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Despite improvements in modern cardiovascular therapy, the morbidity and mortality of ischaemic heart disease (IHD) and heart failure (HF)
remain significant in Europe and worldwide. Patients with IHD may benefit from therapies that would accelerate natural processes of postnatal
collateral vessel formation and/or muscle regeneration. Here, we discuss the use of cells in the context of heart repair, and the most relevant
results and current limitations from clinical trials using cell-based therapies to treat IHD and HF. We identify and discuss promising potential
new therapeutic strategies that include ex vivo cell-mediated gene therapy, the use of biomaterials and cell-free therapies aimed at increasing the
success rates of therapy for IHD and HF. The overall aim of this Position Paper of the ESC Working Group Cellular Biology of the Heart is to
provide recommendations on how to improve the therapeutic application of cell-based therapies for cardiac regeneration and repair.
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Stem cells in the context of heart
repair
Stem cells are defined as cells with the ability (i) to self-renew by div-
iding to make copies of themselves and (ii) to differentiate to at least
one other cell type.1 In the context of cell transplantation and heart
repair or regeneration [i.e. replacement or regrowth of heart da-
maged, respectively, including restoration of the (epicardial) vascu-
lature and neovascularization], the term “stem cells” has been
widely used but in retrospect, some of the cells used should not
strictly be defined as stem cells. Cells with various molecular and
functional properties have been isolated from the heart and termed
“cardiac stem cells” (CSCs), “cardiac progenitor cells” (CPCs), or
“cardiomyocyte progenitor cells” (CMPCs).2,3 These cells can self-
renew in culture, and differentiate into different lineages (endothe-
lial cells and mesenchymal cells), but for example have limited car-
diogenic differentiation capacities except under exceptional
circumstances. By the addition of compounds that induce demethy-
lation, human CMPCs do form cardiomyocytes.4 Otherwise, the
only “stem cells” that form cardiomyocytes using mixtures of
growth factors, collectively referred to as “cardiogenic cocktails”,
are pluripotent stem cells (PSCs). PSCs can be of embryonic origin
(embryonic stem cells, ESCs) or created by introducing reprogram-
ming genes into terminally differentiated cells, to make what are
called induced pluripotent stem cells (iPSCs).1 Another term now
often regarded as incorrectly used is “endothelial progenitor cells”
(EPCs). These cells were originally isolated as populations that grew
in culture from peripheral blood samples (reviewed in5). They could
form networks that resembled vasculature, but they turned out not
to be true mature endothelial cells. Finally, cells that adhere onto tis-
sue culture plastic in serum-containing growth medium and have
adipogenic, osteogenic, and chondrogenic differentiation potential
in culture were termed mesenchymal stem cells (MSCs).6 However,
these cells have not been isolated clonally as single cells and could
therefore be heterogeneous cell populations. Moreover, with the
exception of MSCs derived from bone marrow, these differentiation
effects are not observed in vivo. Thus, despite them all expressing a
similar set of surface markers, these cells are now called “bone
marrow-derived mesenchymal stromal cells” (BM-MSCs) or adi-
pose tissue-derived mesenchymal stromal cells (AT-MSCs).7 These
MSCs have not been shown to spontaneously differentiate into car-
diomyocytes. For the purpose of this position paper, we use the ter-
minology as in the (historic) literature for the sake of clarity, but we
are aware of the caveats in the terminology itself.

Translation of cell therapy:
successful preclinical stories with
uncertain clinical efficacy
Ischaemic heart disease (IHD) and heart failure (HF) remain major
causes of morbidity and mortality worldwide.8,9 Potentially valid clin-
ical strategies aimed at repairing damaged heart muscle and ischaemic
tissue and increasing the heart’s regenerative potential, are currently
being tested in clinical trials.2,10 Despite originally high expectations
fueled by exciting scientific progress in preclinical models, and long-

term, randomized clinical trials that showed reassuring safety profiles
for intracoronary (IC) delivery of cells,2,11–16 regenerative therapy for
cardiovascular disease had been inconsistent and shown modest effi-
cacy thus far.10,17–23 Several limitations of most previous clinical trials
of cell-based therapies were raised and should be addressed before
we can fully understand their true therapeutic potential (see Table 1).

As a consequence, several strategies have been developed to im-
prove cardiac function in response to cell delivery further. The dif-
ferent strategies and protocols, collectively referred to as ‘cell
enhancement’, are discussed in the section “Critical issues on pro-
tocols for cell-based therapy”.

In this Position Paper of the ESC WG Cellular Biology of the
Heart, we critically review the current approaches using stem cell
or cell-based therapies to treat IHD and HF, and discuss promising
new strategies for stem cell therapy enhancement, with the aim of
increasing the efficacy and outcome of stem cell therapies in the fu-
ture. The overall objective of this Position Paper is to provide re-
commendations on how to improve cell-based therapies for
cardiac regeneration and repair in IHD and related HF.

