Molecular Cancer Therapeutics

FLIP: A Targetable Mediator of Resistance to Radiation in Non-Small Cell Lung Cancer

Kylie A. McLaughlin, Zsuzsanna Nemeth, Conor A. Bradley, Luke Humphreys, Izabela Stasik, Catherine Fenning, Joanna Majkut, Catherine Higgins, Nyree Crawford, Caitriona Holohan, Patrick G. Johnston, Timothy Harrison, Gerard G. Hanna, Karl T. Butterworth, Kevin M. Prise, and Daniel B. Longley

Abstract

Resistance to radiotherapy due to insufficient cancer cell death is a significant cause of treatment failure in non-small cell lung cancer (NSCLC). The endogenous caspase-8 inhibitor FLIP is a critical regulator of cell death that is frequently overexpressed in NSCLC and is an established inhibitor of apoptotic cell death induced via the extrinsic death receptor pathway. Apoptosis induced by ionizing radiation (IR) has been considered to be mediated predominantly via the intrinsic apoptotic pathway; however, we found that IR-induced apoptosis was significantly attenuated in NSCLC cells when caspase-8 was depleted using RNA interference (RNAi), suggesting involvement of the extrinsic apoptosis pathway. Moreover, overexpression of wild-type FLIP, but not a mutant form that cannot bind the critical death receptor adaptor protein FADD, also attenuated IR-induced apoptosis,

Introduction

Lung cancer is the most common cause of cancer death worldwide. Non-small cell lung cancer (NSCLC) represents approximately 80% of lung cancer deaths, with around 86,000 deaths per year in the United States (1). Radical chemo-radiotherapy is delivered with curative intent in localized and inoperable disease, but local recurrence after treatment is high, with an overall 5-year survival of 7% to 20% (2). The complexity of the underlying molecular mechanisms of radio-resistance and tumor heterogeneity in NSCLC has hindered translation of novel therapies to clinic, and there remains an urgent need for better radiation-based treatment options in NSCLC. Recent advances in the development of molecularly targeted therapies coupled with new technological approaches in radiotherapy delivery have created the opportunity for novel combination therapies with significant potential for improved treatment options for NSCLC (3).

doi: 10.1158/1535-7163.MCT-16-0211

©2016 American Association for Cancer Research.

confirming the importance of the extrinsic apoptotic pathway as a determinant of response to IR in NSCLC. Importantly, when FLIP protein levels were downregulated by RNAi, IR-induced cell death was significantly enhanced. The clinically relevant histone deacetylase (HDAC) inhibitors vorinostat and entinostat were subsequently found to sensitize a subset of NSCLC cell lines to IR in a manner that was dependent on their ability to suppress FLIP expression and promote activation of caspase-8. Entinostat also enhanced the antitumor activity of IR *in vivo*. Therefore, FLIP downregulation induced by HDAC inhibitors is a potential clinical strategy to radiosensitize NSCLC and thereby improve response to radiotherapy. Overall, this study provides the first evidence that pharmacological inhibition of FLIP may improve response of NCSLC to IR. *Mol Cancer Ther*, 15(10); 2432–41. ©2016 AACR.

Radiotherapy is currently one of the most effective cancer treatments, with over half of all cancer patients and around 76% of all lung cancer cases prescribed radiotherapy at some point in their treatment regimen (4). Although technological advances have improved pathological response rates to advanced conformal therapies compared with standard techniques, there is need to further improve therapeutic ratio by minimizing the probability of complications in surrounding normal tissues (3, 5). Evasion of cell death is a mechanism by which cancer cells resist anticancer therapy (6); targeting resistance to cell death is therefore a potential strategy to preferentially sensitize tumor cells to ionizing radiation (IR)-induced cell death and thereby improve response rates to radiotherapy in NSCLC.

One of the mechanisms by which tumors evade apoptosis is by overexpression of antiapoptotic proteins such as the caspase-8 inhibitor FLIP, which blocks induction of apoptosis mediated by death receptors such as Fas, DR4 (TRAIL-R1) and DR5 (TRAIL-R2; refs. 7, 8). FLIP inhibits homo-dimerization, self-processing and activation of procaspase-8 at the death-inducing signaling complexes (DISCs) formed following activation of these receptors. FLIP also blocks apoptosis induced by the DISC-related cytoplasmic caspase-8–activating platforms TNFR1 Complex II and the Ripoptosome (9, 10). Importantly, we have previously reported that FLIP is frequently overexpressed in NSCLC, and this overexpression correlates with poor prognosis (11). Moreover, we and others have shown that FLIP is an important regulator of resistance to chemotherapy in a number of cancers, including NSCLC (11–14).

In this study, we investigated FLIP and caspase-8 as determinants of response to IR-induced cell death in NSCLC. We found

Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK.

Note: Supplementary data for this article are available at Molecular Cancer Therapeutics Online (http://mct.aacrjournals.org/).

Corresponding Author: Daniel B. Longley, Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL. Phone: 44-2890-972647; Fax: 44-2890-972776; E-mail: d.longley@qub.ac.uk

that FLIP-mediated regulation of caspase-8–induced cell death is an important determinant of resistance to IR. Moreover, in a subset of NSCLC models, FLIP-mediated resistance to IR-induced apoptosis can be overcome by histone deacetylase (HDAC) inhibitors that downregulate FLIP expression. These results describe for the first time the importance of FLIP as a potentially targetable determinant of resistance to IR in NSCLC.

