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a b s t r a c t

Slow-wave activity is a hallmark of deep non-rapid eye movement sleep. Scalp slow wave morphology is
stereotypical and it is highly correlated with the synchronized onset and cessation of cortical neuronal
firing measured from the surface or depth of the cortex. It is also strongly affected by aging, and these
changes are causally associated with age-related cognitive decline. We investigated how normal aging
affects the individual morphology of the slow wave and whether these changes are captured by the
summary slow wave parameters generally used in the literature. We recorded full-night poly-
somnography in 176 participants (age 17e69 years) and automatically detected slow waves. We estab-
lished individual slow morphologies using average amplitude at 501 data points for each participant and
also calculated the individual average slow-wave amplitude, average ascending and descending slope
steepness, halfwave duration, and the total number of slow waves (gross parameters). Using least ab-
solute shrinkage and selection operator penalized regression, we found that SW gross parameters
explain up to 60% of age variance but using fine morphology up to 80% of age variance can be accounted
for. This predictive power was greatest when data from multiple channels were averaged, in midline
derivations and in the first quarter of the night. Young participants had faster slow-wave polarity re-
versals, suggesting a more efficient initiation and termination of slow-wave downstate and upstate. Our
results demonstrate the superiority of the high-resolution slow wave morphology as a biomarker of
aging and highlight downstate-upstate transitions as promising targets of restorative stimulation-based
interventions.
� 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Electroencephalographic recordings in non-rapid eye move-
ment (NREM) sleep are characterized by slow, large amplitude
waves (“slow waves” [SWs]). These SWs are cortical in origin
(Amzica and Steriade, 1995; Csercsa et al., 2010; Steriade et al.,
1993), with thalamic regulation (Crunelli and Hughes, 2010;
David et al., 2013), and they reflect the rhythmic, highly synchro-
nized onset and cessation of cortical neuron firing (Nir et al., 2011;
Steriade et al., 1993). This particular pattern of neural firing has an
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important role in what is perhaps the most important function of
NREM sleep: the normalization of synaptic connections formed
during previous wakefulness (Tononi and Cirelli, 2014). In line with
this observation, SWs aremore frequent and have greater amplitude
in participants and experimental conditions where stronger syn-
aptic connections are expected to form before sleep: in younger
participants, whose synaptic plasticity is greater in general (Carrier
et al., 2001, 2011; Feinberg and Campbell, 2013; Kurth et al., 2012;
Pótári et al., 2017) or in case of sleep deprivation (Borbely et al.,
1981) or intensive, experience-richwakefulness (Huber et al., 2004).

SWsdeven when recorded from the scalpdaccurately reflect
the temporal dynamics of the synchronized onset and cessation of
neural firing, as well as its spatial extent over the cortical mantle
below the scalp electrodes (Nir et al., 2011). The detailed
morphology of SWs (slope steepness, minor structural differences,
frequency) reflects the characteristics of neural firing, and it
changes as a function of age and previous wakefulness: steeper,
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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larger, smoother SWs indicate stronger synchronized firing and
therefore stronger synaptic connections (Huber et al., 2007;
Riedner et al., 2007). As it is expected, this pattern is more com-
mon in young participants, early in the night and after extended, or
more active wakefulness (Bersagliere and Achermann, 2010;
Colrain et al., 2010; Huber et al., 2013; Vyazovskiy et al., 2008).

The age-related reduction of SW activity is well known (Carrier
et al., 2001, 2011). SW density and amplitude is lower in older in-
dividuals, and it is especially associated with cognitive decline
(Dresler et al., 2014; Yaffe et al., 2014), whereas retained SWactivity
at a higher age is associated with better cognitive and physical
health (Anderson and Horne, 2003; Mazzotti et al., 2014). Our
recent study (Pótári et al., 2017) has shown that high IQ is associ-
ated with a significantly attenuated age-related reduction in SW
spectral power, indicating that retained cortical plasticitymay be an
important mechanism behind the better cognitive and perhaps
somatic health of participants with high general cognitive ability.

In sum, SWs reflect the ability of cortical neuron populations to
engage in synchronized activity through synaptic connections, and
they are affected by aging, resulting in worse cognitive functioning.
This renders SW activity a promising marker of age-related cogni-
tive problems.

SWs have multiple characteristics which reflect different prop-
erties of the underlying synchronized neuronal firing. The ampli-
tude of waves reflects the maximum extent of firing synchrony (Nir
et al., 2011; Vyazovskiy et al., 2008), the steepness of slopes reflects
the rapidness of the buildup and cessation of neuronal firing (Esser
et al., 2007; Riedner et al., 2007) and frequencydnot independently
from the formerdreflects the overall synaptic load (Carrier et al.,
2011). It has been demonstrated that different SW parameters are
differently affected by aging (Carrier et al., 2011), and age-related
structural changes in the brain have different effects on density
and amplitude (Dube et al., 2015; Latreille et al., 2019).

Although they provide more temporal resolution than power
spectral density or the total number of SWs, SW slope and ampli-
tude are crude approximations of the true morphology of SWs and
therefore can only approximately track the age-related changes of
it. Owing to their highly stereotypical morphology, it is possible to
investigate SWs with a methodology similar to what is used in case
of event-related potentials (ERPs) (Key et al., 2005). ERP analysis
focuses on the average of EEG signals following several functionally
identical events (usually the repeated presentation of a stimulus)
and it identifies stereotypical patterns in EEG activity which may be
obscured in individual cases but appear in the averaged recording.
In the sleep EEG, such analyses were previously performed on a
specific type of SW, the evoked K-complex (Crowley et al., 2002). K-
complexes are morphologically similar to ordinary SWs, which can
also appear spontaneously but can also be elicited by stimulation
(Halász, 2005). Evoked K-complex components, computed in an
identical manner to ERPs in wakefulness, are not only sensitive to
the modality of the stimulus with which they were elicited but also
to sex, age, and disease (Colrain and Baker, 2011; Colrain et al., 2010,
2011; Crowley et al., 2002). It is reasonable to assume that the shape
of spontaneously occurring NREM SWs is also subject to such age-
related variation, but this has never been empirically investigated.

