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Abstract: Sirtuin 1 (SIRT1) othologs are ubiquitous NAD+-dependent deacetylases that act as nutrient
sensors and modulate metabolism and stress responses in diverse organisms. Both mammalian
SIRT1 and Caenorhabditis elegans SIR-2.1 have been implicated in dietary restriction, longevity, and
healthspan. Hsp90 is an evolutionarily conserved molecular chaperone that stabilizes a plethora
of signaling ’client’ proteins and regulates fundamental biological processes. Here we report that
Hsp90 is required for conformational stabilization of SIRT1 and SIR-2.1. We find that inhibition of
Hsp90 by geldanamycin (GA) induces the depletion of mammalian SIRT1 protein in a concentration
and time dependent manner in COS-7 and HepG2 cells. In contrast to SIRT1, SIRT2 level remains
unchanged by GA treatment, reflecting a specific Hsp90 SIRT1 interaction. Hsp90 inhibition leads
to the destabilization and proteasomal degradation of SIRT1. Moreover, we observe a GA-sensitive
physical interaction between SIRT1 and Hsp90 by immunoprecipitation. We also demonstrate
that hsp-90 gene silencing also induces SIR-2.1 protein depletion and proteasomal degradation in
C. elegans. Our findings identify metazoan SIRT1 orthologs as Hsp90 clients and reveal a novel
crosstalk between the proteostasis and nutrient signaling networks, which may have implications in
various age related diseases.
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1. Introduction

Sirtuins are a divergent family of class III histone deacetylases present in all kingdoms of life [1].
The SIRT1 subfamily, named after mammalian Sirtuin 1 (SIRT1), includes the the most characterized
orthologs, such as Caenorhabditis elegans SIR-2.1, Drosophila dSir2, and the firstly discovered yeast Silent
Information Regulator 2 (Sir2) [2]. Mammalian SIRT1 is one of the seven paralogs (SIRT1-7) [1]. SIRT1
is predominantly localized in the nucleus and it deacetylates and regulates beyond histones several
dozen proteins involved in genomic stability and signaling. Its substrates include p53, HSF1, FOXO1,
3a and 4, PPARγ, PGC1α, NF-κB, eNOS, LKB1 kinase, and CLOCK/BMAL [3]. Thus, SIRT1 modulates
stress responses and survival, metabolism, epigenetic regulation, DNA repair, immunity, neuronal
signalling, neuroprotection, cognitive function, synaptic plasticity, and the circadian rhythm [4–6].

SIRT1 orthologs use NAD+ to deacetylate their substrates, hence it appears that the
NAD+/NADH+ ratio is a direct regulator of their activity [7]. Indeed, such a nutrient sensor function
might be involved in their effects on aging and health [8]. After the initial finding on the contribution
of Sir2p to yeast longevity [9], lifespan extension caused by genetic activation of metazoan SIRT1
orthologs have been challenged [10], yet, their involvement in aging and in the beneficial effects of
dietary restriction is supported by several lines of evidence [3]. In mammals, although whole body
overexpression of SIRT1 in mice protects from the metabolic syndrome, it does not affect lifespan,
whereas overexpression in brain induces longevity [11,12]. Complete SIRT1 loss of function in mice
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induces high perinatal mortality with severe cardiac and neurological defects [13], while tissue specific
SIRT1 knockouts aggravate diet-induced metabolic syndrome [14]. SIRT1 plays a complex role in
cancer, depending on the context [15], and is primarily protective in various age-related diseases,
such as the metabolic syndrome, neurodegeneration, and inflammation [16]. Therefore, it is not
surprising that its function is regulated both at the transcriptional and post-translational level including
phosphorylation, sumoylation, methylation, and by protein–protein interactions [14,17]. Allosteric
regulation by small molecular sirtuin activating compounds (STACs) make it a druggable therapeutic
target with promising clinical trials in progress [6]. The aforementioned effectors not only control
SIRT1 activity, but also its stability [18,19]. Intriguingly, both the lack of phosphorylation as well
as various stresses, such as covalent modification by oxidants or heat shock similarly induce SIRT1
destabilization, aggregation and proteasomal degradation [20–22]. Whether the delicate vulnerability
of SIRT1 structure is counterbalanced by a specific conformational maintenance is currently unknown.

