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SUMMARY

Proper control of the mitochondrial Ca2+ uniporter’s
pore (MCU) is required to allow Ca2+-dependent acti-
vation of oxidative metabolism and to avoid mito-
chondrial Ca2+ overload and cell death. The MCU’s
gatekeeping and cooperative activation is mediated
by the Ca2+-sensing MICU1 protein, which has
been proposed to form dimeric complexes anchored
to the EMRE scaffold of MCU. We unexpectedly find
that MICU1 suppresses inhibition of MCU by ruthe-
nium red/Ru360, which bind to MCU’s DIME
motif, the selectivity filter. This led us to recognize
in MICU1’s sequence a putative DIME interacting
domain (DID), which is required for both gatekeeping
and cooperative activation of MCU and for cell sur-
vival. Thus, we propose that MICU1 has to interact
with the D-ring formed by the DIME domains in
MCU to control the uniporter.

INTRODUCTION

The mitochondrial Ca2+ uniporter (mtCU) or MCU complex

needs to be tightly regulated to avoid cell death by Ca2+ overload

and to allow the Ca2+-dependent physiological stimulation of

oxidative metabolism. Among the different components of the

MCU complex, the Ca2+-sensing protein MICU1 has been

characterized as a key mediator of gatekeeping and cooperative

activation of MCU, the pore-forming unit of the MCU complex

(Csordás et al., 2013; Kamer andMootha, 2014;Mallilankaraman

et al., 2012; Patron et al., 2014). MICU1 has been linked to hu-

man neurological and muscular diseases (Lewis-Smith et al.,

2016; Logan et al., 2014), as well as to liver regeneration (Antony

et al., 2016), cardiac ischemia-reperfusion injury (Xue et al.,

2017), diabetic cardiomyopathy (Ji et al., 2017) and ovarian can-

cer (Chakraborty et al., 2017).

In addition to MCU and MICU1, other MCU complex com-

ponents have also been identified: two paralogs of MICU1,

MICU2 and MICU3 (Plovanich et al., 2013), a dominant-nega-

tive paralog of MCU, MCUb (Raffaello et al., 2013), and the

indispensable transmembrane protein EMRE (Sancak et al.,

2013). MICU1 interacts with MICU2 through a disulfide bond
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involving C465 in MICU1 and C410 in MICU2 to form homo/

heterodimers that control the MCU complex activity (Patron

et al., 2014; Petrungaro et al., 2015). On the other hand,

MICU1 binding to the polyaspartate tail of EMRE has been

shown to anchor MICU1 to the MCU complex in the mitochon-

drial intermembrane space and thus confer gatekeeping of the

pore (Tsai et al., 2016). However, in the same study, MICU1’s

interaction with MCU without EMRE was also shown by

coimmunoprecipitation (Tsai et al., 2016), which is also sup-

ported by surface plasmon resonance data (Vecellio Reane

et al., 2016).

Topology studies showed that most of MCU’s amino acid

residues are in the two transmembrane domains and the N

and C termini that are exposed to the mitochondrial matrix

and identified a short sequence between the two transmem-

brane domains, which is exposed to the intermembrane space

(IMS) and might be accessible for direct interaction with IMS

proteins like MICU1. This motif was termed as DIME (or

DXXE) based on its amino acid sequence conserved across

species (D261 and E264 in hsMCU) (Baughman et al., 2011).

A recent study characterized the DIME domain as the ion

selectivity filter of the MCU with ion binding to the two carbox-

ylate rings (Cao et al., 2017). Notably, mutation of DIME

domain also impaired the MICU1-MCU interaction (Patron

et al., 2014). Interestingly, the inhibitory effect of the most

potent inhibitors of the MCU complex, ruthenium red (RuRed)

and ruthenium 360 (Ru360), requires S259 (Baughman et al.,

2011). Two recent NMR studies further indicated that Ru360/

RuRed binds the D-ring of MCU’s selectivity filter, which is sol-

vent-exposed compared to the E-ring located deeper in the

pore (Arduino et al., 2017; Cao et al., 2017). Thus, we

reasoned that MICU1 might affect the RuRed sensitivity of

the MCU complex through a potential interaction with the

DIME domain of MCU.

We here find that MICU1 deletion increases the MCU complex

sensitivity to RuRed/Ru360, suggesting that MICU1 interferes

with the binding site of these inhibitors in the DIME motif of

MCU. We then identify a complementing sequence in MICU1

to the DIME motif, which we refer to as DIME interacting domain

(DID) and predict that two arginines (R440 and R443) engage in

potential salt bridges with the D-ring of MCU. Using an imaging

approach to assess both threshold and cooperativity of theMCU

complex in MICU1-KOmouse embryonic fibroblasts (MEFs) and

HEK293 cells (HEKs), we show that the DID in MICU1 is required

to control the MCU complex-mediated Ca2+ influx and, in turn,
Inc.
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Figure 1. MICU1 Controls the RuRed/Ru360

Sensitivity of MCU Complex

(A and B) Time courses of the mitochondrial

clearance of the [Ca2+]c rise upon addition of a

50 mM CaCl2 bolus (50Ca) in permeabilized Ctrl (A)

and MICU1-KD hepatocytes (B), with and without

100 nM RuRed. Dashed line indicates complete

inhibition of the mitochondrial Ca2+ uptake.