Cell sources used in clinical trials
Several types of cells have been used in clinical trials, most of them
derived from bone marrow,12,14,15,17 – 22,33 – 37 or peripheral
blood,38,39 although some studies have used MSCs, cultured from
a variety of tissue sources (Table 2). These heterogeneous cell po-
pulations used in the early years of regenerative cardiac medicine,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Limitations of cell-based therapies

Drawbacks References

1. Low engraftment of BMCs and blood-derived EPCs 12,24–26

2. Poor survival of transplanted cells in ischaemic
tissue

27

3. Failure of adult stem cells to differentiate efficiently
into mature and functional cardiomyocytes

28

4. Inadequate recruitment of circulating or resident
CSCs

2,29

5. Anomalous electromechanical coupling between
the transplanted cells or between the transplanted
and host cells with consequent arrhythmias

30

6. The use of LVEF for assessing the effects of cell
therapy, as this is a load-dependent variable and loss
of contractility may be compensated by increases in
preload and decrease in afterload that determine
changes of the Frank-Starling forces

31

7. Incorrect target population of not very sick patients
with baseline LVEF �50%, with generally a
favourable outcome

31

8. Existence of well-established alternative therapeutic
strategies (PCI, FL, ACE-, and b-blockers) that might
mask potential of cell therapy effects

32

9. The lack of experimental validation (prove of
efficacy) of cell preparation within the trial course

BMCs, bone marrow cells; EPCs, endothelial progenitor cells; CSCs, cardiac stem
cells; LVEF, left ventricle ejection fraction; PCI, percutaneous coronary
intervention; FL, fibrinolysis; ACE-, angiotensin-converting enzyme inhibition.
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Table 2 Cell source for therapeutic cardiac regeneration

Cell type Name Sources/origin Commonly used
markers

Advantages/Therapeutic
considerations

Disadvantages References

First
generation

Bone marrow and
peripheral blood
PCs

Bone marrow
Peripheral blood

CD117+, CD34+ Limited regenerative potential
Clinical trial phase 3
Minimal improved cardiac function,
Limited engraftment
Readily cryopreserved
Readily genetically manipulated
Safety profile
Easy accessibility
Lack of ethical or immunological problems
Extensive clinical experience

Limited differentiation potential
Limited yield depending on

source

12,14,15,17–22,
33–35,37–39

Mesenchymal SCs Foetal origins (Wharton’s
jelly and cord blood)

Adult tissues (i.e. bone
marrow or adipose tissue)

Developing tooth bud of the
mandibular third molar

CD105+, CD117+ Limited regenerative potential
Clinical trial phase 3
Minimal improved cardiac function,
Limited engraftment
Readily cryopreserved
Readily genetically manipulated
Source of paracrine factors
Easy accessibility
Safety profile

Limited differentiation potential
Limited yield depending on

source

40

Side population cells Cardiac biopsy Abcg2+, Mdr1+ Limited regenerative potential
No current clinical strategy

Limited yield depending on
source

41–43

Epicardial PCs Developing heart Wt1+, Tbx18+, CD90+,
CD44+

Limited regenerative potential
No current clinical strategy

Limited yield 44–47

Isl+ PCs Developing heart Isl1+ Limited regenerative potential
No current clinical strategy

Limited yield 48–50

Second
generation

Cells from
cardiospheres

Cardiac biopsy c-kit+, Sca-1+

CD105+, CD29+, CD452
High regenerative potential
Clinical trials phases 1 and 2
Improved cardiac function
Limited engraftment

Limited yield 3

c-kit Cardiac biopsy c-kit+, CD452 High regenerative potential
Clinical trials phase 2
Improved cardiac function
Limited engraftment

Limited yield
The paper describing phase 1
SCIPIO trial received
Expression from journal editors

at The Lancet, and is still
under scrutiny

2,51–54

Sca-1 Cardiac biopsy ckit+, CD31+, CD142,
CD342, CD105+, CD452

High regenerative potential
Preclinical stage
Limited engraftment

Limited yield 55–57

Embryonic SCs Inner mass of blastocyst Oct4+, Nanog+, SSEA4+ High regenerative potential
Preclinical stage
FIM phase 1

Ethically controversial source
Teratoma formation
Immunogenicity

58

Induced PSCs Derived from somatic cells
using reprogramming
technologies

Oct4+, Nanog+, SSEA4+ High regenerative potential
Preclinical stage
Improved cardiomyocyte differentiation

Tumorigenicity 59–62

SCs, stem cells, PSCs, pluripotent stem cells, PCs, progenitor cells.
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have been called “first-generation” stem cells, in contrast to con-
temporary “second-generation” counterparts. The latter consist
of more purified cell populations with a presumed greater potential
for cardiac repair and are often derived from non-bone marrow
sources, or subjected to genetic and pharmacological “priming”
in vitro to enhance their engraftment, survival, plasticity, and para-
crine activity. Mesenchymal stem cells exhibit low immunogenicity,
making allogeneic application feasible. Since the quality and number
of cells may diminish in patients who are older or have comorbidities
or genetic defects (reviewed in63), allogeneic MSCs can be used
from young healthy individuals. Five systematic reviews and
meta-analyses have reported a significant improvement in left ven-
tricle ejection fraction (LVEF) of 2–4% and a reduction in infarct
scar size and left ventricular end-systolic volume after intramyocar-
dial transplantation of bone marrow cells.23,31,64 – 66 To put LVEF
into the correct perspective, one must realize that the size of im-
provement in LVEF determined by cell therapy is comparable, if
not higher than what was registered in clinical trials for evaluation
of other established therapies for HF, such as angiotensin receptor
blockers, aldosterone antagonists, b-blockers, and cardiac resyn-
chronization therapy.67 – 70 In fact, as summarized in a recent
meta-analysis that quantitatively assessed the short-term (4–6
months) therapy-induced changes in LVEF in patients with HF due
to left ventricular systolic dysfunction,68 the mean increase in
LVEF after subtraction of placebo was 1.3% for angiotensin receptor
blockers (valsartan in the Val-Heft trial),67 2.0% for aldosterone an-
tagonists,69 2.7% for cardiac resynchronization therapy,68 and 2.9%
for b-blockers (carvedilol).70 Nevertheless, all these therapies are
well established to improve clinical outcome in chronic HF. How-
ever, biological activity of a cellular product may differ greatly de-
pending on cell source, cell preparation, and cell administration
techniques. Therefore, results from meta-analysis should be inter-
preted with caution, especially in the field of regenerative medicine.
Putting together all different trials into one basket becomes more
than questionable.