Materials and Methods

Reagents

Vorinostat (SAHA: suberoylanilide hydroxamic acid) and entinostat (MS-275) were purchased from Selleck Chemicals and were resuspended in the vehicle dimethyl sulfoxide (DMSO) at a stock concentration of 10 mmol/L. Aliquots of 100 μ L were stored at -20° C.

Cell lines and cell culture

The A549, NCI-H460 (H460), NCI-H1373 (H1373), and CCD-34Lu (34Lu) cell lines were obtained from ATCC and HCC15 from the Leibniz Institute DSMZ. ATCC authenticate their cell lines using short tandem repeat (STR) profiling, which is a rapid, reproducible, and standardized PCR-based method. DSMZ cell lines undergo authentication by DNA profiling and mycoplasma detection/elimination and their human cell lines are subjected to additional immunological, cytogenetic, and molecular biological characterization. Frozen cell stocks of A549, H460, and 34Lu cell lines were obtained in November 2012 while H1373 and HCC15 cells were obtained in September 2015. After thawing, cells were maintained as previously described (15) and passaged no more than twice before new stocks were frozen down. All experiments were performed on low passage number cells. Stable FLIP overexpressing cell lines were generated as previously described (16). All cell lines were regularly screened for presence of mycoplasma using the MycoAlert Mycoplasma Detection Kit (Lonza).

siRNA transfections

Scrambed control (SC) siRNA, FLIP, caspase-8 and caspase-9 siRNAs were obtained from Dharmacon (Chicago, IL) and transfected as previously described (14, 17).

Western blotting and antibodies

Cells were harvested and lysed in RIPA buffer and Western blotting was carried out as previously described (17). Antibodies used: FLIP (NF6) and caspase-8 (12F5; both Alexis Biochemicals), caspase-9 (Cell Signaling Technology), PARP (eBioscience), β -actin (Sigma-Aldrich).

Flow cytometry

Cell death, cell cycle distribution, and cell surface death receptor expression were determined as previously described (14, 17).

Caspase activity assays

Caspase-Glo 8 and Caspase-Glo 3/7 assays (Promega) are luciferase-based caspase activity assays. Protein cell lysates (5 µg) were incubated with 25 µL of Caspase-Glo reagent in a total volume of 50 µL on a 96 well plate. The plate was then incubated in the dark at room temperature with gentle agitation for 30 minutes before being analyzed (Biotek Synergy 4 plate reader).

Clonogenic assays

H460 and A549 cells were seeded at various densities in triplicate on 6-well plates. Following adherence, cells were treated

with drug and/or irradiated. Plates were then incubated for 14 days until colonies formed in control wells. Cells were fixed in ice cold 70% methanol, stained with 0.4% crystal violet stain solution, and colonies were manually counted. Surviving fractions were calculated from ≥ 3 independent experiments. Survival fraction (SF) data after a radiation dose (*D*) are fit by a weighted, stratified, linear regression using Origin Pro version 8 according to the linear–quadratic formula: SF = exp($-\alpha D - \beta D^2$).

In vitro and in vivo irradiation procedures

In vitro experiments were performed with 225 kVp X-rays generated using a X-Rad 225 generator (Precision X-ray Inc.) with a 2-mm copper filter. All quoted doses are the absorbed dose in water 50 cm from the radiation source at a dose rate of 0.591 Gy/min. In vivo experiments were performed using a small animal radiotherapy research platform (SARRP, Xstrahl Life Sciences). Prior to cone beam computed tomography (CBCT) imaging, mice were anesthetized by intraperitoneal injection of xylazine/ketamine. Animals were imaged at 50 kV and 0.6 mA. Treatment planning was performed using Muriplan (Xstrahl Life Sciences) to achieve uniform dose distributions across the tumor target by delivering two parallel opposed 10×10 mm beams and avoiding critical structures. Therapeutic radiation doses were delivered 10-15 minutes after CT imaging. SCID mice were injected with 5 million A549 cells/flank in the dorsal position. After tumors had established (d7), mice were treated with 10 mg/ kg entinostat daily for 10 days (up to d17) and a total of 12 Gy IR was delivered using parallel-opposed beams in daily 2 Gy fractions for 3 days (from d10 to d12). Experimental endpoints for individual animals were defined by tumor volume exceeding 400 mm³ or animals losing in excess of 10% of their body weight at the start of the experiment. Animals received food and water ad libitum. All experimental procedures were carried out in accordance with United Kingdom Home office approved protocols for in vivo experimentation.

Statistical analysis

GraphPad Prism v5 software was applied for statistical analysis. Student *t* test and two-way analysis of variance (ANOVA) with Bonferroni post-tests were performed with labeled significance as *, 0.01 < P < 0.05; **, 0.001 < P < 0.01; ***, P < 0.001.

