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Pulmonary arterial hypertension (PAH) is a severe complication of systemic sclerosis (SSc)

associated with high morbidity and mortality. There are several biomarkers of SSc-PAH,

reflecting endothelial physiology, inflammation, immune activation, extracellular matrix,

metabolic changes, or cardiac involvement. Biomarkers associated with diagnosis,

disease severity and progression have been identified, however, very few have been

tested in a prospective setting. Some antinuclear antibodies such as nucleosome

antibodies (NUC), anti-centromere antibodies (CENP-A/B) and anti-U3-ribonucleoprotein

(anti-U3-RNP) are associated with PAH while anti-U1-ribonucleoprotein (anti-U1-RNP)

is associated with a reduced PAH risk. Anti-endothelin receptor and angiotensin-1

receptor antibodies might be good markers of SSc-PAH and progression of pulmonary

vasculopathy. Regarding the markers reflecting immune activation and inflammation,

there are many inconsistent results. CXCL-4 was associated with SSc progression

including PAH and lung fibrosis. Growth differentiation factor (GDF)-15 was associated

with PAH and mortality but is not specific for SSc. Among the metabolites, kynurenine

was identified as diagnostic marker for PAH, however, its pathologic role in the disease

is unclear. Endostatin, an angiostatic factor, was associated with heart failure and poor

prognosis. Established heart related markers, such as N-terminal fragment of A-type

natriuretic peptide/brain natriuretic peptide (NT-proANP, NT-proBNP) or troponin I/T are

elevated in SSc-PAH but are not specific for the right ventricle and may be increased

to the same extent in left heart disease. Taken together, there is no universal specific

biomarker for SSc-PAH, however, there is a pattern of markers that is strongly associated

with a risk of vascular complications in SSc patients. Further comprehensive, multicenter

and prospective studies are warranted to develop reliable algorithms for detection and

prognosis of SSc-PAH.
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INTRODUCTION

Systemic sclerosis (SSc) is an autoimmune, multiorgan disease
characterized by autoimmunity, fibrosis and vascular damage
of the skin and other organs, including the lungs. Clinically,
SSc is a heterogeneous disease which is classified in two major
subtypes based on the extent of skin involvement: limited
cutaneous (lcSSc) and diffuse cutaneous SSc (dcSSc) (Leroy
et al., 1988). DcSSc patients are characterized by a generalized
skin involvement with sometimes rapidly progressive and often
fatal organ involvement, while lcSSc patients generally show a
slower progression with isolated cutaneous involvement. A third
phenotype called systemic sclerosis sine scleroderma (ssSSc)
can also be differentiated, if the patients have any of the
characteristics features of internal organ involvement without
skin involvement. In addition, SSc may overlap with other
rheumatic or autoimmune disorders such as rheumatoid arthritis
(RA), dermatomyositis or systemic lupus erythematosus (SLE).
To make a definitive classification, the criteria of the American
College of Rheumatology/European League against Rheumatism
(ACR/EULAR) should be applied (van den Hoogen et al., 2013;
Jordan et al., 2015).

Pulmonary arterial hypertension (PAH) is a devastating
disease which develops on the basis of proliferative vasculopathy
of small and medium-sized pulmonary arteries, leading to
an increase in mean pulmonary artery pressure (mPAP ≥25
mmHg) at rest. The diagnosis must be confirmed by right heart
catheterization (RHC), which besides measuring pulmonary
arterial pressure (PAP) allows the determination of pulmonary
arterial wedge pressure (PAWP), pulmonary vascular resistance
(PVR), and cardiac output (Galiè et al., 2015). Based on the
values of the PAWP a pre- (PAWP ≤15 mmHg) and post-
capillary (PAWP ≥15 mmHg) pulmonary hypertension can be
distinguished (Galiè et al., 2015). The life-time prevalence of PAH
in SSc patients ranges from 5 to 12% (Avouac et al., 2010; Hao
et al., 2015; Kovacs et al., 2017; Morrisroe et al., 2017), while
the prognosis of these patients is very poor with about 50%
3-year mortality after PAH diagnosis (Chaisson and Hassoun,
2013; Chung et al., 2014b). SSc-PAH patients have a worse
outcome compared to idiopathic (IPAH) or PAH associated with
other collagen vascular diseases, such as mixed connective tissue
disease (MCTD) or SLE and PAH represents one of the leading
causes of death in SSc (Chung et al., 2010, 2014b; Tyndall et al.,
2010; Sobanski et al., 2016). Despite the extended involvement
of internal organs in dcSSc, PAH occurs more commonly in
patients with lcSSc (Denton and Khanna, 2017). In the setting
of SSc, primary pulmonary vasculopathy is not the unique cause
of pulmonary hypertension (PH). Significant lung disease, which
might lead to PH due to hypoxaemia was identified in up to 30–
75% of SSc patients complicated by elevated pulmonary arterial
pressure (group 3 of the World Classification of PH) (Kowal-
Bielecka et al., 2010), although a clear delineation from PAH
(group 1) is sometimes difficult to establish. In addition, left
ventricular systolic or diastolic dysfunction, which is frequently
found in SSc patients, may cause postcapillary PH (group 2).
Finally, pulmonary venoocclusive disease, a rare variant of PAH,
may be also associated with SSc (Dorfmüller et al., 2007).