Moreover, functional and structural parameters such as LVEF, left
ventricular end-systolic volume, and infarct scar size are regarded as
surrogate endpoints that cannot substitute hard clinical end-
points.23,31,64– 66 Among various possibilities (discussed in Table 1),
these modest improvements and the variability between trials have
been attributed to the different isolation protocols used, which may
profoundly impact the function and number of bone marrow cells
or blood-derived EPCs actually delivered to the patient.71,72 There-
fore, the general consensus is that assessing cell number and viability
along with careful cell characterization and functionality is necessary
before delivering cells into patients in any clinical trials. Moreover,
the effect of bone marrow mononuclear cells on the incidence of
death, recurrent myocardial infarction or stroke and hospitalization
for HF remains to be determined in adequately powered prospect-
ive clinical trials.

Cardiac-derived progenitor or stem cells have very recently en-
tered the clinical trial arena. Although isolation of these cells from
the heart is more invasive than bone marrow, long culture periods
are required to obtain sufficient numbers for transplantation, and
cell number and functional activity may decline with age, their re-
ported intrinsic paracrine activity is expected to make them poten-
tially good candidates for enhancing myocardial function in HF

patients.73 – 75 Except for the small-scale transendocardial (TE)
MSCs and mononuclear bone marrow cells for ischaemic cardiomy-
opathy trial, comparative clinical data between bone marrow-
derived cells (BMCs), MSCs, and CPCs/CSCs is not available in
HF patients. A few comparisons have been done in animal models
of myocardial infarction (reviewed in76), and MSCs seemed to trans-
fer more benefit on systolic function than BMCs in a chronic large
animal model of myocardial infarction.77 Preclinical research thus
far suggests the greatest potential functional benefit for CPCs/
CSCs from the heart, followed by MSCs, with BMCs having more
modest effects on LVEF.78 Conclusions about the effect on mortality
of BMC therapy after acute myocardial infarction (AMI) are ex-
pected to derive from the ongoing phase III BAMI trial, despite
the lack of an placebo control injected group (https://clinicaltrials.
gov/ct2/show/NCT01569178).

Of note, there is still no consensus on whether transplanted cell
numbers or survival in vivo are crucial for effect size. While trial-
based meta-analysis suggested a relationship between cell numbers
and effect in clinical trials, individual patient-based meta-analysis
have not confirmed this relationship.79

Autologous cells are non-immunogenic and do generally not en-
tail ownership—or ethical issues.80 However, their quality may di-
minish with age and comorbidities, and genetic defects of the
patient will also be present in his/her stem cells and their derivatives.
Recent developments now allow the use of allogeneic cells, which
can be selected for quality and can be kept ready to use in large
quantities “off the shelf” for acute applications.81

Pluripotent stem cells in clinical trials
Another class among the second-generation cells are pluripotent
stem cells, both ESCs and iPSCs (Table 2). Prerequisites for clinical
application of PSCs for heart regeneration and repair is their effi-
cient and strict differentiation into cardiomyocytes and endothelial
cells, which would be directly translated into high effectiveness of
the therapy, with minimum risk of undesirable side effects. A clinical
trial with ESC-derived cardiomyocytes in severe HF (ESCORT) has
been initiated in France and is being monitored with both interest
and caution.82,83 Since the same differentiation protocols for ESCs
are effective in iPSCs, it may be expected that iPSC-based ap-
proaches will also move forward for the treatment of advanced
HF. iPSC-derived cardiomyocytes have not yet been tested in hu-
mans, largely because of the extra risk of genetic mutation inherent
to the reprogramming method as such. The first results of ESC-
mediated eye repair are encouraging84 and iPSCs for this aim are
in clinical trial since September 2014. The later study is on hold since
July 2015 after the identification of a mutation in an oncogene in
one of the human iPSC lines (http://www.ipscell.com/2015/07/
firstipscstop/). This next-generation iPSC-derived approach is
therefore still fraught with uncertainty in the absence of a regulatory
framework or guidance about “allowable” levels of mutations and
methods of their detection in iPSC products.

