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INTRODUCTION 

The balance between the energy intake and energy expenditure is very tightly 

controlled by the central nervous system. The brain has to sense the amount and the 

composition of the consumed food, the actual condition of the adipose depots and the needs 

of other peripheral organs. For this precise regulatory process, the communication of the 

brain and the peripheral organs is inevitable. This peripheral organ-brain communication 

is primarily mediated via the bloodstream and by the visceral sensory nerves. Through the 

bloodstream, peripheral hormones and metabolites reach the central nervous system. The 

energy homeostasis-related hormones such as leptin and insulin carry information about 

the energy stores of the body, while the gastrointestinal hormones like cholecystokinin 

(CCK) and peptide YY (PYY) mediates information about the consumed food. The 

primary central target of these circulating signals is the hypothalamic arcuate nucleus 

(ARC), where two antagonistic neuron groups are located which have pivotal role in the 

regulation of energy homeostasis. One of these two cell types synthesizes anorexigenic 

peptides, the -melanocyte-stimulating hormone (-MSH), derived by the 

posttranslational processing of the pro-opiomelanocortin (POMC) prohormone, and the 

cocaine- and amphetamine-regulated transcript (CART) peptide. The other neuron group 

has orexigenic role, it produces agouti-related protein (AgRP) and neuropeptide Y (NPY). 

Both of these peptides stimulate food intake and inhibit energy expenditure. Neurons of 

the ARC integrate the blood derived information with neuronal signals and transmit this 

message toward the so called second-order neuronal groups. The melanocortin 4 receptor 

(MC4-R) plays critical role in the mediation of the effects of the feeding-related ARC 

neurons, because -MSH serves as an agonist, while AgRP is an endogenous antagonist of 

the MC4-R. The mutation of MC4-R results in morbid obesity. The actual state of the 

mechano- and chemoreceptors located in the gastrointestinal tract and the local effects of 

gastrointestinal hormones are conveyed to the brain mainly through the vagus nerve. The 

fibers of the vagus nerve terminate in the nucleus tractus solitarii (NTS). After signal 

integration, the NTS relays this information toward the forebrain through the ascending 

brainstem pathways to influence feeding-related brain areas. For example, the activation 

of glutamatergic neurons of the NTS inhibits the food intake through the NTS parabrachial 

nucleus (PBN)- central nucleus of the amygdala (CEA) pathway.  
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The two main parameters of the energy homeostasis, the food intake and the energy 

expenditure generally regulated simultaneously by the central nervous system, for 

example, the decrease of food intake is accompanied by the increase the energy 

expenditure. However, there is a condition, the refeeding of animals after a period of 

fasting, when the regulation of these two processes are uncoupled. Two hours after the 

onset of feeding, the animals become sated, terminate the feeding. At this time the neuronal 

activation marker, the c-Fos protein, appears in the ARC POMC neurons indicating the 

activation of POMC neurons. However, the energy expenditure does not increase in this 

early phase of refeeding, it is increased only 24 hours after the start of food intake. Based 

on this observation, we hypothesized that examination of the activated neuronal groups in 

this early phase of refeeding helps the better understanding of the mechanisms that results 

in the development of satiety. Since the two energy homeostasis-related sensor areas of the 

brain, the ARC POMC neurons and NTS are activated at the same time during refeeding, 

and the vagus nerve-NTS pathway is known to play pivotal role in the determination of 

meal size, we hypothesized that the ARC POMC neurons are activated by the vagus nerve-

NTS-ARC pathway.  
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AIMS 

Due to the very high incidence of obesity in western countries and the lack of efficient 

and side effect free therapy, elucidation of the neuronal circuits regulating the food intake 

has crucial importance. Therefore, the goal of my PhD work was to better understand the 

neuronal network involved in the development of satiety in refed rats. To reach this goal, 

our specific aims were:  

 

1. To map the refeeding-activated neuronal groups in the rat brain. 

2. To determine whether refeeding-induced activation of POMC neurons in the 

arcuate nucleus is dependent upon the vagus nerve and/or ascending 

brainstem pathways. 