There are some differences in the pathogenesis of SSc-PAH
as compared to IPAH. As an example, the expression of bone
morphogenetic protein receptor 2 (BMPR2) is highly associated
with heritable PAH and is often present in IPAH (Rubin, 2017),
but thismutation has not been found in SSc-PAHpatients, at least
in two small genetic studies (Morse et al., 2002).

Recent studies provided novel insight into the key signaling
pathways of PAH including the role of endothelial dysfunction,
growth factors, inflammation, immune activation, metabolic
changes, extracellular remodeling, and the development of heart
failure (Figure 1). Considering the fact that PAH is a life-
threatening complication of SSc, blood biomarkers of pulmonary
vascular involvement, either alone, or in combination with
other prognostic clinical parameters may be important tools
contributing to earlier diagnosis and targeted treatment. In
this review we summarize blood biomarkers associated with
key changes reflecting the molecular pathology of pulmonary
vascular abnormalities in SSc.

INFLAMMATION AND IMMUNE
ACTIVATION

There is an increasing body of evidence for an inflammatory
component in the patomechanism of pulmonary hypertension.
The presence and exubarence of inflammatory cells and their
interactive interplay may provide a missing link between PAH,
autoimmunity, and inflammation (Marsh et al., 2018). However,
the detailed and comprehensive description of the interaction
between the inflammatory cells and proinflammatory processes
is still difficult.

The imbalance and dysregulation of immune function and
tolerance may lead to autoimmunity and chronic inflammation
involving different types of immune cells and chemokines.
Autoimmunity and immune activation of both the innate
and adaptive immune system may play a role in the early
development of SSc. The subsequent activation of immune
cells and fibroblasts may contribute to the pathogenesis of SSc

FIGURE 1 | Molecular changes and associated biomarker candidates in the

development of pulmonary vascular remodeling.
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and accelerated fibrogenesis and extracellular matrix deposition
(Varga and Abraham, 2007). Immunological and inflammatory
aspects of the disease may be therefore correlated with vascular
and fibrotic manifestations and reflected by changes in the levels
of corresponding circulating biomarkers (Gu et al., 2008; Denton,
2015), although most of these markers are not specific and often
not based on robust studies.

SSc Specific Circulating Autoantibodies
As recently added to the ECR/EULAR criteria, the presence
of highly SSc-specific circulating autoantibodies such as anti-
topoisomerase 1 (ATA), anti-centromere (CENP, ACA), and
anti-RNA polymerase III are used for the diagnosis of the
disease (van den Hoogen et al., 2013). Specific autoantibodies
indicating pulmonary vascular involvement, pulmonary disease
progression or treatment response have not been included in this
statement because they have not been confirmed in prospective
studies. Over 85% of SSc patients present with circulating
antibodies and there is emerging evidence that these antibodies
are present in early stages of the disease highlighting their role
as both pathogenetically important factors and early diagnostic
biomarkers (Choi and Fritzler, 2016).

Over 90% of SSc patients present with antinuclear antibodies
(ANAs), however, there is no association with the development
of PAH (Sweiss et al., 2010). According to data from
the Pulmonary Hypertension Assessment and Recognition of
Outcomes in Scleroderma (PHAROS) Registry, the prevalence
of anticentromere (ACA) and nucleolar antibodies (NUC), in
SSc-PAH as compared to SSc without PAH, was elevated (35–37
and 24%, respectively) but not the prevalence of Scl-70 (7%) and
U1RNP (5%) antibodies. No association was found between any
of these biomarkers and survival (Chung et al., 2014a; Hinchliff
et al., 2015). Accordingly, patients having ACA, CENP-A and/or
CENP-B were more likely to have PAH but less likely to have ILD
(Hudson et al., 2012).

There have been conflicting results regarding anti-polymerase
III and PAH. A large longitudinal study showed that the
presence of anti-polymerase III is a positive predictor for PAH
(Nihtyanova et al., 2014). However, this could not be confirmed
in another prospective patient cohort (Hoffmann-Vold et al.,
2017). A study investigating 342 CTD-associated PAH patients
found that Anti-U1 RNP positivity was associated with decreased
mortality in CTD-associated PAH patients, even after correction
for hemodynamic impairment (Sobanski et al., 2016). In contrast,
SSc patients with anti-U3 RNP positivity were more frequently
affected by PAH which was the most common cause of death in
this patient group (Okano et al., 1992; Aggarwal et al., 2009).
A study comparing lcSSc patients with anti-Th/To-positivity
and CENP-positivity found that both groups presented with
a high frequency of PAH, while the frequency of ILD was
higher in the anti-Th/To group (Mitri et al., 2003). Among the
larger PAH screening algorithms, only the DETECT (Evidence-
Based Detection of Pulmonary Arterial Hypertension in Systemic
Sclerosis) algorithm included an autoantibody (ACA) as criteria
for identification of PAH in SSc (Hao et al., 2015). Autoantibody
positivity and their association with survival in SSc-ILD and
SSc-PAH patients are listed in Table 1.