Cell-free approaches
A general consensus is that first-generation cells may exert their ef-
fects on tissue repair by secretion of paracrine factors. These largely
unknown factors may stimulate the myocardium via myocyte sal-
vage, induction of angiogenesis or stimulation of myocyte division.
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Although the second-generation cells, e.g. CPCs/CSCs and iPSC-
derived cardiomyocytes, have been suggested (CSCs) or proven
(pluripotent cells) in preclinical trials to have greater regenerative
capacity because of their ability to form new myocardium, the con-
tribution of remuscularization vs. “paracrine effects” to overall effi-
cacy has not been demonstrated clinically nor preclinically. Any
effects of second-generation cells are thought to be mediated by
paracrine mechanisms. Since functional improvement is not neces-
sarily related to cell survival at least in experimental models,85,86 ap-
proaches have been developed to mimic the benefit of cell therapy
without transplanting the cells. Trialists have attempted to repro-
duce stem cell-like paracrine effects in ST-elevation myocardial in-
farction patients using growth factors such as granulocyte-colony
stimulating factor (G-CSF).87 All other novel developments in this
area are at the preclinical stage. Cell-free strategies include stimulat-
ing endogenous repair, e.g. by promoting neovascularization or ac-
tivating resident progenitor cells.88,89 Mediators of paracrine effects
are thought to include growth factors (e.g. erythropoietin,
G-CSF),90 episomes,91 and non-coding RNAs,92 mimicking the se-
cretome of donor cells. These factors can also be combined by as-
sembling them in different controlled release formulations, such as
microbeads,93 large scaffolds, or injectable biomaterials.94 Recent de-
velopments for cell-free approaches that emanate from cells, such
as these focus on secreted nano-sized vesicles, called extracellular
vesicles, and include microvesicles and exosomes.95,96 These small
lipid containing vesicles are capable of transferring proteins,
mRNA, and miRNAs between cells, and therefore represent a
way for intercellular communication and inducing cardiac repair.97

However, organ selectivity after systemic delivery or inadvertent
systemic spread after IC or intramyocardial delivery of these nano-
particles remains unknown and a topic for further scrutiny.

In summary, although the superiority in cardiac repair of one type
of cell compared with another has not yet been proven, BMCs con-
tinue to be the source of cells most often used in human clinical trials.
In cardiac patients, direct comparative data between different cell
types is still lacking since adequately powered, randomized clinical
trials with head-to-head comparisons of different cell types have
not yet been performed. Apart from the risk of immune rejection,
which can potentially be circumvented using MSCs, allogeneic somat-
ic/adult cells appear to be safe. To match reported levels of functional
cardiac improvement, cell therapy without the cells via paracrine fac-
tors may be an interesting alternative. For functional improvement
beyond current levels achieved via paracrine actions, new develop-
ments will be necessary for proper regeneration of lost tissue.

Critical issues on protocols for
cell-based therapy
One major problem for cell therapy is the relatively poor levels of
cell retention in the transplanted area, and this may not be limited to
first-generation cells, but apply to all cell sources. In fact, ≤10% of
injected cells remain at the targeted location. No cells survive when
injected into the infarct scar, short-term engraftment is �8% re-
gardless of injected cell dose in remote normal myocardium, and
in the infarct border zone, the percent survival at 24 h decreases
progressively from �8% to ,1%.27,98

Strategies to improve cell coupling,
differentiation, survival, and retention by
target area preparation, cell modification,
conjugation with biomaterials and/or
tissue engineering, and cytoprotection
pathways
To improve cell retention, several biomaterial-based approaches
have been explored (e.g. hydrogels, cell sheets, prefabricated matri-
ces, microspheres, and injectable nanomatrix).94,99– 102 Decellular-
ized extracellular matrices have been shown to promote the
healing process via modulation of the host immune response and re-
sistance to bacterial infections.103 An alternative approach, explored
in animal models, is the implantation of engineered heart tissue
made in vitro from cardiomyocytes and hydrogel.104 Another meth-
od is the use of bispecific antibodies that bind to the cells and rec-
ognize a cardiac-specific antigen that is only present in injured
myocardium.105 Finally, homing can be improved by priming the tar-
get organ or tissue with specific treatments, such as extracorporeal
shockwaves.106 Localized hypoxia, inflammation, excessive oxida-
tive stress, lack of supporting cells, poor supply of nutrients, and fi-
brosis promote apoptosis or necrosis of the grafted cells. Thus, the
efficiency of cell therapies might be improved by using genetic engin-
eering tools, including overexpression of pro-survival genes (e.g.
Akt, Pim-1 kinase, ERK1/2, HIF-1a, haeme-oxygenase 1, GATA4,
heat shock protein 27, miRNA-1, myocardin, and protein kinase
G1a) or angiogenesis-initiating genes (e.g. VEGF, MYDGF, fibroblast
growth factor (FGF)-2, SDF-1, and PDGF) in the cells to be trans-
planted or by transplanting the cells together with pro-survival or
pro-angiogenic factors.76,98,107 – 113 Interestingly, exposure of cells
to sub-lethal hypoxia increased the tolerance of these cells to the
harsh environment after transplantation.114 These preconditioned
cells also showed increased differentiation, enhanced paracrine ef-
fects leading to increased trophic support, and improved homing
to the lesion site.114 Transplantation of preconditioned cells helped
to suppress inflammatory factors and immune responses, and pro-
moted heart function.114 In addition, transient modulation of cell
specification towards myogenic differentiation, e.g. via microRNAs,
could also be beneficial in increasing the amount of myocardium.
miR-1 and -499 are excellent candidates as they can enhance both
differentiation in vitro95 and in vivo.115 Another approach to promote
transplanted cell survival is to modulate the inflammatory environ-
ment (using TSG-6, IL-1 inhibitor).109,116 Finally, a significant barrier
to the therapeutic use of most cell populations with the exception
of ESCs and iPSCs, is their limited cardiac differentiation potential
despite the use of “cardiogenic cocktails” (containing TGF-b1,
BMP-4, activin A, retinoic acid, IGF-1, FGF-2, a-thrombin, and
IL-6) and overexpression of cardiac transcription factors.117 –119 In
addition, these stem cells fail to electromechanically integrate.120