An ERP-like analysis on spontaneous SWs is possible even in the
absence of a trigger stimulus by aligning the EEG signal to a ste-
reotypical morphological element of SWs (such as the negative
peak) and averaging accordingly. This analysis reveals not only the
major microstructural parameters of SWs (such as halfwave fre-
quency or ascending/descending slope steepness) but also iden-
tifies specific wave components and their precise dynamics at a
temporal resolution equal to the sampling frequency of the
recording, resulting in substantial additional information about SW
dynamics.
The goal of this study was to investigate the age-related changes
in the high-resolution temporal morphology of spontaneously
occurring NREM SWs using a large existing sleep EEG database of
healthy participants of various ages. We hypothesized that the as-
sociation between age and SW characteristics is stronger if the
detailed SW morphology is also considered in multivariate models.
As a result of this study, we were able to pinpoint candidate elec-
trophysiological markers of healthy aging beyond the change of
major SW elements such as amplitude or density. We found that
younger participants are characterized by faster SW phase transi-
tions both preceding and following negative peaks, suggesting a
more rapid buildup and cessation of SW downstates.

2. Materials and methods

2.1. Participants

Pre-existing data from 176 healthy participants (mean age
29.9 years, SD 10.62 years, range 17e69 years; 95 males with mean
age ¼ 30.35 years, SD ¼ 10.51 years, range 17e69 years; 81 females
with mean age¼ 29.25 years, SD ¼ 10.68 years, range 18e60 years;
tage by sex ¼ 0.68, p ¼ 0.49) from a multicenter database of the Max
Planck Institute of Psychiatry (Munich, Germany), the Psycho-
physiology and Chronobiology Research Group of Semmelweis
University (Budapest, Hungary), and the Budapest University of
Technology and Economics (Pótári et al., 2017; Ujma et al., 2014)
was used in this retrospective study. The exact breakdown of
participant ages by sex is provided in Supplementary table S1. Data
from one 19-year-old male participant was excluded because of
abnormal average SW morphology. Study procedures were
approved by the ethical boards of Semmelweis University, the
Medical Faculty of the Ludwig Maximilian University, or the
Budapest University of Technology and Economics. All participants
were volunteers who gave informed consent in line with the
Declaration of Helsinki. According to semistructured interviews
with experienced psychiatrists or psychologists, all participants
were healthy, had no history of neurologic or psychiatric disease,
and were free of any current drug effects, excluding contraceptives
in females. Consumption of small habitual doses of caffeine
(maximum 2 cups of coffee until noon), but no alcohol, was
allowed. Six male and 2 female participants were light-to-moderate
smokers (self-reported), and the rest of the participants were
nonsmokers. Further details about participant selection criteria and
study protocols can be found in the studies referenced previously.

2.2. Electroencephalography

All participants underwent all-night polysomnography re-
cordings for 2 nights, and data from the second night were used for
all analyses. Scalp EEG electrodes were applied according to the
10e20 system (Jasper, 1958) and referenced to the mathematically
linked earlobes. Impedances were kept at <8 kU. EEG was sampled
at 250 Hz for 115 participants, 249 Hz for 29 participants, and
1024 Hz for 15 participants, always resampled at 250 Hz (see Sec-
tion 2.3). Sleep EEG was visually scored on a 20-second basis ac-
cording to standard criteria (Iber et al., 2007). A visual scoring of
artifacts was also performed on a 4-second basis. EEG preprocess-
ing was implemented in Fercio’s EEG (�Ferenc Gombos, Budapest,
Hungary). Further details about the technical details of the sample
can be found in Table 1 in the study by Ujma et al. (2014).

2.3. Slow-wave detection

We used multiple methods of SW detection to test the robust-
ness of our findings. We ran detections on 2 signal derivations: (1)
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the averaged data of frontal channels and (2) individual channel
data.

For frontal SW detection, the signal of the electrodes F3 and F4
was band passefiltered to 0.5e4 Hz (two-way finite impulse
response filter implemented in EEGLAB) and averaged. SWs were
detected on this averaged signal. An SW was detected if a negative
deflection of the signal persisted for 0.2e1 second and exceeded an
amplitude threshold based on previous studies. To test the
robustness of results across several possible amplitude thresholds,
detections were performed using 3 different values and used in
separate subsequent analyses:

1. Maximal negative deflection <�30 mV, with the lower 50% of
the amplitude distribution discarded as putative false positives
(Bersagliere and Achermann, 2010)dnote that, in this case, the
exact amplitude and distribution thresholds were not identical
to the cited study because of the differences in study goals.
2. Maximal negative deflection <�37.5 mV, with peak-to-peak
amplitude to the subsequent positive deflection >75 mV
(Piantoni et al., 2013).
3. Maximal negative deflection <�75 mV, with peak-to-peak
amplitude to the subsequent positive deflection >140 mV
(Massimini et al., 2004).

Putative SWs which were detected even partially outside N2 or
SWS and/or coincided with a visually detected artifact epoch were
discarded. All SWs detected using each detection threshold were
extracted from the EEG signal used for their detection and averaged
for each participant, yielding 3 individual average SWs for each
participant, one according to each detection criterion. To control for
inter-individual differences in baseline EEG voltage because of sex
and body size effects, we also calculated a standardized SW for each
participant, in which the mean amplitude of the average SW was
0 and its standard deviation 1 within the same participant,
regardless of raw voltage. Because this was performed for the
average waves detected using all 3 methods, it resulted in a total of
6 average SWs for participant, 3 consisting of EEG voltage time
series and another 3 of standardized values of the former.

