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Abstract
Due to their high biological activity, thiosemicarbazones have been developed for treatment of diverse diseases,
including cancer, resulting in multiple clinical trials especially of the lead compound Triapine. During the last years, a
novel subclass of anticancer thiosemicarbazones has attracted substantial interest based on their enhanced cytotoxic
activity. Increasing evidence suggests that the double-dimethylated Triapine derivative Me2NNMe2 differs from
Triapine not only in its efficacy but also in its mode of action. Here we show that Me2NNMe2- (but not Triapine)-treated
cancer cells exhibit all hallmarks of paraptotic cell death including, besides the appearance of endoplasmic reticulum
(ER)-derived vesicles, also mitochondrial swelling and caspase-independent cell death via the MAPK signaling pathway.
Subsequently, we uncover that the copper complex of Me2NNMe2 (a supposed intracellular metabolite) inhibits the
ER-resident protein disulfide isomerase, resulting in a specific form of ER stress based on disruption of the Ca2+ and ER
thiol redox homeostasis. Our findings indicate that compounds like Me2NNMe2 are of interest especially for the
treatment of apoptosis-resistant cancer and provide new insights into mechanisms underlying drug-induced
paraptosis.

Introduction
α-N-Heterocyclic thiosemicarbazones (TSCs) are a

promising class of therapeutics, which have been exten-
sively investigated for their anticancer activity1,2. The
most prominent and best-studied drug candidate is 3-
aminopyridine-2-carboxaldehyde TSC, also known as
Triapine. Triapine displayed promising results in clinical
phase I and II trials against hematological cancers3–6 and
has also been tested against diverse solid tumors7,8. In

addition, several new TSC derivatives have been devel-
oped over the last years. Two of them, namely Coti-2 and
DpC, have recently entered clinical phase I trials (www.
clinicaltrials.gov). Coti-2, DpC as well as the predecessor
Dp44mT showed highly improved anticancer activities
compared to Triapine with IC50 values in the nanomolar
concentration range (hence, called "nanomolar TSCs")9,10.
Our group has recently synthesized a new nanomolar
TSC derivative, Me2NNMe2, characterized by dimethyla-
tion of both primary amino groups of the Triapine
molecule(Fig. 1)2,11.
Based on promising clinical trials, it is of interest to

better elucidate the reasons for the greatly improved
anticancer activity of nanomolar TSCs. There are several
indications that nanomolar TSCs differ in their mode of
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Fig. 1 (See legend on next page.)
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action from Triapine2,12,13. In particular, their interaction
with intracellular copper ions might be important, as
intracellularly formed copper complexes have been sug-
gested to be the active metabolites of nanomolar TSCs12–14.
In this regard, during our recent studies, we have dis-
covered that treatment with Me2NNMe2 as well as
Dp44mT resulted in the formation of perinuclear cyto-
plasmic vesicles11 that are characteristic for paraptosis, a
recently described new type of programmed cell
death15,16. Further hallmarks of paraptosis include mito-
chondrial swelling and damage, caspase-independent cell
death and the absence of membrane blebbing/DNA
condensation or fragmentation. Moreover, disruption of
endoplasmic reticulum (ER) homeostasis, activation of
MAPK signaling as well as protection by the thiol-
containing radical scavenger N-acetylcysteine (NAC) and
the MEK inhibitor U0126 have been reported15,16. How-
ever, the exact molecular mechanisms underlying para-
ptosis induction are widely unexplored.
So far, mainly diverse natural compounds have been

identified as paraptosis inducers. Interestingly, the list also
includes some copper complexes17–19, supporting the idea
that nanomolar TSCs could also induce this novel form of
cell death. Therefore, in this study, we investigated the
role of apoptotic and paraptotic cell death in the mode of
action of Triapine and Me2NNMe2. Our experiments
revealed that treatment with Me2NNMe2 induces all of
the main hallmarks of paraptotic cell death. In addition,
we identified the inhibition of the ER-resident protein
disulfide isomerase (PDI) as a potential target of the
intracellularly formed Me2NNMe2 copper metabolite.

Results
Anticancer activity of Triapine and Me2NNMe2
Cytotoxicity and morphological changes induced by

Triapine and Me2NNMe2 were investigated in SW480
and HCT-116 cells at different time points (Fig. 1a). In
general, HCT-116 cells proved to be more sensitive to
TSC treatment than SW480. Moreover, in accordance
with previous results11, double-dimethylation of Triapine
resulted in markedly higher activity in a time-dependent
manner. The two drugs had distinct effects on cell mor-
phology, as shown in Fig. 1b, c. Especially, Triapine-
treated cells were characterized by increased cell area (up
to 500%) and flattening (Fig. 1c). In contrast, treatment
with Me2NNMe2 led to formation of cytoplasmic vesicles

(see black arrows in Fig. 1b), which dose- and time-
dependently increased in size and number (Fig. 1b, Suppl.
Figure 1). These observations were consistent in both cell
lines. Comparable vesicle formation was also observed
with the other nanomolar TSCs, DpC, Dp44mT, and
Coti-2 (Suppl. Figure 2).

