delayed
preconditioning. Analysis was performed 24 h after in vivo 0.5 mg/kg low-dose lipopolysaccharide
(LPS) treatment. Values are expressed as mean ± S.E.M. (n = 7 in each groups). # p < 0.05 vs.
control, unpaired t-test. p-STAT3: phospho(Tyr705)-STAT3, p-Akt: phospho(Ser473)-Akt, p-Erk1/2:
phospho(Thr202/204)-Erk1/2, GAPDH: glyceraldehyde 3-phosphate dehydrogenase.

3. Discussion

In our present study, we showed that low-dose LPS pretreatment induces late PreC by improving
post-ischemic cardiac function and LDH release in isolated rat hearts. Moreover, we demonstrated
for the first time in the literature that low-dose LPS pretreatment enhanced cardiac and serum
3-nitrotyrosine, a marker of ONOO− formation. The precursors of ONOO−, NO and O2

•−, were
also increased in the heart as a result of LPS pretreatment. Our work revealed that enhanced
Ca2+-independent NOS and XOR activities contribute to elevated levels of cardiac NO and O2

•−.
In addition, we also demonstrated an enhanced delayed phosphorylation of STAT3 after low-dose
LPS pretreatment.

Ischemic PreC is a widely used method to protect the heart against ischemia-reperfusion
injury [17,19]; however, the approach is invasive so it is limited to use as a preventive intervention in
daily life. Pharmacological preconditioning may confer significant benefits thereby having a great
potential in the clinical field including prevention of cardiovascular diseases. We demonstrated that
in vivo low-dose LPS injection ameliorated post-ischemic cardiac function and LDH release in isolated
rat hearts subjected to ischemia-reperfusion 24 h after the treatment. Our results are in accordance
with literature data showing that endotoxin exerts late PreC by improving post-ischemic cardiac
recovery [7,9,11]. Nevertheless, the molecular mechanism of endotoxin-induced delayed PreC is barely
investigated. Since peroxynitrite has emerged as a potential mediator of cardioprotection [13,20,21],
we focused on LPS-induced delayed cardiac ONOO− formation in our present study.

Although enhanced peroxynitrite formation contributes to the pathophysiology of cardiovascular
diseases by inducing oxidative- and nitrative stress [22], Lefer et al. has demonstrated that peroxynitrite
inhibits leukocyte-endothelial cell interaction, which improves post-ischemic myocardial function [23].
Moreover, several further studies have shown that enhanced formation of cardiac ONOO− plays a
role in the early phase [12,13] as well as the late phase of ischemia-induced delayed PreC [14]. In the
LPS-induced late PreC of the brain, ONOO− has emerged as an early mediator [24]. We showed that
low-dose LPS pretreatment enhances cardiac 3-nitrotyrosine, a marker of ONOO−, thereby indicating
a possible role for ONOO− in endotoxin-induced late PreC.

Peroxynitrite arises from the non-enzymatic reaction of NO with O2
•−. In order to elucidate the

source of enhanced cardiac ONOO− formation induced by LPS, here we measured both precursors and
found that cardiac levels of both NO and O2

•− were increased in low-dose LPS-pretreated hearts. NO
has been already implicated as a mediator of the endotoxin-induced cardiac late PreC [8–10,25,26] and
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our finding is consistent with these studies. NO can be produced by three isoforms of NO syntheses:
the Ca2+-independent inducible NOS (iNOS) and the Ca2+-dependent endothelial and neuronal NOS.
Several studies have demonstrated the role of iNOS in delayed ischemic PreC [8,9,27]. It has been also
reported that iNOS mediates endotoxin-induced late PreC as well [8–10,28,29]. Our findings support
these data since low-dose LPS pretreatment increased the activity of Ca2+-independent NOS without
affecting the Ca2+-dependent isoforms in our present study.

Besides the role of NO, indirect evidence suggested that O2
•− may also be involved in

endotoxin-induced late cardioprotection [7,11]; however, our study provided direct data that cardiac
level of O2

•− is increased after a low-dose LPS pretreatment. O2
•− is produced by enzymatic and

non-enzymatic processes. XOR is a prominent enzymatic source for O2
•− [30], and in addition, XOR

has been reported to contribute to post-ischemic preservation of left ventricular developed pressure in
early ischemic PreC [31]. The potential role of XOR in endotoxin-induced delayed PreC is not known.
It was reported in endotoxemic animal models that high-dose LPS induces XOR in the heart [32] and
in the lung [33] 6 h or 24 h after the treatment, respectively. However, our study has revealed that
cardioprotective low-dose LPS pretreatment 24 h later increases the activity of XOR enzyme in the
heart. This finding suggests that XOR contributes to LPS-induced delayed PreC by producing O2