For all-scalp detections we ran, the above described methods (2)
and (3) on the data of 18 EEG channels (Fp1, Fp2, F3, F4, Fz, F7, F8,
C3, C4, Cz, P3, P4, O1, O2, F7, F8, T3, T4, T5, and T6). Data from F7, F8,
T3, T4, T5, T6, Fz, and Cz were not available for 20 participants and
treated as missing data in all subsequent analyses. Simultaneous
detections on multiple different electrodes (negative peaks sepa-
rated by no more than 200 ms) were grouped together as a single
traveling wave, and SWs only exceeding the 75 mV amplitude cri-
terionwere only considered if they co-occurred by these definitions
with at least one 140 mV SWon another channel (Ujma et al., 2018).

Macroscopic features of SWmorphology frequently used in EEG
literature (henceforth referred to as “gross parameters”) were
represented by the number of SWs, their average amplitude
(negative peak voltage in mV), and their average slopes (descending
downstate [DDS], ascending downstate [ADS], ascending upstate
[AUS], descending upstate [DUS], in all cases expressed in mV/s) and
their average negative and positive halfwave durations, which were
calculated for each participant. In addition to these, for the 30 mV
frontal model which used a dynamic detection threshold corre-
sponding to the 50th percentile of the amplitude distribution of
these relatively small SWs, the value of the 50th percentile was also
used as a gross parameter. For all-scalp SW detections, we also
calculated mean lag (the mean difference of the timing of SW
negative peaks on this channel and the channel the first co-
occurring SWs occurred on) as a gross parameter. Gross parame-
ters were z-transformed across all participants of the same sex to
eliminate possible sex differences.
The fine morphology of SWs was represented by 501 equally
spaced time points including and sampled �1 second around the
negative peak of the average individual SWs, thus each separated by
4 milliseconds. Amplitude values at these time points were ob-
tained using linear interpolation for the participants whose original
EEG sampling frequency was not 250 Hz. Amplitude values at each
of the 501 sampling points were averaged across all SWs within the
same participants, yielding an average individual SW morphology
consisting of 501 variables, each representing the average SW
amplitude at one 4 msec sampling point. For average frontal
channel data, the finemorphology of SWs was calculated using all 3
detection criteria. For all-scalp detections in case of SWs co-
occurring on multiple channels, SW morphology was measured
around each channel’s individual SW peak.

SW detection and further statistical analyses were implemented
in MATLAB R2017a (The MathWorks, Natick, MA) using EEGLAB
(Delorme and Makeig, 2004) and custom scripts.
2.4. Statistical analysis

This study aimed to reveal whether the fine morphology of SWs
is affected by aging beyond its effects on gross parameters:
formally, whether the SW voltage values included in the mea-
surement of fine morphology account for additional age variance
beyond what is accounted for by gross parameters. Standard least
square regression modeling of this relationship was precluded by
the large number of predictors: although age and EEG data were
only available for 176 participants, gross parameters and fine
morphology of SWs were represented by 507 predictors (508 in
case of 30 mV models), leading to a large degree of model under-
determination. We aimed to solve the problem of under-
determination using least absolute shrinkage and selection
operator (LASSO) regression (Tibshirani, 1996). LASSO is an iterative
learning algorithmwhich aims to minimize the following function:

Xn
i¼1

ðyi �
X
j

xijbjÞ2 þ l
Xp
j¼1

jbjj (1)

Where, yi is the dependent variable with n observations, xij are
predictors (total number: p), bj are regression coefficients
assigned to the predictors, and l is a penalty parameter which
increases in each iteration of LASSO. It is easy to see that the parts
of (1) before l refer to the residual or prediction error of the
regression model; however, in each iteration, an additional error
term is added for each nonzero regression coefficient jbjj, and this
additional error is larger for larger values of l. In other words, with
higher values of l, the model is forced to constrain more regres-
sion coefficients to 0, leaving only the strongest predictors in the
model, until ultimately no predictors remain. LASSO balances the
number of predictors against prediction accuracy, finding a value
of l at which enough predictors are left in themodel to account for
maximal variance but not so many that it would result in under-
determination. Formally, LASSO seeks a l value for which optimal
fit to (1) is achieved in a holdout sample. LASSO is useful when
only a subset of the measured predictors are really associated with
the dependent variable (Lello et al., 2017) or when a small subset
or a single best candidate must be selected from multiple highly
correlated predictors (Krapohl et al., 2017), and in the biological
sciences, its use is especially common in animal breeding genetics
(de los Campos et al., 2013).

LASSO was implemented in MATLAB with 5-fold cross-
validation. We used LASSO on 7/8 of our sample (N ¼ 154) for
training and 1/8 (N ¼ 22) for validation. Because of 5-fold cross-
validation, the model was trained to iteratively find the
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combination of regression coefficients in 80% of the training sample
to achieve minimal prediction error in the other 20%. This best-fit
model was then applied to the fully independent holdout sample
(N¼ 22). Our hypothesis was that LASSO models trained with gross
parameters and fine morphology as predictors will perform better
at predicting age in an independent sample than those trained only
with gross parameters.