Me2NNMe2 accumulation in the ER-derived vesicles
Several groups have reported that paraptosis induction

is associated with the appearance of cytoplasmic vesicles
originating from the ER15,16. To investigate whether the
cytoplasmic vesicles seen in Me2NNMe2-treated cells also
arise from the ER, transfection experiments with ER-
localized YFP were performed (Fig. 2a). As visualized by
live-cell microscopy, ER-derived vesicles formed around
the nucleus and rapidly increased in size (by fusion)
(Fig. 2b). Moreover, no overlap of these vesicles with
mitochondria or lysosomes was found (Fig. 2c and Suppl.
Figure 3). Consequently, we concluded that the observed
cytoplasmic vesicles after Me2NNMe2 treatment origi-
nated solely from the ER.
Mapping cells by Raman microspectroscopy and sub-

sequent principal component analysis (PCA) revealed a
unique biochemical composition of these vesicles com-
pared to the rest of the cell (Fig. 2d). Component spectra
suggested enrichment of lipids (bands at ~1295 cm−1,
1435–1480 cm−1, and ~1650 cm−1) in these vesicles,
while bands corresponding to nucleic acids (~715 cm−1,
~775 cm−1, ~1090 cm−1, and ~1570 cm−1) were weaker
compared to the rest of the cell (Suppl. Figure 4A)20.
Furthermore, classical least squares (CLS) fitting of the
spectrum of the pure substance (Suppl. Figure 4B) to the
Raman map revealed that Me2NNMe2 appears to accu-
mulate in these vesicles (Fig. 2d), indicating that the
compound might have its intracellular target in the ER.

Impact of the TSCs on mitochondrial integrity
Paraptotic cell death is frequently associated with

changes of mitochondrial morphology and function-
ality21–27. Consequently, JC-1 staining was conducted to
evaluate the impact of both drugs on mitochondrial
membrane potential. Upon treatment with Triapine, only
slight, non-significant effects were detected in both cell
lines (Fig. 3a), while Me2NNMe2 had a profound impact.
In detail, in SW480 cells, at all investigated concentrations
~10% of the cells displayed depolarized mitochondria. In

(see figure on previous page)
Fig. 1 Activity of Triapine and its derivative Me2NNMe2. a Time-dependent cell viability of SW480 and HCT-116 cells treated with either Triapine
or Me2NNMe2, determined by MTT assay after 24, 48, and 72 h. Values given in the graph are the mean ± standard deviation of triplicates from one
representative experiment out of three, normalized to the untreated control of the same time-point. IC50 values (µM) ± standard deviations (SD) are
given in the table . b Morphological changes in SW480 cells induced by 24 and 48 h treatment with the indicated concentrations of Triapine or
Me2NNMe2. Cytoplasmic vacuoles were mainly seen with Me2NNMe2 (arrows). Scale bar: 100 µm. c Increase in cell size of SW480 and HCT-116 cells
treated with the indicated concentrations of Triapine and Me2NNMe2 for 48 h
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Fig. 2 Me2NNMe2 accumulation in the ER-derived vesicles. a Representative fluorescence microscopy images and overlaid differential
interference contrast images of the ER lumen of ER-YFP-transfected SW480 cells treated with 10 µM Me2NNMe2 for 24 h (scale bar: 50 µm). b Life-cell
fluorescence imaging of ER-located YFP-transfected SW480 cells treated with 1 µM Me2NNMe2. Time after treatment is indicated as hh:mm (scale bar:
10 µm). c Representative fluorescence microscopy images of mitochondria (MitoTracker) showing no overlap with vesicles in ER-YFP-transfected
SW480 cells treated with 10 µM Me2NNMe2. (scale bar: 50 µm). d Raman microspectroscopy of SW480 cells treated with 10 µM Me2NNMe2 for 24 h.
Principal component analysis (PCA) of Raman spectra can differentiate between background (black), cell (green) and vesicles (red). CLS fitting of
Me2NNMe2 Raman spectrum to the spectral map of the cell revealed accumulation of the drug inside the vesicles

Hager et al. Cell Death and Disease  (2018) 9:1052 Page 4 of 17

Official journal of the Cell Death Differentiation Association



Fig. 3 (See legend on next page.)
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contrast, 30% of HCT-116 cells showed mitochondrial
depolarization at 0.05 and 0.1 µM Me2NNMe2, which
decreased to about 10% at higher concentrations. In
parallel to mitochondrial depolarization, Me2NNMe2, but
not Triapine, induced mitochondrial fragmentation or
swelling (a main hallmark of paraptosis) already at 0.1 µM
(Suppl. Figure 5). In order to investigate whether this
observed swelling is accompanied by increased intra-
mitochondrial Ca2+ levels, Rhod-2 AM stains were per-
formed. Indeed, distinct accumulation of mitochondrial
Ca2+ together with organelle swelling was observed in
Me2NNMe2-exposed cells (Fig. 3b). In contrast, thapsi-
gargin, a well-known SERCA (ER-localized Ca2+ ATPase)
inhibitor and ER stress inducer, initiated mitochondrial
Ca2+ accumulation but no organelle swelling. Together
with the lack of organelle swelling, Triapine had also no
impact on mitochondrial Ca2+ levels (Fig. 3b).
In agreement with the suggested contribution of mito-

chondria to Me2NNMe2 activity, HCT-116 cells with a
BAX knockout18 were (in contrast to Triapine) sig-
nificantly less sensitive to the methylated derivative
(Fig. 3c). Interestingly, Me2NNMe2 activity was accom-
panied by a decrease of both pro-apoptotic BAX as well as
anti-apoptotic Bcl-xL protein levels in BAX wild-type
cells, which argues against induction of apoptosis via the
intrinsic (mitochondrial) pathway (Fig. 3d). Taken toge-
ther, this indicates that Me2NNMe2 distinctly impacts on
mitochondrial integrity already at very low drug con-
centrations and disruption of mitochondrial Ca2+ home-
ostasis is a key event in Me2NNMe2-induced paraptosis.