This limitation has been partially solved by overexpressing the
two key proteins, N-cadherin, and connexin 43, but clinical transla-
tion remains to be fully investigated. In contrast, human PSCs can
now be routinely differentiated with high efficiency (.80%) into
cardiomyocytes.121 However, the cardiomyocyte populations may
contain varying proportions of atrial, ventricular, and nodal cardio-
myocytes.122,123 This is a critical issue as they have unique
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mechanical and electrical properties and thus, the implantation of a
mixture of these cells harbors the risk of arrhythmias.124 In addition,
all of these cardiomyocyte types are immature and beat spontan-
eously, another source of arrhythmogenic risk. Consequently,
even though many protocols primarily give rise to ventricular-like
cardiomyocytes, it is important to refine the differentiation proto-
cols to produce pure populations of defined cardiomyocyte pheno-
type.125,126 In addition, robust irreversible cardiac lineage
differentiation of all transplanted cells is critically important to avoid
the formation of teratomas.

Stem cell rejuvenation
Aging or comorbidities may cause a reduction in the number
and function of tissue-resident and circulating cells.63,127,128 Several
proteins and signaling pathways have been identified that are cap-
able of reverting the process of cell senescence, including Pim-1
kinase,121 – 124 NOTCH1,129 – 131 telomerase, and myocardin.132

Pim-1 kinase has anti-senescence and anti-apoptotic effects in
CSCs as well as in MSCs.133 Activation of the NOTCH1 signaling
pathway results in remarkable rejuvenation of satellite muscle cells
associated with enhanced proliferation, increased telomere lengths,
and decreased susceptibility to replicative senescence.129 The over-
expression of telomerase and myocardin genes increases cell sur-
vival, proliferation, cardiomyogenic,132,134 and smooth muscle
differentiation in vitro.135 After overexpression of genes encoding
for “rejuvenating factors’ and in vitro expansion, genetically modified
cells may secrete high amounts of the “regenerating factor”, either
transiently or permanently, at the transplantation site.107,136 Most of
the approaches for genetic modification of cells requires cell manipu-
lation with some risk of cell contamination, accumulation of mutations
during in vitro culture, or insertional activation of other genes, due to
the use of viral vectors. Taken together, the design of new protocols
for aged cell rejuvenation would allow improved cell preparation and
clinical application of cells in older patient populations, taking into ac-
count the safety problem of the genetic manipulation of cells.

Enhancing endogenous cardiac
regeneration
Recent studies have demonstrated that cardiomyocyte turnover oc-
curs throughout life in mammals, including humans.137 – 141 While
the estimated rate of human cardiomyocyte renewal is controver-
sial, most studies report an annual turnover rate of 1%, which in-
creases after injury. However, the intrinsic capability in humans to
regenerate injured myocardium after massive ischaemic cell death
is too low to be of functional relevance. It has been suggested
that transplanted cells may exert their beneficial effects by secreting
cytokines and growth factors promoting cardiomyocyte prolifer-
ation, recruitment and activation of CPCs, induction of vessel for-
mation, reduction of fibrotic scars, and inhibition of apoptosis.142

In addition, modulation of macrophage and regulatory T-cell func-
tion can improve healing, repair, and regeneration.143,144 Another
approach to enhance endogenous cardiac repair is the induction
of cardiomyocyte proliferation, a mechanism described in neonatal
mice, zebrafish and newts in response to injury,145 although never in
adult mammals. However, cardiomyocyte regeneration after myo-
cardial infarction may be promoted also by administration of

FGF-1, p38 MAP kinase inhibitor,146 blocking the Hippo pathway
or upregulating the downstream Hippo effector Yes-associated pro-
tein (Yap),147 activation of Erb-B2 Receptor Tyrosine Kinase 2 sig-
naling, or application of the human Fstl1 protein via an epicardial
patch.148 Yet, so far it is unclear whether the observed functional
improvement is due to cardiomyocyte proliferation and generation
of new cardiomyocytes.149

Recently, promising new directions have been explored that are
promoting for in situ regeneration, in which cellular transplantation
will become redundant. Hereby, fibroblasts are being directly con-
verted into cardiomyocyte-like cells by using a combination of three
cardiac developmental transcription factors, Gata4, Mef2c, and
Tbx5.150 These reprogrammed cells express several cardiac-specific
markers and exhibit spontaneous contractions. Still in its infancy and
efficiency being low, this approach will potentially allow the conver-
sion of extracelluar matrix producing cells—the myofibroblasts in
the scarred area—into cardiomyocytes in vivo.151 Follow-up studies
are exploring the use of different combinations of transcription fac-
tors,152,153 or efficiencies being improved via microRNA-mediated
reprogramming.154

