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Perspective: bidirectional exosomal transport between cancer
stem cells and their fibroblast-rich microenvironment during
metastasis formation
Gábor Valcz1,2, Edit Irén Buzás3,4, Zoltán Szállási5, Alexandra Kalmár1,2, Tibor Krenács6, Zsolt Tulassay1,2, Péter Igaz1,2 and Béla Molnár1,2

Carcinomas are complex structures composed of hierarchically organized distinct cell populations such as cancer stem cells and
non-stem (bulk) cancer cells. Their genetic/epigenetic makeup and the dynamic interplay between the malignant cell populations
and their stromal fibroblasts are important determinants of metastatic tumor invasion. Important mediators of these interactions
are the small, membrane-enclosed extracellular vesicles, in particular exosomes. Both cancer cell and fibroblast-derived exosomes
carry a set of regulatory molecules, including proteins and different species of RNA, which cooperatively support metastatic tumor
spread. Here, we briefly overview potential links between cancer stem cells and the exosome-mediated fibroblast-enriched
metastatic niche formation to discuss their role in the promotion of tumor growth and metastatic expansion in breast carcinoma
models.
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INTRODUCTION
Metastatic tumor progression, a stepwise sequence of events
including local invasion, intravasation, survival in the circulation,
extravasation, and colonization, is responsible for 90% of cancer-
associated mortality.1,2 In this process, cancer cells with the
capacity of tumor initiation and repopulation, i.e., cancer stem
cells (CSCs), break away from the primary tumor and colonize the
same or different organs (i.e., they form local or distant
metastasis).3 In recent years, metastatic tumor spreading has
been viewed as a process that involves a dynamic interplay
between cancer cells and their non-malignant microenvironment.
Based on this, the success of metastasis formation depends not
only on genetic/epigenetic deregulation of cancer cells that
ensures survival advantage (analogous to Darwinian evolution),
but also on the support of the tumor adjacent stromal
microenvironment, frequently called “niche”.4,5 Soluble and
vesicular regulators from CSC and non-stem-like (i.e., bulk) cancer
cells can influence the niche in several ways including modulation
of angiogenesis and exert a broad range of effects by which they
perturb functions of the immune system.3,6 Furthermore, tumor-
secreted regulators transform normal stromal cells into cancer-
associated fibroblasts (CAFs), which may support cancer cells,
including the development of stem-like properties and therapy
resistance.7–9

STEM CELLS, BULK CELLS, AND THEIR NICHE
Solid tumors harbor a cellular complexity that exhibits hierarchical
organization and functional heterogeneity, which is also reflected
by the distinct proliferative and differentiation capacities of the

cells. The classical concept of CSC (or hierarchical) theory states
that a small subpopulation of tumor cells, that are widely
considered to arise from normal stem cells, show long-term self-
renewal potential and the ability of tumor initiation and lineage
transition.10–12 CSCs show upregulated signaling pathways
essential in stem cell biology, such as Notch, Wnt, and Hedge-
hog.13 They acquire epigenetic and genetic changes required for
tumorigenicity, and they are capable of repopulating the tumor
after radiotherapy or chemotherapy.11,14 CSCs generally identified
with detection of specific stem cell markers. In breast cancer, CSCs
are frequently described as a CD44+/CD24-/low/Lineage− (mam-
mary epithelial lineage marker negative) or/and an ALDH+

subpopulation.15–17 Expression of the cell-surface glycoprotein
CD133, an accepted CSC marker and a prognostic factor in breast
cancer, was positively associated with aggressive tumorigenicity
showing vasculogenic mimicry (i.e., cancer cells gain endothelial
phenotype and form vessel-like networks) and hormone therapy
(HT) resistance.18,19 An interesting question is the relative
appearance of CD44+/CD24-/low and CD133 expression pattern
in the given CSC cell. For example MDA-MB-231 culture contains
>94% CD44+/CD24−/low and ~26% CD133+ cells which suggests
only a partial overlap between CSC markers.18 In contrast, Wright
et al. found no overlap between these phenotypes in BRCA1
deregulated tumors, and they suggest two distinct CSC popula-
tions.20 Populations with no overlap with CSC marker expression
(i.e., CD133low/CD44high and CD133high/CD44low) equally display
stem-like and partially different features, such as HT resistance in
case of CD133high cells.19 Activation of leptin receptor (a non-
exclusive breast cancer CSC marker)-induced pathways (e.g.,
NANOG, PI3K/AKT, MEK1, and JAK2-STAT3) has also been shown
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to be required for the induction and the maintenance of stem-like
properties.21,22