(C) [RuRed] dose response for the percentage of

inhibition of the initial mitochondrial uptake rate for

a 50Ca bolus in Ctrl (black) and MICU1-KD (red)

hepatocytes. A sigmoidal fit is displayed for each.

(D) Percentage of uptake rate inhibition by

30 nM Ru360 in Ctrl (black) and MICU1-KD (red)

hepatocytes.

(E and F) [RuRed] dose response for the percent-

age of uptake rate inhibition for a 20Ca bolus in

MICU1+/+ and MICU1�/� MEFs (E) and HEKs (F). A

sigmoidal fit is displayed for each.

Mean ± SEM, n = 3–4, *p < 0.05 versus Ctrl, t test.

See also Figure S1.
cell survival. Finally, we show that the DID of MICU1 alters the

RuRed/Ru360 sensitivity by competing for the interaction with

the DIME domain of MCU, thus opening a new avenue for ther-

apeutic targeting of the MCU complex.

RESULTS

MICU1 Controls the RuRed/Ru360 Sensitivity of the
MCU Complex
While recording mitochondrial clearance of Ca2+ added to the

cytoplasmic buffer of permeabilized hepatocytes isolated from

wild-type (Ctrl) and hepatocyte-specific MICU1�/� mouse

(MICU1-KD), we noticed that deletion of MICU1 caused sensiti-

zation to RuRed (Figures 1A and 1B). Specifically, MICU1-defi-

cient mitochondria showed less-effective uptake when a large

Ca2+ bolus was applied (50 mM CaCl2) as we reported earlier

(Antony et al., 2016), and it was almost completely suppressed

by a submaximal dose of RuRed (100 nM), which caused only

a small inhibition in wild-type (WT) mitochondria. When dose
Molecula
response curves were compiled, an in-

crease in sensitivity for RuRed of almost

an order of magnitude was observed in

MICU1-deficient hepatocytes (Figure 1C).

Higher sensitivity to RuRed was also

observed in MICU1-deficient hepatocytes

in response to a smaller bolus of Ca2+

(7 mM; raising [Ca2+]c to 1.5–2 mM) (Fig-

ure S1), for which the mitochondrial Ca2+

uptake is similar to the control (Antony

et al., 2016). The sensitivity was also

increased toward Ru360, which is a

more specific inhibitor of MCU complex

(Figure 1D). Furthermore, sensitization to

RuRed by MICU1 deletion was also found

in MEFs (Figure 1E) and in HEKs (Fig-

ure 1F). Thus, these results provide

evidence that MICU1 decreases the
RuRed/Ru360 sensitivity of the MCU complex, probably by

competing with RuRed/Ru360 for binding to MCU.

MICU1 Has a Complementing Sequence to the Region of
MCUDeterminingRuRedSensitivity andCa2+ Selectivity
RuRed/Ru360 was recently shown to bind the DIME domain of

MCU (Arduino et al., 2017; Baughman et al., 2011; Cao et al.,

2017). The results shown in Figure 1 led us to postulate that there

might be a domain in MICU1 that interacts with the DIME domain

of MCU. It has been previously suggested that MICU1 interacts

indirectly with MCU through EMRE, involving the transmem-

brane domains of MCU and EMRE, and EMRE binding to

MICU1 via EMRE’s C-terminal polyaspartate tail (Sancak et al.,

2013; Tsai et al., 2016). Nevertheless, two studies using different

techniques have indicated that MICU1 can interact with MCU

without EMRE (Tsai et al., 2016; Vecellio Reane et al., 2016), sup-

porting the possibility of an additional protein-protein interaction

component. Moreover, along with the DIME domain of MCU (Pa-

tron et al., 2014), the C-terminal structure of MICU1 has been
r Cell 72, 778–785, November 15, 2018 779



Figure 2. Mutation of the Complementing Sequence Interferes with MICU1 Binding to and Control of MCU

(A) Alignment of MICU1, MICU2 andMICU3 showing previously identified sites in MICU1 involved in interactions with EMRE andMICU1/MICU2, and proposing a

potential MCU binding domain.

(B) Upper: representative immunoblotting of coimmunoprecipitation (coIP) betweenMCU-FLAG andHA-taggedWTMICU1 orMICU1-DDIDmutant expressed in

MCU-FLAG HEKs. Arrow indicates specific MICU1-HA band, while asterisk is an unspecific band. Lower: quantification of the relative MICU1 amount pulled

down by MCU-FLAG in HEKs expressing WT MICU1 or MICU1-DDID. Mean ± SEM, n = 3, *p < 0.05 versus WT, t test.