Owing to the modest size of our holdout sample, we had limited
statistical power to detect differences between model fits. There-
fore, we did not compare individual model fits but instead analyzed
the pattern of model fit differences between gross parameter-only
and full models in groups of similar models: across the 6 different
models using averaged frontal data and across the 18 models each
using SWs from a different EEG channel. We used the Wilcoxon
signed-rank test to test the null hypothesis that the median of
model fit differences is 0. We used exact tests for average frontal
data (k ¼ 6 models) and z-statisticebased tests for all-scalp data
(k ¼ 18 models). All tests were performed with a two-tailed design.
2.5. Data and code availability

Preprocessed data and customMATLAB codes for frontal and all-
channel SWanalysis as well as for LASSO calculation are available at
https://osf.io/hjvm8/.
3. Results

3.1. Frontal SWs

We first investigated the predictive power of SW morphology
and gross parameters toward age using averaged EEG data from the
2 frontal channels (F3 and F4). Amplitude at certain time periods
during the average SW remained as predictors of age in the best-fit
LASSO models for all 3 detection thresholds (30 mV, 75 mV, and
140 mV) and both transformations (raw and z-transformed data).
Fig. 1 illustrates the LASSO model run for the best-fit model (140 mV
z-transformed), whereas Fig. 2 illustrates the prediction of age
based on LASSO models.

In an independent holdout sample comprising 1/8th of the
sample (N ¼ 22), regression models using SW morphology data
provided better fit to age data than models using only gross pa-
rameters (Table 1). This was true for all 3 thresholds and both
transformations (6/6 positive signs, W ¼ 6, p ¼ 0.031 based on the
Wilcoxon test). The best-fit model using z-transformed wave
morphology based on 140 þ mV waves accounted for up to 80% of
age variance, comparedwith only 58% in themodel using only gross
parameters.

The equation for the best-fit model was the following:

dage ¼ 90:41� 0:15*Count þ 3:19*Amplitude

þ 1:63*DUS slopeþ 14:21*zamp�1 � 2:28*zamp�0:424

� 9:04*zamp�0:416 þ 33:2*zamp�0:176 þ 1:52*zamp�0:1

� 10:93*zamp�0:048 þ 10:85*zamp0:036
þ 11:97*zamp0:04 � 10:5*zamp0:188 � 0:88*zamp0:372
� 0:54*zamp0:376 � 13:61*zamp0:456 þ 2:24*zamp0:628
þ 5:96*zamp0:664 � 18:87*zamp0:912 � 6:87*zamp0:956

(2)

where count, amplitude, and DUS slope refer to the z-scores
(across participants with the same sex) of the corresponding gross
parameters using the 140 mV detection criterion, whereas zamptime
refers to the z-score (across the average SW of the same individual)
of the amplitude of the individual average SW at “time,” expressed
in seconds relative to the negative peak.

We recalculated our models by averaging SWs after triggering
them to the negative-positive zero crossing instead of the negative
peak to calculate fine morphology. Even in this case, the best-fit
LASSO model identified average SW amplitude at multiple time
points as significant predictors of age beyond the effect of gross
parameters, but these models did not provide better fit in the
holdout sample than those using gross parameters only
(R2

dynamic_gross ¼ 47.4%, R2
75mV_gross ¼ 65.44%, R2

140mV_gross ¼ 59.71%,
R2

dynamic_full ¼ 32.34%, R2
75mV_full ¼ 48.79%, R2

140mV_full ¼ 66.18%,
R2

dynamic_full_zscore ¼ 34.33%, R2
75mV_full_zscore ¼ 28.98%,

R2
140mV_full_zscore¼ 50.57%,1/6 positive signs,W¼ 1, p¼ 0.063 based

on the Wilcoxon test).

3.2. All-scalp SWs

We next investigated potential topographic differences in the
predictive potential of SW gross parameters and fine morphology.
Gross parameters provided the best fit to age data on T6 (R2 ¼ 62%),
whereas SW morphology provided the most additional explained
variance on Fp1 (DR2 ¼ 19%). Overall, age could best be predicted
using gross parameters and SW morphology on Cz (R2 ¼ 66%).
Regressionmodels also using SWmorphology provided better fit to
data over gross parameter-only models on 14 derivations (14/18
positive signs, W ¼ 25, z ¼ 2.64, p ¼ 0.008 based on the Wilcoxon
test). Typically, SWmorphology was more important for predicting
age along the sagittal midline derivations, especially the extremes
(frontopolar and occipital), and less important in temporal deriva-
tions. On average, SW morphology provided 6.8% of additional
explained variance. Notably, all modelsdincluding those using
frontal single-channel datadunderperformed compared with the
models using SW detections on the averaged signal of the 2 frontal
channels. Fig. 3 illustrates topographic differences in the predictive
power of gross parameters and SW morphology.

3.3. Ultradian effects

We next investigated potential ultradian differences in the
predictive potential of SW gross parameters and fine
morphology. We reran LASSO models on gross parameters and
fine morphology data calculated separately from the 4 sleep
quartiles of all detections of the same individual. We performed
this analysis both on averaged frontal data and all single channels
individually. In both models, age could generally be best
predicted using SW data from the first sleep quartile and pre-
dictive power dropped in the subsequent 4 quartiles. Using the
data from averaged frontal channels, full models significantly
outperformed gross parametereonly models substantially in the
first (DR2

mean ¼ 22.05%, 6/6 positive signs, W ¼ 0, p ¼ 0.031) and
second (DR2

mean ¼ 25.29%, 6/6 positive signs, W ¼ 0, p ¼ 0.031)
sleep quartiles, but the difference remained a tendency in the
third (DR2

mean ¼ 5.77%, 5/6 positive signs, W ¼ 1, p ¼ 0.063)
quartile and full models significantly underperformed in the
fourth (DR2

mean ¼�16.43%, 0/6 positive signs, W ¼ 21, p ¼ 0.031).
Using all-scalp data, there was a significant difference in the
second (DR2

mean ¼ 11.28%, 14/18 positive signs, W ¼ 21, z ¼ 2.81,
p¼ 0.005) quartile. There was no significant difference in the first
(DR2

mean ¼ 0.4%, 8/18 positive signs, W ¼ 79, z ¼ 0.28, p ¼ 0.77),
the third (DR2

mean ¼ 5.9%, 13/18 positive signs, W ¼ 48, z ¼ 1.64,
p ¼ 0.1), and the last (DR2

mean ¼ 3.8%, 10/18 positive signs,
W ¼ 73, z ¼ 0.54, p ¼ 0.58) quartiles (Fig. 4).