Results

Radiation-induced cell death is dependent on the extrinsic apoptotic pathway

The response to IR of two NSCLC cell line models, H460 and A549, was initially assessed. The induction and repair of DNA double strand breaks following exposure to a 1 Gy dose of IR was assessed by quantification of IR-induced γ H2AX foci. γ H2AX foci were rapidly induced 30 minutes post-treatment and resolved within 24 hours (Supplementary Fig. S1A). In both cell lines, a decreased proportion of cells in the G₁ phase of the cell cycle with corresponding increase in S and G₂–M phases was observed 4–8 hours after a 2 Gy dose of IR. However, these cell cycle perturbations were also resolved at 24 hours (Supplementary Fig. S1B). Of note, up to 72 hours post-treatment, there was relatively little cell death induction in response to 2 Gy IR as indicated by analysis of the sub-G₁ apoptotic population (Supplementary Fig. S1C). Increasing the dose to 5 and 8 Gy significantly increased apoptosis in H460 cells at 72 hours; however, the increase in apoptosis in

Figure 1.

IR-induced cell death in H460 cells is caspase-8 and FLIP dependent. **A**, H460 cells were transfected with 20 nmol/L scrambled control (SC) or caspase-8-targeted siRNA and irradiated at 2, 5, and 8 Gy. Western blotting confirmed procaspase-8 downregulation. DNA content of cells was analyzed by flow cytometry and the subG₁ population (DNA content <2N) was determined as a measurement of apoptosis 48 hours post-IR. **B**, H460 cells were transfected with 20 nmol/L SC, caspase-8- or caspase-9-targeted siRNA and irradiated at 2, 5, and 8 Gy. Western blotting confirmed procaspase-8 and procaspase-9 downregulation. Cell death was assessed by Annexin V/propidium iodide flow cytometry 48 hours post-IR. **C**, H460 cells overexpressing wild-type FLIP(L), FLIP(S), or FLIP(S) F114A were treated with 2 or 5 Gy IR for 72 hours. DNA content of cells was analyzed by flow cytometry and the subG₁ population was determined. EV, control empty vector cell line. **D**, clonogenic survival assays performed in EV, FLIP(L), FLIP(S), and FLIP(S) F114A H460 cells treated with the indicated doses of IR and incubated for 14 days. A colony is defined as a group of >50 cells. Surviving fractions were calculated from 3 independent experiments, and curves were fitted using linear-quadratic model. *, 0.01 < *P* < 0.05; **, 0.001 < *P* < 0.01; ***, *P* < 0.001; ns, not significant.

A549 cells in response to these high doses was less marked (Supplementary Fig. S1C). These relative contrasting sensitivities to radiation-induced apoptosis were reflected at the cell survival level, with H460 cells being more radiosensitive than A549 cells (Supplementary Fig. S1D). These relative radiosensitivities are in agreement with the published literature (18) and correlate with their relative sensitivity to TRAIL-induced apoptosis and their expression levels of FLIP (16).

Assessment of caspase activity revealed that exposure to IR results in dose-dependent increases in both caspase-8 and caspase-3/7 activity in H460 cells (Supplementary Fig. S2A). Importantly, RNAi-mediated procaspase-8 depletion was demonstrated to have a significant protective effect against IR-induced apoptosis 48 (Fig. 1A) and 72 hours (Supplementary Fig. S2B) post-treatment, suggesting the involvement of the extrinsic apoptotic pathway. In contrast, downregulation of procaspase-9 failed to rescue apoptosis induction in response to IR in H460 cells (Fig. 1B). Overexpression of either FLIP(L) or FLIP(S) inhibited IR-induced apoptosis in H460 cells, with the overexpression of FLIP (S) having the more profound effect (Fig. 1C). In contrast, a mutant form of FLIP(S), in which its critical Phe114 residue is

mutated to Ala rendering it incapable of binding to FADD (19), was unable to inhibit IR-induced apoptosis (Fig. 1C). These effects were reflected in clonogenic survival assays, with the wild-type FLIP(L) and FLIP(S) overexpressing models exhibiting increased radio-resistance, whereas the F114A FLIP(S) overexpressing model was as radiosensitive as the Empty Vector (EV) control cell line (Fig. 1C and D). These results indicate that FLIP- and FADD-dependent caspase-8 activation regulates IR-induced apoptosis in this NSCLC cell line model.

FLIP siRNA synergizes with IR to induce apoptosis

To further assess the role of FLIP in regulating IR-induced apoptosis, we downregulated both major splice forms using a pan-FLIP-targeting siRNA (FT). Consistent with our previous observations, simultaneous downregulation of both FLIP splice forms induced apoptosis in H460 cells as indicated by PARP cleavage (Fig. 2A). IR exposure in control siRNA (SC) transfected cells induced a modest dose-dependent increase in PARP cleavage. Most notably, IR significantly enhanced the PARP cleavage observed in FLIP-depleted cells; moreover, there was as much PARP cleavage in FT siRNA transfected cells exposed to 2 Gy as

Figure 2.