CSCs derived from the primary tumor mass (primary CSC)
generate transit-amplifying progenitors and their short-lived
derivatives (i.e., clones of bulk cells) with phenotypic and
functional heterogeneity, but without tumor-initiating capa-
city.15,23 Individual CD44+/CD24–/low stem-like cells are detectable
in the tumor-invasive edge adjacent to the tumor stroma (Fig. 1a).
Their expression profile seems to be different from that of ALDH+

(epithelial-like) CSCs, with the latter usually localized in the
internal zones of breast primary tumors. However, the transition
between these two CSC phenotypes has been observed, suggest-
ing plasticity between CD44+/CD24–/low cells of metastatic
capacity referred here as metastatic (met)CSCs and those of
primary CSCs.24 Upon detachment from tumor nests, cancer cells
partially lose their epithelial phenotype and acquire mesenchymal
and stem cell characteristics (epithelial-to-mesenchymal transition
(EMT)).25 Cancer cell detachment without metastasis initialization
is thought to be a relatively frequent event, but most of these cells
are either eliminated by an effective immune surveillance

mechanism or lack the ability to form a new tumor.1,26 While
the metastatic potential is considered to be a CSC-specific
property, it still largely depends on the microenvironment.3,27

The relationship between CSCs and their niche appears to be
bidirectional: cancer cells can modify their microenvironment, and
conversely, according to the Paget’s seed and soil hypothesis, the
niche as a “fertile soil” specifically enables both self-renewal of
CSCs and produce all other carcinoma cells of the tumor
mass.3,28,29 This niche can be defined as a supportive and
receptive tissue microenvironment undergoing a series of
molecular and cellular changes to form metastatic sites.30 The
evolution of this extrinsic regulatory system is a multistage
process which can be divided into (i) niche construction, (ii)
expansion, and (iii) maturation.28 In niche construction, the
activated recipient cells comprising of epithelial, immune,
fibroblast-like cells, and extracellular matrix (ECM) components
may improve cancer cell survival before the arrival of metCSC by
generating a hospitable microenvironment. This process is
mediated by cell–cell interactions, soluble factors, and exosomal
signaling (see below).28,30,31 Pre-metastatic niche is conducive of

Fig. 1 Exosomes of disseminated CSCs (a) with bulk cells of a primary tumor (PT) cooperating in the formation of a local metastatic niche near
the tumor mass. We speculate that during further migration of tumor cells, the effects of migrating CSC-derived exosomes may have more
impact than of exosomes secreted by the distant tumor mass (b). Induction of CAF differentiation is probably a multistep process (i.e., NF-
activated fibroblast-CAF sequence). It is accompanied by the appearance of the tumor promoting effects of CAFs (c). CSC-derived exosomes
are detectable both in the lymphatics and in blood circulation. They may originate from the stroma and may either annihilate the endothelial
tight junctions (d) or they undergo an active transport by the endothelial cells (e). Evidently, these exosomes may also originate from
circulating CSCs and may play a role in the formation of pro-metastatic site in distant organs (f)
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metCSCs by controlling their homing to the metastatic sites.3,6,11,28

After metCSCs integration into the metastatic niche, paracrine
communication will be dominant (Fig. 1b), which promote tumor
malignancy during the niche expansion and maturation.3,28