(C) [Ca2+]m measurements in permeabilized WT MEFs and MICU1-KO MEFs expressing empty vector, MICU1 or MICU1-DDID and challenged with a bolus of

20 mM CaCl2.

(D) Quantification of resting [Ca2+]m as an index of thresholding of the MCU complex.

(E) Calculations of the difference (D[Ca2+]m) between the [Ca2+]m 30 s post-20Ca addition and the resting [Ca2+]m as an index of cooperativity of theMCUcomplex.

Mean ± SEM, n = 6, *p < 0.05 versus WT, one-way ANOVA.

See also Figure S2.
shown to be necessary for co-immunoprecipitation with MCU

(Kamer and Mootha, 2014; Wang et al., 2014). However, the

exact sequence in MICU1 involved in the binding to MCU is still

unknown. Alignment of MICU1, MICU2, and MICU3 revealed a

potential DIME interacting domain in the C-terminal sequence

of all three MICUs, involving lysine (K438) and two arginines

(R440 and R443), which could form potential salt bridges with

the DIME domain in MCU (Figure 2A). Among the marked poten-

tial interactions, the one between K438 and the corresponding

serine is more likely a dipole-dipole interaction than an actual

salt bridge between the positively charged amino group of lysine

and the OH of serine. The crystal structure of MICU1 shows that

the two arginine residues are orientated in the same direction in a

helix (Wang et al., 2014), thus suggesting that the side chains of

R440 and R443 could act like RuRed to bind to the outer D-ring
780 Molecular Cell 72, 778–785, November 15, 2018
of the pore of the MCU pentamer (Cao et al., 2017). To validate

our hypothesis, we mutated in hsMICU1 these 3 residues to

alanine (MICU1-DDID: 440KQRLMR445 > 440AQALMA445)

and analyzed its binding with MCU. MICU1-DDID (tagged with

HA) was pulled down 60% less thanWTMICU1 by MCU (tagged

with FLAG), and MCU was pulled down to a lesser extent by

MICU1-DDID than by WT MICU1 (Figure 2B). These results sug-

gest that the KQRLMR sequence in MICU1, which we now

named DID (DIME interaction domain), interacts with MCU,

probably through its DIME motif.

Next, using MICU1-KO MEFs, in which MICU2 is maintained

(Antony et al., 2016), we aimed at better characterizing the func-

tional role of the DID inMICU1 in the control of theMCU complex

Ca2+ flux. To assess MCU complex activity in individual cells,

[Ca2+]m was followed via loading the mitochondria in WT and



MICU1-KOMEF cells with the ratiometric probe furaFF/AM; cells

were then permeabilized and subjected to a two-step Ca2+ addi-

tion protocol (3 and 20 mM CaCl2, 3 and 20Ca). Mitochondrial

localization of the probe was confirmed by complete inhibition

of the Ca2+ response by RuRed (Figure S2) (Paillard et al.,

2017). As expected, MICU1-KO MEFs displayed an increased

resting [Ca2+]m, which could be prevented by RuRed (Figure S2).

The resting [Ca2+]m was used then as a measure of gatekeeping

activity of various MICU1 mutants. Rescue was performed with

WT MICU1 (MICU1-HA) or MICU1-DDID in the MICU1-KO cells.

While MICU1-HA restored the low resting [Ca2+]m, MICU1-DDID

failed to lower it (Figures 2C and 2D). As a simple measure of the

Ca2+-induced highly cooperative activation of MCU, in a single-

addition protocol, the initial response to 20Ca (difference be-

tween the [Ca2+]m 30 s post-20Ca addition and the resting

[Ca2+]m) was used. MICU1-DDID expression decreased D

[Ca2+]m as in MICU1-KO MEFs (with empty vector), compared

toWTMEFs (Figures 2C and 2E). Thus, our data support thatmu-

tation of the complementing sequence with MCU DIME motif in-

terferes with MICU1 binding to and control of the Ca2+ fluxes

of MCU.

Role of DID and the Other Motifs of MICU1 in
Intracellular Ca2+ Homeostasis and Cell Survival
MICU1 is thus engaged in at least three interactions with compo-