Heat shock protein 90 (Hsp90) is an essential, conserved eukaryotic molecular chaperone [23,24].
Substrates that require Hsp90 for their conformational stability are called “clients” and are highly
enriched in multidomain signaling proteins that are intrinsically unstable [25]. To date, several
hundred clients are identified and the list is still growing (the list of clients can be found here:
www.picard.ch/downloads/Hsp90interactors.pdf). Clients include around 60% of the human kinome
including Raf-1, Akt, and LKB1, 7% of transcription factors such as p53, steroid receptors, HSF1,
PPARγ, as well as several enzymes and complexes (e.g., calcineurin, eNOS, telomerase, Argonaute,
BMAL1). Hsp90, similarly to SIRT1 integrates various signaling pathways [26]. Moreover, yeast Hsp90
is one of the most connected proteins interacting with ~20% of the proteome [25], revealing it as a hub
and stabilizer of the protein–protein interaction and signaling network. Accordingly, Hsp90 plays a
critical role in a plethora of biological processes that range from proteostasis, stress responses, cell
proliferation, motility, immunity, neuronal signaling, circadian rhythm, and further it appears to be
involved in epigenetic regulation and the stress-induced canalization of phenotypic variation at the
cellular and at the organismal population level [25,27–30]. Much less is known about the interactions
of C. elegans Hsp90 ortholog encoded by the hsp-90 gene (previously called daf-21) despite its important
roles in development, motility, and longevity [31–35].

Hsp90 performs its specific and diverse chaperone function with the dynamic assistance of various
of co-chaperone sets and ubiquitin ligases [30,36]. Its chaperone cycle is regulated by ATP binding and
hydrolysis [30,36–38]. Disruption of the cycle by the specific ATP antagonist geldanamycin (GA) leads
to the destabilization and ubiquitinylation of clients, followed by a proteasomal degradation [39–41].
Cellular networks exhibit a more stringent dependence on Hsp90 during growth and proteotoxic stress
conditions, such as development, fever, cancer, as well as viral and unicellular parasitic infections.
Therefore, GA derivatives and other Hsp90 inhibitors offer a therapeutic approach in cancer and
in various infectious diseases [42–44]. The apparent similarity between the substrates and the
physiological processes regulated by SIRT1 and Hsp90, respectively, as well as the indication of
structural instability in SIRT1 prompted us to investigate their interaction.

2. Results

2.1. The Hsp90 Inhibitor Geldanamycin Depletes SIRT1 Protein in Mammalian Cells

First, we investigated the stability of mammalian SIRT1 in response to Hsp90 inhibition. We found
that a 20-h treatment of the COS-7 monkey kidney cell line by increasing concentrations of GA after an
initial increase caused a ~50% decrease in SIRT1 protein (Figure 1a,b). It also decreased the level of Raf-1,
a well-known Hsp90 client [40] with comparable concentration dependence (Figure 1a,b). Timescale
experiments indicated a decay of SIRT1 protein, although somewhat slower compared to Raf-1,
characteristic to Hsp90 clients (Figure 1c). Similarly to SIRT1, SIRT2 also exhibits a cytosolic/nuclear
localization, shares the conserved middle catalytic domain, but lacks the extensive N- and C-terminal
domains [45]. Therefore, we tested, if the Hsp90 antagonist induced depletion is specific to SIRT1,
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or may also involve SIRT2. However, GA did not affect SIRT2 protein levels, showing a selective
sensitivity of SIRT1 protein to the disruption of the ATP dependent chaperone function of Hsp90
(Figure 1d). Next, we asked if SIRT1 level was also sensitive to GA in HepG2 human hepatoma cells
and it was (Figure 1e). Thus, Hsp90 specifically stabilizes SIRT1 protein in two different mammalian
cell lines.

Int. J. Mol. Sci. 2018, 19, x 3 of 13 

 

specific to SIRT1, or may also involve SIRT2. However, GA did not affect SIRT2 protein levels, 
showing a selective sensitivity of SIRT1 protein to the disruption of the ATP dependent chaperone 
function of Hsp90 (Figure 1d). Next, we asked if SIRT1 level was also sensitive to GA in HepG2 
human hepatoma cells and it was (Figure 1e). Thus, Hsp90 specifically stabilizes SIRT1 protein in two 
different mammalian cell lines. 