3. To map the connections of parabrachial nucleus with other refeeding-

activated neuronal groups. 

4. To map the connections of central nucleus of amygdala with other refeeding-

activated neuronal groups. 

5. To elucidate the role of the subnuclei of the central nucleus of amygdala in 

the development of satiety during refeeding. 
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METHODS 

Animals: 

The experiments were carried out on adult male Wistar rats (TOXI-COOP KKT, 

Budapest, Hungary) weighing 270–310 g or Sprague–Dawley rats (230–250 g body 

weight) purchased from Charles River Hungary Ltd (Isaszeg, Hungary). All experimental 

protocols were reviewed and approved by the Animal Welfare Committee at the Institute 

of Experimental Medicine of the Hungarian Academy of Sciences. 

Surgical procedures: 

Retrograde and anterograde tract tracing 

The retrograde tracer cholera toxin β subunit (CTB; List Biological Laboratories, 

Campbell, CA) and the anterograde tracer, Phaseolus vulgaris leuco-agglutinin (PHAL; 

Vector Laboratories Inc.) was injected by iontophoresis into the region of PBN and CEA. 

Rats were anesthetized and their head positioned in a stereotaxic apparatus with the bregma 

and lambda in the horizontal plane. Through a burr hole in the skull, a glass micropipette 

(17.5-20 μm outer tip diameter) filled with 0.5% CTB in 0.01M PB at pH 8.0 was lowered 

into the brain at stereotaxic coordinates corresponding to the PBN, and CEA based on the 

atlas of Paxinos and Watson. The CTB was deposited for 10 min (6 μA (in cases injection 

to the PBN) and 5 μA (CEA administration) positive current, pulsed on—off at 7s intervals) 

using a constant-current source. The transport time intervals were 7-10 days.  

Vagotomy 

Bilateral subdiapharagmatic vagotomy, and sham operation as control was performed 

on male Sprague–Dawley rats. After anesthesia, the animals were placed in a dorsal 

recumbent position and a laparotomy was performed to expose the stomach and lower 

oesophagus at the subdiaphragmatic level. Trunks of the vagus nerve were isolated on the 

surface of the subdiaphragmatic part of the oesophagus and removed with the connective 

tissue. Sham surgery was performed in a similar way, except that the vagal trunks were not 

cut and the connective tissue was not removed. One day after surgery, the vagotomized 

animals were divided into two groups and the sham-operated animals were divided into 

three groups. The first group was fasted for 40 hours, whereas the second group was fasted 
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for 40 hours and then given free access to food for 2 hours before perfusion. The third 

group of the sham-operated rats was fasted for 40 hours and then refed with the same 

amount of food that was consumed by the refed, vagotomized rats (pairfed group). At the 

end of the experiment the animals were transcardially perfused. 

Transection of the ascending brainstem pathways 

After the anesthesia, a 3mm-wide glass knife was lowered into the brain at the level of 

mesencephalon, parallel with the coronal plane under stereotaxic guidance. Control 

animals were operated the same way, although the glass knife was not lowered into the 

brain (sham-transected animals). After 2 weeks of survival, the animals with transection 

were divided into two groups: the first group was fasted for 40 hours, whereas the second 

group and the sham-transected animals were fasted for 40 hours and then given free access 

to food for 2 hours before perfusion. The effectiveness of the transections were examined 

by analysis the noradrenerg innervations of POMC neurons. 