Cell-tracking systems
In vivo cell tracking involves either ‘direct’ physical labelling of cells by
incubating them with a contrast agent, or ‘indirect’ genetic labelling
by transfecting cells with a reporter gene construct. The position
of, and signal from these labels can then be tracked using various
imaging modalities, including clinical scanners, such as positron
emission tomography (PET), single photon emission computed
tomography (SPECT) and magnetic resonance imaging (MRI) (re-
viewed in155,156). All imaging modalities can provide information re-
garding short-term kinetics of transplanted cells and their effects on
cardiac function, but are not capable to assess the long-term
engraftment. Given its high anatomical resolution and safety profile
allowing serial longitudinal evaluations, MRI has been commonly
used to track cells in clinical trials.157 However, MRI might detect
macrophages that ingest the marker after the cell (derivative) had
lysed. Other limitation could be the loss of signals over the time re-
lated to cell death or cell division. Safety concerns regarding the ef-
fects of genetic manipulation of cells currently limit the use of
genetically modified cells in clinical trials, and thus long-term cell
tracking. However, combination approaches relying on the simul-
taneous co-registration of different imaging modalities (nuclear
medicine combined with CT or MRI) might overcome the limita-
tions of individual imaging techniques, and represent powerful tools
to gain insight into the delivery, engraftment, survival, off-target, and
possible adverse effects of transplanted stem and progenitor cells.
Given the indispensable role of cell tracking in clinical trials, the
feasibility of imaging should be included in preliminary proof of con-
cept studies, and considered among inclusion or exclusion criteria,
but will limit cell transfer studies to only a few centers that have ac-
cess to multimodal imaging expertise.

Controls, data reproducibility,
standardization issue, and data quality
Over the past few years, concerns have been increasingly voiced
about experimental reproducibility across the whole biomedical
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research fields,158,159 not least in cell therapy. For example, a recent
paper searching for errors in published cardiac clinical trials using au-
tologous BMCs reported that the greatest enhancement of LVEF
was described in those studies with the most discrepancies or er-
rors in factual reporting.160 The pervasive risk of neglecting basic
rules of clinical trial design in stem cell trials has been demonstrated
in a recent review.161 On the other hand, phase II studies, where
the aim is to prove efficacy should be designed to assess several pri-
mary end-points, which might include structural evaluations, cardio-
vascular physiological measurements, biomarkers, functional
capacity, and quality of life.162

The choice of appropriate controls and methodological rigor may
be more demanding in the field of cell therapy if, for example, the
need for a myocardial biopsy to harvest autologous stem cells com-
plicates double-blinding. A pragmatic alternative is to use a cross-
over study design, in which each patient is randomly assigned to a
sequence of treatments. However, where reagents, such as cyto-
kines are administered in conjunction with cells, a control group
with cytokines alone should also be included. Another issue is the
choice of the right placebo control, which, in some cell therapy
trials, simply consisted of transparent saline solution which can be
easily be distinguished visually from serum.

Standardization of cell isolation and processing procedures is highly
desirable in order to facilitate comparisons between trials and to en-
able meta-analyses. Sex of donor-cells should also be clearly stated, as
sex differences can affect the regenerative potential of transplanted
cells. Finally, standardization of patient populations and stratifications
should be attempted. It has been proposed that reference MSCs be
developed to facilitate comparison between studies.163

In summary, cell-based therapies would benefit significantly from
different protocols collectively referred to as cell enhancement, in-
cluding possible priming of host tissue with cytokines to increase
homing, preconditioning of transplanted cells, drugs and pro-
survival factors, genetic engineering of cells, and the use of bioma-
terials. All of these strategies could contribute to improving cell re-
tention and promote cell survival, proliferation, differentiation, and
induction of neo-angiogenesis. Nevertheless, irrespective of cell
enhancement, pilot studies to understand where the cells go by
choosing the best tracking system in vivo, and adherence to well-
established rules for the design of robust clinical trials, are minimum
requirements for any cell protocol to assess actual effectiveness of
cell-based clinical interventions.

Clinical trial design

Safety and ethical issues
The design of randomized controlled clinical trials that are able to
ascertain the long-term safety of cell therapy can be challenging
from an ethical perspective, and encompass issues related to:164

(i) public perception of cell therapy—heightened expectations
may influence the patient’s decision to participate in clinical studies
with cell therapy and may also affect the randomization procedure,
with a preference to be in the treatment arm of the study rather
than in the control group; (ii) conflicts of interest—commercial in-
terests may place pressure on researchers to investigate cell therap-
ies which are not yet ready for clinical testing; (iii) risks vs. potential

benefits—given the invasive nature and uncertainties surrounding
cell therapy, the potential risks may be difficult to define, thereby
making the consent procedure all the more challenging; (iv) choice
of study outcome measure—there is a fine balance between choos-
ing a surrogate endpoint which provides mechanistic insight, and
clinically relevant endpoints.