Endothelin-1 Type a Receptor and
Angiotensin Receptor Type-1 Antibodies
Autoantibodies against endothelin receptor type A (anti-ETAR
Ab) and angiotensin receptor type-1 (anti-AT1R Ab) may affect
inflammation and fibrotic processes by direct receptor activation
thus causing vasoconstriction and proliferation (Kill et al., 2014;
Cabral-Marques and Riemekasten, 2016). These autoantibodies
are more frequent in patients with CTD-PAH compared to other
forms of PH and might be diagnostic and prognostic biomarkers
in SSc-PAH and/or CTD-PAH (Becker et al., 2014). In addition,
it has been shown that anti-ETAR Ab may identify patients
at risk for the development of subsequent digital ulceration.
Furthermore, SSc patients with loss of capillaries showed a strong

TABLE 1 | Autoantibody positivity and association with survival in SSc-ILD and SSc-PAH patients.

Reference Antibody Prevalence of PAH in

patients with antibody

positivity (No. of patients)

Prevalence of ILD in

patients with antibody

positivity (No. of patients)

Association with

survival

Independent predictive

ability for PAH (Odds

ratio)

Hinchliff et al., 2015* ACA 37% (162) – No –

ANA 24% – No –

Scl-70 7% – No –

U1RNP 5% – No –

RNA pol III 6% – No –

Sobanski et al., 2016# Anti-U1 RNP 11% (342) – No (p = 0.055)

Okano et al., 1992 Anti-U3 RNP 17% (24) 25% (24) – –

Aggarwal et al., 2009 Anti-U3 RNP 31% (86) 36% (97) – –

Mitri et al., 2003 Anti Th/To 28% (87) 48% (87) – –

ACA 19% (306) 13% (306) – –

Becker et al., 2014 Anti-ETAR – – Yes 2.7

Anti-AT1R – – Yes 1.053

ACA, anticentromere antibody; anti-ETAR, endothelin-1 type A receptor; AT1R, angiotensin II type 1 receptor; ANA, antinucleolar antibody; ILD, interstitial lung disease; PAH, pulmonary

arterial hypertension; RNA pol III, RNA polymerase III; Scl-70, antitopoisomerase antibody. *SSc vs. SSc-PAH. #CTD-PAH patients.
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association between the presence of an antibody titer and digital
ulcerations or PH (Avouac et al., 2015b).

Interferons
A member of the interferon family, the type I interferon (type I
IFN) has a central role in the innate immune response to viral
infections, while type I IFN therapy may represent a risk factor
for PAH (Galiè et al., 2015). In a recent study, investigating
the role of type I IFN in PAH, serum levels of type I, II,
and III IFN were found to be increased in patients with SSc-
PAH (George et al., 2014). In addition, the serum interferon γ

inducible protein 10 (IP10/CXCL10) was positively correlated
with hemodynamic parameters, 6 minute walking distance test
(6MWT), brain natriuretic peptide (BNP) and cardiac index
(CI) (George et al., 2014). In another study there was also an
association between IP-10 and PAH in SSc patients (Eloranta
et al., 2010).

Chemokines
Chemokines belong to a protein family with a major role in
leukocyte activation and chemoattraction, but they may also
play an important role in angiogenesis (Koch et al., 1992;
Strieter et al., 1995). CXCL4 is a chemokine with potent
antiangiogenic properties which is secreted by megakaryocytes
and plasmocytoid dendritic cells. The serum level of CXCL4
was markedly elevated in SSc patients and associated with PAH
and lung fibrosis development (van Bon et al., 2014). The
proangiogenic receptor CXCR6 ligand CXCL16 was also elevated
in patients with SSc-PAH, however, correlation analysis with
hemodynamic parameters was not performed (Rabquer et al.,
2011).

Inflammatory Cytokines and Growth
Factors
In SSc-PAH patients, a large number of pro-inflammatory
cytokines have been recorded to be increased. The tumor necrosis
factor alpha (TNF-α), interleukin (IL)-1β, IL-6, IL-8, and IL-
13 are elevated in the serum and plasma of lcSSc-PAH patients
(Pendergrass et al., 2010; Christmann et al., 2011). IL-6 is
increased in MCTD-PAH patients compared to those without
PAH (Nishimaki et al., 1999). The IL-18-binding isoform a (IL-
18BPa) is elevated in SSc patients compared to healthy controls
and positively correlated with SPAP and mPAP (Nakamura et al.,
2016a). The macrophage migration inhibitory factor (MIF)—a
pleiotropic cytokine with proinflammatory properties—is also
elevated in SSc-PAH patients (Stefanantoni et al., 2015). The level
of IL-5, IL-8, and IL-12 show no difference between SSc patients
with and without PH (McMahan et al., 2015). Bosentan, a drug
used for PAH therapy, causes a significant decrease of the serum
levels of IL-2, IL-6, IL-8, and IFN-γ (Bellisai et al., 2011).

The growth differentiation factor (GDF)-15—a member of
the transforming growth factor (TGF)-β superfamily- is strongly
elevated in remodeled pulmonary arteries of SSc-PAH patients
(Nickel et al., 2011). Accordingly, serum levels are increased
in SSc-PAH patients compared with SSc patients without PAH
and positively correlate with SPAP (Meadows et al., 2011).
Importantly, an increased level of GDF-15 is associated with
increased mortality (Nickel et al., 2008).