nents of the MCU complex: the previously documented dimer-

ization with MICU2/MICU1, an interaction with EMRE, and our

newly demonstrated interaction with MCU via the DID. To eval-

uate the MCU complex regulation by the interactions of MICU1

with MICU2, EMRE and MCU, respectively, we interfered with

each separately or in combination and performed simultaneous

[Ca2+]c and [Ca2+]m measurements during store-operated Ca2+

entry (SOCE) in intact WT and MICU1-KO HEKs. We opted for

SOCE as the Ca2+ source because it stimulates mitochondrial

Ca2+ uptake mostly via the global [Ca2+]c increase that we

measured, so we could plot [Ca2+]m as both a function of time

and [Ca2+]c. We generated three additional HA-tagged mutants

of MICU1: the MICU1-Ddimer (C465A), which is incompetent

for dimerization, MICU1-DEMRE (99KKKKR > 99AAAAA), which

lacks the EMRE-binding motif, and a combination of MICU1-

DDID+DEMRE+Ddimer. Co-transfection of MICU1-KO cells

with MICU1 mutants and the mitochondrial matrix-targeted

Ca2+ indicator, mtCepia, allowed us to evaluate in each single

cell [Ca2+]m and [Ca2+]c by fura2 (Figures 3A and 3B). The

SOCE-mediated [Ca2+]m increase appeared earlier in MICU1-

KO HEKs rescued by either the empty vector, the MICU1-

DDID, or the MICU1-DDID+DEMRE+Ddimer mutant, compared

toWTHEKs or MICU1-KO cells rescued by the otherMICU1mu-

tants (Figure 3B). The [Ca2+]m response 60 s post-Ca2+ addition

revealed that both MICU1-DDID and MICU1-DDID+DEMRE+D

dimer mutant rescues took up Ca2+ similarly to the MICU1-KO

cells, while the MICU1-DEMRE and MICU1-Ddimer rescued

cells took up initially less Ca2+, like the WT MICU1 rescue (Fig-

ure 3C). Plotting [Ca2+]m against [Ca2+]c further supported that

MICU1-KO cells rescued by either the empty vector or the

MICU1-DDID or the MICU1-DDID+DEMRE+Ddimer mutant

showed a significant [Ca2+]m increase at lower [Ca2+]c than WT

cells or the ones rescued by WT MICU1 and the other MICU1
mutants in MICU1-KO HEKs (Figure 3D). Indeed, to reach a

similar level of [Ca2+]m (arbitrarily set at 1.2 ratio units), around

0.2 mM of [Ca2+]c was sufficient in MICU1-KO and the MICU1-

DDID or MICU1-DDID+DEMRE+Ddimer rescues, whereas WT

HEKs and MICU1-KO cells rescued by WT MICU1, MICU1-

DEMRE, or MICU1-Ddimer constructs required a significantly

higher [Ca2+]c (Figure 3E). We further assessed if the MICU1-

DDID mutant operated as a dominant-negative MCU complex

component in these intact cell experiments. Similarly to

MICU1-KO HEKs, co-expression of WT MICU1 and MICU1-

DDID led to a significant [Ca2+]m increase at lower [Ca2+]c than

MICU1-KO HEKs rescued by WT MICU1 itself or along with a

point mutant in EF1 ofMICU1 (MICU1-EF1-D9E), thus unraveling

a dominant-negative effect ofMICU1-DDID overWTMICU1 (Fig-

ures S3A and S3B). MICU1-EF1-D9E was created to cause a

specific perturbation in D239 of the EF hand, but it was found

to unalter the resting [Ca2+]m or the rescue of cooperativity and

Ca2+-dependent activation of MCU complex (Figures S3C–

S3E). Therefore, we used this construct as an alternative

example of full rescue. Together, these data suggest that the

MICU1-MCU interaction through the MICU1’s DID and MCU’s

DIME motif is the most critical for the gatekeeping of the MCU

complex.

Because the gatekeeping of MCU complex by MICU1 is cen-

tral to avoiding mitochondrial Ca2+ overload, oxidative stress,

and cell death (Antony et al., 2016; Csordás et al., 2013; Liu

et al., 2016; Mallilankaraman et al., 2012), we then proceeded

to study the so-called delayed Ca2+ dysregulation by following

the [Ca2+]c in intact HEKs subjected to prolongedCa2+ entry (Fig-

ure 3F). After the initial [Ca2+]c rise, a large delayed increase was

observed only in mock- and MICU1-DDID-rescued cells,

whereas [Ca2+]c was maintained at a low level in MICU1-KO

HEKs rescued by WT MICU1 or with the MICU1-EF1-D9E

(Figure 3G).

The mitochondrial oxidative stress generated during pro-

longed SOCE conditions was measured using mtGrx1-RoGFP2,

the fluorescence of which shows the ratio of oxidized and

reduced glutathione (GSSG/GSH) and is unaffected by pH

(Gutscher et al., 2008). The oxidative stress recorded in mock

rescued cells was duplicated in the cells rescued by the

MICU1-DDID mutant, whereas oxidative stress was avoided in

the cells rescued withWTMICU1 orMICU1-EF1-D9E constructs

(Figure 3H). Importantly, all the MICU1 constructs were effec-

tively expressed in the MICU1-KO cells, with no difference

between the MICU1-DDID and MICU1-EF1-D9E mutants (Fig-

ure S4A). To conclude, these results indicate thatMICU1 interac-

tion with the D-ring of the DIME domain of MCU is required for

gatekeeping of the MCU complex and, in turn, for cell survival.