FIBROBLASTS IN CANCER NICHE
Niche components have been shown to contribute to tumor
progression by regulating the homing, anchoring, self-renewal
potential, and the dedifferentiation of CSCs. CAFs as main stromal
components of solid tumors can differentiate from several cell
types including local, resting, normal fibroblasts (NFs) and
mesenchymal stem cells (MSCs).32,33 These precursors may acquire
a transitional, activated (α-SMA and vimentin positive) phenotype,
e.g., with increased secretion of collagens and fibronectin
(characteristic of activated fibroblasts) which may provide
structural support and anchorage to metastasizing cancer
cells.7,33,34 The precursors gain a pronounced secretory phenotype
with CAF-specific gene expression pattern as they finally transform
to CAFs (e.g., fibroblast-activated fibroblast-CAF sequence; Fig. 1c).
NFs and CAFs can be distinguished by their differential epigenetic
features,35 miRNA patterns,36,37 and expression of NF-related
molecules, namely, reduced levels of TIMPs and p85α proteins.9,38

CAFs play important roles in reprogramming of the tumor
microenvironment through (i) maintenance of the reactive stroma,
e.g., by secreting TGFβ1 and PDGF; (ii) induction of angiogenesis,
e.g., by producing VEGF, SDF-1, and FGF2; (iii) induction of tumor
cell proliferation, e.g., by SDF-1, IGF2, and Gremlin-1 production;
and (iv) facilitating tumor invasion, e.g., by producing TGFβ1, HGF,
MMPs, and tenascin.33,39 They also secrete large amounts of ECM
molecules including collagen, laminin, and fibronectin. In addition,
the modulated ECM can serve as a reservoir for oncogenic
signals,40–42 which may influence CSC properties including
migration and drug resistance.43–45 Breast CAFs isolated from
HER2-positive, triple-negative, and ER-positive breast tumors
showed distinct gene expression patterns and functions.46 This
study showed that properties of CAFs are highly influenced by the
adjacent cancer cells and it also supports the tumor-stroma co-
evolution hypothesis, which suggests that CAFs can fine tune their
supporting role to the specific tumor cells.46

EXOSOMES IN THE BREAST CANCER NICHE
Beside soluble regulators, the complex interaction between niche
cells and the tumor epithelium also involves extracellular vesicles
(EVs), such as microvesicles (ectosomes) and exosomes. Exosomes
are small (~50–150 nm in diameter), multivesicular body (MVB)-
derived EVs secreted into the extracellular space, which play
important role in the maintenance of homeostasis of the releasing
cells.47–49 As potent intercellular communicators, they carry
specific molecules such as major histocompatibility complex,
MVB proteins (e.g., ALIX and TSG101), tetraspanins (e.g., CD63,
CD81, and CD82), and chaperones including heat shock proteins
(Hsp60, Hsp70, and Hsp90).47,50 They also contain proteins, as well
as coding and non-coding RNAs.51–53 Exosomal DNA can trigger
cytosolic receptors (e.g., AIM2) of immune cells and result in tumor
supporting inflammatory cytokine secretion.54 Horizontal transfer
of genomic (g)DNA to the nucleus of recipient cell is possible via
EVs (with ~30–1000 nm in diameter), and this gDNA-coded mRNA
and related functional proteins can also be expressed.55 Based on
the available data the transformation potential of the exosome-
like EV’s gDNA is temporary and limited to uptake, as well as
morphological changes without genomic integration in immorta-
lized fibroblast cells.56

Endocrine and paracrine or autocrine exosomal communication
may be (i) a receptor-mediated event, (ii) a result of fusion, or (iii)
endocytosis with subsequent modification of the protein expres-
sion in the recipient cells.57,58 Exosomes from a primary tumor can

transit to the lymphatics or/and to the blood circulation (Fig. 1d,
e), and they can also reach cells of distant organs (Fig. 1f).59–61