The level of acute phase response protein pentraxin-3
(PTX3), which act as an antiangiogenic factor by binding
to fibroblast growth factor-2 (FGF-2) and inhibiting FGF-2-
dependent neovascularization and extracellular matrix (ECM)
proliferation is increased, while the level of fibroblast growth
factor-2 (FGF-2) is decreased in SSc-PAH (Rusnati et al., 2004).
Moreover, both changes are independently associated with the
presence of PAH (Shirai et al., 2015). Markers associated with
inflammation and immune activation are indicated in Table 2.

EXTRACELLULAR MATRIX COMPONENTS

Matrix metalloproteinases (MMPs) together with their inhibitors
(TIMPs) are responsible for the degradation of ECMproteins and
lead to the release and activation of cytokines, growth factors but
also ECM degradation products (Nagase et al., 2006).

Osteopontin (OPN) is an extracellularmatrix protein involved
in bone remodeling, but it is also involved in pro-inflammatory
and pro-fibrotic properties via modulation of a variety of cell
types, including endothelial and vascular smooth muscle cells
(Anborgh et al., 2011). It is elevated in SSc patients with PH,
however, the same is true in SSc patients with ILD (Lorenzen
et al., 2010). Unfortunately, there are no data comparing OPN
serum or plasma levels between SSc-PAH and SSc-ILD patients.
OPN has also been associated with IPAH (Lorenzen et al.,
2011) and is therefore not specific for SSc-PAH. Circulating
pro-MMP-10 was increased, in SSc-PH patients in comparison
with SSc patients without PH or controls, which is consistent
with MMP-10 overexpression in the pulmonary arteries of SSc-
PAH patients (Avouac et al., 2017). The matrix metalloproteinase
tissue inhibitor-4 (TIMP-4) may contribute to extracellular
matrix deposition in SSc and its level is correlated with elevated
SPAP in SSc patients (Gialafos et al., 2008). However, such
correlations have also been found in PAH patients without SSc
(Tiede et al., 2016). MMP-12 was elevated in capillary vessels of
SSc-ILD patients, while MMP-7 in blood of SSc-ILD patients.
However, the blood level of them were not analyzed in SSc-PAH
patients (Moinzadeh et al., 2011; Manetti et al., 2012).

MMPs seem to be increased in SSc-ILD patients, while TIMPs
are more likely associated with vascular changes. However, there
are no prospective studies comparing these molecules between
SSc-ILD and SSc-PAH patients.

ENDOTHELIAL PHYSIOLOGY AND
ANGIOGENESIS

Microvascular endothelial cell injury plays a pivotal role
in the pathogenesis of SSc (Altorok et al., 2014). The
disease is characterized by an elevated number of activated
monocytes/macrophages or T-lymphocytes in the circulation
and tissues (Hasegawa et al., 2014). The infiltration of
internal organs by these cells may provoke endothelial
damage, fibroblast abnormalities, and alternatively activated
macrophages, through the release of a variety of chemokines,
cytokines, or growth factors (Abraham et al., 2009; Ueda-
Hayakawa et al., 2013). Clinical and pathological findings
of vascular destruction and endothelial cell activation
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TABLE 2 | Markers of inflammation and immune activation in SSc-PAH patients.

Reference Marker No. SSc patients with

PAH

No. SSc patients

without PAH

No. control subjects P-value

George et al., 2014 IFN 28 35 9 n.s.∗

IP-10 <0.05∗,∗∗

ET-1 <0.05∗,∗∗

IL-6 <0.05∗∗

IL-12p70 <0.05∗

TNF-α <0.05∗∗

van Bon et al., 2014 CXCL-4 n.d. n.d. n.d. <0.001∗∗

Christmann et al., 2011 IL-13 13 22 10 <0.001∗

McMahan et al., 2015 IL-5 37 40 – n.s.

IL-8 n.s.

IL-12 n.s.

Meadows et al., 2011 GDF-15 30 24 13 =0.004∗∗

Gialafos et al., 2008 TIMP-4 37# 69 – =0.003

Shirai et al., 2015 PTX3 21 150 – =0.006

Lorenzen et al., 2010 OPN 8 62 – =0.001

ET-1, endothelin 1; GDF-15, growth differentiation factor-15; IFN, interferon; IL, interleukin; IP-10, interferon gamma (symbol) inducible protein 10; n.d., no data available; n.s., no

significant; OPN, osteopontin; PTX3, pentraxin 3; TIMP, tissue inhibitor of matrix metalloproteinase-4; TNF-alpha(symbol), tumor necrosis factor alpha(symbol).

*SSc-PAH vs. Control.

**SSc vs. SSc-PAH.
#SSc patients with elevated pulmonary artery systolic pressure (> = 40 mmHg).

strongly support the hypothesis of a unique vascular
disease accompanied by the presence of inflammatory
and redox potential changes (Abraham and Distler, 2007).
Several soluble markers associated with endothelial damage,
including a wide spectrum of adhesion molecules, anti-
endothelial antibodies, or endothelial progenitor cells are
increased in the circulation of SSc-PAH patients and thus
may serve as potential biomarkers of a pulmonary vascular
involvement.