 
Figure 1. Hsp90 inhibition depletes SIRT1 protein in COS-7 and HepG2 cells. (a) Effect of GA on SIRT1 
and Raf-1 protein levels. Western blots of lysates from COS-7 cells treated by GA for 20 h. Images are 
representatives of three experiments for SIRT1 and two experiments for Raf-1. (b) Quantification of 
protein levels from the experiment shown in panel (a). Values are means ± S.D. of three (SIRT1) or 
two (Raf-1) experiments and were statistically compared with the respective untreated controls. * p < 
0.05, ** p < 0.01 by two-tailed unpaired t-test. (c) Timescale of GA treatment on SIRT1 and Raf-1 protein 
levels. Western blots of lysates from COS-7 cells treated by 1 μg/mL GA for the indicated times. 
Images are representatives of two experiments. C: 48 h vehicle control. (d) Effect of GA on SIRT2 
protein level. Western blots of lysates from COS-7 cells treated with GA for 20 h. Images are 
representatives of two experiments. (e) Effect of GA on SIRT1 protein level in human hepatoma cells. 
Western blots of lysates from HepG2 cells treated by GA for 48 h. Images are representatives of two 
experiments. 

2.2. Disruption of the Hsp90-SIRT1 Interaction Leads to Destabilization and Proteasomal Degradation of 
SIRT1 

Next, we investigated whether a physical interaction exists between SIRT1 and Hsp90. To this 
end, we immunoprecipitated endogenous SIRT1 protein from COS-7 cells. Hsp90 was co-precipitated 
with SIRT1, and their complex was disrupted by a 3-h GA treatment (Figure 2a). To test, if in the 
absence of Hsp90, SIRT1 is degraded by the proteasome, we simultaneously treated cells by GA 
and/or the proteasome inhibitor MG132 and prepared total cell lysates using urea and SDS to 
solubilize the detergent insoluble fraction. While MG132 alone did not influence SIRT1 level, in 
response to a combinatorial inhibition of both Hsp90 and the proteasome, SIRT1 re-appeared in the 
lysate indicating that upon disruption of its interaction with Hsp90, SIRT1 is destabilized and 

Figure 1. Hsp90 inhibition depletes SIRT1 protein in COS-7 and HepG2 cells. (a) Effect of GA on SIRT1
and Raf-1 protein levels. Western blots of lysates from COS-7 cells treated by GA for 20 h. Images are
representatives of three experiments for SIRT1 and two experiments for Raf-1. (b) Quantification of
protein levels from the experiment shown in panel (a). Values are means ± S.D. of three (SIRT1) or two
(Raf-1) experiments and were statistically compared with the respective untreated controls. * p < 0.05,
** p < 0.01 by two-tailed unpaired t-test. (c) Timescale of GA treatment on SIRT1 and Raf-1 protein
levels. Western blots of lysates from COS-7 cells treated by 1 µg/mL GA for the indicated times. Images
are representatives of two experiments. C: 48 h vehicle control. (d) Effect of GA on SIRT2 protein level.
Western blots of lysates from COS-7 cells treated with GA for 20 h. Images are representatives of two
experiments. (e) Effect of GA on SIRT1 protein level in human hepatoma cells. Western blots of lysates
from HepG2 cells treated by GA for 48 h. Images are representatives of two experiments.