Clear topographic differences in the relative contribution of SW
gross parameters and fine morphology to prediction performance
emergedacross cycles. In thefirst cycles,wherepredictive powerwas

https://osf.io/hjvm8/


Fig. 1. Illustration of the LASSO model run in the best-fit model, using z-transformed SWs with the 140 mV detection threshold. Panel (A), generated using the lassoPlot() MATLAB
function, shows changes in the mean squared error (MSE) of prediction at various l and illustrates how the model converges on a value of l which provides the best fit in the cross-
validation sample. A green circle and a corresponding dashed line show the l value with the lowest MSE, whereas a blue dot shows the value of the greatest l that is within one
standard error of the minimum MSE. Panel (B) shows the regression coefficients (in years/between-participant SD for gross parameters and years/within-participant amplitude SD
for fine morphology) assigned to SW gross parameters (upper panel) and fine morphology, operationalized as the amplitude of the individual mean SW at 501 equally spaced time
points relative to the negative peak (lower panel). A vertical red line indicates the l value providing the best-fit model. Zero regression coefficients were manually set to �500 to
appear pure blue and enhance the visibility of nonzero coefficients. Abbreviations: LASSO, least absolute shrinkage and selection operator; SW, slow wave. (For interpretation of the
references to color in this figure legend, the reader is referred to the Web version of this article.)
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maximal and the contribution of fine morphology to prediction ac-
curacy the lowest, the predictive power of gross parameters and fine
morphologywasevenly distributed across the scalp. In cycles 2 and3,
the predictive power of gross parameters was strongest in more
posterior channels, but the additional accuracy of fine morphology
remained maximal at frontal locations. In the fourth cycle, while
prediction accuracy was the lowest and the overall difference be-
tweengrossparametereonlyand fullmodelswasnot significant,fine
morphology on posterior channels contributed substantially to pre-
diction accuracy (DR2

O2 ¼ 42%, DR2
T6 ¼ 33%, DR2

T4 ¼ 17%) (Fig. 5).

3.4. Contributing elements of SW fine morphology

Which exact elements of SW fine morphology predict age over
the effects of gross parameters? To determine this, we took all B-
values from best-fit LASSO models, summed themwithin 125 msec



Fig. 2. Predicting age from SW gross parameters and morphology. Panel (A): individual average frontal SWs using the 140 mV criterion without standardization, color-coded by age.
Note the larger deflections in younger participants. The black line shows the regression coefficients assigned to the amplitude at each data point in the best-fit LASSO model. Panel
(B): Pearson’s correlation coefficient between average 140 mV frontal SW morphology and age after removing the effects of gross parameters using linear regression (left axis, red
line) and the regression coefficients assigned to the amplitude at each data point in the best-fit LASSO model (right axis, black line, identical to those shown on panel A). Note that
SW morphology shows substantial correlations with age even after controlling for gross parameters, and LASSO fits the best predictive model to include data points with high
residual correlation. Panel (C): correlation between predicted and actual age in the holdout sample using LASSO models with gross parameters only (left), SW morphology only
(middle), and the full model (right). All data on this figure show results from nonstandardized 140 mV SWs. While slightly better performance was achieved by z-transforming SWs
within participants, we show data from this second-best model to preserve the mV units of the EEG data. Abbreviations: LASSO, least absolute shrinkage and selection operator; SW,
slow wave. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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temporal bins, and plotted them against an average SW (Fig. 6). SWs
in younger participants had more negative voltage immediately
before but more positive voltage immediately after and 125e250
msec before the negative peak. This effect was most prominent in
averaged frontal and frontocentral derivations. Another minor ef-
fect was the presence of a later, larger positive peak after the
negative peak in younger individuals, which showed a steeper
decline thereafter.

In other words, younger participants were characterized by a
more rapid initiation and dissipation of the SW downstate, and a
later, more prominent upstate, which also declined faster. This ef-
fect was present over and beyond what was captured by gross pa-
rameters such as SW slope and halfwave duration.

3.5. Sex differences

The modest size of our replication sample did not allow for the
rigorous testing of sex differences in age prediction accuracy.
Nominally, both the 140 mV average frontal model and the selected
Fp1 single-channel model showed higher accuracy in females
(N ¼ 9, rfrontal_gross ¼ 0.91, rfrontal_full ¼ 0.96; rFp1_gross ¼ 0.88,
rFp1_full ¼ 0.93) than in males (N ¼ 13, rfrontal_gross ¼ 0.65,
rfrontal_full¼ 0.86; rFp1_gross¼ 0.49, rFp1_full¼ 0.75), but at this sample
size, none of these differences were statistically significant. In the
Table 1
Percentage of age variance explained by different models in the holdout sample

Detection threshold Gross parameters only SW morphology only SW morpholo

Dynamic 47.64% 71.16% 75.58%
75 mV 64.48% 80.41% 76.49%
140 mV 58.45% 75.58% 83.33%

Rows refer to the threshold of the SW detection method, whereas columns refer to diff
morphology only or both, and whether SW morphology was z-transformed within-parti
full sample, we observed a stronger correlation between ascending
slope steepness and age in females, while early fine morphology
amplitude correlated with age positively in males and negatively in
females. In addition, immediately before the onset of the down-
state, a more negative age-amplitude correlationwas seen inmales.
These findings are illustrated on Fig. 7.