Caspase independence of Me2NNMe2 anticancer activity
As paraptosis is often described as a caspase-indepen-

dent process15,16, as a next step the impact of the pan-
caspase inhibitor z-VAD-FMK on the activity of the two
TSCs was investigated. As shown in Fig. 4a, there was no
relevant effect of z-VAD-FMK on the anticancer activity
of the tested TSCs, in contrast to TRAIL, which was used
as a positive control (Suppl. Figure 6). In addition, treat-
ment with the pan-caspase inhibitor did not prevent the
formation of cytoplasmic vesicles induced by Me2NNMe2
(Fig. 4b). To confirm the caspase independence of
Me2NNMe2-induced cell death, annexin V (AV) stains

were performed in the presence and absence of the pan-
caspase inhibitor (Fig. 4c). Caspase inhibition had no
significant impact (calculated to control by one-way
ANOVA and Bonferroni’s multiple comparison test) on
the AV+ cell fractions after Me2NNMe2 treatment in both
cell lines. In contrast, Triapine-induced cell death in
HCT-116 was strongly diminished upon addition of z-
VAD-FMK, suggesting cell line-dependent apoptosis
induction by this compound.

The role of MAPKs in Me2NNMe2-induced paraptosis
There are indications that MAPK signaling plays an

important role in the execution of paraptotic cell
death16,28. However, whether and how Me2NNMe2
activity impacts on this pathway is so far unknown.
Consequently, as a first step, we compared gene sig-
natures of whole-genome gene expression arrays per-
formed with 0.1 µM and 1 µM Me2NNMe2 treatment or
untreated cells. Gene set enrichment analysis (GSEA) of
these data showed significant upregulation of MAPK
signaling pathway genes in treated as compared to
untreated cells at both concentrations (Fig. 5a). A more
detailed illustration of the genes up- (red) or down- (blue)
regulated in this KEGG pathway is shown in Fig. 5b.
When comparing these mRNA data with Western blot
analysis of MEK and ERK, interestingly, both Triapine and
Me2NNMe2 treatment had a tendency to stimulate the
MAPK signaling at higher drug concentrations (Fig. 5c).
However, at lower doses strongly reduced phosphoryla-
tion (especially of MEK1/2) was observed, indicating that
stimulation of the MAPK pathway could be due to a
compensatory feedback loop.
To gain more insight into the role of the MAPK path-

way in the activity of our TSCs, several MEK inhibitors
(U0126, PD98058, trametinib, and selumetinib) with dif-
ferent affinities for MEK1 and MEK2 were used. As seen
in Fig. 6a and Suppl. Table 1, all inhibitors were able to
protect cells against Me2NNMe2-induced cytotoxicity.
However, only U0126 distinctly reduced vesicle formation
in Me2NNMe2 (Fig. 6b, c). The effects of U0126 were also
confirmed in HCT-116 cells (data not shown). In contrast
to Me2NNMe2, Triapine activity was largely unaffected by
the MEK inhibitors. As U0126 is the only inhibitor that

(see figure on previous page)
Fig. 3 Mitochondrial involvement in the activity of Triapine and Me2NNMe2. a Mitochondrial membrane potential depolarization measured by the
percentage of cells with decreased JC-1 fluorescence (red). SW480 or HCT-116 cells were treated with the indicated concentrations of Triapine or Me2NNMe2
for 24 h. Values given are the mean ± standard deviation of three independent experiments. b Fluorescence microscopy of increased calcium levels (Rhod-2
AM in red) specifically in the mitochondria (MitoTracker in green) after thapsigargin (Tg, 1 µM), Me2NNMe2 (0.1 µM) or Triapine (1 µM) treatment of SW480
cells for 48 h (scale bar: 50 µm). White arrows indicate co-localization. c Cell viability of HCT-116 wild-type (wt) and BAX knockout (KO) cells measured by MTT
after 72 h treatment with indicated concentrations of Triapine or Me2NNMe2. Values given are the mean± standard deviation of triplicates of one
representative experiment out of three. dWestern blot analysis of BAX and Bcl-xL expressed by SW480 and HCT-116 cells treated with Triapine or Me2NNMe2
for 24 or 48 h. The ratio of BAX to Bcl-xL is given below the respective bands. β-actin was used as a loading control. Significance was calculated to control with
one-way (a) and to wt cells with two-way (c) ANOVA and Bonferroni’s multiple comparison test (***p< 0.001, **p≤ 0.01, *p≤ 0.05)
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inhibits MEK1 and 2 to a similar extent (while the others
have a stronger preference for MEK1), we hypothesized
that MEK2 could have a special role in Me2NNMe2
activity. To further evaluate this hypothesis, knockdown
experiments using siRNA against MEK2 were performed
(Fig. 6d). Indeed, further analysis revealed that
Me2NNMe2-induced vacuolization decreased upon
MEK2 knockdown (Fig. 6e, f) confirming the importance
of this protein in the formation of paraptotic vesicles by
Me2NNMe2. Noteworthy, also induction of vesicles and

anticancer activity of other nanomolar TSC (DpC,
Dp44mT, and Coti-2) could be inhibited by U0126 (Suppl.
Figure 7), indicating induction of paraptotic cell death
also with these TSCs.