Endothelin 1
Cell adhesion molecules located on the surface of endothelial
cells are involved in cell adhesion and endothelial cell-
smooth muscle cell interactions. Endothelin 1 (ET-1) is a
potent vasoconstrictor peptide that is mainly secreted from
endothelial cells (Hickey et al., 1985). This mechanism is
triggered by protein kinase C (PKC) activation via enhancing
the production of 1,2-diacylglycerol in vascular muscle cells
(Barman, 2007). However, in pathological conditions ET-1 is
secreted by many other cells, including fibroblasts, epithelial
cells, smooth muscle cells, or inflammatory cells, such as
macrophages and leukocytes (Böhm and Pernow, 2007). In
fibroblasts, the expression of the peptide is induced by TGF-β
causing also fibroblast migration, myofibroblast differentiation
and proliferation of smooth muscle cells. Endothelin exerts
its biological activity by interacting with two cell membrane-
bound receptors called ET receptor A (ETAR) and B (ETBR).
ET receptor antagonists are approved as targeted medications
for PAH and one of them, bosentan, is also approved for the
prevention of new digital ulcers in SSc patients (Hamaguchi et al.,
2017).

An early study showed that ET-1 is elevated in the plasma
of SSc patients (Yamane et al., 1991). Additionally, its level

is increased in SSc patients with PAH (Coral-Alvarado et al.,
2009; Kim et al., 2010) and correlates with echocardiographic
parameters of right ventricular (RV) overload (Ciurzynski et al.,
2014). According to a prospective observational study, the
peptide level could reflect the presence and severity of PH and
may indicate the response to bosentan therapy in patients with
SSc-PH (Kawashiri et al., 2014). However, circulating ET-1 levels
depend very much on ET-1 clearance by ETBR on endothelial
cells and may not represent the ET-1 levels in the tissues of
interest.

Circulating Endothelial Cells and
Endothelial Progenitor Cells
Circulating endothelial cells (CECs) and endothelial progenitor
cells (EPCs) may play a role in endothelial repair and
neovascularization and serve as biomarkers of PAH (Foris et al.,
2016). Moreover, there is an evidence of dysfunction of these
cells in PAH (Toshner et al., 2009). Regarding CECs in SSc,
they were significantly correlated with PAP and DLCO in lcSSc
patients (Del Papa et al., 2004). Previous studies suggested that
EPC-derived endothelial cells (ECs) may play a role in the
progression of vascular complications in SSc (Avouac et al.,
2008a,b). A reduced number of EPCs was associated with PAH
in SSc (Nevskaya et al., 2008). EPC-derived ECs showed an
upregulation of the matrix metalloproteinase-10 (MMP-10) gene
in SSc-PAH.

Asymmetric Dimethylarginine
Asymmetric dimethylarginine (ADMA) is an endogenous
inhibitor of eNOS, which may contribute to endothelial
dysfunction. In a small cohort of SSc-PAH patients, ADMA
levels were significantly associated with PAH after adjustment
for specific disease characteristics, cardiovascular risk factors,
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and other related vascular complications (Thakkar et al.,
2016). An ADMA level ≥0.7 ng/mL in combination with
an NT-proBNP ≥210 ng/mL showed 100% sensitivity and
90% specificity for the identification of SSc-PAH (Thakkar
et al., 2016). However, other studies did not find any
significant correlations between ADMA and echocardiographic
markers of PH, (Dag et al., 2014; Foris et al., 2016),
although they found a negative correlation with the 6-
minute walking test (6MWT) (Dimitroulas et al., 2008). Taken
together, the role of ADMA as a biomarker is currently
controversial.

Von Willebrand Factor, Vascular
Endothelial Growth Factor, Endostatin
Von Willebrand Factor (vWF) is a circulating glycoprotein and
a marker of endothelial cell activation or damage, secreted by
endothelial cells and megakaryocytes. It plays an important
role in the coagulation cascade as a carrier for coagulation
factor VIII (Lip and Blann, 1997). Elevated levels of vWF
were found in IPAH and in CTEPH patients (Bonderman
et al., 2003) and also in lcSSc patients with PAH which was
associated with an increased risk for a PAP elevation (Pendergrass
et al., 2010; Barnes et al., 2012). In contrast, in another study,
there was no difference between SSc and SSc-PAH patients
in vWF levels (Iannone et al., 2008). In addition, the vWF
antigen was elevated in MCTD-PAH patients, as compared
to MCTD patients without PAH (Vegh et al., 2006). Thus,
vWF may be a marker of increased PAH risk in lcSSc and
MCTD patients. No data, however, are available for dcSSc
patients.

The angiogenic factor vascular endothelial growth factor
(VEGF) is increased in SSc patients with elevated SPAP as
assessed by echocardiography. Additionally, there is a positive
correlation between VEGF and SPAP (Papaioannou et al., 2009).

Endostatin is a potent angiostatic peptide, which is a
cleavage product of the extracellular matrix protein, collagen 18.
Indeed, it may be considered as an endogenous antagonist of
VEGF. It is massively upregulated in the intima of remodeled
pulmonary arteries from SSc-PAH patients, and circulating levels
of endostatin are correlated with markers of right ventricular
failure (Hoffmann et al., 2015). Endostatin levels were elevated in
SSc patients as compared to control subjects and a multivariable
analysis in SSc patients showed an association between elevated
endostatin levels and PAH. Endostatin was also a strong predictor
of mortality (Reiseter et al., 2015). There is a polymorphism
of collagen 18a1 which alters circulating endostatin levels and
is also strongly associated with mortality in SSc patients.
Finally, endostatin serum levels are correlated with exercise
capacity, World Health Organization (WHO) functional class,
and pulmonary hemodynamics (Damico et al., 2015).