2.2. Disruption of the Hsp90-SIRT1 Interaction Leads to Destabilization and Proteasomal Degradation of SIRT1

Next, we investigated whether a physical interaction exists between SIRT1 and Hsp90. To this end,
we immunoprecipitated endogenous SIRT1 protein from COS-7 cells. Hsp90 was co-precipitated with
SIRT1, and their complex was disrupted by a 3-h GA treatment (Figure 2a). To test, if in the absence
of Hsp90, SIRT1 is degraded by the proteasome, we simultaneously treated cells by GA and/or
the proteasome inhibitor MG132 and prepared total cell lysates using urea and SDS to solubilize
the detergent insoluble fraction. While MG132 alone did not influence SIRT1 level, in response
to a combinatorial inhibition of both Hsp90 and the proteasome, SIRT1 re-appeared in the lysate
indicating that upon disruption of its interaction with Hsp90, SIRT1 is destabilized and degraded by
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the proteasome (Figure 2b). Altogether, these results demonstrate that Hsp90 associates with SIRT1
and ensures its conformational stability, identifying SIRT1 as an Hsp90 client protein.
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Figure 2. Disruption of the Hsp90-SIRT1 interaction leads to destabilization and proteasomal
degradation of SIRT1. (a) SIRT1 physically interacts with Hsp90 in a GA-sensitive manner. Western
blots showing the co-precipitation of Hsp90 with SIRT1 from COS-7 cells treated by 1 µg/mL GA or
vehicle for 3 h. pG, protein G control; C, control (DMSO vehicle). (b) GA induces destabilization and
proteasomal degradation of SIRT1. Western blots of total cell lysates from cells treated by 1 µg/mL GA
and/or 5 µM MG132 or DMSO vehicle for 20 h. Images are representatives of two experiments.

2.3. Hsp90 Is Required for SIR-2.1 Protein Stability in Caenorhabditis elegans

We asked whether the chaperone-client interaction between Hsp90 and SIRT1 could be extended to
the nematode C. elegans. To this end, we silenced Hsp90 by feeding worms with an hsp-90(RNAi) [35,46]
(Figure S1a,b). A 48-h hsp-90(RNAi) treatment induced a ~60% reduction in Hsp90 protein and
caused an almost quantitative, ~90% depletion of SIR-2.1 protein at the ambient temperature, 20 ◦C
(Figure 3a–c). At 25 ◦C SIR-2.1 showed a 50%, non-significantly increased protein level and a similar
magnitude of reduction in response to Hsp90 knockdown (Figure 3a–c). hsp-90(RNAi) treatment of a
low copy sir-2.1 transgenic strain and its background strain [47] outcrossed in our lab [10] both yielded
comparable results (Figure S1c,d). To address if SIR-2.1 protein is degraded by the proteasome we
treated nematodes with MG132 and prepared total worm lysates using urea and SDS to solubilize
the detergent insoluble fraction. In these experiments hsp-90(RNAi) depleted SIR-2.1 protein by
40%, similarly to sir-2.1(RNAi), perhaps due to the presence of DMSO. MG132 treatment increased
SIR-2.1 protein level in EV fed worms. Furthermore, MG132 treatment restored SIR-2.1 level to EV
control level in combination with hsp-90(RNAi), but not with sir-2.1(RNAi) which downregulates
sir-2.1 mRNA (Figure 3d–f). Moreover, in some of the experiments a small portion of SIR-2.1 protein
was unable to enter and accumulated on top of the resolving gel, only in response to proteasome
inhibition of EV and hsp-90(RNAi), but not sir-2.1(RNAi) treated samples. These observations suggest
a proteasome-mediated turnover and destabilization of SIR-2.1 in physiological conditions, which
is further aggravated by a reduction in Hsp90 availability. We hypothesize that Hsp90 capacity in
non-stress conditions might already limit SIR-2.1 folding and function. Altogether our findings indicate
that Hsp90 is required for the structural stabilization of SIR-2.1 protein in C. elegans.
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Figure 3. Hsp90 knockdown induces SIR-2.1 protein depletion and proteasomal degradation in
C. elegans. (a) Effect of hsp-90(RNAi) on SIR-2.1 and Hsp90 protein levels. Western blots of lysates
from young adult N2 wildtype nematodes treated with hsp-90(RNAi) or empty vector (EV) from
hatching. Worms were kept at 20 or 25 ◦C. Images are representatives of three experiments. (b,c)
Quantification of SIR-2.1 and Hsp90 protein levels from the experiment shown in panel (a). Values are
means ± S.D. of three experiments and were statistically compared with the respective EV controls.
* p < 0.05, *** p < 0.001 by two-tailed unpaired t-test. (d) hsp-90(RNAi) induces destabilization and
proteasomal degradation of the SIR-2.1 protein. Western blots of total lysates from young adult N2
wildtype nematodes treated with hsp-90(RNAi), sir-2.1(RNAi) or empty vector (EV) from hatching
and transferred to plates at the L2 stage containing 10 µM MG132 or DMSO vehicle. Images are
representatives of four experiments. Asterisk (*) indicate anti-SIR-2.1 reactive protein aggregates
accumulated on the top of the gel in the MG132-treated EV and hsp-90(RNAi), but not the sir-2.1(RNAi)
lanes. (e,f) Quantification of SIR.2.1 and Hsp90 protein levels from the experiment shown in panel
(d). Values are means ± S.D. of four experiments and were statistically compared with the respective
controls. * p < 0.05, ** p < 0.01 by two-tailed unpaired t-test.
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3. Discussion