Downregulation of FLIP enhances IR-induced death in H460 cells. **A**, H460 cells were transfected with 10 nmol/L FLIP-targeted (FT) siRNA 24 hours before IR and were harvested 48 hours post-IR. Western blot analysis was used to detect FLIP and PARP protein expression levels. **B**, caspase-8 and caspase-3/7 activity was assessed in H460 cells transfected with 10 nmol/L FT siRNA for 24 hours prior to IR for 48 hours. **C**, H460 cells were transfected with 10 nmol/L of SC or FT siRNA and treated with IR in two different schedules: IR 24 hours after siRNA transfection (siFLIP/IR) or IR 24 hours before transfection (IR/siFLIP). Cell death was assessed by Annexin V/propidium iodide flow cytometry 24 hours after the final treatment. **D**, clonogenic survival assays performed in H460 cells transfected with the indicated doses of IR and incubated for 14 days. Surviving fraction was calculated from 3 independent experiments, and curves were fitted using linear-quadratic model. *, 0.01 < P < 0.05; **, 0.001 < P < 0.01; ***, P < 0.001.

those exposed to 5 and 8 Gy (Fig. 2A). These results were confirmed quantitatively using caspase activity assays: silencing FLIP enhanced caspase-8 and caspase-3/7 activity in H460 cells, and this was significantly enhanced by exposure to 2 Gy, with little further increase when the IR dose was elevated (Fig. 2B). Quantitative assessment of cell death induction also indicated that FLIP silencing enhanced IR-induced apoptosis; moreover, the levels of cell death were similar when FLIP was depleted before or after IR exposure (Fig. 2C). In addition, clonogenic survival of FLIP-depleted irradiated H460 cells was significantly diminished compared with control siRNA transfected cells (Fig. 2D).

We extended these analyses to additional NSCLC models. Similar results to those obtained in the H460 cell line were observed in A549 cells, with FLIP silencing significantly enhancing radiation-induced apoptosis and decreasing clonogenic survival (Fig. 3A–B). In light of the importance of the extrinsic apoptotic pathway in regulating IR-induced cell death in A549 and H460 cells, we assessed expression of the receptors that can mediate FLIP/caspase-8–dependent apoptosis, namely TNFR1, Fas/CD95, TRAIL-R1, and TRAIL-R2. All four receptors were expressed on the surface of each cell line, with IR increasing expression of each receptor, most notably Fas/CD95 (Supplementary Fig. S3). These results are consistent with IR-induced activation of the extrinsic apoptotic pathway.

We subsequently analyzed NSCLC cell line models harboring a mutation in the gene encoding the inflammasome subunit NLRP3, which has previously been linked to hypersensitivity to RNAi-mediated FLIP depletion (20). In agreement with the literature, *NLRP3* mutated HCC15 and H1373 cell lines were found to be highly sensitive to FLIP-depletion as determined by PARP cleavage (Fig. 3C). Increased sensitivity to IR-induced apoptosis was difficult to assess by PARP cleavage given the extent of apoptosis induced by FLIP silencing alone; however, quantitative assessment by Annexin V/propidium iodide staining indicated that the combined effects were at least additive in these models (Fig. 3D).

HDAC inhibitors downregulate FLIP and enhance radiation-induced apoptosis

The results described above clearly indicate that FLIP downregulation sensitizes NSCLC cells to IR-induced apoptosis. Previous reports from our group have shown that HDAC inhibitors with anti-HDAC1-3 activity are efficient suppressors of FLIP expression operating at both transcriptional and posttranscriptional levels (11). In H460 cells treated with the pan-HDAC inhibitor SAHA, FLIP(L) and FLIP(S) were downregulated (Fig. 4A). Moreover, SAHA treatment significantly sensitized H460 cells to IR-induced apoptosis, but had no impact on IR-induced apoptosis induction in the 34Lu normal lung fibroblast cell line (Fig. 4B); we have previously shown that SAHA only downregulates FLIP expression in 34Lu cells at higher concentrations (> 10 µmol/L; ref. 11). In addition, in H460 cells pretreated with SAHA for 6 hours, IR-induced caspase-3/7 activation was significantly enhanced (Fig. 4C). These effects were reflected in clonogenic survival assays, which also demonstrated the radiosensitizing effects of SAHA in the H460 cell

Figure 3

FLIP is a determinant of IR resistance in A549 and NLRP3 mutated HCC15 and H1373 NSCLC models. **A**, A549 cells were transfected with 10 nmol/L SC or FT siRNA and treated with IR in two different schedules: IR 24 hours after siRNA transfection (siFLIP/IR) or 24 hours before silencing (IR/siFLIP). Cell death was assessed by Annexin V/propidium iodide method a further 24 hours after the final treatment. Western blot analysis was used to confirm FT siRNA-mediated FLIP downregulation. **B**, clonogenic survival assays performed in A549 cells transfected with FT or control siRNAs, treated with the indicated doses of IR and incubated for 14 days. Surviving fraction was calculated from 3 independent experiments, and curves were fitted using linear-quadratic model. **C**, Western blot analysis of FLIP expression and PARP cleavage in HCC15 and H1373 NLRP3 mutant NSCLC cell lines cells transfected with 10 nmol/L FT siRNA for 6 hours prior to treatment with IR for 72 hours. *****, 0.001 < P < 0.01; ******, P < 0.001.

line model (Fig. 4D). Moreover, different treatment schedules of IR and SAHA were similarly effective in reducing clonogenic survival (Supplementary Fig. S4A).