DID Mutant Fails to Rescue RuRed Sensitivity
Finally, we investigated how RuRed sensitivity will be altered

with expression of DID mutant of MICU1. While in WT and in

MICU1-KO HEKs rescued by WT MICU1, or MICU1-EF1-D9E

constructs, 30 nM RuRed elicited a partial inhibition of the mito-

chondrial Ca2+ uptake rate, MICU1-KO HEKs rescued with

empty vector or MICU1-DDID displayed an almost complete in-

hibition of mitochondrial Ca2+ uptake, which could only be at-

tainedwith 3 mMRuRed inWTHEKs (Figures 4A and 4B). Indeed,
Molecular Cell 72, 778–785, November 15, 2018 781



Figure 3. Critical Role of the DID of MICU1 in Ca2+ Homeostasis and Cell Survival

(A and B) SOCE-induced [Ca2+]c (A: Fura2 after calibration in mM) and [Ca2+]m (B: mt-Cepia) time courses in WT and MICU1-KO HEKs expressing the indicated

MICU1 constructs, after addition of 3 mM CaCl2.

(C) Bar graph shows [Ca2+]m response at 60 s, normalized to MICU1-KO HEK response, from data in (B).

(D) [Ca2+]m plotted against [Ca2+]c in individual cells.

(E) Measurements of [Ca2+]c required to reach 1.2 [Ca2+]m based on data from (D). Mean ± SEM, n = 4–7, *p < 0.05 versus WT, one-way ANOVA.

(F) Representative traces of [Ca2+]c measured by fura-ff-AM in intact HEKs after an addition of 10 mM CaCl2 and in the presence of 100 mM H2O2.

(G) Quantification of the increase in [Ca2+]c from data in (F) (50 min–10 min).

(H) Quantification of the mitochondrial GSSG/GSH ratio using the mtGrx1-RoGFP2 sensor in the same conditions as in (F).

Mean ± SEM, n = 3 independent experiments, *p < 0.05 versus MICU1-KO, one-way ANOVA.

See also Figures S3 and S4.
a significantly higher inhibition of mitochondrial Ca2+ uptake by

30 nM RuRed was obtained in MICU1-KO HEKs rescued with

empty vector or MICU1-DDID compared to either WT MICU1

or MICU1-EF1-D9E rescue (Figure 4B). Importantly, rescuing

MICU1-KO HEKs by the MICU1-DDID or MICU1-EF1-D9E con-

structs both lead to a higher MICU1 protein expression than that

in the WT HEKs (Figure S4B). Because no release of any of the

MICU1 constructs was noticed upon selective permeabilization

of the plasma membrane and in the immunofluorescence exper-

iments, the expressed MICU1 constructs co-localized with the

mitochondria (Figure S4C), they seem to be correctly targeted

to the mitochondria. To test the localization to the IMS and

proper interaction with EMRE for both MICU1-HA and MICU1-

DDID-HA, we performed for the revision an immunoprecipitation

experiment. Figure S4D shows that EMRE (tagged with Myc)

pulled down a comparable amount of WT MICU1 and MICU1-

DDID mutant (tagged with HA), thus confirming the proper local-
782 Molecular Cell 72, 778–785, November 15, 2018
ization of the MICU1-DDID construct in the IMS and also that

alteration of the MICU1-MCU interaction does not interfere

with the MICU1-EMRE binding. Furthermore, the dominant-

negative effect of MICU1-DDID (Figures S3A and S3B) also

provides functional evidence for the correct localization of

MICU1-DDID. Thus, the failure of the DID mutant to restore the

lower RuRed sensitivity confirms that the interaction between

the DID ofMICU1 andMCU, likely through its DIME domain, con-

trols the Ca2+ flux and the RuRed sensitivity of the MCU

complex.

DISCUSSION

The main finding of this study is that MICU1 interacts with the

DIME motif of MCU and this interaction is required for keeping

MCU complex’s pore both closed at low [Ca2+]c and optimally

activated at high [Ca2+]c. Furthermore, this interaction also



Figure 4. MICU1-MCU Interaction through the DID of MICU1 Is Required to Maintain RuRed Sensitivity

(A) Time courses of the mitochondrial clearance of the [Ca2+]c rise upon addition of a 10 mM CaCl2 bolus (10Ca) in permeabilized WT and MICU1-KO HEKs with

different MICU1 constructs, with or without RuRed (3 mM or 30 nM).

(B) Bar graph shows percentage of uptake rate inhibition by 30 nMRuRed in data from (A). Mean ± SEM, n = 3, *p < 0.05 versusWT, y p < 0.05 versusMICU1-EF1-

D9E, one-way ANOVA.

(C) Proposed model for MICU1 interaction with the MCU complex. In addition to the previously identified sites of MICU1 interaction with MICU1/2 through a

disulfide bridge and with EMRE via electrostatic binding, we have identified a new functional domain in MICU1, the DID, for interaction with the DIME domain of

MCU. More precisely, the two arginines 440 and 443 in MICU1 would interact via salt bridges with the accessible D-ring of the filter selectivity domain of MCU to

control the Ca2+ flux and RuRed sensitivity of the MCU complex.