Our study identified the evolutionarily conserved Hsp90 chaperone as a conformational stabilizer
of mammalian and nematode SIRT1 orthologs. The dependence of clients on Hsp90 is determined not
by specific motifs, but by their thermodynamic instability. Therefore the Hsp90 clientele exhibits a
continuum from weak to strong interactions over a 100-fold affinity range [26]. The GA sensitivity of
mammalian SIRT1 approaches that of Raf-1, a very strong Hsp90 client [26] (Figure 1a,b) indicating a
stringent dependence of SIRT1 on Hsp90 in COS-7 cells. Likewise, hsp-90 silencing entirely depleted
SIR-2.1 in nematodes.

We found that in contrast to SIRT1 and SIR-2.1, Hsp90 does not influence SIRT2 protein stability
(Figure 1c). Hsp90 clients in general are larger, more difficult to express in a heterologous expression
system in soluble form and more difficult to obtain their crystal structures, than nonclients [26]. Out
of the seven mammalian and four C. elegans sirtuin paralogs, SIRT1 and SIR-2.1, respectively, stand
out by possessing two-fold longer protein sequences (747 aa. for SIRT1 vs. 314–400 aa. for SIRT2-7;
(607 aa. for SIR-2.1 vs. 287–294 aa. for SIR-2.2-2.4) and harboring extensive N- and C-terminal regions
besides the conserved 250 aa. catalytic middle domain [48]. They share these similarities with all SIRT1
orthogs including the yeast Sir2p (662 aa. [2] Figure 4a). Intriguingly, an earlier study showed that
Hsp90 is required for Sir2p protein levels and sir2-mediated gene silencing in yeast [49]. Hitherto
crystal structures for all full length sirtuins except SIRT1 and SIRT7 have been solved [50–54]. However,
attempts to solve the structure of the full length SIRT1 have not been successful. Only the catalytic
domain [55] as well as an engineered mini-SIRT1 protein harboring the 183–229 N-terminal and the
641–665 C-terminal segments [56] yielded high resolution crystallographic structures. In agreement
with the experimental data, the catalytic core domain performs an essential function and is structurally
highly conserved from yeast to mammals, while the N- and C-terminal segments are variable both
in length, sequence and secondary structure [48]. These observations indicate that the catalytic core
adopts a stable optimal fold, while the other regions are optimized to play a specific and regulatory
role in the individual sirtuin enzymes function and have a higher degree of freedom across evolution.
Such a property is characteristic to Hsp90 clients which allows them a greater conformational space for
flexibility, a key to induced, regulated interactions. Besides, the extensive, evolutionarily non-restricted
sequences allow the emergence of new interactions at the expense of protein instability, which is
chaperoned by Hsp90 [26]. Based on the findings on the selective stabilization of Sir2p [49], SIR-2.1
and SIRT1, but not SIRT2 (this study), by Hsp90, we propose that the requirement of SIRT1 orthologs
for Hsp90 mediated stabilization involve region(s) beyond the catalytic core (Figure 4a). These findings
also suggest that the ancestor of SIRT1 sirtuins became dependent on Hsp90 at dawn of eukaryotic life.