SAHA is also an effective inhibitor of FLIP expression in A549 cells (11) and also sensitized these cells to IR (Fig. 5A; Supplementary Fig. S4B). Furthermore, SAHA downregulated FLIP expression in HCC15 cells albeit to a lesser extent than in H460 and A549 cells, but had no effect on FLIP expression in the H1373 cell line (Fig. 5B). This correlated with the relative effects of SAHA/IR combinations on apoptosis induction, with HCC15 more sensitive to the combination treatment than H1373 (Fig. 5C).

Given the multiple modes of action of HDAC inhibitors (21, 22), we used siRNA to deplete procaspase-8 expression (Fig. 5D) and FLIP overexpressing cells (Fig. 5E) to assess the relative importance of the FLIP/caspase-8 axis on cell death induced by the IR/SAHA combination. We found that cell death induction was significantly inhibited by procaspase-8 depletion (Fig. 5D). SAHA was unable to downregulate expression of the exogenous FLIP proteins expressed in H460 cells (Fig. 5E), due to activation of the transgenic promoter (data not shown). This allowed us to assess the importance of FLIP downregulation for the combined effects of SAHA and IR. Notably, wild-type FLIP(S)

overexpression significantly inhibited SAHA/IR-induced apoptosis, whereas the F114A mutant that has impaired ability to bind to FADD was unable to inhibit apoptosis induced by the combination treatment. FLIP(L) overexpression also inhibited apoptosis induction in response to SAHA/IR, although to a lesser extent than FLIP(S) overexpression; this may reflect the lower level of FLIP(L) overexpression compared with FLIP(S) in the models at this time. Collectively, these results demonstrate the importance of FLIP downregulation and caspase-8 activation in mediating the effects of the SAHA/IR combination treatment.

The benzamide entinostat (MS-275/SNDX-275) is an HDAC1/ 2/3-selective inhibitor that has been clinically assessed in NSCLC (23). Entinostat has a significantly longer plasma half-life than the hydroxamic acid-based HDAC inhibitors such as SAHA (23). Consistent with our previous observations (11), entinostat also effectively downregulated FLIP in H460 and A549 (Figures 6A and C), and efficiently downregulated FLIP expression in HCC15 cells, but not H1373 (Fig. 5B). Moreover, similar to SAHA, entinostat enhanced IR-induced apoptosis in both H460 and A549 cell lines (Figures 6B and D). Given its relative radio-resistance, we assessed whether the sensitivity of A549 cells to IR could be enhanced *in vivo* by entinostat. A549

Figure 4.

The pan-HDAC inhibitor vorinostat (SAHA) downregulates FLIP and enhances IR-induced cell death. **A**, Western blot analysis of FLIP protein expression in H460 cells treated with 1 μ mol/L SAHA for 48 hours. **B**, H460 and 34Lu cells were treated with the indicated doses of SAHA for 24 hours prior to exposure to 5 and 8 Gy IR. The DNA content of the cells was determined 72 hours post-IR by flow cytometry, and the sub-G₁ apoptotic population (DNA content <2N) determined. **C**, caspase-3/7 activity in H460 cells treated with 1 μ mol/L SAHA for 6 hours and irradiated with the indicated doses of IR for a further 48 hours. **D**, clonogenic survival assays performed in H460 cells treated with SAHA and the indicated doses of IR. The surviving fraction after 14 days was calculated from 3 independent experiments. *, 0.01 < *P* < 0.05; ***, *P* < 0.001; ns, not significant.

xenografts in SCID mice were directly irradiated with a total dose of 12 Gy delivered as 3 fractions of 4 Gy over 3 days delivered using parallel opposed beam geometry using a SARRP and cotreated with 10 mg/kg entinostat. Both radiation alone and entinostat alone significantly retarded tumor growth (Fig. 6E). The effects of the combination treatment were similar to the individual treatments up to 28 days, after which the cotreatment had a greater impact on tumor growth than the single agent treatments, suggesting that long-term growth is more efficiently suppressed by the cotreatment (Fig. 6E).

Discussion

NSCLC cancer is a significant international public health burden. The prognosis for patients with NSCLC remains very poor, with overall survival after 5 years for stages Ia/b, II, IIIa, IIIb, and IV disease of 49%–45%, 30%, 14%, 5%, and 1%, respectively (24). There is an urgent need for better treatment options. For localized and inoperable forms of the disease, radiotherapy plays a critical role; however, local recurrence after treatment is common due to radio-resistance. There are multiple mechanisms of radio-resistance, including resistance to IRinduced cell death (25, 26). Improved understanding of the molecular mechanisms underpinning radio-resistance in NSCLC is needed to enable the development of novel approaches to improve the efficacy of radiation-based treatment. In this study, we have identified the antiapoptotic protein FLIP as an important mediator of radio-resistance.

FLIP is a key regulator of apoptosis that heterodimerizes with procaspase-8 at the DISCs formed following ligation of death receptors such as TRAIL-R1 and -R2 and Fas/CD95, thereby inhibiting the homodimerization of procaspase-8 that is a prerequisite for caspase-8 activation (27). FLIP has also been demonstrated to regulate caspase-8 activation at TNFR1 Complex IIa, IIb, and the Ripoptosome (28). These important complexes regulate cell fate downstream of TNFR1 ligation (Complexes IIa and b) and in response to chemotherapy and inhibitor of apoptosis protein (IAP) antagonists (Ripoptosome; refs. 9, 29). Complexes IIb and the Ripoptosome contain RIPK1, which regulates programmed necrosis ("necroptosis") via RIPK3 and MLKL (30, 31). The heterodimer formed between FLIP(L) and procaspase-8 at these complexes has enzymatic activity, which, although unable to initiate apoptosis, suppresses necroptosis by cleaving RIPK1 (32). In addition to regulating apoptosis and necroptosis, FLIP has also been identified as an important regulator of autophagy through direct interactions with ATG3 (33).