See also Figure S4.
controls theMCU complex’s accessibility for its most-character-

ized inhibitors. Thus, our findings are central to understanding

themechanisms that allowMICU1 to support cell survival by pre-

venting mitochondrial Ca2+ overload and cause human disease

in MICU1 deficiency, and provide important clues for mitochon-

drial drug development.

It has been broadly recognized that the Ca2+-sensing MICU1

is required for the control of MCU complex activity. As to the

underlying mechanism, MICU1’s interactions with some compo-

nents of the MCU complex have been dissected recently: disul-

fide bonds between the cysteines of MICU1 and MICU2 to form

dimers (Patron et al., 2014; Petrungaro et al., 2015) and electro-

static interaction between the polyaspartate tail of EMRE and the

polybasic sequence of MICU1 (Tsai et al., 2016). While Hoffman

et al. had suggested a potential interaction between the N-termi-

nal polybasic domain of MICU1 and the two interacting coiled-

coil domains of MCU (Hoffman et al., 2013), this was later

demonstrated to be indirect and mediated through EMRE (Tsai

et al., 2016). MICU1’s interaction with MCU without EMRE was

also indicated (Kovács-Bogdán et al., 2014; Tsai et al., 2016),

but until now no direct interaction sites between MCU and

MICU1 have been established. Given the involvement of the
MCU complex, and specifically MICU1, in cell death and in dis-

eases (Liu et al., 2017; Mammucari et al., 2017), a better under-

standing of the MICU1 interactions in the MCU complex was

clearly needed.

We here report a structural and functional interaction be-

tween the DID of MICU1 and the region identified as the selec-

tivity filter domain of MCU, which controls the Ca2+ flux and the

RuRed sensitivity of the MCU complex. Using sequence align-

ment, we identified a putative DIME interacting domain, DID, in

the C terminus of MICU1, engaging R440 and R443 in potential

salt bridges with the D-ring of MCU. Decreased co-immunopre-

cipitation between MCU and a MICU1 mutant of these two ar-

ginines (MICU1-DDID: 440KQRLMR445 > 440AQALMA445)

supported a structural role for the DID in MICU1-MCU interac-

tion. Using Ca2+ imaging approaches in genetically rescued

MICU1-KO MEFs and HEKs, we showed that the DID in

MICU1 is required for both the threshold and cooperative

activation of the MCU complex-mediated Ca2+ uptake. Further-

more, the DID was required to avoid mitochondrial Ca2+ over-

load, ROS dysregulation, and the ensuing cell injury. Addition-

ally, unlike MICU1, MICU1-DDID expression in MICU1-KO

HEKs did not decrease the RuRed sensitivity. Based on the
Molecular Cell 72, 778–785, November 15, 2018 783



proposed in vitro architecture of MCU as a pentamer (Oxenoid

et al., 2016) and on our identification of the MICU1 DID interac-

tion site with MCU, we here propose an updated model of the

interactions of MICU1 within the MCU complex (Figure 4C): the

two arginines R440 and R443 from one MICU1 would interact

with the exposed D-ring (D261) of two MCU units from the pen-

tamer to assure the physiological gatekeeping of the pore. In

such a model, however, it would be predicted that only one

MICU1 dimer is required to block a pentameric MCU complex.

Nevertheless, the pentameric assembly was established in vitro

using C. elegans MCU that lacked the N-terminal 165 amino

acids (Oxenoid et al., 2016), and the in vivo MCU stoichiometry

is yet to be determined. Some earlier studies, based on

biochemical data, proposed tetrameric stoichiometry (Raffaello

et al., 2013), in which case our model would be compatible with

a pair of DID domains (in 2 MICU1 dimers) being able to fully

engage with the D-ring of the MCU selectivity filter. Thus, eluci-

dation of the in vivo architecture of MCU will be crucial to better

appreciate the stoichiometry between MICU1 and MCU per

MCU complex.

As to the relevance of the interactions with the different MCU

complex components, our results identify the MICU1 interaction

with MCU via its DID to be critical for the gatekeeping. In our ex-

periments, relevance of EMRE and dimer formation is also

confirmed, but the MICU1-EMRE interaction rather appears as

an additional stabilizing interaction to support the tight regulation

of MCU by MICU1, which also fits with the only partial loss of

threshold observed by Tsai et al. when disrupting the MICU1-

EMRE interaction (Tsai et al., 2016). Notably, direct control of

MCU by MICU1 as an evolutionarily conserved critical factor in

gatekeeping is supported by the finding that the functional

MCU complex of Dictyostelium discoideum consists of only

MCU and one MICU isoform (Kovács-Bogdán et al., 2014).

Our alignment of MICUs suggests that the DID, comprising the

two arginines, is conserved among the three MICUs. However,

MICU2 fails to act as a gatekeeper in the absence of MICU1

(Kamer and Mootha, 2014). Because some interactions re-

mained between MICU1-DDID and MCU (Figure 2B), we specu-

late that those interactions might be different for MICU1 and

MICU2. Thus, further studies will be required to test whether

the DID of MICU2 (or MICU3) can support an interaction

with MCU.