•−.
We also investigated the activation of RISK and SAFE pathways in our present study to further

explore possible downstream mechanisms of LPS-induced late PreC. These cardioprotective signalling
pathways are barely investigated in endotoxin-induced late PreC. Non-LPS induced activation of
Akt (member of RISK) and STAT3 (member of SAFE) before a lethal injury was shown to confer
cardioprotection [34,35]. Ischemic PreC stimulus itself (i.e., brief ischemia-reperfusion cycles) increases
cardiac Akt phosphorylation before a test ischemia [36] and in the present study, we showed that
LPS pretreatment also non-significantly increased Akt phosphorylation before the test ischemia.
Post-ischemic activation of Akt in response to LPS pretreatment was demonstrated by Ha et al. [18];
however, data on pre-ischemic Akt activation is lacking in that study. Although the transcription
factor STAT3 has been implicated in late ischemic PreC [37,38], its role in endotoxin-induced delayed
PreC has not yet been investigated. This is the first demonstration that low-dose LPS enhances the
phosphorylation of cardiac STAT3 24 h after the treatment, thereby suggesting that activation of STAT3
before the ischemia may play a role in endotoxin-induced late PreC. Our hypothesis is supported by
a finding that hydrogen peroxide-induced PreC stimulus itself activates STAT3 in PC12 cells before
a lethal injury, which contributes to protection [39]. We also showed increased total STAT3 level
in response to LPS pretreatment, which is consistent with literature data [40,41] and may indicate
protein-level changes.

Although specific clinical translational goals were beyond the scope of the present experimental
work, our findings may contribute to progress the current science on several fields. First, the
role of peroxynitrite in cardioprotection and the interplay between moderate oxidative stress
and cardioprotective pathways are still unclear. Our results indicate that enhanced peroxynitrite
formation and STAT3 phosphorylation (together or separately) may play a role in LPS-induced
cardioprotection. Based on literature data, it is feasible to suggest that peroxynitrite itself leads to STAT3
phosphorylation [42]. This finding may facilitate further proof-of-concept studies to elucidate the exact
interplay between peroxynitrite and STAT3 in cardiomyocytes during adaptive processes. Second,
our results may strengthen the concept that activation of STAT3 transcription factor seems to be a
significant step in cardioprotection [43], which may support the importance of developing novel STAT3
activators or modulators that can be tested for their potential cardioprotective effects. Third, as we also
showed that LPS pretreatment has a great preventive potential, our findings may promote new research
to find clinically applicable analog molecules of LPS to induce pharmacological preconditioning.

In conclusion, low-dose LPS pretreatment induces pharmacological late PreC and enhances
cardiac ONOO− formation 24 h after the treatment by stimulating cardiac NO and O2

•− production
through Ca2+-independent NOS and XOR enzymes. Activation of STAT3 before a lethal ischemia may
play a role in the beneficial effect of endotoxin-induced delayed PreC.
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4. Materials and Methods

Male Wistar rats (250–350 g) were used in the present study. The study conforms to the ‘Guide
for the care and use of laboratory animals’ published by the US National Institutes of Health
(NIH publication No. 85–23, revised 1996) and was approved by local ethics committees. The animals
were kept at 12/12-hour light/dark cycle and had free access to standard laboratory chow and
drinking water.

4.1. Materials

Bovine serum albumin (BSA), lipopolysaccharid from Salmonella enterica serotype typhimurium
(#L-7261), HEPES, dithiothreitol, trypsin inhibitor, leupeptin, aprotinin, phenylmethylsulfonyl
fluoride (PMSF), lucigenin, L-[14C]arginine, EGTA, NG-monomethyl-L-arginine, L-citrulline, pterin
and methylene blue, protease inhibitor cocktail (#8340) were purchased from Sigma Aldrich
(Saint Louis, MO, USA). Sucrose, Na2EDTA, and FeSO4·7H2O were from Reanal (Budapest,
Hungary). N-methyl-D-glucamine-dithiocarbamate (MGD) was synthetized by Fülöp F (Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Szeged, Hungary). BCA Protein Assay Kit
was from Pierce (Rockford, IL, USA). Saline was from TEVA (Petah Tikva, Israel). Lactate
dehydrogenase (LDH)-P kit was purchased from Diagnosticum (Budapest, Hungary). Peroxynitrite
marker 3-nitrotyrosine enzyme-linked immunosorbent assay (ELISA) was from Cayman Chemical
(Ann Arbor, MI, USA). Superoxide dismutase (SOD) assay was from Randox Laboratories (Crumlin,
UK). Western blotting reagents were from Bio-Rad (Hercules, CA, USA). Radioimmunoprecipitation
assay (RIPA) buffer and primary antibodies were purchased from Cell Signaling Technology
(Danvers, MA, USA): anti-phospho(Tyr705)-STAT3 (#9145), anti-phospho(Ser473)-Akt (#9271),
anti-phospho(Thr202/204)-Erk1/2 (#9101), anti-total STAT3 (#4904), anti-total Akt (#9272), anti-total
ERK (#9102), anti-glyceraldehyde 3-phosphate dehydrogenase (GAPDH, #2118). HRP-conjugated
secondary antibody was from Dako Corporation (Santa Barbara, CA, USA). Price Western blotting
Detection Reagent was from Amersham (Buckinghamshire, UK).