Given its key roles in promoting cell survival, it is unsurprising that numerous clinical studies have demonstrated that FLIP is frequently overexpressed in cancer and that patients with tumors with elevated levels of FLIP tend to have a poorer prognosis (34, 35). We previously reported that FLIP is overexpressed in NSCLC and that high cytoplasmic FLIP expression correlates

Figure 5.

Cell death induced by IR/SAHA combination therapy is FLIP and caspase-8-dependent. **A**, Annexin V/propidium iodide assessment of apoptosis in A549 cells 48 hours post-IR. Cells were pretreated with SAHA for 24 hours and irradiated with the indicated doses of IR. **B**, Western blot analysis of FLIP protein expression in HCCI5 and H1373 cell lines treated with 1 μ mol/L SAHA for 24 hours. **C**, Annexin V/propidium iodide assessment of apoptosis in HCCI5 and H1373 cell lines treated with 1 μ mol/L SAHA for 24 hours. **C**, Annexin V/propidium iodide assessment of apoptosis in HCCI5 and H1373 cell lines treated with 1 μ mol/L SAHA for 24 hours. **C**, Annexin V/propidium iodide assessment of apoptosis in HCCI5 and H1373 cell lines treated with 1 μ mol/L SAHA 6 hours prior to treatment with IR; cells were analyzed 72 hours post-IR. **D**, H460 cells were transfected with 20 nmol/L SC or caspase-8 targeted siRNA. After 24 hours, cells were treated with 2.5 μ mol/L SAHA and incubated for additional 24 hours, after which the cells were exposed to IR. The cells were then analyzed 48 hours post-IR. Western blotting confirmed procaspase-8 downregulation. DNA content of the cells was determined by flow cytometry, and the sub-G₁ population (DNA content < 2N) was determined as a measurement of apoptosis. **E**, EV, FLIP(L) WT (FL), FLIP(S) WT (FS^{WT}), and FLIP(S) F114A MT (FS^{MT})-overexpressing cells were pretreated with 1 μ mol/L SAHA and then irradiated 24 hours later. The sub-G₁ apoptotic population was quantified 72 hours post-IR by flow cytometry. *, 0.01 < *P* < 0.05; **, 0.001 < *P* < 0.001; ***, *P* < 0.001; ns, not significant.

with poorer prognosis in a cohort of stage I–III NSCLC of mixed histology (roughly 50% adenomatous and 50% squamous; ref. 11). Importantly, we and others have shown that FLIP not only inhibits apoptosis induced directly via death receptor activation, but also apoptosis induced by anticancer drugs in a number of cancers, including preclinical models of NSCLC (11, 15, 36); therefore, FLIP is a critical determinant of drug resistance. In contrast, there has been a lack of studies investigating the role of FLIP in regulating IR-induced apoptosis, possibly because early studies in Jurkat cells reported that FLIP was unable to prevent IRinduced apoptosis in this model (37). While some studies have unsurprisingly shown that FLIP regulates apoptosis in response to combined treatment with IR and TRAIL (38), we are aware of only one other study that has suggested a direct role of FLIP in regulating IR-induced cell death: Luo and colleagues previously reported that silencing of FLIP sensitizes HeLa cells to both radiotherapy and chemotherapy (39). However, to our knowledge, there are no other studies that have evaluated the role of FLIP in modulating response to IR in NSCLC.

The current study provides strong evidence that FLIP-FADD-Caspase-8 complexes (40) are important regulators of radiationinduced cell death in preclinical models of NSCLC: FLIP depletion was found to enhance IR-induced apoptosis, while procaspase-8 depletion or FLIP overexpression abrogated IR-induced cell death. Moreover, FLIP's ability to inhibit IR-induced cell death was found to be dependent on its ability to interact with FADD. All of the experiments reported in this study were carried out in the absence of cotreatment with death ligands such as TRAIL and

Figure 6.

The HDAC1-3 selective inhibitor entinostat enhances IR-induced cell death *in vitro* and *in vivo*. **A**, Western blot analysis of FLIP protein expression in H460 cells treated with 2.5 μ mol/L entinostat for 24 hours. **B**, H460 cells were treated 5 Gy of IR, after 48 hours, cells were then treated with 5 μ mol/L entinostat. After a further 24 hours, Annexin V/propidium iodide assessment of apoptosis was performed. **C**, Western blot analysis of FLIP protein expression in A549 cells treated with 2.5 μ mol/L entinostat for 72 hours. **D**, A549 cells were treated with 2.5 or 5 μ mol/L entinostat for 24 hours and then exposed to IR. After a further 48 hours, Annexin V/propidium iodide assessment of apoptosis was performed. **E**, assessment of A549 xenograft growth in response to individual and combined treatment with entinostat and IR. Mice were treated with 10 mg/kg entinostat dily for 10 days (up to d17) and a total of 12 Gy IR was delivered using parallel-opposed beams in daily 2 Gy fractions for 3 days (from d10 to d12). The treatment volumes on d7 prior to treatment and d36 at the end of the experiment are presented. *, 0.01 < *P* < 0.05; **, 0.001 < *P* < 0.01; **, *P* < 0.001; ns, not significant.