Patient selection (co-morbidities
and co-medications)
When considering efficacy of cell therapy, a better understanding of
cell biology and the interaction between treatment and patient-specific
cardiovascular risk factors, co-morbidities (such as age, gender, dia-
betes, hypertension, dyslipidaemia, smoking, depression, and psycho-
logical stress), and routine medications is required. All major
co-morbidities and co-medications in patients with IHD are potential
confounders of the efficacy of cell therapy, because they affect the qual-
ity of source cells as well as the response of host tissue to the trans-
planted cells.32,165,166 Autologous or allogeneic haematopoietic cell
transplantation for haematologic diseases was the first type of cell ther-
apy, the outcome of which was correlated with comorbidity indices.167

However, no data are available on comorbidity index or score systems
to be used in clinical cell therapy trials in order to objectively and
reproducibly assess the possible interference of pre-existing
co-morbidities and co-medications with outcome.165 Recently, micro-
array platforms identified global transcriptional and functional differ-
ences between CPCs/CSCs and BMCs. These tools can help examine
the true functionality of stem cells and customize cellular therapy
according to specific patient variability in terms of co-morbidities
or age.168 In this regard, key points that should be considered are
the following: (i) roughly equal stratification of patients into risk groups;
(ii) the inclusion of possible confounders in the analyses of outcomes;
(iii) evaluation of aging as a three-dimensional variable incorporating
chronologic age (which is a poor predictor of cell therapy outcomes,
probably due to a lack of data on organ dysfunctions,169), co-
morbidities, physical function, nutritional, and cognitive status; (iv) de-
veloping useful prognostic biomarkers and co-morbidity index that
could help understanding correlations between co-morbidities with
either cell biology and host response before any cell therapy; (v) deter-
mining the transcriptional and functional variation of adult stem cells for
autologous cell therapy, that could help assessing which cell popula-
tions are optimal for diverse aged patients with existing co-morbidities
and co-medications.

In summary, careful attention must be given to a variety of factors
(including age, gender, co-morbidities, concomitant medications,
and any other cardiovascular risk factors) that may interfere with
the regenerative potential of cell therapy in the setting of IHD and
HF. The development of useful prognostic biomarkers and co-
morbidity indexes could help to objectively assess the weight of
these factors in both preclinical and clinical trials.

Clinically relevant delivery routes,
cell dose, and timing of delivery
Catheter-based IC cell infusion using a perfusion balloon catheter
during stop flow conditions is the mostly used delivery route in clin-
ical trials, with the following drawbacks: (i) the potential non-
selective distribution pattern of the transferred cells, with exclusion
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of infarcted and border area in the case of an occluded coronary ar-
tery; (ii) the need for the cells to transmigrate from the vessel lumen
into the myocardium; (iii) the possible occurrence of microembo-
lisms with subsequent myocardial dysfunction. Intravenous adminis-
tration is limited by entrapment of the donor cells in the capillaries
of the lungs. Direct myocardial injection during open chest surgery is
the most precise and accurate type of delivery. Transcatheter TE cell
injection through the femoral artery and the aortic valve is less
invasive.

Direct comparison of IC and TE using electromechanical mapping
guidance and surgical delivery of autologous Indium-oxine-labelled
bone marrow-derived MSCs was studied in a chronic pig model of
ischaemic cardiomyopathy, however, did not show any significant
difference in cell delivery efficiency to the myocardium nor in differ-
ences in safety profile.170

Recently, retrograde bone marrow cell injection via coronary si-
nus infusion has been tested as safe and feasible in patients with ei-
ther ischaemic or non-ischaemic HF.171

With respect to cell dose (reviewed in76), it should be noted that in
the vast majority of pre-clinical and clinical studies, dosing has been
non-systematic and empirically assessed, guided more by feasibility
and accessibility rather than by intentional dosage optimization.
This has contributed to the still open question of how many cells
should be delivered in order to achieve clinical benefit. Although a
dose–response curve is difficult to obtain when using autologous
cells from individual patients, the relative number of cells with high
functional activity, rather than the absolute number of cells, should
be considered to describe the dose response. Mean absolute num-
bers of cells infused into the coronary circulation of patients with
IHD and HF range from 1.2 × 107 to 2.05+110 × 108 bone mar-
row cells and from 1 × 106 to 25 × 106 CSCs (reviewed in76).

The optimal timing of donor cell delivery also remains debated.
Although no consensus has been reached, between 4169 and 8
days172 after AMI onset seemed to be the optimal time point for
BMCs or circulating blood-derived progenitor cells delivery into an
infarct-related coronary artery, based on limited homing studies and
the time course of inflammatory responses after myocardial infarction.

How to assess the clinical benefit of cell
therapy (including follow-up)
In the vast majority of trials, the primary endpoint has been the
evaluation of left ventricular size and global systolic function before
and after treatment (reviewed173). Small (if any) improvements of
LVEF have been observed in cell-treated patients by two-
dimensional echocardiography, MRI, left ventricular angiography,
or radionuclide ventriculography performed at different time points
and with different acquisition and analysis protocols (reviewed
in173). Given the controversial outcomes of previous clinical trials,
future studies should avoid imaging methodologies with poor repro-
ducibility, should standardize timing of image acquisition and analysis
protocols, and more comprehensively evaluate the potential bene-
fits deriving from cell therapy. Indeed, implementation and standard-
ization of other techniques, such as 3D echocardiography,174 strain/
strain rates,175,176 tissue Doppler echocardiography,177,178 and MRI
might be extremely helpful to identify more sensitive markers of car-
diac improvement. It is important to emphasize that, at the present