Importantly, this endocrine effect shows organ specificity (i.e.,
integrin dependency), which involves activation of recipient
stromal cells during niche construction before the arrival of the
metastatic cancer cells.31 Circulating tumor-derived exosomes
may carry the substrates of tumor-specific mutations, cell-specific
proteins, and RNAs including micro(mi)RNAs.62 Monitoring
changes in circulating exosomal proteins (e.g., CD24 and
survivin-2B) and miRNAs (e.g., miR-21 and miR-1246) is a
promising approach, which may support future early diagnosis
and staging of breast cancers from patients’ sera in liquid
biopsy.63,64 Generally, the endocrine and paracrine exosomal
effects result in the formation of tumor-supporting microenviron-
ment. This also includes a modulated immune environment with
altered recruitment of immune cells, altered presentation of tumor
antigens, downregulated immune activation, and increased
immunosuppression,65 as well as a pronounced CAF
differentiation.

EFFECT OF CANCER CELL-DERIVED EXOSOMES ON CAFS AND
THEIR PRECURSORS
Both activated fibroblasts and fully differentiated CAFs can
influence cancer initiation and progression.7,40 These cells
probably appear early in niche construction and will be prominent
stromal elements in the later phases of metastatic niche
formation.
Exosomal proteins can be more effective in the conversion of

MSCs and NFs to activated fibroblast or a CAF-like phenotypes
compared to their soluble counterparts. The best example for this
is TGF-β bound to exosomal heparane sulfate proteoglycan. In the
prostate cancer secretome, extracellular TGF-β associated with
exosomes is found in smaller amounts than soluble TGF-β, 20% vs.
80%.66,67 However, of identical amounts of TGF-β the exosome
membrane-bound ligand has significantly more pronounced
effect than the unbound molecule.66 Exosomal TGF-β of different
tumors including breast cancer cause increased expression of TGF-
β receptors (TGF-βRI and II) and activation of SMAD-dependent
and SMAD-independent (e.g., PI3K/AKT) pathways.66,68,69 Further-
more, exosomal, but not soluble TGF-β leads to differentiation of a
biochemically distinct activated fibroblast/CAF-like phenotype.70

NFs or MSCs exposed to tumor cell-derived exosomal TGF-β
induced angiogenesis (via uPA, HGF, VEGF-A, FGF2 secretion) in
co-cultured endothelial cells. Also, they caused enhanced migra-
tion/invasion (i.e., by secretion of MMP1, MMP3, and MMP13),
expansion, and proliferation of tumor cells.66,70

Breast cancer-derived exosomes also carry different RNA species
and are capable of modifying the properties of recipient-activated
fibroblast/CAF precursors in the tumor microenvironment. As an
important example, exosomes from different tumor cells including
MCF-7 breast cancer line, contain human telomerase reverse
transcriptase (hTERT) mRNA. Exosomal hTERT mRNA can be
translated into a fully active telomerase enzyme that can induce
increased proliferation in recipient (telomerase-negative) fibro-
blasts. Furthermore, the transferred hTERT mRNA also protected
the cells from replicative senescence and DNA damage.71 Beside
mRNAs, exosomal miRNAs are seen as the most important
regulators of the tumor microenvironment. miRNAs are secreted
aberrantly in many types of cancer and regulate gene expression
through destabilization, degradation, and translational inhibition
of mRNAs.62 Furthermore, certain microRNAs (e.g., miR-21 and
29a) can activate pattern-recognition receptors such as Toll-like
receptors TLR3 and TLR8, and promote a pro-metastatic inflam-
matory microenvironment.72,73 miR-21 is known as a critical
regulator of both fibroblast activation and CAF formation.74–76 In
agreement with this, miR-21 induces NF activation (i.e., increased
α-SMA, FAP, and SDF-1 expression) and promotes the proliferation
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and invasion of the stromal cells in breast phyllodes tumors.77