Chemogenetic activation of CEA subnuclei using hSyn-hM3D(Gq)-mCherry adeno 

associated virus (AAV) (DREADD virus) 

hSyn-hM3D(Gq)-mCherry AAV virus was injected unilaterally into the subnuclei of 

CEA during stereotaxic surgery by a microinjector.  After two weeks, the animals were 

fasted for 40 hours. 15 minutes before the refeeding the animals were injected ip with CNO 

(ligand of hM3D(Gq)) and the control animals were treated with saline. One week later, 

the experiment was repeated as follows: rats that had been injected with CNO in the first 

experiment received saline injection, and the saline treated rats received CNO injection 

after 40 hours fasting. The food intake was monitored using TSE PhenoMaster system. One 

week later, after the 40 hours fasting period, the first injection protocol was repeated with 

the difference that the animals did not receive food. Two hours after the treatment, the 

animals were deeply anesthetized and perfused transcardially. 

Fasting and refeeding 

The food was removed from the cages of rats for 40 hours. During this time, they had 

free access to water. After the fasting period, standard rodent food was reintroduced to the 

animals and the rats were allowed to eat ad lib for 2 h. At the completion of the refeeding 

interval, the animals were deeply anesthetized and perfused transcardially.  
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Immunocytochemistry 

At the end of all experiments, the animals were anaesthetized and then perfused 

transcardially with 150 ml of 4% paraformaldehyde (PFA) in 0.1M phosphate buffer (PB, 

pH 7.4). The brains were rapidly removed and postfixed in the same fixative for 2 hours 

and cryoprotected by immersion in 30% sucrose in PBS overnight. Coronal, 25 μm thin 

sections were cut with a freezing microtome. Free-floating tissue sections were pretreated 

with 0.5% H2O2 and 0.5% Triton X-100 in PBS for 15 min to reduce the endogenous 

peroxidase activity and increase the permeability of cell membranes, respectively. To 

reduce nonspecific antibody binding, the sections were treated with 2.5% normal horse 

serum in PBS for 20 min. The antibodies were diluted in the same solution. The used 

antibodies, chromogens or fluorochromes are summarized in the Table 1. 

Statistical analysis 

For the statistical analysis the Statistica 8.0 software was used. The data were described 

as mean+SEM. T-test was used for comparison of two groups. The statistical examination 

of three or more groups was performed using one- or two-way ANOVA followed by 

Newman–Keuls or Tukey HSD post hoc, respectively.  
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Table 1: Summary of antibodies, reagents, fluorochromes and chromogens used for 

immunohistochemical studies 

Detected Antigen Primary antibody Detection 

c-Fos 
rabbit antiserum against c-Fos 

(Oncogen; 1:10000) 

biotinylated-anti-rabbit IgG (Jackson), ABC 

biotinylated tyramide amplification, Ni-DAB 

Nissl-staining 

DBH/ POMC 

mouse antiserum against DBH 

(oncogene; 1:1000) 

Alexa 555-conjugated donkey anti-mouse IgG 

(Invitrogen) 

rabbit antiserum against POMC 

(Phoenix; 1:2000) 
FITC-conjugated donkey anti-rabbit IgG (Jackson) 

c-Fos/ 

POMC 

rabbit antiserum against c-Fos 

(Oncogen; 1:10000) 

biotinylated donkey anti-rabbit IgG (Jackson), 

ABC, biotinylated tyramide amplification, 

streptavidin-labeled FITC (Vector) 

rabbit antiserum against POMC 

(Phoenix; 1:2000) 

Alexa 555-conjugated donkey anti-rabbit IgG 

(Jackson) 

CTB 
goat antiserum against CTB 

(Listlab; 1:10000) 

biotinylated donkey anti-sheep IgG (Jackson), 

ABC, Ni-DAB 

Nissl-staining 

PHAL 
goat antiserum against PHAL 

(Vector; 1:10000) 

biotinylated donkey anti-sheep IgG (Jackson), 

ABC, Ni-DAB 

Nissl-staining 

CTB/ 

c-Fos 

goat antiserum against CTB 

(Listlab; 1:5000) 

biotinylated donkey anti-sheep IgG (Jackson), 

ABC, DAB 

rabbit antiserum against c-Fos 

(Oncogen; 1:10000) 

biotinylated donkey anti-rabbit IgG (Jackson) 