Me2NNMe2-induced ER stress based on disturbed ER thiol
redox homeostasis
So far, there are only a few hypotheses on the exact

mechanisms underlying paraptosis induction. In case of
natural products, especially proteasome inhibition

Fig. 4 Induction of different cell death characteristics by Triapine and Me2NNMe2. a Cell viability measured by MTT assay of SW480 and HCT-
116 cells after 72 h treatment with the indicated concentrations of Triapine (full lines) or Me2NNMe2 (dotted lines) alone or in combination with 10
µM z-VAD-FMK (VAD, gray lines). Values given are the mean ± standard deviation of triplicates from one representative experiment out of three.
b Phase-contrast microscopy images of SW480 cells treated with 10 µM Me2NNMe2 or 25 µM z-VAD-FMK as well as the combination (scale bar: 100
µm). c Percentage of annexin V-positive (AV+) and/or PI+ SW480 or HCT-116 cells detected by flow cytometry after 48 h of Triapine or Me2NNMe2
treatment in combination with 10 µM z-VAD-FMK (VAD). Values given are the mean ± standard deviation of three independent experiments. For
calculation of significance AV+ cell fractions (AV+/PI−, AV+/PI+) were added. Significance to control was calculated by two-way (a) or one-way (c)
ANOVA and Bonferroni’s multiple comparison test using GraphPad Prism software (***p < 0.001, **p ≤ 0.01, *p ≤ 0.05)
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Fig. 5 (See legend on next page.)
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resulting in (unfolded) protein stress has been sug-
gested16,29. Consequently, paraptosis induction by such
drugs is often dependent on active protein synthesis.
However, inhibition of protein synthesis (by cyclohex-
imide) had no impact on the activity of Me2NNMe2 and
no difference was observed in the impact on protein
ubiquitination levels between Triapine and Me2NNMe2
(data not shown), suggesting another mode of action.
Based on ER localization of Me2NNMe2 in the Raman
microscopy studies together with the profound ER bleb-
bing, we hypothesized that Me2NNMe2 might have a
target in this organelle. In line with this hypothesis, sub-
sequent experiments confirmed a specific form of ER
stress especially in Me2NNMe2-treated cells. In more
detail, Me2NNMe2 (but not Triapine) treatment resulted
in enhanced nuclear localization of CHOP, an ER stress-
induced transcription factor, (Fig. 7a and Suppl Figure 8)
together with increased phosphorylation of its upstream
activator PERK (Fig. 7b). In contrast, no changes in other
ER stress markers, such as BiP, IRE1α, calnexin, or
changes in the phosphorylation of eIF2-α were detected.
Remarkably, in contrast to thapsigargin, CHOP-regulated
ero1L-α (an ER-specific thiol oxidase) as well as the ER-
localized chaperone, isomerase and thiol oxidoreductase
PDI were upregulated by both Triapine and Me2NNMe2
(Fig. 7b). Moreover, our array data showed that the
expression of these proteins was also increased on mRNA
level upon Me2NNMe2 treatment (Fig. 7c), indicating
increased gene transcription of these CHOP-target genes.
Interestingly, there are reports that PDI is able to bind

and reduce copper (although the impact of copper bind-
ing on the enzymatic activity is not fully characterized)30.
As Me2NNMe2 has strong copper-binding properties and
our previous studies already indicated that addition of
copper strongly increases the activity of Me2NNMe2

11, we
hypothesized that our drug or its copper metabolite
interferes with the functionality of PDI. Subsequently
performed enzyme inhibition assays revealed that, indeed,
the copper complex of Me2NNMe2 (but not of Triapine)
had strong PDI-inhibitory potential (Fig. 7d). Noteworthy,
the metal-free drugs did not inhibit the enzyme, even at
high concentrations, suggesting that prior (intracellular)
copper chelation is necessary for PDI inhibition. Similar
activity was also detected with the copper complexes of
DpC and Dp44mT (Suppl. Figure 9).

PDI plays a key role in the ER thiol redox homeostasis
by forming and rearranging disulfide bonds during pro-
tein folding. In this process, PDI oxidizes unfolded target
proteins with the help of oxidized thiol-containing
molecules, such as GSSG or ero1L-α, thereby resulting
in the reduction of these molecules31. To gain more
insight into the role of the ER thiol redox homeostasis in
the mode of action of Me2NNMe2, co-incubation
experiments with the thiol-containing antioxidants NAC
and 1-thioglycerol were performed. Indeed, both com-
pounds protected the cells from Me2NNMe2 (but not
Triapine)-induced cytotoxicity (Fig. 7e and Suppl. Fig-
ure 10). In addition, NAC also reduced anticancer activity
induced by DpC, Dp44mT and Coti-2 (Suppl. Figure 7C).
Noteworthy, these Me2NNMe2-induced effects were not
based on enhanced global superoxide (Fig. 7f) or ROS11

levels but coincided with increased glutathione and
especially GSSG levels (Fig. 7g). This suggests that
nanomolar TSCs induce either a very local, organelle
specific form of ROS or ROS generation does not play a
major role in their anticancer activity.
Taken together, these results indicate that Me2NNMe2

might form an intracellular copper metabolite with PDI-
inhibitory properties, which then results in disturbed ER
thiol redox balance and paraptosis induction. The pro-
posed mode of action is shown in Fig. 8.

Discussion
In anticancer therapy, resistance of cancer cells to

apoptosis is a major obstacle to successful treatment and
the cause of many cancer-associated deaths32. Targeting
cancer cells by the induction of paraptosis, a recently
discovered alternative caspase-independent cell death
pathway15,16, offers the opportunity to overcome apop-
tosis resistance. However, the mechanisms of paraptosis
are still not fully understood (and sometimes even con-
tradictory observations have been published16,33), making
the in-depth investigation of the underlying signaling
pathways of high importance. In general, there are several
main hallmarks of paraptosis that are widely accepted.
Among these, cytoplasmic (ER-derived) vacuolization,
mitochondrial swelling/damage, caspase independence
together with absence of membrane blebbing as well as
DNA condensation/fragmentation, disruption of ER
homeostasis, activation of MAPK signaling, protection by