Interestingly, phosphorylation affects SIRT1 stability and proteasomal degradation.
Phosphorylation by JNK2 at Ser27 stabilizes [18], whereas persistent JNK1 activity at Ser47
destabilizes [19]. Ser47 phosphorylation has also been reported upon oxidative stress induced SIRT1
protein depletion [20]. On the other hand, in the absence of DYRK1A and DYRK3 mediated Thr530
phosphorylation at the C-terminal domain, SIRT1 aggregates both in vitro and in vivo [22], providing
an independent confirmation for the involvement of both the N- and the C-terminal regions in SIRT1
stability. The interaction of the various phosphorylated forms of SIRT1 with Hsp90 is a relevant
question for further studies.

The major function of Hsp90 is to hold its client in an activation competent state, be it a steroid
receptor until ligand binding, a kinase until ATP and substrate arrives, telomerase or Argonaute
until the RNA is loaded, which was hypothesized to stabilize clefts and surfaces for interaction
to occur [26,57]. Indeed, recently obtained cryoelectron microscopic structure of the CDK4 kinase
bound to Hsp90 [58] shows extensive interactions along multiple regions, stabilizing a client in an
unexpectedly open, unfolded state. Such an open state is a more favorable way to transit between
inactive and active conformation(s) and also allows various signals and posttranslational modifications
to happen in a more fluent manner than a closed conformation [58]. The apo form of the SIRT1
catalytic domain is also in an open conformation exposing the hydrophobic interior which closes
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upon substrate and cofactor binding [59]. Likewise, the SIRT1 catalytic domain is subject to various
regulatory interactions originating from the N-terminal as well as the C-terminal domains, which are
modulated by diverse signals, including allosteric sirtuin activator binding, phosphorylation, and
other modifications [6,17,48,56]. Hence, Hsp90 might co-ordinate several steps in the SIRT1 activation
process, such as ensuring proper folding, binding of NAD+ and substrate and finely tuning it with
activatory/inhibitory signals and interaction partners. We propose a hypothetical model integrating
our experiments with literature data (Figure 4b). Whether this model holds true and Hsp90 binding
involves extensive interactions with several SIRT1 regions and keeps SIRT1 in an open conformation,
remains to be determined.
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Figure 4. A conserved chaperone-client interaction between Hsp90 and SIRT1 orthologs. (a) SIRT1
orthologs possess extensive N- and C-terminal domains. Domain structures of yeast, worm, and human
SIRT1 orthologs and the SIRT1 paralog SIRT2. Numbers denote the number of amino acid residues at
the respective domain boundaries. The catalytic core domains (CD) are in light blue, N- and C-terminal
regions are in white. (b) Hypothetical model of the conformational regulation of SIRT1 (and respective
orthologs) by Hsp90. Hsp90 binds the nascent, unstable SIRT1 in the cytosol and stabilizes it in a
probably open, partially unfolded conformation. Hsp90 binding facilitates various interactions which
ensure activation by signals, substrate, and co-factor binding. Active, closed SIRT1 might dissociate
from, or might remain in loose complex with, Hsp90 and exerts its cellular functions. Reduction in
Hsp90 capacity, by pharmacological inhibition, genetic down-regulation or stresses, induces SIRT1
destabilization and proteasomal degradation, which in turn attenuates SIRT1 mediated processes.



Int. J. Mol. Sci. 2018, 19, 3661 8 of 14

Our findings using the specific Hsp90 inhibitor GA demonstrate that a reduction in functional
Hsp90 availability compromises SIRT1 stability. Therefore, when using Hsp90 inhibitors in tumor
chemotherapy one might need to consider the potential impact of SIRT1 inhibition especially in
tumors where SIRT1 suppresses malignancy [15,44]. Due to the significant overlap between SIRT1
substrates [4,6] and Hsp90 clients [25,30], the physiological outcome of the alteration of SIRT1 function
will require further carefully designed studies. Nevertheless, the Hsp90 SIRT1 complex may be an
important hub in the integration of stress responses.