ABC,  Ni-DAB 

CTB/ 

c-Fos/ 

POMC 

goat antiserum against CTB 

(Listlab; 1:10000) 

biotinylated-anti-sheep IgG (Jackson), ABC, 

biotinylated tyramide amplification, streptavidin-

labeled FITC (Vector) 

rabbit antiserum against c-Fos 

(Oncogen; 1:2000) 
FITC-conjugated donkey anti-rabbit IgG (Jackson) 

rabbit antiserum against POMC 

(Phoenix; 1:2000) 
Cy5 donkey anti-rabbit IgG (Jackson) 

PHAL/ 

c-Fos/ HuC/HuD 

goat antiserum against PHAL 

(Vector; 1:5000) 

biotinylated donkey anti-sheep IgG (Jackson), 

ABC, biotinylated tyramide amplification, 

streptavidin-labeled Alexa 555 (Vector) 

rabbit antiserum against c-Fos 

(Oncogen; 1:2000) 
FITC-conjugated donkey anti-rabbit IgG (Jackson) 

mouse antiserum against HUC/D 

(Molecular probes; 1:500) 
Cy5-anti-mouse IgG (Jackson) 

c-Fos/ 

RFP/ 

HuC/HuD 

rabbit antiserum against c-Fos 

(Oncogen; 1:10000) 

biotinylated-anti-rabbit IgG (Jackson), ABC, 

biotinylated tyramide amplification, streptavidin-

labeled FITC (Vector) 

rabbit anti-RFP (1:3000, 

Rockland) 

Alexa 555-conjugated donkey anti-rabbit IgG 

(Jackson) 

mouse antiserum against HUC/D 

(Molecular probes; 1:500) 
DyLight 649-conjugated anti-mouse IgG (Jackson) 
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RESULTS 

Distribution of the refeeding-activated neuronal groups in the rat brain 

In the forebrain, refeeding-induced the highest increase in the number of c-Fos-

containing neurons in the prelimbic area (Prl), medial and laterocapsular subdivisions of 

the central nucleus of amygdala (CEAm, CEAlc), the bed nucleus of stria terminalis (BST), 

primarily the medial subdivision including anterior and ventral parts, dorsomedial 

hypothalamic nucleus (DMN), lateral preoptic area (LPO), the ventral and lateral 

parvocellular subdivisions of the PVN (PVNv, PVNl) and the parasubthalamic nucleus 

(PSTN). In the brainstem, a large number of c-Fos-IR neurons was observed in the medial 

and lateral parts of the PBN, in the medial, intermediate and commissural subdivisions of 

the NTS and the area postrema (AP). Moderate to weak neuronal activation was found in 

the somatosensory cortex representing the oral surface, jaw and upper lip region, medial 

orbital cortex (MOB), lateral olfactory tract, piriform-amygdalar area (Pir), olfactory 

tubercle, posterolateral cortical amygdaloid nucleus, agranular insular area and secondary 

motor cortex. Moderate neuronal activation was seen in the amygdaloid complex in the 

medial nucleus of amygdala and the cortical amygdaloid nucleus and in the diencephalon 

including the anterior hypothalamic area (AH), lateral hypothalamic area (LH), lateral and 

dorsomedial posterior arcuate nucleus (dmpARC), zona incerta (ZI), paraventricular 

thalamic nucleus (PVT) and paratenial thalamic nucleus. In the metencephalon there was 

also a redistribution in the pattern of c-Fos-containing neurons in the ventrolateral part of 

the periaqueductal grey (PAGvl). In the fasted rats, the c-Fos containing nuclei were 

concentrated in the lateral part of PAGvl, while the number of c-Fos-IR nuclei decreased 

in this region and a diffuse neuronal activation was apparent in the lateral and ventrolateral 

periaqueductal grey (PAGvl). Nevertheless, intense neuronal activation was seen in the 

fasted rats in the nucleus reuniens, midbrain reticular nucleus and pontine gray. Moderate 

to weak activation was found in fasted rats compared to the refed rats in the lateral septal 

nucleus. 
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Activation of anorexigenic pro-opiomelanocortin neurons during refeeding is 

independent of the inputs mediated by the vagus nerve and the ascending brainstem 

pathways 

Food and water intake 

Sham-vagotomized animals consumed significantly more food (Sham vs. 