(see figure on previous page)
Fig. 5 Role of the MAPK pathway in the activity of Triapine and Me2NNMe2. a GSEA from whole-genome gene expression data revealed
significant enrichment of genes in the “MAPK signaling pathway” gene set in SW480 cells treated with 0.1 or 1 µM Me2NNMe2 compared to
untreated cells. Normalized enrichment score (NES) and false discovery rate (FDR) are given. b Illustration of genes up- (red) or down-regulated (blue)
in the KEGG-derived “MAPK signaling pathway” of Me2NNMe2 (1 µM)-treated compared to untreated SW480 cells using whole-genome gene
expression data. cWestern blot analysis of MEK1/2 and ERK1/2 as well as their phosphorylated protein levels in SW480 and HCT-116 cells treated with
indicated concentrations of Triapine and Me2NNMe2 for 24 h. β-actin was used as a loading control
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Fig. 6 (See legend on next page.)
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NAC and U0126 as well as protein synthesis dependence
are most prominent15,16.
So far, mainly natural compounds, such as celastrol,

curcumin or cyclosporine A, were found to induce para-
ptosis16. In addition, a few synthetic drugs, including some
copper complexes17,19, have been studied. Here, for the
first time, we report about paraptosis induction by TSCs.
Initiated by the discovery that treatment with nanomolar
TSCs, such as Me2NNMe2 and Dp44mT, resulted in for-
mation of prominent cytoplasmic vesicles11, our aim in the
here presented study was to investigate whether treatment
with Me2NNMe2 results in paraptosis or a paraptosis-like
cell death. Therefore, we have investigated different
pathways and organelles involved in (apoptotic) cell death
and paraptosis. Through this approach, we found that
indeed Me2NNMe2 induced paraptotic cell death fulfilling
several main hallmarks such as swelling of ER and mito-
chondria, caspase independence and MAPK activation
(probably via MEK2 signaling).
Interestingly, Raman microscopy experiments revealed

an accumulation of Me2NNMe2 in the ER-derived vesi-
cles, suggesting that this compound might directly inter-
fere with ER-resident proteins. Subsequent investigations
revealed that Me2NNMe2 treatment indeed induced a
specific form of ER stress. In detail, enhanced nuclear
localization of CHOP and PERK phosphorylation were
detected. Beside these typical ER stress markers, we
additionally observed an upregulation of ero1L-α and PDI,
which are both involved in the ER thiol redox home-
ostasis34. Here, especially PDI attracted our attention, as it
has been recently described as a copper-binding and
-reducing protein30. This is of relevance as Me2NNMe2
(and other nanomolar TCSs like DpC and Dp44mT) have
been well characterized for their metal-chelating proper-
ties and especially formation of an intracellular copper
metabolite has been suggested to be crucial for their
anticancer activity2,11,12,35,36. Thus, the PDI-inhibitory
potential of Triapine, Me2NNMe2 as well as their cop-
per complexes was investigated. Indeed, the copper
complexes of Me2NNMe2 as well as those of DpC and

Dp44mT were able to potently inhibit the enzyme, while
the Triapine copper complex as well as the ligands alone
were inactive in this assay. Further evidence connecting
TSCs to PDI as a potential target can be seen in the
overexpression of the PDI family member CaBP1 in a
L1210 cell subline selected for resistance to 4-methyl-5-
amino-1-formylisoquinoline TSC (MAIQ)37. Although
this suggests an important role of this protein class in the
mode of action of at least some TSCs, no further studies
on this topic have been performed so far. Consequently,
the exact evaluation of the mechanisms resulting in the
PDI inhibition by some copper TSCs is matter of cur-
rently ongoing investigations.
In agreement with the PDI inhibition, subsequent ana-

lysis showed that Me2NNMe2 treatment led to an increase
of total glutathione levels, especially of its oxidized form
(GSSG) and co-incubation with thiol-containing anti-
oxidants such as NAC or 1-thioglyerol had protective
effects. A disrupted thiol redox homeostasis would also
explain the enhanced levels of PERK phosphorylation and
subsequent CHOP translocation into the nucleus, as seen
upon Me2NNMe2 treatment38,39. CHOP in turn is a
transcription factor, which can initiate the observed
increased expression of (among others) PDI and ero1L-
α40–42. In general, disruption of the ER thiol redox
homeostasis has already been discussed as the cause of ER
stress and dilation for other paraptotic inducers16,28,43. To
the best of our knowledge, this is the first report con-
necting the induction of paraptosis to the inhibition of
ER-resident proteins. Thus, the role of ER enzyme inhi-
bition definitely needs to be addressed in detail in further
studies.
With regard to the paraptotic signaling process, the

observed thiol-based ER stress is in good agreement with
the mitochondrial changes observed after Me2NNMe2
treatment, as it has already been shown that an altered
thiol balance leads to Ca2+ release from the ER and its
uptake by the mitochondria44,45. Thus, mitochondria are
proposed to function as a buffer system by absorbing
released Ca2+ 46. However, prolonged occurrence of