We have previously shown that proteotoxic stresses, such as heat shock and proteasome inhibition
diminish the availability of Hsp90 and reversibly halt adipocyte differentiation via destabilizing the
Hsp90 clients PPARγ and Akt [29]. Such a stress-responsive, immediate regulation of cellular function
and phenotype by client stability might also involve the similarly stress-induced SIRT1 orthologs. Our
hypothesis is supported by a study showing the destabilization and proteasomal degradation of SIRT1
during heat shock, which contributes to p53 hyperacetylation and apoptosis [21]. SIRT1 proteins are
regulated by the nutrient supply through the level of NAD+ [6], whereas Hsp90 is responsive to the
cellular ATP/ADP ratio [25,38]. The Hsp90 dependent regulation offers an opportunity for SIRT1
function to integrate inputs both from proteostasis as well as from the ATP level. Likewise, efficiency
of SIRT1 activators might require abundant Hsp90 and co-chaperone capacity, which decreases during
aging but can be upregulated by chaperone inducers [60]. Such a combination therapy might benefit
several age-related metabolic and protein misfolding diseases, where SIRT1 activation holds great
promise [6]. Interestingly, we have recently reported that Hsp90 is required for C. elegans longevity by
both DAF-16/FOXO isoform A dependent and independent mechanisms [35]. Hence, it is plausible
and remains to be seen whether Hsp90 might modulate lifespan via SIR-2.1/SIRT1.

4. Materials and Methods

4.1. Materials

Reagents for cell culture were from Gibco-Invitrogen (Carlsbad, CA, USA) and for C. elegans
maintenance were Sigma (St. Louis, MO, USA). Rabbit polyclonal antibodies against SIRT1 and
SIRT2 were from Cell Signaling Technology (Danvers, MA, USA). Mouse mondoclonal anti-Raf-1
was from BD Transduction Laboratories (San Jose, CA, USA), mouse monoclonal anti-β-actin was
from Sigma (St. Louis, MO, USA), mouse monoclonal anti-Hsp90 was from Institute of Immunology
Ltd. (Tokyo, Japan). Rabbit polyclonal antibodies against C. elegans Hsp90 [61] and SIR-2.1 [62] were
kindly provided by Eileen Devaney (University of Glasgow, Glasgow, Ireland) and Anton Gartner
(University of Dundee, UK), respectively. HRP-conjugated secondary antibodies were from Dako
(Agilent Technologies, Santa Clara, CA, USA). Geldanamycin (GA) was from Sigma, the proteasome
inhibitor MG132 was from Calbiochem (San Diego, CA, USA). Complete protease inhibitor tablets were
from Roche (Mannheim, Germany). Protein assay, electrophoresis and blotting reagents were from
Bio-Rad (Hercules, CA, USA). The ECL kit was from Perkin-Elmer (Wellesley, MA, USA). All other
reagents were from Sigma or Fluka (Buchs, Switzerland).

4.2. Cell Culture

COS-7 (SV40-transformed African green monkey kidney fibroblast-like cell line) and HepG2
human hepatoma cells were obtained from the ATCC (Manassas, VA, USA). Both cell types were
maintained in Dulbecco’s modified Eagle medium (with 4.5 mg/mL glucose), supplemented with
10% fetal bovine serum, 2 mM L-glutamine, 1.5 g/L sodium bicarbonate, 4.5 g/L glucose, 100 µg/mL
streptomycin and 100 IU/mL penicillin at isobaric oxygen in 5% CO2 at 37 ◦C.

4.3. Mammalian Cell Lysis

Cell lysis and western blotting was essentially as described [29]. Cells were lysed with ice-cold
lysis buffer (50 mM Tris, 300 mM NaCl, 0.5 mM EDTA, 0.1 mM EGTA, 1 mM MgCl2, 1% NP40, 20%
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glycerol, 0.5 mM DTT, 2× Complete, pH 7.6) at 4 ◦C for 20 min. Cells were vortexed vigorously, and
centrifuged at 13,000 rpm for 10 min. Protein concentration of the supernatants was determined by
the Bradford method. Proteasomal degradation of SIRT1 was assessed by making total cell lysates in
urea buffer (2% SDS, 6 M urea, 30 mM Tris, 2× Complete, pH 7.6) using the same procedure as above.
Protein concentration was determined by the detergent-compatible Pierce BCA protein assay (Thermo
Scientific, Wiesbaden, Germany).