3.6. SWs mediating the relationship between age and cognitive
performance

If the relationship between age and cognitive performance is
mediated by age-related changes in SW characteristics, then the
correlation between age and cognitive performance should be
attenuated after controlling for SW characteristics. We assessed this
by using different measures of cognitive performancewe had in our
database: the Zahlen verbindungs test (ZVT, N ¼ 107), a trail-
making test, and 2 nonverbal IQ tests as available in each partici-
pant, Raven’s Advanced Progressive Matrices (APMs) and the Cul-
ture Fair Test (CFT), henceforth referred to as IQ, although we did
not norm raw scores to a deviation IQ score (N ¼ 158 with at least
one test score). We converted raw test scores to Raven’s APM
equivalents (the Raven’s APM raw score corresponding to the same
IQ as the other test, given the participant’s age as the actual test
score) before averaging. Raven’s APM and CFT measure general
gy only, normalized Full model Full model, with normalized SW morphology

67.02% 75.24%
72.14% 77.32%
78.13% 79.81%

erences in model construction (predicting age based on gross parameters only, SW
cipant to eliminate amplitude differences).



Fig. 4. The predictive power (proportion of age variance explained in the holdout sample) of SW characteristics across sleep quartiles. Panel (A) shows the average predictive power
of the 18 models using SW data from each EEG derivation. Error bars show 95% confidence intervals computed from SD across channels. Panel (B) shows the predictive power of
models using SW detections on averaged frontal data. Full model with z-transformation refers to models in which the average SW was z-transformed for each participant.
Abbreviation: SW, slow wave.

Fig. 3. Topographic differences in the predictive power of SW gross parameters and fine morphology. Panel (A): the topographical distribution of explained variance in the holdout
sample using regression coefficients from LASSO with gross parameters only (left) or gross parameters and SW morphology (middle) and the difference of explained variance
between the 2 models (right). O1 data were manually removed for 1 participant with outlying data (correlation between predicted and actual age with and without this participant:
rgross_with ¼ r ¼ 0.45, rgross_without ¼ r ¼ 0.66; rfull_with ¼ 0.04, rfull_without ¼ 0.66). Panel (B): the correlation between predicted age (axis x) and actual age (axis y) in the holdout
sample based on gross parameters only (left) or gross parameters and SW morphology (middle). All data are from Fp1 where the difference between the performance of the 2
models was maximal. Panel (C): Pearson’s correlation coefficients between individual average morphology at 501 data points and age after regressing out the effects of gross
parameters (left axis, red line) and the regression coefficients from the best-fit LASSO model (right axis, black line). All data are from Fp1 where the difference between the
performance of the 2 models was maximal. Note that SW morphology shows substantial correlations with age even after controlling for gross parameters, and LASSO fits the best
predictive model to include data points with high residual correlation. Abbreviations: LASSO, least absolute shrinkage and selection operator; SW, slow wave. (For interpretation of
the references to color in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 5. Topographic differences in the predictive power of SW parameters across sleep
quartiles. The left column of topographic plots shows the proportion of age variance
explained in the holdout sample by gross parametereonly models using data from
each electrode. The middle column illustrates topographic differences of the propor-
tion of variance explained by full models (gross parameters plus SW morphology). The
right column shows the difference in variance explained between the 2 models.
Abbreviation: SW, slow wave.

Fig. 6. The elements of SW fine morphology which predicted age over the effects of gross
within 125 msec bins across all models with similar predictors: averaged frontal SWs wit
channel SWs from frontocentral (Fp1, Fp2, F3, F4, C3, C4, Fz, Cz), posterior (P3, P4, O1, O2,
against the grand average 140 mV frontal SW for illustration. Note the different y-axis limit

P.P. Ujma et al. / Neurobiology of Aging 80 (2019) 71e8278
cognitive ability and test-specific abilities (Gignac, 2015), whereas
ZVT is ameasurement of general cognitive ability andmental speed,
both of which are negatively affected by aging (Salthouse, 2004).
Both IQ (r ¼ �0.22) and ZVT (r ¼ 0.49) scores were significantly
correlated with age (note that because ZVT measures reaction time,
a positive correlation indicates worse performance at later age).

We calculated Pearson’s partial correlation coefficients between
age and ZVT/IQ, correcting for SW characteristics (Fig. 8) and
assessed whether the corrected correlation falls outside the confi-
dence intervals of the uncorrected correlation coefficient. We did
not find evidence for significant mediation, but a tendency for it
emerged in case of both test scores if we controlled for amplitude
during early descending downstates and late ascending upstates. In
other words, our findings provide some limited evidence that the
loss of SW steepness may play a functional role in worse cognitive
functioning at higher ages.
4. Discussion

We trained LASSO regression models to predict age from SW
gross parameters and fine morphology in 154 participants and
validated our models in an independent holdout sample of 22
participants. Although our findings can be viewed as a proof of
concept for predicting age (or rather a ‘brain age’ (Sun et al., 2019))
from sleep EEG data, in our view, the most important insights they
provide is into how SWs in NREM are affected by normal aging. Our
study is by its nature correlational but because the route of
causation between chronological age and SW characteristics can
only run from the former to the latter, learning which SW
characteristics predict age best is an indicator of which ones are the
most affected by aging. Our study revealed which age-related
changes in SWs are adequately captured by easily calculable gross
parameters, which ones are only captured by themore accurate fine
parameters. Regression coefficients from the best-fit LASSO models were summed up
h or without z-transformation with different amplitude criteria (Panel A) and single-
T5, T6), or lateral (F7, F8, T3, T4) channels (Panel B). All sums of B-values are plotted
s for frontocentral waves.