FasL/CD95L, and these models do not express detectable levels of death ligands [(33) and unpublished observations]. Thus, the FLIP-FADD-Caspase-8 complexes induced by IR are not classical DISCs activated via the extrinsic pathway following death ligand binding. In the clinical setting, interactions between immune effector cells expressing TRAIL, FasL/CD95, and TNF α and tumor cells are likely to further enhance the importance of FLIP-FADD-Caspase-8 complexes in determining the outcome of radiotherapy.

HDAC inhibitors such as vorinostat and entinostat prevent the deacetylation of histone and non-histone proteins and have been shown to sensitize cancer cells to chemotherapy and IR (41–43). In this study, we demonstrate that HDAC inhibitors enhance the *in vitro* and *in vivo* efficacy of IR in NSCLC models. Our group previously demonstrated that HDAC inhibitors downregulate FLIP in colorectal cancer models at the post-translational level by disrupting its interaction with Ku70, resulting in FLIP ubiquitination and degradation via the ubiquitin–proteasome system (17). We also previously demonstrated that HDAC inhibitors effectively suppress FLIP expression at the transcriptional and

post-transcriptional levels in H460 and A549 NSCLC cells (11). In this study, we report that HDAC inhibitors efficiently down-regulate FLIP in a subset of NSCLC preclinical models and that this promotes IR-induced, caspase-8–mediated apoptosis in these models.

In conclusion, we report that FLIP is a key determinant of radio-resistance in preclinical models of NSCLC; this is an important finding given the frequent overexpression of FLIP in this disease and suggests that FLIP expression is a potential predictive biomarker of response to radiotherapy in NSCLC. We have previously reported that procaspase-8 is also overexpressed in a significant number of NSCLCs rendering them sensitive to apoptosis when FLIP is downregulated (11, 15). In this study, we demonstrate that FLIP expression can be downregulated in at least a subset of NSCLCs using clinically relevant HDAC inhibitors and that this promotes IR-induced apoptosis. This suggests that HDAC inhibitor/IR combination therapy may be particularly effective in NSCLCs that overexpress FLIP and/or procaspase-8. This radiosensitization approach could be combined with stereotactic delivery of radiotherapy to minimize toxicity. However, understanding the molecular determinants of HDAC inhibitor-induced downregulation of FLIP in NSCLC will be needed to enable patient selection. As an alternative approach, small molecules that specifically target FLIP more directly than HDAC inhibitors may have wider application in combination with IR in NSCLC.

Disclosure of Potential Conflicts of Interest

P.G. Johnston has received speakers bureau honoraria from Pfizer and Chugai; has ownership interest (including patents) in Almac Diagnostics, Fusion, and CV6 Therapeutics; and is a consultant/advisory board member for Pfizer and Chugai. G.G. Hanna has received speakers bureau honoraria from Amgen. No potential conflicts of interest were disclosed by the other authors.

Authors' Contributions

Conception and design: K.A. McLaughlin, T. Harrison, K.T. Butterworth, K.M. Prise, D.B. Longley

Development of methodology: K.A. McLaughlin, J. Majkut, N. Crawford, T. Harrison, K.M. Prise, D.B. Longley

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): K.A. McLaughlin, C.A. Bradley, L. Humphreys, I. Stasik, C. Fenning, C. Higgins, K.T. Butterworth

References

- 1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin 2015;65:5–29.
- Louie AV, Palma DA, Dahele M, Rodrigues GB, Senan S. Management of early-stage non-small cell lung cancer using stereotactic ablative radiotherapy: Controversies, insights, and changing horizons. Radiother Oncol 2015;114:138–47.
- Salama JK, Vokes EE. New radiotherapy and chemoradiotherapy approaches for non-small-cell lung cancer. J Clin Oncol 2013;31: 1029–38.
- 4. Delaney G, Barton M, Jacob S, Jalaludin B. A model for decision making for the use of radiotherapy in lung cancer. Lancet Oncol 2003;4:120–8.
- Shumway D, Corbin K, Salgia R, Hoffman P, Villaflor V, Malik RM, et al. Pathologic response rates following definitive dose image-guided chemoradiotherapy and resection for locally advanced non–small cell lung cancer. Lung Cancer 2011;74:446–50.
- Bernier J, Hall EJ, Giaccia A. Radiation oncology: a century of achievements. Nat Rev Cancer 2004;4:737–47.
- Micheau O, Shirley S, Dufour F. Death receptors as targets in cancer. Br J Pharmacol 2013;169:1723–44.
- Shirley S, Micheau O. Targeting c-FLIP in cancer. Cancer Lett 2013;332: 141–50.
- Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 2003;114:181–90.
- Tenev T, Bianchi K, Darding M, Broemer M, Langlais C, Wallberg F, et al. The Ripoptosome, a Signaling Platform that Assembles in Response to Genotoxic Stress and Loss of IAPs. Elsevier Inc; 2011;1–17.
- 11. Riley JS, Hutchinson R, McArt DG, Crawford N, Holohan C, Paul I, et al. Prognostic and therapeutic relevance of FLIP and procaspase-8 overexpression in non–small cell lung cancer. Cell Death and Dis 2013;4:e951.
- Micheau O, Solary E, Hammann A, Dimanche-Boitrel MT. Fas Ligandindependent, FADD-mediated activation of the fas death pathway by anticancer drugs. J Biol Chem 1999;274:7987–92.
- Longley DB, Wilson TR, McEwan M, Allen WL, McDermott U, Galligan L, et al. c-FLIP inhibits chemotherapy-induced colorectal cancer cell death. Oncogene 2005;25:838–48.
- Wilson TR, McLaughlin KM, McEwan M, Sakai H, Rogers KMA, Redmond KM, et al. c-FLIP: a key regulator of colorectal cancer cell death. Cancer Res 2007;67:5754–62.
- 15. Wilson TR, Redmond KM, McLaughlin KM, Crawford N, Gately K, O'Byrne K, et al. Procaspase 8 overexpression in non-small-cell lung cancer pro-