(see figure on previous page)
Fig. 6 MEK1/2 inhibition affects Me2NNMe2-induced cell death. a Impact of MEK1/2 inhibitors U0126 (5 µM), PD98058 (5 µM), selumetinib (50
nM) or trametinib (100 nM) on viability of Triapine- or Me2NNMe2-treated SW480. Change in viability is given as mean fold IC50 value increase ±
standard deviation compared to Triapine or Me2NNMe2 treatment alone, measured by three independent MTT viability experiments. b
Representative phase-contrast microscopy images of SW480 cells treated with Me2NNMe2 (10 µM) and U0126 (20 µM) or PD98058 (10 µM) as well as
the combinations for 48 h (scale bar: 100 µm). c Percentage of vacuolated cells counted from phase-contrast microscopy images seen in b. Values
given are the mean ± standard deviation of three images with at least 30 cells in total. Significance to single treatment was calculated by one-way
ANOVA and Bonferroni’s multiple comparison test (***p < 0.001, **0.001 ≥ p ≤ 0.01, *0.01 ≥ p ≤ 0.05). d Protein expression detected by Western blot of
MEK2, MEK1/2, and ERK1/2 in SW480 and HCT-116 cells after 48 h gene silencing with scrambled (siSCR) or MEK2 (siMEK2) siRNA. β-actin was used as
a loading control. e Representative images of SW480 cells transfected with siSCR or siMEK2 and treated with 10 µM Me2NNMe2 for 24 h (scale bar:
100 µm). f Percentage of cell vacuolization of SW480 or HCT-116 cells transfected with siSCR or siMEK2 and treated with the indicated concentrations
of Me2NNMe2 for 24 h. Values given are the mean ± standard deviation of several regions of two experiments. Significance to siSCR was calculated by
Student's T-test (***p < 0.001, **p ≤ 0.01)
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Fig. 7 (See legend on next page.)
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enhanced mitochondrial Ca2+ levels ultimately results in
organelle swelling and damage, which explains the
excessive depolarization of mitochondria induced by
Me2NNMe2 and many other paraptosis inducers25,27.

Noteworthy, we found that BAX knockout resulted in
reduced sensitivity to Me2NNMe2. This could be
explained by previously observed lowered ER Ca2+ stores
in BAX-deficient cells, which led to reduced Ca2+ uptake

Fig. 8 Proposed mechanism of Me2NNMe2-induced paraptosis. Me2NNMe2 accumulates in the ER, where it inhibits the reductive potential of
PDI. This leads to the disruption of the ER thiol redox homeostasis, which in turn activates PERK signaling and release of Ca2+ ions from the ER. While
PERK activation is followed by CHOP translocation into the nucleus and increased transcription of PDI and ero1L-α, released Ca2+ ions are taken up
by mitochondria. Prolonged Ca2+ imbalance initiates organelle swelling and mitochondrial membrane depolarization. NAC and 1-thioglycerol can
ameliorate thiol redox imbalances. MAPKs further regulate Ca2+ and thiol redox homeostasis, which can be inhibited by U0126

(see figure on previous page)
Fig. 7 ER stress and disruption of thiol redox homeostasis by Me2NNMe2 treatment. a Quantification of immunofluorescence intensities in the
nucleus of the ER stress marker CHOP in SW480 and HCT-116 cells treated with 1 µM thapsigargin (Tg), 1 µM Triapine or 0.1 and 1 µM Me2NNMe2 for
24 h. Values given are the mean intensities ± the interquartile range and 10 and 90 percentile whiskers of one representative experiment out of three.
b Western blot analysis of various ER stress proteins expressed by SW480 cells treated with indicated concentrations of Triapine and Me2NNMe2 for
24 h. β-actin was used as a loading control and Tg (1 µM) as positive control for ER stress. c mRNA expression levels for PDI (P4HB) and ero1L-α
(ERO1A) in treated (1 µM Me2NNMe2) or untreated SW480 cells were assessed by whole-genome gene expression microarrays. Two independent
P4HB oligonucleotides were spotted on the array and gave comparable results. Data for oligonucleotide A_23_P107412 is shown. Normalized values
of four replicates indicate upregulation of PDI and ero1L-α mRNA in treated compared to untreated cells. d PDI reduction activity in the presence of
Triapine, Me2NNMe2 as well as their copper complexes was measured by PROTEOSTAT PDI assay kit. Bacitracin (1 mM) was used as a positive PDI
inhibition control. Values given are the mean ± standard deviation of triplicates of one representative experiment out of two. e Cell viability measured
by MTT assay of SW480 or HCT-116 cells after 72 h treatment of indicated concentrations of Me2NNMe2 alone as well as in combination with N-
acetylcysteine (NAC) or 1-thioglycerol. Values given are the mean ± standard deviation of triplicates of one representative experiment out of three. f
Superoxide production measured by flow cytometry of DHE fluorescence in HL-60 cells treated with indicated concentrations of Triapine and
Me2NNMe2 for 45 min. Antimycin A (AMA) was used as positive control. g Detection of total and oxidized glutathione (GSSG) by fold increase to
control of luminescence in SW480 cells treated with indicated concentrations of Triapine and Me2NNMe2 for 24 h. Significance to control (or CuCl2)
was calculated with one-way ANOVA and Dunnett’s multiple comparison test (***p < 0.001, **p ≤ 0.01, *p ≤ 0.05)
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by mitochondria after release from the ER47. In addition,
also a link between PDI and BAX/BAK signaling has
already been reported48. Nevertheless, why this mito-
chondrial damage in the course of paraptosis does not
activate the intrinsic (mitochondrial) pathway of apopto-
sis is still a matter of discussion and warrants further
investigations.
Taken together, in the here presented study, we

identified paraptosis induction via disruption of the ER
thiol redox homeostasis as a new mode of action in the
activity of the highly active nanomolar TSC Me2NNMe2
and possibly also for other nanomolar TSCs such as
DpC, Dp44mT, and Coti-2. Moreover, we suggest the
ER-resident PDI as possible new target for members of
this compound class, which could make them interest-
ing candidates for the treatment of cancers with defi-
ciencies in apoptosis induction.