Vagotomized 2-h food intake: 8.1 ± 0.7 g vs. 2.7 ± 0.6 g; P < 0.001) and water (Sham vs. 

Vagotomized 1-h water intake: 7.6 ± 0.9 g vs. 2.4 ± 0.6 g; P < 0.001; 2-h water intake: 13.2 

± 2.5 g vs. 6.5 ± 5.0 g; P < 0.05) than the vagotomized animals during the 2 h refeeding 

period after the fast. The sham-vagotomized, pairfed group consumed 2.7 g of food during 

the refeeding period. Animals with unilateral transection of ascending brainstem pathways 

ate the same amount of food as the sham-operated animals (Sham vs. Transected: 8.7 ± 0.9 

g vs. 8.7 ± 0.6 g) during the 2-h refeeding period. 

Effect of vagotomy on refeeding-induced activation of POMC neurons in the ARC 

Only a few POMC-IR neurons containing c-Fos-immunoreactivity were seen in the 

ARC of fasting animals, without apparent differences between sham-operated and 

vagotomized rats. Refeeding of sham-operated animals led to a marked increase in the 

number of double-labelled neurons in the ARC. Refeeding also resulted in an increased 

number of double-labelled POMC neurons in vagotomized rats, although the increase was 

less pronounced. The number of double-labelled POMC neurons also increased in the 

pairfed sham-operated group compared to fasting controls, although it appeared to be lower 

than both the intact and vagotomized rats. Two-way ANOVA analysis of sham fasted, 

sham refed, vagotomized fasted and vagotomized refed groups revealed a significant main 

effect of both vagotomy and refeeding (P < 0.01). Only few POMC-IR neurons containing 

c-Fos immunoreactivity were seen in the ARC of fasting animals, without apparent 

differences between sham-operated and vagotomized rats. Refeeding of sham-operated 

animals led to a marked increase in the number of double-labelled neurons in the ARC. 

Refeeding also resulted in an increased number of double-labelled POMC neurons in 

vagotomized rats, although the increase was less pronounced. The number of double-

labelled POMC neurons also increased in the pairfed sham-operated group compared to 

fasting controls, although it appeared to be lower than both the intact and vagotomized rats. 

By one-way ANOVA, sham pairfed animals showed a significant increase in the c-Fos 

response compared to sham fasted and vagotomized fasted animals, but also a significant 
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decrease compared to sham refed animals (percentage of c-Fos containing POMC neurons, 

sham-fasted vs. sham-refed vs. sham-pairfed: 2.1 ± 1.5% vs. 48.7 ± 3.7% vs. 13.5 ± 2.4%; 

p < 0.05; vagotomized fasted vs. vagotomized refed: 2.9 ± 0.7% vs. 27.6 ± 2.4%; p < 0.001). 

Effect of transection of ascending brainstem pathways on refeeding-induced 

activation of POMC neurons in the ARC 

The effectiveness of the unilateral transection of the ascending brainstem pathways 

were verified by the examination of the number of noradrenergic (dopamine β hydroxylase 

(DBH) containing fibers) axon varicosities on the surface of the ARC POMC neurons. On 

the transected side, the number of DBH-IR varicosities on the surface of POMC neurons 

in the ARC was reduced by a mean of 74.05 ± 3.55% compared to the intact side. In 

addition, quantitative analysis of the number of POMC neurons receiving contacts by 

DBH-IR varicosities showed a marked reduction on the transected side in both fasted and 

refed animal groups (intact side vs. transected side in fasted animals: 93.1 ± 3.1 vs. 50.8 ± 

13.1; in refed animals 91.8 ± 2.9 vs. 56.2 ± 2.8; P < 0.05). 