Other Endothelial Markers
Other factors associated with endothelial physiology, such as
platelet endothelial cellular adhesion molecule-1 (PECAM-1)
and endoglin were also investigated in SSc-PAH. Increased
PECAM-1 was found in SSc patients with digital ulceration
and PAH, however, correlations with clinical parameters were

not significant (Riccieri et al., 2011). In SSc-PAH compared
to healthy controls, the endoglin level was increased and
correlated with circulating ET-1 levels (Coral-Alvarado et al.,
2009). However, the diagnostic and predictive value of these
markers has not been confirmed in prospective studies. The
soluble forms of E-selectin (sE-selectin) and vascular cell
adhesion molecule-1 (sVCAM-1) serum levels were not elevated
in lcSSc patients (Stratton et al., 1998). In accordance, another
study found also no difference between the sVCAM levels of
SSc and SSc-PAH patients (Iannone et al., 2008). Endothelial
cells not only secrete various mediators but they can also
release exosomes, a cell-derived vesicles. Exosomes can contain
various macromolecules including proteins, lipids, and nucleic
acids such as microRNA. Therefore, either their content or
exosomes per se can serve as biomarkers. They may play a
role in extension of fibrotic SSc process in non-affected tissues
(Wermuth et al., 2017). The blood level of exosomes in SSc
patients with vascular involvements were decreased (Nakamura
et al., 2016b). However, further studies are required to prove
their role in the vascular pathological processes of SSc-PAH
patients.

METABOLIC CHANGES

There is strong experimental and epidemiological evidence
supporting a “metabolic theory” of PAH development.
Accordingly, several organs of PAH patients share mitochondria-
based metabolic changes (Paulin and Michelakis, 2014;
Michelakis et al., 2017).

Adipocytokines
In SSc-PAH, dysregulated adipose tissue and adipokine
dysbalance have been found. The adipocytokines such as
resistin, leptin, adiponectine, adipsin, or omentin are soluble
and circulating factors. They are mainly produced by adipocytes
and have pro-inflammatory and pro-angiogenic properties
(Tilg and Moschen, 2006). Leptin has been considered as
a mediator of immunological disorders in IPAH. Its level
was elevated in IPAH and SSc-PAH patients compared to
healthy controls and the function of leptin expressing T-
lymphocytes was impaired in a leptin-dependent manner.
However, leptin levels were not different between IPAH and
SSc-PAH patients (Huertas et al., 2012). Omentin was also
elevated in SSc patients with increased SPAP, however, it was
not correlated with any fibrotic or inflammatory parameters
(Miura et al., 2015). In SSc patients, SPAP was also associated
with elevated resistin levels (Masui et al., 2014). Elevated
circulating levels of adipsin were associated with SSc-PAH and
adipsin gene single-nucleotide polymorphisms (Korman et al.,
2017).

25(OH)-D Vitamin
In patients with SSc, low serum 25(OH)-D Vitamin levels were
associated with increased SPAP as assessed by echocardiography
(Atteritano et al., 2016) and there was a significant correlation
between serum levels and diastolic dysfunction (Groseanu et al.,
2016), but not with pulmonary arterial pressure (Groseanu et al.,
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2016). However, there are few diseases that have not been
associated with decreased 25(OH)-D vitamin levels. Therefore,
this is certainly not specific for SSc or for PAH.

Metabolomics
In recent years, metabolomics showed promising results in the
field of pulmonary vascular research. In an exploratory approach,
numerous metabolites were associated with pulmonary arterial
pressure and the elevation of kynurenine appeared quite specific
for PH (Lewis et al., 2016). Indeed, kynurenine is a strong
endogenous pulmonary vasodilator increasing both cAMP and
cGMP levels in the target cells (Nagy et al., 2017). This
suggests that the kynurenine system represents a negative
feedback mechanism for PH, similar to the natriuretic peptides.
In addition, the kynurenine system has a strong impact on
immunologic signaling (Jasiewicz et al., 2016). Moreover, a recent
analysis based on orthogonal signal correction (OSC), combined
with a method of two dimensional separation of NMR data,
highlighting possible clusters, trends, or outliers, confirmed a
change in the metabolic profile of SSc-PAH as compared to SSc
without PAH (Deidda et al., 2017). Altogether this suggests that
many metabolic factors are changed in PAH, however, it is not
clear if they are cause or consequence of the disease and what is
their role in the pathogenesis of SSc-PAH.