miR-21 suppresses TIMP3 in NFs78 which is sufficient for the
acquisition of CAF phenotype.9 Furthermore, miR-21 also influ-
ences TGF-β-induced fibroblast activation through several path-
ways, e.g., by the suppression of PDCD4, an inhibitor of α-SMA and
VEGFA79 or by binding to Smad7 mRNA which is a suppressor of
TGFβRI-II/Smad2/3 pathway-directed CAF formation.75,77 Other
miRNAs, such as miR-9, can modify the signature of genes
correlating with cell motility and ECM organization (i.e., EFEMP1,
COL1A1, and MMP1) in breast NFs.80 Furthermore, miR-122 can
reprogram energy metabolism of stromal fibroblasts via suppres-
sing their glucose uptake, which promotes pre-metastatic niche
partially by increased glucose availability of cancer cells.81,82 These
changes (as presented in Fig. 2a) are associated with rapid
progression, poor overall survival, and secondary metastasis in
breast cancer.
An important question is whether there are any differences

between bulk cells and tumor-initiating CSCs in their exosomal
content and effect on CAF precursors. In prostate adenocarci-
noma, exosomes separated from the CSC and bulk tumor cell
fractions showed clearly different effects on CAF precursors, which
is less studied in breast cancer.83 Some breast cancer studies used
purified exosomes from MDA-MB231 cultures with predominant
CD44+/CD24–/low population.84 However, merely being CD44+/
CD24–/low does not meet all criteria of CSCs, and it may indicate
only some degree of stem-like properties. Cho et al. compared the
effect of exosomes secreted by basal (MDA-MB231) and luminal
(MCF-7) breast cancer lines on MSCs. Importantly, exosomes from
the two cell lines could stimulate different signaling pathways
associated with the fibroblast-like transformation of MSCs.69

However, how this difference can be related to the diverse
receptor expression and signaling of these cell lines and to their
different tumor stem/progenitor cell content needs further
clarification.

EFFECT OF CAFS EXOSOMES ON BREAST CANCER CELLS AND
CSCS
Exosomal traffic from fibroblastic cells induces clinically important
properties of cancer cells including invasive capacity, stem-like
properties, and therapy resistance. Here, we discuss the effect of
CAF exosomal proteins, DNA, and different RNA species on breast
cancer cells.
CD81 on exosomes derived from mouse fibroblasts and patient-

derived CAFs can stimulate protrusive activity and motility of
cancer cells by mobilizing autocrine Wnt-PCP pathway.85 CAF-like
(i.e., p85α−/−) fibroblast-derived exosomes can also activate the
Wnt pathway by delivering Wnt10b protein resulting in increased
migration, EMT, and cytoskeletal remodeling of breast cancer
cells.38

Exosomal RNAs can influence treatment response of breast
cancer cells via activation of interferon-related DNA damage
resistance signature. Mirjam et al. described that paracrine
exosomal 5′-triphosphate (5′ppp) RNAs activate the pattern
recognition receptor RIG-I in the cytoplasm of cells.86 In
agreement with this, fibroblast-derived exosomal 5′ppp RN7SL1
RNA, as danger-associated molecular pattern, can activate RIG-I.87

This pathway cooperates and converges with juxtacrine pathways
such as STAT, which facilitates the transcriptional response to
NOTCH and expand therapy-resistant tumor initiating breast
cancer cells.86,87 Primary CAF-derived exosomal miRNAs, such as
miR-21, miR-143, and miR-378e promote anchorage-independent
cell growth and EMT phenotype in breast cancer cells. Further-
more, these miRNAs also induced a de-differentiation process
toward stem-like state with increased expression of Oct3/4,
Nanog, and Sox2 markers and the aggressiveness of breast cancer
cells.88

The mitochondrial (mt)DNA levels and mutational status within
cancers are associated with the development of resistance to
therapies. CAF-derived mtDNAhigh exosome from HT-resistant
breast cancer patients treated metabolically dormant populations
and HT-naive breast cancer cells promoted an escape from
metabolic quiescence and developed HT-resistant disease.89