In fasted animals, only few c-Fos-IR POMC neurons were observed in both the intact 

and the transected sides of the ARC. Refeeding-induced a marked and significant increase 

in the number of c-Fos-labelled POMC neurons in the sham-operated animals and also on 

both sides of the ARC in the transected animals (percentage of double-labelled POMC 

neurons, intact side fasted vs. intact side refed: 6.5 ± 2.6% vs. 28.0 ± 3.4%; p < 0.001; 

transected side fasted vs. transected side refed: 7.4% ± 2.3 vs. 25.2 ± 3.8%; p < 0.001). 

Transection had no influence on the effect of refeeding on the number of double-labelled 

neurons (p = 0.37). The number of c-Fos-IR POMC neurons was similar in the sham 

operated refed and in either side of the refed transected animals (23.4 ± 4.6; sham vs. 

transected side refed, p = 0.75; sham vs. intact side refed, p = 0.69). 

Connections of PBN with other refeeding-activated neuronal groups 

Origins of the refeeding-activated neuronal inputs of the PBN 

In refed, CTB-injected animals, the greatest number of refeeding-activated neurons 

that project to the PBN (CTB- and c-Fos-containing) were observed in the PVN, 

particularly in PVNv and PVNl, the PSTN and in the medial, intermediate and commissural 

subdivisions of the NTS. A moderate number of double-labeled neurons were observed in 
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the BST, primarily the medial part of this nucleus, the CEA, lateral hypothalamic area and 

area postrema. Scattered c-Fos and CTB-containing neurons were detected in the agranular 

insular cortex, anterior hypothalamus, ARC, hypothalamic dorsomedial nucleus and zona 

incerta. 

Examination of the connection between the PBN and refeeding-activated ARC POMC 

neurons 

Triple-labeling immunocytochemistry for c-Fos, CTB and POMC was used to 

determine whether the PBN receives direct or indirect refeeding-activated inputs from 

POMC neurons in the ARC. A large number of POMC neurons in the ARC contained c-

Fos-immunoreactivity in their nuclei after refeeding, but only a very small portion of these 

cells contained also CTB-immunoreactivity (1 or 2 cells/section). However, POMC-IR 

axons were seen to heavily innervate refeeding-activated, PBN projecting neurons in the 

PVNv, PVNl and PSTN. These data suggest that PVN subdivisions and the PSTN mediate 

the effects of the activated POMC neurons on the PBN. 

Identification of the refeeding-activated targets of the PBN 

Large number of PHAL-IR fibers were found in refeeding-activated areas in close 

association with refeeding-activated neurons in the BST and CEA and the PSTN after the 

PHAL injection to the PBN of rats. Less intense innervation was observed in the area of 

anterior hypothalamus, PVNv and PVNl, ARC, DMN, LH, ZI, and AH. Only scattered 

PHAL-IR fibers were found in association with c-Fos containing neurons in the agranular 

insular area and NTS. 

Connections of central nucleus of amygdala with other refeeding-activated 

neuronal groups 

Origin of the refeeding-activated inputs of the CEA 

After iontophoretic injection of CTB into the CEA, the majority of the double-labeled 

neurons containing both c-Fos and CTB were detected ipsilateral to the injection site. A 

large number of double-labeled cells were observed in the PVN, PSTN, PBN and in the 

PAGvl. Few CTB-c-Fos double-labeled neurons were detected in the prelimbic area, 

agranular insular area, visceral, piriform, primary and somatosensory cortex, BST, ARC, 

perifornical nucleus, LH, ZI and NTS. 
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Examination of the connection of CEA and refeeding-activated ARC POMC neurons 

After iontophoretic injection of CTB into the CEA, only few refeeding-activated 

POMC-IR neurons were found to project to the CEA. However, in the PSTN, POMC-IR 

fibers frequently formed appositions on refeeding-activated neurons projecting to the CEA 

suggesting that the PSTN may relay the effect of the activated POMC neurons to the CEA. 