Fig. 7. Sex differences in the relationship between age and SW characteristics. Panel
(A) shows Pearson’s correlation coefficients by sex between SW fine morphology using
individual average frontal SWs based on the 140 mV detection threshold. Amplitude is
measured as a negative deflection, resulting in a positive correlation with age. The
shaded areas show the 95% confidence intervals of the correlation coefficient. The
grand average SW is shown for guidance. Panel (B) shows Pearson’s correlation coef-
ficient by sex between SW gross parameters based on the 140 mV detection threshold.
Error bars show 95% confidence intervals. Abbreviations: SW, slow wave; DDS,
descending downstate; ADS, ascending downstate; AUS, ascending upstate; DUS,
descending upstate.

Fig. 8. The mediation of the relationship between age and cognitive performance by SW char
IQ test raw scores (left) and ZVT raw scores (right) corrected for each of the gross paramete
(rZVT ¼ 0.49; rIQ ¼ �0.22). Axis x is placed at the uncorrected correlation coefficient so the s
Panel (B): Pearson’s partial correlation coefficients (thick black line) between age and averag
the 501 SW fine morphology sampling points. The shaded green area shows the confidence
average SW (gray) and the corresponding B-values from the best-fit 140 mV model (red, mult
descending downstate; ADS, ascending downstate; AUS, ascending upstate; DUS, descending
this figure legend, the reader is referred to the Web version of this article.)
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morphology, and how these changes and their proportions are
different across EEG derivations and sleep cycles.

We found that gross parameters are indeed highly correlated
with age, sharing up to 60%e65% of their overall variance with it.
This was higher than what was found in previous studies, such as
r ¼ 0.49 between age and SW density in 82 participants (Carrier
et al., 2011), r ¼ 0.28 for log delta power in 211 participants
(Schwarz et al., 2017), and r ¼ 0.28 and r ¼ 0.62 for relative delta
power in 2 subsamples (N ¼ 87 and N ¼ 72, respectively) of the
present study (Pótári et al., 2017), highlighting the superiority of a
multivariate approach compared with simply using spectral power
in the investigation of age-related sleep EEG changes (For Carrier et
al., 2011, the correlationwas calculated from F ¼ 13.9 (Fig. 2) for the
dichotomous age difference, corresponding to d ¼ 0.835 and r ¼
0.39 at N ¼ 82. This correlation was corrected for the downward
bias of dichotomization, assuming a cutoff at 52.4% of the sample
based on subsample sizes, corresponding to the normal deviate z ¼
0.06 and the normal ordinate 0.4. For Schwarz et al., 2017, the
correlation was calculated from the t-values in Table 4.). Recently,
Sun et al. (2019) could predict 21.2% of age variance from sleep
macrostructure, but 67.2% using sleepmicrostructure, similar to our
gross parameters. Still, our study shows that age-related changes in
SWs are far from fully captured by changes even by all the gross
parameters. The individual average shape of the SW remains
correlated with age after regressing out the variance also captured
by gross parameters (Fig. 2, panel B; Fig. 3, panel C), and LASSO
regression could be trained to capture this correlation to predict
even more of the age variance (up to 80%). In other words, SW
characteristics are very strongly indicative of the participants’ age,
but approximate measures of the SW shape are not sufficient to
fully measure age effects. This requires that we take into account
acteristics. Panel (A): Pearson’s partial correlation coefficients between age and average
rs. Green lines show the confidence intervals of the uncorrected correlation coefficient
ize and direction of bars show the difference of corrected and uncorrected correlations.
e IQ test raw scores (left) and ZVT raw scores (right) corrected for amplitude at each of
intervals of the uncorrected correlation coefficient (rZVT ¼ 0.49; rIQ ¼ �0.22). The grand
iplied by 100 for visibility) are shown for guidance. Abbreviations: SW, slow wave; DDS,
upstate; ZVT, Zahlen verbindungs test. (For interpretation of the references to color in



P.P. Ujma et al. / Neurobiology of Aging 80 (2019) 71e8280
the precise waveform. Further analyses revealed several other
important details of this effect.

First, a more stringent definition of SWs enables a better pre-
diction of age, suggesting that the discovery of age effects on SWs is
more sensitive to false positives than false negatives. Eliminating
false positives by choosing a higher detection threshold or aver-
aging data across channels resulted in SW data with higher accu-
racy in predicting age. Models with higher SW detection thresholds
and consequently fewer detected SWs always had higher accuracy
(Table 1) and SW detections based on averaged frontal channel data
provided the best fit, better than both individual frontal channels or
any other (Table 1, Fig. 3). Our findings are in line with those of Sun
et al. (2019) who also found that although EEG data using frontal
channels could predict age slightly better than central or occipital
channels, all were outperformed by models using data from all
electrodes.

Second, although not all of the SW-age covariance captured by
the fine morphology is captured by gross parameters, the converse
is not true. Fine morphology generally provided better fit to age
data than only gross parametersdhowever, a finemorphology-only
model provided a fit at least as good as the one achieved by the full
models also using gross parameters. In other words, fine
morphology beyond its own independent predictive power pos-
sesses all of the predictive power of gross parameters as well.

Third, there are clear topographic differences in the correlation
between age and SW characteristics. Age effects on SW gross pa-
rameters are not the strongest on frontal derivations where SWs are
generally the most prominent but rather on more posterior deri-
vations. Older participants produce fewer, smaller, and shallower
SWs in more posterior cerebral areas even if frontal SWs are rela-
tively unaffected. This is, however, mainly because at more frontal
locations, the gross parameters fail to measure age-related changes
that the fine morphology does capture. Full models mainly predict
age better because the fine morphology explains additional vari-
ance on frontal and central channels (Fig. 3), which is in line with
the study by Sprecher et al. (2016) who also found that age-related
changes in SW power arewidely spread out across the scalp and the
study by Sun et al. (2019) who found only small differences be-
tween the predictive power of frontal, central, and occipital
channels.