One of the most unexpected findings of this work was that

removal of MICU1 greatly sensitized mitochondria toward

RuRed/Ru360, and this seems to be because of the DID limiting

access of RuRed to its target site in the DIME of MCU. In the light

of recent demonstration of tissue-specific differences in the

MICU1 abundance relative toMCU (Paillard et al., 2017), the pre-

sent finding might predict different RuRed/Ru360 sensitivity of

MCU complex in various tissues, such as the particularly high

sensitivity in the little MICU1-containing cardiac muscle (Matlib

et al., 1998). Furthermore, pharmacological targeting of the

MCU complex by new and potentially therapeutically useful mol-

ecules has become an area of concerted research efforts (Ardu-

ino et al., 2017; Arduino and Perocchi, 2018). Our findings might

aid drug design and call attention to possible organ-specific dif-

ferences in the sensitivity to future drugs sharing the target of

RuRed/Ru360.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit anti-MICU1 Sigma-Aldrich HPA037480; RRID: AB_10696934

Rabbit anti-MCU Sigma-Aldrich HPA016480; RRID: AB_2071893

Rabbit anti-MICU2 Abcam ab101465; RRID: AB_10711219

Mouse anti-mtHsp70 Thermo Fisher MA3-028; RRID: AB_325474

Rabbit anti-prohibitin Abcam ab28172; RRID: AB_777457

Anti-HA polyclonal Invitrogen 71-5500; RRID: AB_2533988

Anti-FLAG M2 Sigma-Aldrich F1804; RRID: AB_262044

Anti-Myc monoclonal Precision AG10004

Chemicals, Peptides, and Recombinant Proteins

Anti-DYKDDDDK (FLAG) beads Genscript A00187-200

Ruthenium Red Sigma R2751

Fura-2 (AM) Teflabs 0-103

Fura-2 (salt) Teflabs 0-104

Fura-2 low affinity (AM) Teflabs 0-136

Fura-2 low affinity (salt) Teflabs 0-137

Thapsigargin Enzo Life Sciences BML-PE180-0005

CGP-37157 Enzo Life Sciences BML-CM119-0005

Lipofectamine 3000 Life Technologies L3000008

Complete protease inhibitor cocktail (EDTA free) Roche 11873580001

Protein A Sepharose Abcam ab193256

Critical Commercial Assays

DC Protein Assay Biorad 5000112

Experimental Models: Cell Lines

MICU1loxp/loxp MEF Antony et al., 2016 N/A

MICU1KO/KO MEF Antony et al., 2016 N/A

MICU1-KO HEK293T Sancak et al., 2013 N/A

EMRE-KO HEK293T Sancak et al., 2013 N/A

HEK293T stably overexpressing mouse MCU-FLAG O-Uchi et al., 2014 N/A

WT HEK293T Sancak et al., 2013 N/A

Recombinant DNA

pcDNA-dest40-MICU1-HA Kamer et al., 2017 N/A

pcDNA3.1-MICU1-C465A-HA Patron et al., 2014 N/A

pcDNA-dest40-M1-EF1-D9E-HA, M1-DDID-HA and M1-DEMRE-HA This paper N/A

EMRE-Myc This paper N/A

Mt-Cepia This paper N/A

mtGrx1-RoGFP This paper N/A

Software and Algorithms

Canvas X N/A N/A

Endnote N/A N/A

SigmaPlot 12.5 N/A N/A
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Gyorgy

Hajnoczky (gyorgy.hajnoczky@jefferson.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
Mouse embryonic fibroblasts (MEFs) were isolated by trypsin digestion from e14.5 embryos, usingMICU1KO/loxPmice (for generation

see (Antony et al., 2016)), and then immortalized. MEFs were cultured in DMEM (ATCC 30-2002) supplemented with penicillin, strep-

tomycin at 37�C/5%O2. MICU1-KO, and EMRE-KO HEKs were kindly provided by Dr Vamsi Mootha and grown as previously

described (Sancak et al., 2013) and the stable MCU-Flag HEK by Dr Shey-Shing Sheu. Co-transfection of the control plasmid

(pcDNA3-dest40) or the HA-tagged MICU1 constructs with the mitochondrial Ca2+ sensor mtCepia or the redox sensor mtGrx1-

RoGFP2, was performed in MEFs and HEKs using Lipofectamine 3000 according to manufacturers’ protocol. Co-transection effi-

ciency was confirmed by immunofluorescence via the HA tag (data not shown). Since a 4-fold higher expression was observed

for the WT MICU1-HA construct compared to the other MICU1-HA mutants, we used 1/4 of the DNA amount for the WT MICU1-

HA plasmid.