Innervation of refeeding-activated neuronal populations by CEA neurons 

On the ipsilateral side of tracer injection, numerous PHAL-IR fibers were detected on 

the surface of c-Fos-IR neurons in the BST, LH, posterior magnocellular part of the PVN, 

PSTN, PVT, PAG, NTS, and PBN. Only few PHAL-IR fibers were identified in the surface 

of neurons in the medial parvicellular part of the PVN.  

Effect of chemogenetic activation of CEA on the food intake during refeeding 

Activation of the CEAm neurons by ip CNO administration resulted in significant 

decrease of food intake, in the first 60 min of refeeding. Animals injected with CNO ate 

15.32±3.69mg/g lean body weight whereas saline injected animals ate 23.32±5.1mg/g lean 

body weight, (p=0.0035). In the second hour, the CNO injected animals consumed 

significantly more food (10.51 ±5.03 mg/g lean body weight) than the saline injected 

animals (2.46±2.56 mg/g lean body weight) (p=0.006). In the CNO treated animals with 

CEAlc injection CNO treatment did not cause significant changes of food intake (Saline 

versus CNO in the first hour (g/lean body weight): CNO: 24.71±0.7 versus 20.88±1.19 p= 

0.24; Saline versus CNO in the second hour (g/lean body weight): 2.33±0.79 versus 

3.37±2.23 p= 0.96). 

Brain areas activated by the activated CEA neurons  

The chemogenetic activation of CEAm neurons induced significant increase of the 

number of c-Fos-IR nuclei in the BST, PSTN and PBN compared to virus injected saline 

treated animals. The activation of CEAlc did not influence the activation of BST and PSTN, 

but it resulted in significant increase of neuronal activation in the PBN. The increase in the 

number of c-Fos-IR nuclei in this brain region was less than that induced by the activation 

of CEAm.  
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CONCLUSIONS 

Our studies provide detailed map of the pattern of refeeding-induced neuronal 

activation. This information contributes to the better understanding of the neural network 

involved in the development of satiety. These data verify the involvement of the well-

known feeding-related nuclei such as the NTS, PBN and CEA in the regulation of 

refeeding-induced satiety. In addition, our data also suggest the role of other brain areas, 

like the PSTN and dmpARC, in the regulation of satiety. Further examination of the role 

of these brain regions in the development of satiety may contribute to the better 

understanding of the neuronal regulation of energy homeostasis. 

We also demonstrated that the ARC POMC neurons are activated independently from 

the vagus nerve and from the ascending brainstem pathways. These data suggest that the 

POMC neurons are activated solely by direct effects of circulating hormones/metabolites 

during refeeding. We presume that the information reaching the brain via the ARC and the 

NTS is integrated at the level of the NTS by the influence of the ARC POMC neuron-

PVNv-NTS pathway on the sensitivity of the NTS neurons for the vagus nerve derived 

inputs. 

The mapping of the connectivity of PBN and CEA with refeeding-activated neuronal 

groups revealed that these areas have bidirectional connections with each other and with 

other refeeding-activated cell groups suggesting that the information flow is not 

unidirectional in the satiety network, but this network rather utilizes short feedback 

mechanisms to support the precise tuning of neuronal activity. The rich connectivity of the 

PSTN with the other refeeding-activated groups suggests that PSTN is an important node 

of this network that may have critical role in the integration of neuronal activity in the 

satiety network.   

In addition, our tract tracing data together with the chemogenetic examination of the 

role of CEA subnuclei in the regulation of feeding indicate that a PBNm-CEAm pathway 

plays important role in the regulation of food intake during refeeding. This pathway is 

different than the PBNel-CEAlc pathway described by Palmiter’s research laboratory 

which pathway is involved in the development of conditional taste aversion. Thus, we 

presume that parallel PBN-CEA pathways regulate different aspect of food intake.  
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