Fourth, the correlation between age and SW characteristics is
variable across sleep cycles (in our study approximated by sleep
quartiles). SW characteristics are most predictive of age in the first
cycle, and in this cycle, only models based on average frontal SWs
fine morphology could outperform gross parameter-only models.
Fine morphology provided the most value in predicting age in cycle
2; its role was reduced in cycle 3 and disappeared by cycle 4. In
other words, age effects on SWs are strongest in early sleep, when
SWs are generally the most frequent and prominent. Gross pa-
rameters, however, do not capture age effects adequately toward
midsleep, and fine morphology provides better accuracy. In late
sleep, age effects on SWs are generally weaker and fully captured by
gross parameters.

SWmorphology was generally associated with age during phase
transitions, especially late descending and early ascending down-
states and late descending upstates (possibly indicating the initia-
tion of the next downstate). These findings suggest that age-related
changes in SW morphology especially affect the speed and degree
of the initiation and cessation of SW upstate and downstate. These
findings are interpretable in light of previous literature using high-
density scalp EEG, coregistered invasive and scalp EEG in humans or
computer and rodent models. SWs accurately reflect the onset and
cessation of cortical neuronal firing, even in human recordings
(Csercsa et al., 2010; Nir et al., 2011). Consequently, the shape of the
SW reflects how rapidly and to what extent neuronal firing is
synchronized (Esser et al., 2007; Riedner et al., 2007; Vyazovskiy
et al., 2007). In line with the view that SWs reflect a homeostatic
response to long-term potentiation taking place in the preceding
wakefulness (Tononi and Cirelli, 2014), frequent, high-amplitude
SWs with steep slopes are seen under conditions of high homeo-
static pressure for sleep, such as early in the night (Esser et al.,
2007; Riedner et al., 2007) or in case of young participants with a
higher degree of neuronal plasticity (Feinberg and Campbell, 2013).
Based on these studies, the current results can be interpreted as a
more rapid initiation and cessation of synchronized cortical
neuronal firing in younger participants, in line with the finding that
in older participants, both the homeostatic need for SWs and the
ability to respond to this need by SW generation is reduced
(Mander et al., 2017). In linewith previous findings, age effects were
strongest in the first quartile of sleep when sleep pressure is the
strongest and approximately equally distributed across the scalp
(Sprecher et al., 2016).

Age-related changes in any SW measure are important because
alterations in NREM sleep are thought to play a functional role in
age-related cognitive decline (Mander et al., 2017). In one study,
NREM SW activity reductions statistically mediated the age-related
reduction in overnight memory consolidation (Mander et al., 2013).
Following up animal experiments demonstrating the effect of sleep
deprivation on beta amyloid accumulation (for a summary, see [Ju
et al., 2013]), a structural equation modeling study demonstrated
that the relationship between b amyloid accumulation and reduced
memory function is mediated by SW activity (Mander et al., 2015).
This suggests that an important part of Alzheimer pathologymay be
related not directly to the beta amyloid burden but to the resulting
disruption of NREM sleep (Lucey and Holtzman, 2015). Although it
would be tentative to see both the cognitive symptoms and NREM
sleep changes in Alzheimer’s disease as an extreme case of normal
aging, it must be considered that while normal aging involves a
reduction of a wide range of slow frequency activity not limited to
delta, very low frequencies are especially affected in Alzheimer’s
disease (Mander et al., 2017). The molecular composition of beta
amyloid proteins is also different in normal aging and Alzheimer’s
disease (Piccini et al., 2005). Therefore, it requires further research
to establish the degree towhich SW changes in normal aging and in
dementia are analogous.

We found that although the mediation of the age-related
reduction on cognitive test performance by SW characteristics
remained a trend, they were strongest at the SW phase transitions
where the SW fine morphology was independently associated with
age. Our cognitive tests measured either general cognitive ability
and test-specific abilities (Raven APM, CFT) (Gignac, 2015) or a
combination of general cognitive ability and mental speed (ZVT)
both of which are known to be strongly negatively associated with
aging (Salthouse, 2004). In line with this observation, ZVT perfor-
mance was the most strongly correlated with age. Although this
effect did not reach statistical significance, the correlation between
age and cognitive performance was attenuated after statistically
controlling for some SW characteristics, especially SW amplitude
around phase transitions, suggesting that the neurobiological
mechanism underlying reduced SW steepness may also play a role
in age-related reductions in cognitive performance. Further
research with a more detailed neuropsychological assessment
battery and preferably with a larger sample size should investigate
the role SW characteristics play inmediating age-related reductions
in cognitive performance.

This has important translational potential as extant evidence
already suggests that cognitive functioning in wakefulness, also in
old age, can be improved by artificially increasing SW activity in
NREM sleep through heating and auditory or electrical stimulation
(Ladenbauer et al., 2017; Papalambros et al., 2017; Wilckens et al.,
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2018). SW characteristics that are particularly affected by aging,
especially if they also statistically mediate age-related reductions in
cognitive performance, can be especially promising targets of such
restorative interventions. Our study provides preliminary evidence
that SW phase transition speed and steepness may be one such
characteristic.

Our study suffers from a number of limitations. First, due to the
cross-sectional nature of our study, we had a limited ability to
establish cause-effect relationships. Second, although our partici-
pants spent 2 nights in the laboratory, no EEG recording was per-
formed on the first night. Therefore, we are also unable to assess the
internight reliability of predicting age from EEG performance and
the possible role of first-night effects, and our results are repre-
sentative for the second night. Third, although we used multiple
methods to detect SWs to test the robustness of the prediction of
age from SW characteristics, our methodology did not cover the full
range of existing SW detection algorithms.
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