Several of the above-described experiments (Fig. 2b) used
culture with vastly different CD44+/CD24-/low cell rates, in which
CAF-derived exosomal regulators supported metastatic and/or
stem cell-like properties. This phenomenon partially overlaps with
the “extrinsic CSC theory” suggesting that all cancer cells are
functionally equivalent, but they display heterogeneous behavior
as a function of extrinsic cues.90 The hypothesis that cancer cells
gain CSC characteristics exclusively by the effect of external
signals should be handled with caution. The MDA-MB231
experiments38,85,86 support the relevance of this theory when a
cell population with stem-like properties is used. In this case,
among external signals CAF-secreted exosomes can modify the
properties of these cells toward a definite metastatic and tumor-
initiating phenotype. Assuming that not only the acquisition of
metastatic potential but also the metCSC to CSC transformation
take place in the primary tumor, the extrinsic CSC theory can be
brought into line with the “dynamic heterogeneity” metastatic
model. According to the latter theory, metCSC subpopulations are
generated at a high rate in a primary tumor; however, these
variants are relatively unstable.91 In our case, this model could be
used with the exception that these dynamic processes are at least
partly directed by fibroblast-derived exosomal signals.

CLINICAL PERSPECTIVES AND FUTURE DIRECTIONS
As we discussed here, exosomes have significant pathological
relevance in breast cancer progression. Inhibition of exosomal
communication between cancer cells and the stromal microenvir-
onment may have therapeutic potential.92,93 GW4869 is a neutral
sphingomyelinase inhibitor that blocks ceramide-mediated inward

Fig. 2 Exosomal crosstalk between breast cancer cells and activated
fibroblasts/CAFs. Breast cancer cell-derived exosomal molecules and
their effect on activated fibroblasts/CAFs are illustrated in (a). (b)
shows the effect of activated fibroblast/CAF-derived exosomes on
breast cancer cells/CSCs
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budding of MVBs and exosome release; furthermore, it is widely
used in breast cancer cell and CAF experiments.38,92,94 In
combination with chemotherapeutic agents, it significantly
reduced the survival of carcinoma cells in co-cultures and mouse
experiments.95,96

In principle, CSCs could be eliminated by using exosomes with
modified surface (to facilitate targeted uptake) and cargo
(delivering drugs, peptides, proteins, or RNAs with low toxicity
and immunogenicity).97 Exosomes produced by immature den-
dritic cells and loaded with doxorubicin have integrin-dependent
anti-tumor effect to MDA-MB231 cells in a mouse model.98 Not
only immature dendritic cells-derived, engineered exosomes, but
also reprogrammed cancer cell-derived or naive bone marrow-
derived MSC exosomes may have a therapeutic effect or may
delay cancer recurrence. Transfected breast cancer cell-derived,
miR-134 carrying exosomes can reduce target protein expression
(i.e., STAT5B and Hsp90), cell migration, invasion, and enhance
anti-Hsp90 drug (cisplatin)-induced apoptosis in recipient cells.99

Furthermore, uptake of GE11 (an epidermal growth factor receptor
(EGFR) ligand) surface protein-enriched, and let-7miRNA tumor
suppressor containing HCC70 cell-derived exosomes can inhibit
EGFR-positive breast tumor development in vivo.100 MSC-derived,
cell cycle inhibitory miRNA containing exosomes increased the
number of CD44− cells in CD44+/CD24–/low (MDA-MB231) culture
suggesting that these exosomes play a crucial role in the dormant
state of breast CSCs.101 However, although these experiments are
still in pre-clinical phase, the promising results suggest their
possible importance in the future of cancer therapies.
In conclusion, the complex exosomal crosstalk between breast

CSCs and fibroblastic cells plays key roles from the early steps of
niche formation, through metastatic growth, to further metastasis
initiation. The prominent role of exosomal crosstalk in the
metastatic cascade is well justified by the effect of CSC-derived
and particularly metCSC-derived exosomes on non-malignant
cells. Exosomal interactions are also important in defining steps of
CAF differentiation and regulating precursor cell functions in niche
construction. Furthermore, exosomal signal delivery can also be
important in CAF heterogeneity possibly attributed to tumor-
stroma co-evolution and potential paracrine communication.
Therefore, using engineered, specific exosomes against CSCs, or
blocking cancer–stroma interactions hopefully will be of great
significance for cancer therapies.
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