Materials and methods
Reagents
Triapine and Me2NNMe2 were synthesized as pre-

viously described11,49. U0126 was purchased from Cal-
biochem, z-VAD-FMK from Enzo Life Sciences (New
York, USA), 1-thioglycerol, thapsigargin, antimycin A,
NAC, PD98059, trametinib and selumetinib from Selleck
Chemicals (TX, USA). All other chemicals were from
Sigma-Aldrich.

Cell culture
The following human cell models were used in this

study: the colon carcinoma cell lines SW480 (obtained
from the American Tissue Culture Collection) as well as
HCT-116 and its respective subline with BAX knockout
(obtained from B. Vogelstein, John Hopkins University,
Baltimore18). SW480 cells were cultured in MEME and
HCT-116 cell lines in McCoy’s 5a Medium (from Sigma-
Aldrich, MO, USA). The cells were cultivated in medium
containing 10% fetal calf serum (FCS, PAA, Linz, Austria).

Transfection
SW480 cells were plated (3 × 105 cells/well) in 6-well

plates and allowed to recover for 24 h. Transfection of
pEYFP-ER expression plasmid (#632355, Clontech
laboratories, USA) encoding a YFP fused to the ER-
targeting sequence of calreticulin at the 5′-end and the ER
retention sequence KDEL at the 3′-end or with a control
plasmid was performed using Lipofectamine 2000 reagent
(Invitrogen, CA, USA) according to the manufacturers’
instructions. Medium was changed after 5 h and selection
medium containing 1.2 mg/ml G418 was added 24 h after
transfection. Expression of YFP in the ER was investigated
48 h later.

Cell viability assay
The cells were plated (2 × 103 cells/well) in 96-well

plates and allowed to recover for 24 h. Then, cells were
treated with Triapine or Me2NNMe2. In combination
treatments, the modulator was always added 1 h in
advance. Cell viability was measured by the 3-(4,5-dime-
thylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT)-based vitality assay (EZ4U; Biomedica, Vienna,
Austria) as published50. GraphPad Prism software was
used to calculate cell viability expressed as IC50 values
calculated from full dose-response curves.

Fluorescence staining and microscopy
Cells were seeded into 8-well μ-slides (ibidi GmbH,

Germany) with 2 × 104 cells/well and left to recover for
24 h. For organelle tracking, the medium was replaced
with serum- and phenol red-free medium with 50 nM
MitoTracker Red CMXRos, MitoTracker Green FM or
LysoTracker Red (Life technologies, Vienna, Austria).
For calcium imaging, cells were incubated with 0.5 µM
Rhod-2 AM (Abcam, Cambridge, UK) in serum- and
phenol red-free medium for 30 min at 4 °C. After 1 h,
cells were washed and imaged with the Nikon Eclipse
Ti-e fluorescence microscope with differential inter-
ference contrast and RFP or GFP filter settings and a
sCMOS pco.edge camera. Life-cell imaging was per-
formed in an environmental chamber pre-heated to 37 °
C with 5% CO2. For non-fluorescence imaging, phase-
contrast pictures were taken with the Nikon Eclipse Ti
inverted microscope with a Nikon DS-Fi1c camera.
Contrast and brightness were adjusted with ImageJ. Cell
area was calculated as mean occupied area per cell from
at least two different sections in one well at the end of
life-cell imaging (48 h) using ImageJ and then normal-
ized to control.

CHOP immunofluorescence
Cells (2 × 104/well) were seeded in 8-well chamber

slides (ibidi GmbH). After 24 h recovery, cells were trea-
ted with indicated drug concentrations and fixed with 4%
paraformaldehyde for 15min at room temperature and
(after washing with PBS) blocked and permeabilized with
5% FCS, 0.3% Triton X-100 in PBS for 1 h. The primary
antibody CHOP (Cell Signaling Technology) was added
1:3200 in 1% BSA and 0.3% Triton X-100 in PBS over-
night at 4 °C. After washing with PBS, the cells were
incubated with anti-mouse secondary antibody con-
jugated to AlexaFluor488 (Thermo Fisher, 1:500 in 1%
BSA and 0.3% Triton X-100 in PBS) for 1 h. Cells were
again washed and counterstained with 4′,6-diamidine-2′-
phenylindole dihydrochloride (DAPI; 1 µg/ml) and wheat
germ agglutinin (WGA, 10 µg/ml, Vector Laboratories,

Hager et al. Cell Death and Disease  (2018) 9:1052 Page 14 of 17

Official journal of the Cell Death Differentiation Association



CA, USA) in PBS for 10 min. The dyes were removed, and
the cells mounted in Vectashield mounting medium
(Vector Laboratories, CA, USA) with a coverslip. Images
were taken with a Zeiss LSM 700 Olympus (Carl Zeiss
AG, Oberkochen, Germany) confocal microscope and
CHOP fluorescence intensities per nucleus were mea-
sured using ImageJ.

Annexin V/PI stain and detection of mitochondrial
membrane potential
Briefly, 2 × 105 cells/well were seeded in 6-well plates.

After 24 h recovery, cells were treated for another 24 h
with the indicated drug concentrations. Then, cells were
either stained with annexin V-APC (AV) and propidium
iodide (PI) or with 10 µg/ml JC-1 as previously
described51,52.