time, MRI currently provides the most accurate, comprehensive, and
reproducible measurements of cardiac chamber dimensions, vo-
lumes, function, and infarct size compared with other techni-
ques,179,180 and therefore should be performed in cell-treated
patients enrolled in clinical trials whenever possible at baseline, after
treatment, and during follow-up. In addition to MRI, myocardial via-
bility should be determined by 18F-FDG PET assessing glucose me-
tabolism, alone or in association with dobutamine stress
echocardiography, since all studies using 18F-FDG have shown an
improvement in myocardial viability,181,182 but this beneficial effect
has not always been paralleled by an increase in contractile re-
serve.183 Furthermore, possible limitation of 18F-FDG PET is the ra-
diation exposure of patients undergoing serial imaging. Finally, to
precisely determine the effects of cell therapies on vasculogenesis,
serial quantitative PET evaluations of global, and regional myocardial
perfusion might be extremely valuable.20,182,184 Independent of the
specific technology, centralized evaluation by independent, and
blinded core labs should be standard.

In addition to the above endpoints, real, clinically relevant end-
points should also be used in future clinical trials, as, e.g. indicated
in the BAMI trial that is focused on the effect of IC reinfusion of
BMCs on all-cause mortality in AMI (NCT01569178). Although
such trials need enough power and are costly, they are essential
to demonstrate the net clinical benefit for patients. Additional
standard tests that should be considered, include quality of life as-
sessment, number of hospitalizations, 6 min walk tests, and death
over several years’ follow-up.

In summary, how patient selection takes place, what the best clin-
ically relevant delivery routes are for cell administration, which cell
dose and timing of delivery should be used and what clinical end-
point should be analyzed and by which method, are the most crucial
aspects in clinical trials investigating the effects of cell therapy. Ad-
equately powered large-scale clinical trials, taking into account all
the possible safety and ethical issues, considering cell function as
one of major predictors of successful cell therapy, and focusing on
hard clinically meaningful endpoints, are mandatory to determine
whether the observed functional improvement reported in some
studies can be extended to others and indeed translates into in-
creased survival and reduced morbidity.

Recommendations
In Figure 1, we provide a flowchart of experimental design starting
from non-clinical studies and ending with the human clinical trials.
To this translational pathway, we would like to make the following
recommendations when assessing the clinical potential of conven-
tional cell-based therapy, as well as novel strategies of cell enhance-
ment for cardiac regeneration and repair in IHD and HF patients:

† Conventional cell-based therapy have reported efficacy and
safety in most experimental myocardial infarction models tested,
including those in large animals, but in human clinical trials in IHD
and HF patients, only safety of cell therapies has been shown.
Therefore, future pre-clinical studies using cell-based therapies
should be designed to address specific hypotheses on modes of de-
livery and mechanisms of efficacy, rather than safety and efficacy
endpoints only;
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† Based on the expected clinical trial outcome, a careful selection of
cell source is essential. Whereas first-generation cells might be
useful for stimulation of endogenous repair mechanisms or angio-
genic effects, second-generation cells truly aim at replacing da-
maged myocardium. A comparison of different cell types, or a
combination of cell types in randomized clinical trials has not
yet been performed, but are being planned in future trials of
chronic ischaemic HF.

† Assessing cell number and viability along with full cell characteriza-
tion including cell function, should be done in every clinical trial;

† Poor cell retention remains a major issue. To further boost both
cellular and paracrine effects, effective carrier materials and/or en-
gineering approaches or pre-treatment strategies of cells or tar-
get tissues should be further developed.

† To maximize successful translation of novel cell enhancement
strategies, it is of primary importance to ensure that the efficacy
of preclinical studies is validated whenever possible in the
presence of confounding factors, such as age and gender and
common cardiovascular co-morbidities as well as their routine
medications. Likewise, for clinical application of genetically
manipulated cells, it is important to ensure the safety of the
injected cells in terms of genetically and epigenetically stability,
efficient and reproducible differentiation, and highly reliable cell
purification;

† The usage of hard clinically meaningful endpoints is mandatory to
determine whether functional improvement indeed translates
into increased survival and reduced morbidity.

Conclusions
The early promise of cell therapy has not yet been fulfilled. First-
generation cells and their secretomes that aim at myocardial salvage
and stimulating the endogenous repair mechanisms of the heart
through pro-angiogenic or prosurvival activity should be carefully
selected depending on the desired effect. Second-generation cells
such as pluripotent stem cells are indisputably capable of forming
beating contractile cardiomyocytes, but large surviving grafts of in-
jected cells are rarely observed.185 Combining these cell types
with biomaterials may enhance the outcome of present cardiac
cell transplantation therapy, by truly replacing the damaged myocar-
dium with muscular grafts. Other strategies to empower the donor
cells, referred to as cell enhancement, may further stimulate para-
crine effects, but new developments will be necessary to achieve
cardiac regeneration, e.g. by stimulating endogenous cardiac regen-
eration. Moreover, the selection of appropriate clinical endpoints,
patient population, and delivery strategies are crucial aspects to
understand the clinical effects. Furthermore, focusing on hard clin-
ical endpoints in future cell-based trials is mandatory to determine
whether any observed functional improvement translates into in-
creased survival and reduced morbidity.
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