4.4. Western Blotting

Protein extracts were run on SDS-PAGE then transferred to nitrocellulose membrane. Membranes
containing C. elegans protein samples were stained with Ponceau. Membranes were blocked in 5%
(w/v) skim milk powder. Then, blots with mammalian protein samples were probed with rabbit
polyclonal antibodies against SIRT1 (1:1000) and SIRT2 (1:1000), mouse monoclonal antibodies against
Raf-1 (1:2000) and β-actin (1:10,000) at 4 ◦C overnight. Blots with C. elegans protein samples were
probed with a rabbit polyclonal antibody against Hsp90 (1:1000) or SIR-2.1 (Batch 1434.3, 1:1000) at
4 ◦C overnight. After washing, blots were incubated with horseradish peroxidase (HRP)-conjugated
secondary anti-rabbit or anti-mouse antibodies, respectively (Dako, Agilent Technologies, Santa Clara,
CA, USA) for an hour at room temperature and developed by ECL. Mammalian protein levels were
determined by the Image J software (NIH, Bethesda, MD, USA) and normalized using the respective
β-actin densities. We note that actin was unreliable as a loading control in the C. elegans experiments,
therefore protein levels were normalized to total protein lane densities stained by Ponceau.

4.5. Immunoprecipitation

5 × 106 cells were treated by 1 µg/mL geldanamycin (GA) or DMSO for 3 h. Then, cells were
washed three times and scraped in ice cold PBS. Lysis was performed in IP lysis buffer (50 mM Tris,
2 mM EDTA, 100 mM NaCl, 1 mM Na3VO4, 1% NP40, 2× Complete, pH 7.6). 1200 µg total protein
per sample were used for immunoprecipitation. SIRT1 was immunoprecipitated by a monoclonal
anti-SIRT1 antibody. Pellets were washed five times with IP lysis buffer and analyzed by SDS-PAGE
and immunoblotting with anti-Hsp90 and anti-SIRT1 antibodies.

4.6. C. elegans Strains and Maintenance

All strains used were originally obtained from CGC. Animals were kept at 20 ◦C using standard C.
elegans techniques [63]. Caenorhabditis elegans strains used in this study: N2: wild type, VC199:
sir-2.1(ok434), SCS003: pkIs1642 [sir-2.1 unc-119] unc-119(ed3) (outcrossed ×6); SCS004: pkIs1641
[unc-119] unc-119(ed3) (outcrossed ×6) [10].

4.7. RNA Interference

HT115(DE3) E. coli strains producing double stranded RNA against hsp-90 [46] and sir-2.1,
respectively, were kind gifts from Eileen Devaney (University of Glasgow, UK) and Tibor Vellai
(Eötvös Loránd University, Budapest, Hungary). RNAi feeding was performed using the standard
method [64]. E. coli clones harboring RNAi plasmids were grown overnight at 37 ◦C in LB medium
containing 100 µg/mL ampicillin. Nematodes were grown on plates containing 1 mM IPTG, 50 µg/mL
ampicillin and 6.25 µg/mL tetracyclin, seeded with E. coli L4440 empty vector (EV) control and specific
RNAi vectors, respectively, from hatching. Measurements were made after two days.

4.8. C. elegans Lysis

Synchronized populations of worms were grown on 10 cm NGM plates with IPTG seeded with
E. coli HT115 harboring either hsp-90(RNAi), sir-2.1(RNAi) or empty vector (EV). Worms were washed
using M9 buffer three times and frozen at −80 ◦C. Samples were thawed on ice in 200 µL of nematode
lysis buffer (50 mM Tris-HCl, 0.25% SDS, 1% NP40, 150 mM NaCl, 1 mM EDTA, 2× Complete, pH 7.4).
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Proteasomal degradation of SIR-2.1 was assessed by making total worm lysates in nematode lysis buffer
supplemented with 6 M urea. Samples were sonicated on ice 6 times for 10 s after three freeze–thaw
cycles and centrifuged for 10 min at 10,000× g at 4 ◦C. Protein concentration in the supernatants was
determined by the detergent-compatible Pierce BCA protein assay (Thermo Scientific, Wiesbaden,
Germany).

4.9. Statistical Analysis

Data were compared by two-tailed unpaired t-test. Variables were expressed as mean ± standard
deviation (S.D.). Statistical significance was indicated as follows: * p < 0.05, ** p < 0.01, *** p < 0.001.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/11/
3661/s1.
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