4.2. Experimental Design and Isolated Heart Perfusion

Rats were treated intraperitoneally (i.p.) with saline or low-dose 0.5 mg/kg LPS from
Salmonella enterica serotype typhimurium. Twenty four hours after LPS treatment, rats were anesthetized
with diethyl ether and were given 500 U·kg−1 heparin intravenously. Hearts were then isolated and
perfused according to Langendorff for 5 min at 37 ◦C with Krebs-Henseleit buffer containing NaCl
118 mM, NaHCO3 25 mM, KCl 4.3 mM, CaCl2 2.4 mM, KH2PO4, 1.2 mM, MgSO4 1.2 mM, glucose
11 mM, gassed with 95% O2 and 5% CO2 [44,45]. Then the perfusion system was switched to working
mode according to Neely with recirculating buffer [44,46]. Hydrostatic preload and afterload were kept
constant at 1.7 kPa and 9.8 kPa, respectively throughout the experiments. Hearts were subjected to
10 min equilibration period followed by 30 min normothermic global ischemia and 20 min reperfusion
(n = 6–7). Before ischemia and during reperfusion cardiac functional parameters including heart rate,
coronary flow, aortic flow, left ventricular developed pressure and its first derivatives (±dp/dtmax),
and left ventricular end-diastolic pressure were measured. To estimate the severity of cellular damage
in the heart, the activity of LDH was measured from coronary effluents (collected during the first 5 min
of reperfusion) using a LDH-P kit (n = 3–4). The enzyme activity (U/mL) measured in an effluent was
multiplied with the corresponding coronary flow (mL/min) to give LDH release expressed as U/min.

In separate experiments, hearts were harvested at the end of a 5-min Langendorff perfusion
for biochemical analyses. After removing atria, ventricles were used freshly or were rapidly
freeze-clamped, powdered with a pestle and mortar in liquid nitrogen, and stored in cryovials at
−80 ◦C until further analysis.



Molecules 2017, 22, 433 8 of 12

4.3. Assessment of Cardiac and Serum ONOO− Formation

To estimate cardiac and serum ONOO− formation, free 3-nitrotyrosine, a marker of peroxynitrite
was measured by ELISA (n = 7–9) as described [20,44].

Heart samples were homogenized in a buffer containing HEPES (10 mM), sucrose (0.32 M),
Na2EDTA (0.1 mM), dithiothreitol (1.0 mM), trypsin inhibitor (10 mg/mL), leupeptin (10 mg/mL),
aprotinin (2 mg/mL), and PMSF (125 µg/mL) at pH 7.4. The crude homogenates were centrifuged
at 10,000× g for 10 min at 4 ◦C, and supernatants were then used for 3-nitrotyrosine quantification.
Serum samples (210 µL) were mixed with four volumes 4 ◦C ethanol, and centrifuged at 3000× g for
10 min at 4 ◦C. Supernatants were evaporated under a flow of nitrogen and redissolved in 105 µL
ultra-pure water.

According to the manufacturer’s instructions, supernatants from the heart homogenates and
redissolved supernatants from the serum samples were incubated overnight at 4 ◦C with nitrotyrosine
acetylcholinesterase tracer and anti-nitrotyrosine rabbit IgG in microplates precoated with mouse
anti-rabbit IgG. Ellman’s reagent was then used for development. Free nitrotyrosine content was
normalized to protein content of cardiac homogenates and expressed as ng/mg protein. Serum
nitrotyrosine concentration was expressed as nmol/L.