MICRORNAS

Epigenetic changes are heritable alterations of the human
genome affecting the gene expression without involving changes
of the underlying DNA sequences. As the pathogenesis of SSc
is thought to be influenced by environmental factors affecting
human genome, these stimuli have been considered to be
responsible for epigenetic regulatory complex changes which can
manifest in alterations in disease outcomes (Aslani et al., 2018).
RNA interference via microRNAs is considered to be one of
the potential mechanisms to initiate and maintain epigenetic
changes. Alterations in the regulation of microRNAs may lead
to pathway alterations playing a role in the development of PAH
(Thenappan et al., 2018). Moreover, they might contribute in
processes of right ventricular remodeling (Batkai et al., 2017).
According to these concepts, microRNAs can be identified in
the circulation, and circulating miRNA levels vary according
to the severity of PH (Wei et al., 2013; Zhao et al., 2017).
In patients with PH, the level of circulating miR-424(322) was
elevated and was associated with more severe symptoms and
hemodynamic changes, while miR-4632 has been identified as
a possible serum PAH biomarker (Qian et al., 2017; Baptista
et al., 2018). Regarding SSc miR-193b, it has been described as
a possible contributor to proliferative vasculopathy (Iwamoto
et al., 2016). In addition, microRNA let-7d from skin biopsies
showed a negative association with the severity of PAP measured
by echocardiography in patients with SSc (Izumiya et al., 2015).
In summary, based on results in PAH and SSc patients, micro
RNAs might represent attractive biomarkers as well as future
therapeutic targets in PH and SSc. However, their role in the
pathogenesis of SSc-PAH needs further investigation.

MARKERS OF CARDIAC DYSFUNCTION

Microvascular alterations may play a pivotal role both in the
impairment of myocardial function and the development of
pulmonary vascular disease in SSc. These changes, directly
or indirectly may cause right ventricular failure. Several
studies investigated the potential role of different markers
released by the heart, including the natriuretic peptide family,
D-dimer as well as Troponin T and I as diagnostic and
prognostic tools for PH in SSc patients. Studies investigating
heart-related markers in SSc associated PH are listed
in Table 3.

Natriuretic Peptides
Natriuretic peptides are well established, clinically useful markers
of right ventricular dysfunction in PH. A-type natriuretic peptide
(ANP) is secreted from granula in the atrial cardiomyocytes in
response to an increased RV afterload. Any release of afterload
causes an immediate decrease of the secretion (Wiedemann
et al., 2001). The major disadvantage of ANP lies in its
complicated handling methods. The N-terminal fragment of
A-type natriuretic peptide (NT-proANP) is the inactive form
of ANP, which is more stable and has a longer life-time in
the circulation. In a prospective study, NT-proANP revealed a
prognostic value for cardiac involvement, including PH in SSc
(Költo et al., 2014).

Most of the studies focused on the investigation of BNP and its
terminal fragment NT-proBNP. NT-proBNP is a 32-amino acid
polypeptide attached to a 76-amino acid N-terminal fragment
and it is secreted but not stored by ventricular cardiomyocytes
(Janda and Swiston, 2010). BNP does not need cooled handling
or transportation after blood drawn and the metabolic clearance
of NT-proBNP is slow in comparison with ANP or BNP (Foris
et al., 2013). As a consequence, the levels depend considerably on
renal function.

Several studies found significant correlations between
hemodynamic parameters, exercise capacity and natriuretic
peptides in SSc-PAH (Mukerjee et al., 2003; Ciurzynski et al.,
2008; Dimitroulas et al., 2010). In screening for PAH, both BNP
and NT-proBNP were correlated with PAP, and BNP was an
independent predictor of PAH in SSc patients (Cavagna et al.,
2010). NT-proBNP combined with pulmonary function test
and other markers had a high sensitivity and specificity in a
screening model for PH (Thakkar et al., 2016). Importantly,
NT-proBNP has been included in the 2015 risk stratification for
IPAH as a prognostic marker (Galiè et al., 2015). A study in 101
SSc patients found that an increased NT-proBNP level together
with a decreased DLCO/VA ratio was highly predictive for PAH
development in the next 29-months (Allanore et al., 2008).
Moreover, in a prospective study, the peptide level alone was
strongly related to the severity of PAH and its increase during
therapy was associated with high mortality (Williams et al.,
2006). Another study found no relation between the changes
of NT-proBNP and the clinical status (Rotondo et al., 2017). A
retrospective study in 432 SSc patients with PH due to left heart
disease from a French-Canadian cohort suggested mid-regional
pro-atrial natriuritic peptide (MR-proANP) and mid-regional
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TABLE 3 | Overview of heart related markers in patients with SSc-PAH or at risk of PH, correlation with hemodynamic parameters, predictive value, cut-off values, and

association with survival.

Reference Marker No. SSc-PAH

patients

RVSP mPAP PVR Independent predictive

ability for PAH (Odds

ratio)

Cut-off value for

identification of PAH

Association

with survival

Költo et al., 2014 NT-proANP 144∗ – – – – 822.5 pmol/l

(Sensitivity: 56.3%

Specificity: 79.5%)

yes

NT-proBNP 154.5 pmol/l

(Sensitivity: 50%

Specificity: 76.8%)

Mukerjee et al.,

2003

NT-proBNP 23 r = 0.59 r = 0.53 r = 0.49 – 395.34 pg/ml

(Sensitivity:0.69

Specificity: 1.0)

–

Ciurzynski et al.,

2008

NT-proBNP 51∗ – – – 29.5 115 pg/ml

(Sensitivity: 92%

Specificity: 44%)