Protein expression
After drug treatment, total protein lysates were pre-

pared, separated by SDS-PAGE and transferred onto a
polyvinylidene difluoride membrane for Western blotting
as described previously50. The following antibodies were
used: Cell Signaling Technology (MA, USA): BAX
(#5023), Bcl-xL (#2764), PERK (#5683), phospho-PERK
(Thr980, #3179), Calnexin (#2679), eIF2-α (#5324),
phospho-eIF2-α (Ser51, #3398), PDI (#3501), ero1L-α
(#3264), BiP (#3177), IRE1α (#3294), MEK1/2 (#9126),
phospho-MEK1/2 (Ser217/221, #9154), MEK2 (#9125)
ERK1/2 (#4695), phospho-ERK1/2 (Thr202/Tyr204,
#4370). Sigma-Aldrich: β-actin (AC-15; #A1978). Primary
antibodies were used 1:1000. Secondary, anti-mouse
(#7076) and anti-rabbit (#7074) horseradish peroxidase-
labeled antibodies from Cell Signaling Technologies were
used in working dilutions of 1:10,000.

Gene knockdown by siRNA
Cells were transfected with XfectTM RNA Transfection

Reagent (Clontech Laboratories, CA, USA) using siRNA
against MEK2 (Dharmacon, #M-003573-03-0005) or non-
targeting siRNA (Dharmacon, #D-001206-13-05) follow-
ing the manufacturer’s recommendations. Briefly, 3 × 105

SW480 cells/well or 4 × 105 HCT-116 cells/well were
seeded in 6-well plates. After 24 h cells were incubated
with the siRNAs and transfection polymer in serum-free
medium for 4 h. Then, the medium was exchanged and
after another 24 or 48 h cells were collected for experi-
ments. Efficacy and specificity of gene silencing was ver-
ified at the protein level by Western blot following 48 h
siRNA transfection.

Total-RNA isolation and whole-genome gene expression
array
Total RNA from SW480 cells (either untreated or

treated for 15 h) was isolated using RNeasy Mini kit

(Quiagen) following the manufacturer’s instruction.
Transcriptional profiles of cells were determined per-
forming a 4 × 44 K whole-genome oligonucleotide gene
expression array (Agilent) as described previously53.
Normalization was performed in R using the Bio-
conductor (version 3.7) package “limma”54. Whole-
genome gene expression array and gene set enrichment
analysis (GSEA) were performed as previously descri-
bed51. Visualization of differentially expressed genes in
the KEGG database-derived “MAPK signaling pathway”
was conducted using the Bioconductor package
“pathview”55.

Raman microspectroscopy
Cells (2 × 104 /well) were seeded into 8-well μ-slides

with glass-bottom (ibidi GmbH, Germany) and left to
recover for 24 h followed by 24 h drug treatment. Sub-
sequently, samples were fixed with 2% formaldehyde in
PBS for 5 min. Cells were mapped in PBS using an
XploRA INV Raman microscope (Horiba Jobin Yvon,
Bensheim, Germany) equipped with a 532 nm solid state
laser at 100 mW, 1800 gr/mm grating and CFI Plan APO
×100 NA 1.4 Oil objective (Nikon). Two spectra per
pixel were acquired with an integration time of two
seconds in steps of 0.5 µm in X and Y. Cosmic rays were
removed automatically. The spectral fingerprint region
of 600–1800 cm−1 was extracted from raw spectra, the
1st derivative (size= 5, degree= 1) was calculated and
unit vector normalization was performed. Principal
component analysis (PCA) with three components was
computed and displayed as a spectral map. Component
spectra were shifted on the intensity scale for better
visualization. The spectrum of Me2NNMe2 powder was
acquired using the 532 nm laser at 100 mW, 2400 gr/
mm grating, CFI Apo Lambda S ×40 NA 1.15 Water
objective (Nikon) with 4 × 5 s integration and processed
as described above. The processed spectrum of
Me2NNMe2 was fitted to the spectral map of the cells by
using the CLS function. All calculation and visualization
steps were performed in LabSpec 6 (Horiba, Jobin Yvon,
Bensheim, Germany).

PDI reduction activity measurement
PDI reduction activity was measured using PROTEO-

STAT PDI assay kit (#ENZ-51024, Enzo Life Sciences,
Lausen, Switzerland). Experiments were performed
according to the manufacturer’s instructions. Briefly,
drugs alone or preincubated with CuCl2 (1:1) were added
to a prepared insulin PDI solution. Then, DTT was added
to start PDI reduction activity. After 30 min the reaction
was stopped by the Stop reagent and the insulin pre-
cipitate was fluorescently labeled with Proteostat PDI
detection reagent for 15 min. Fluorescence intensity was
measured at 500 nm excitation and 603 nm emission
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using the spectrophotometer Tecan infinite 200Pro
(Tecan Group, Männedorf, Switzerland).

Glutathione measurement
Cells were plated (4 × 103 cells/well) in 96-well plates

and allowed to recover for 24 h. Then, cells were treated
in sextuplicates with Triapine or Me2NNMe2 for another
24 h. Cells were lysed and levels of total and oxidized
glutathione were measured in triplicates with GSH/
GSSG-GloTM Assay (#V6611, Promega, Madison, USA)
according to the manufacturer’s instructions. Fold
increase in relative luminescence units (RLU) was calcu-
lated compared to untreated control after subtraction of
cell-free blank.

Detection of intracellular superoxide
Dihydroethidium (DHE, #D7008, Sigma-Aldrich, MO,

USA) was used to detect the production of intracellular
superoxide. Briefly, 5 × 105 HL-60 cells per sample in 500
μl of PBS (78.1 mM Na2PO4 × 2 H2O, 14.7 mM KH2PO4,
26.8 mM KCl, 1.37M NaCl) were incubated with indi-
cated concentrations of Triapine and Me2NNMe2 for 45
min. Subsequently, DHE (10 µM) was added 15min after
the compounds. After incubation, the mean fluorescence
intensity was measured by flow cytometry using a
FACSCalibur instrument (Becton Dickinson, Palo Alto,
CA, USA). Antimycin A (AMA, 10 µM) was used as
positive control.
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