4.4. Measurement of Cardiac NO and O2
•− Levels

Since ONOO− is formed as a result of the reaction of NO and O2
•−, the cardiac level of these

intermediates were also measured in the present study.
The level of NO in ventricular tissue was measured by electron paramagnetic resonance (EPR)

spectroscopy as described [47,48]. Hearts were loaded with the freshly prepared NO-specific spin
trap Fe2+(MGD)2. The spin trap (175 mg MGD and 50 mg FeSO4 dissolved in 6 mL distilled water
and pH set to 7.4) was infused for 5 min into the aorta during Langendorff perfusion at a rate of
1 mL/min. At the end of the infusion of Fe2+(MGD)2, myocardial tissue samples were collected,
minced, and pushed into the bottom of quartz EPR tubes and frozen carefully in liquid nitrogen. EPR
spectra of NO-Fe2+-(MGD)2 adducts were recorded with an EPR spectrometer (model ECS106, Bruker;
Rheinstetten, Germany) and analyzed for NO signal intensity as described [49,50].

Cardiac O2
•− production was assessed by lucigenin-enhanced chemiluminescence as described

earlier [44,51]. The apex of the heart was cut into small pieces and placed in Krebs-Henseleit buffer
containing 10 µmol/L lucigenin and 10 mmol/L HEPES-NaOH (1 mL, pH 7.4). Luminescence was
measured using a liquid scintillation counter (Tri-Carb 2100TR, Packard Instrument Company, Meriden,
CT, USA) as described [21,30].

4.5. Measurement of Cardiac NO Synthases (NOS), Xanthine Oxidoreductase (XOR), and SOD Activities

Powdered frozen ventricular tissue was homogenized in 4 volumes (NOS, XOR) or 10 volumes
(SOD) of ice-cold homogenization buffer (composition is same as described above for ONOO−

measurement) with an Ultra-Turrex disperser using three 20-s strokes. The homogenate was
centrifuged (1000× g for 10 min) at 4 ◦C and the supernatant was kept on ice for immediate assays of
enzyme activities.

To determine enzymatic NO production in the hearts, Ca2+-dependent and -independent NOS
activities were assessed as described [44,51]. The conversion of L-[14C]arginine to L-[14C]citrulline was
measured in supernatants with or without EGTA (1 mM) or EGTA plus NG-monomethyl-L-arginine
(1 mM) to estimate Ca2+-dependent and -independent NOS activities, respectively. NOS activities
were expressed in pmol/min/mg protein.

Since XOR is a major source of superoxide in the rat heart [52], the activity of XOR was determined
in supernatants. A fluorometric kinetic assay was performed as described previously [44,53], by
measuring the conversion of pterine to isoxanthopterine in the presence as well as in the absence of
methylene blue.
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SOD activity was measured by a spectrophotometric assay based on the inhibition of
superoxide-induced formazan dye formation [51].

4.6. Investigation of Akt, Erk, and STAT3 Activation with Western Blot

To assess the activation of Akt, Erk and STAT3, the phosphorylation rate of these proteins was
determined by Western blot as described earlier [54,55] with some modifications. Briefly, powdered
ventricular tissue samples were homogenized in RIPA buffer supplemented with protease inhibitors
using an ultrasonicator (UP100H Hielscher, Teltow, Germany). The homogenates were spun at
15,000× g (30 min, 4 ◦C). The protein concentrations in each supernatant were determined by the
BCA assay. Reduced and denaturized samples (25 µg protein) were loaded on 10% polyacrylamide
gel, and proteins were separated by standard SDS-PAGE (90 V, 1.5 h) followed by wet-transfer onto
nitrocellulose membrane (20% methanol, 35 V, 2 h). Membranes blocked in 5% w/v BSA (1 h, room
temperature) were incubated with primary antibodies generated against the following antigens:
phospho(Ser473)-Akt (1:500), total Akt (1:2000); phospho(Thr202/Tyr204)-Erk1/Erk2 (1:2000), total
Erk1/Erk2 1:1000; phospho(Tyr705)-STAT3 (1:1000), total STAT3 (1:2000) (overnight, 4 ◦C, 5% BSA);
or GAPDH (1:10,000; 1 h, room temperature, 1% milk). Then the membranes were incubated with a
HRP-conjugated secondary antibody (1:5000 or 1:20,000 for GAPDH; 1 h, room temperature, 1% milk).
Enhanced chemiluminescence kit was used to develop the membranes.

4.7. Statistical Analysis

Data were expressed as mean ± S.E.M. and analyzed with unpaired t-test or two-way analysis of
variance (ANOVA) as appropriate. If a difference was established in ANOVA, Fisher’s Least Significant
Difference (LSD) post hoc test was applied. Differences were considered significant at p < 0.05.
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