–

Cavagna et al.,

2010

NT-proBNP 20 – r = 0.61 r = 0.61 – 239.4 pg/ml

(Sensitivity: 45%

Specificity: 90%)

–

BNP – r = 0.72 r = 0.61 2.1 64 pg/ml

(Sensitivity: 60%

Specificity: 87%)

–

Thakkar et al.,

2016

NT-proBNP 15 (all 94) r = 0.65∗∗ r = 0.63∗∗ r = 0.76∗∗ – 209.8 pg/ml

(Sensitivity: 92.9%

Specificity: 100%)

–

Allanore et al.,

2008

NT-proBNP 8 – – – 6.35 (p=0.053) – –

Williams et al.,

2006

NT-proBNP 68 – r = 0.62 r = 0.81 – 91 pg/ml

(Sensitivity: 90%

Specificity: 51%)

yes

Rotondo et al.,

2017

NT-proBNP 21 r = 0.30 – – – – –

Kiatchoosakun

et al., 2007

D-dimer 47 n.s. – – – – –

Nordin et al., 2017 NT-proBNP 44# – – – 1.9 – –

Hs-cTnI – – – 3.2 – –

Avouac et al.,

2015a

NT-proBNP 89& – – – 26.6 – –

Hs-cTnT – – – 2.0 – –

NT-proBNP + Hs-cTnT – – – 50.0 – –

BNP, brain natriuretic peptide; Hs-cTnI, high-sensitivity cardiac troponin I; Hs-cTnI, high-sensitivity cardiac troponin T; NT-proANP, N-terminal atrial natriuretic peptide; NT-proBNP,

N-terminal pro brain natriuretic peptide. All values reached the significance level of p< 0.05.
∗SSc patients with heart involvement, including PH.
∗∗The analysis involved all the patients.
#SSc patients with abnormal echocardiographic findings.
&SSc patients with cardiovascular risk factors.

pro-adrenomedullin (MR-proADM) may be more reliable than
NT-proBNP as a biomarker for early PH (Miller et al., 2014).

D-Dimer, Troponin T and I
There is some indication from epidemiological and experimental
studies that microvascular thrombosis may be involved in the
pathogenesis of PAH. However, a cross-sectional study in SSc-
PAH patients found no correlation between plasma D-dimer and
RVSP assessed by echocardiography (Kiatchoosakun et al., 2007).

Troponin T (TnT) and high-sensitive Troponin I (hs-cTnI)
are well-known markers of acute ischemic heart disease and

have been identified as independent markers of mortality
in PAH (Foris et al., 2013). A small study in SSc patients
found a significant association between hs-cTnI and elevated
echocardiographic SPAP (Nordin et al., 2017). The high-sensitive
TnT (HS-cTnT) was even elevated in SSc patients without
relevant cardiovascular risk factors and an HS-cTnT level of >14
ng/L was independently associated with PAH. The combination
of this marker with NT-proBNP was strongly associated with
PAH (Avouac et al., 2015a). Therefore, the combination of TnT
subtypes and NT-proBNP might serve as predictor for PH in
SSc. Unfortunately, these markers are not specific for the right
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ventricle and may be increased to the same extent by left heart
disease. They are also not specific for SSc or any other cause
of PH.

FUTURE CLINICAL AND RESEARCH
NEEDS

The diagnosis of SSc-PAH needs an invasive method, therefore
the inauguration of a well-established non-invasive diagnostic
method would be crucial. The number of studies evaluating
biomarkers in blood samples as diagnostic tools for PAH
detection in SSc is progressively increasing, however very few of
them have demonstrated solid diagnostic performance. Recent
advances in the understanding of pathophysiological processes
are promising for further therapies; nevertheless, the most
important point for now is the early diagnosis as a mean to
early treatment. The combination of biomarkers which help
to differentiate between pulmonary parenchymal and vascular
complications in SSc at an early stage would be very important.
However, these biomarkers have to be validated in prospective
multicenter studies involving a large series of patients. In
addition, there are no unified definitions to segregate PAH (group
1 of the World Classification of PH) from PH-ILD (group 3 of
the World Classification of PH). Different studies apply different
definitions that make it difficult to compare the data about
potential biomarkers. Thus, selection criteria for patients must
be defined well and prospectively. Finally, an extended research
interest is needed implicating underlying mechanisms described

in systemic sclerosis. One example may be the association
between adipocytokines and malabsorbtion, as latter molecules
can be associated with the disease pathogenesis. It is likely
that in the future some of the discussed biomarkers will be
employed, alone or in combination with other already established
biomarkers or clinical parameters, to improve the accuracy of
early diagnosis and guide therapy.

CONCLUSIONS

PAH is a severe complication of SSc and associated with
high morbidity and mortality. There are several biomarkers
of SSc-PAH, reflecting endothelial physiology, inflammation,
immune activation, extracellular matrix, metabolic changes,
or cardiac involvement. Biomarkers in form of antibodies,
cytokines, chemokines, metabolites, and natriuretic peptides
were associated with diagnosis, disease severity, and progression.
However, very few have been tested in a prospective setting.
Prospective studies in well-defined patient cohorts are warranted
to develop reliable algorithms for detection and prognosis of
SSc-PAH.
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