Primary mouse hepatocytes
Primary hepatocytes were isolated by in situ retrograde perfusion with collagenase as previously described (Csordás et al., 2013),

from MICU1loxP/loxP male mice 3 weeks after tail vein-injection with an AAV8-TBG-Cre or an AAV8-TBG Null (1.3x1011 pfu/mouse)

(Penn Vector Core). Only preparations with greater than 90% viability were used for subsequent experiments. Studies were done

in accordance with the Thomas Jefferson University institutional review board guidelines.

METHOD DETAILS

Measurements of mitochondrial Ca2+ uptake and membrane potential
Saponin-permeabilized hepatocytes (2 millions), MEFs or HEKs (2.4 mg) were resuspended in 1.5 mL of intracellular medium (ICM)

containing 120 mM KCl, 10 mM NaCl, 1 mM KH2PO4, 20 mM Tris-HEPES at pH 7.2, and supplemented with proteases inhibitors

(leupeptin, antipain, pepstatin, 1mg/ml each), 2 mM MgATP, 2 mM thapsigargin and maintained in a stirred thermostated cuvette

at 35�C. Assays were performed in presence of 20 mM CGP-37157 and 1 mM succinate using a multiwavelength-excitation dual-

wavelength-emission fluorimeter (DeltaRAM, PTI). The extramitochondrial Ca2+ concentration [Ca2+]c was assessed using the ratio-

metric Ca2+ probe Fura2-FA (1.5 mM, Teflabs) or Fura-loAff (formerly Fura-FF) (1 mM, Teflabs).Dcmwasmeasuredwith 1.5 mMTMRM

(Invitrogen). Fura and TMRM fluorescence were recorded simultaneously using 340-380 nm excitation and 500 nm emission, and

545 nm excitation and 580 nm emission, respectively. Complete depolarization (maximum de-quench of TMRM fluorescence)

was elicited using of the protonophore FCCP (2 mM). Calibration of the Fura signal was carried out at the end of each measurement,

adding 1 mM CaCl2, followed by 10 mM EGTA/Tris, pH 8.5.

Construction of the HA-tagged MICU1 mutants
MICU1-EF1-D9E andMICU1-DEMREwere generated by site-directedmutagenesis in the cDNA sequence pcDNA-DEST40 contain-

ing the wild-type human MICU1 (provided by Vamsi K. Mootha). MICU1-DDID was created by inserting the synthetized sequence

coding the appropriate mutations (Blue Heron) between the HindII/EcoNI restriction sites. Finally, the sequence resulting the C-ter-

minal HA tag was inserted into each construct between the EcoNI/AgeI restriction sites. All constructs have been sequenced.

Co-immunoprecipitation
For coIP experiments, HEK293 cells were grown in 10cm plates. After 48h post-transfection the plates were lysed in 1ml of a buffer

containing 120mM NaCl, 50mM MOPS (pH 7.2), 0.5mM EGTA, 1% 3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate

hydrate (CHAPS) and protease inhibitor cocktail. Two equal aliquots (approximately 0.5mg protein) were immunoprecipitated with

either 15ml FLAG-Ab beads or 1mg of HA or Myc antibody with 50ml of Protein A Sepharose (50% slurry).

Live cell Ca2+ imaging
First, the cells were pre-incubated in a serum-free extracellular medium (ECM, 120 mM NaCl, 5 mM NaHCO3, 10 mM Na-HEPES,

4.7 mM KCl, 1.2 mM KH2PO4, 1.2 mM MgSO4, 2 mM CaCl2, 10 mM glucose, pH7.4) containing 2% BSA. For SOCE experiments,

ER stores were depleted by 10 min pretreatment with 2 mM thapsigarginin in Ca2+-free ECM. For permeabilized cells imaging, mito-

chondrial loading with 4mM Fura-FF AM was performed for 1h at 37�C, in in a serum-free extracellular medium (ECM, 120 mM NaCl,

5 mMNaHCO3, 10 mMNa-HEPES, 4.7 mM KCl, 1.2 mMKH2PO4, 1.2 mMMgSO4, 2 mMCaCl2, 10 mM glucose, pH7.4) containing

2% BSA and 0.012% Pluronic Acid. After plasma membrane permeabilization for 5 min at 37�C with 40mg/ml saponin, cells were
Molecular Cell 72, 778–785.e1–e3, November 15, 2018 e2
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washed once with ICM and then incubated with ICM supplemented with 2 mM MgATP, 2 mM thapsigargin, 2 mM Succinate, 20mM

CGP-37157 and 1mMRhod2-FA. Fluorescence wide field imaging of [Ca2+]c and [Ca2+]m was carried out using a ProEMICU1024 EM-

CCD (Princeton Instruments), fitted to Leica DMI 6000B inverted epifluorescence microscopes as previously described (Paillard

et al., 2017).

QUANTIFICATION AND STATISTICAL ANALYSIS

Data are expressed as mean ± SEM. Experiments were performed at least 3 times, in duplicates or more. Statistical analysis was

performed using ANOVA-1 followed by a Dunn’s post hoc test for comparisons between multiple groups.
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