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): K.A. McLaughlin, Z. Nemeth, C.A. Bradley, L. Humphreys, J. Majkut, C. Higgins, G.G. Hanna, K.T. Butterworth, K.M. Prise, D.B. Longley

Writing, review, and/or revision of the manuscript: K.A. McLaughlin, Z. Nemeth, C.A. Bradley, I. Stasik, J. Majkut, C. Higgins, C. Holohan, P.G. Johnston, T. Harrison, G.G. Hanna, K.T. Butterworth, K.M. Prise, D.B. Longley

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): I. Stasik, N. Crawford, G.G. Hanna Study supervision: I. Stasik, K.M. Prise, D.B. Longley

Other (executed experiments): Z. Nemeth

Grant Support

K.A. McLaughlin was supported by a studentship from the Department of Education and Learning, Northern Ireland. N. Crawford and I. Stasik were supported by the British Lung Foundation (CAN09-3 and APG11-5). C. Holohan was supported by Cancer Research UK (C212/A13721). Z. Nemeth, C. Higgins and J. Majkut were supported by the Wellcome Trust (SDDI: FLIP-FADD 099470).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked *advertisement* in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received April 7, 2016; revised June 22, 2016; accepted July 6, 2016; published OnlineFirst July 29, 2016.

motes apoptosis induced by FLIP silencing. Cell Death and Differentiation 2009;16:1352–61.

- Carson R, Celtikci B, Fenning C, Javadi A, Crawford N, Perez-Carbonell L, et al. HDAC inhibition overcomes acute resistance to MEK inhibition in BRAF-Mutant colorectal cancer by downregulation of c-FLIPL. Clin Cancer Res 2015;21:3230–40.
- Kerr E, Holohan C, McLaughlin KM, Majkut J, Dolan S, Redmond K, et al. Identification of an acetylation-dependant Ku70/FLIP complex that regulates FLIP expression and HDAC inhibitor-induced apoptosis. Cell Death and Differentiation 2012;19:1317–27.
- Tumati V, Kumar S, Yu L, Chen B, Choy H, Saha D. Effect of PF-02341066 and radiation on non-small cell lung cancer cells. Oncol Rep 2013;29: 1094–100.
- Majkut J, Sgobba M, Holohan C, Crawford N, Logan AE, Kerr E, et al. Differential affinity of FLIP and procaspase 8 for FADD's DED binding surfaces regulates DISC assembly. Nat Comms 2014;5:3350.
- Kim H-S, Mendiratta S, Kim J, Pecot CV, Larsen JE, Zubovych I, et al. Systematic identification of molecular subtype-selective vulnerabilities in non-small-cell lung cancer. Cell 2013;155:552–66.
- 21. Xu WS, Parmigiani RB, Marks PA. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 2007;26:5541–52.
- 22. Kim H-J, Bae S-C. Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am J Transl Res 2011; 3:166–79.
- Knipstein J, Gore L. Entinostat for treatment of solid tumors and hematologic malignancies. Expert Opin Investig Drugs 2011;20:1455–67.
- 24. American Cancer Society. Cancer Facts & Figures 2016. Atlanta: American Cancer Society 2016:1–72.
- Willers H, Azzoli CG, Santivasi WL, Xia F. Basic mechanisms of therapeutic resistance to radiation and chemotherapy in lung cancer. Cancer J 2013; 19:200–7.
- 26. Chang L, Graham P, Hao J, Ni J, Deng J, Bucci J, et al. Cancer stem cells and signaling pathways in radioresistance. Oncotarget 2016;7:11002–17.
- 27. Scaffidi C, Schmitz I, Krammer PH, Peter ME. The role of c-FLIP in modulation of CD95-induced apoptosis. J Biol Chem 1999;274:1541–8.
- Wang L, Du F, Wang X. TNF-alpha induces two distinct caspase-8 activation pathways. Cell 2008;133:693–703.
- Finlay D, Vamos M, González-López M, Ardecky RJ, Ganji SR, Yuan H, et al. Small-molecule IAP antagonists sensitize cancer cells to TRAIL-induced apoptosis: roles of XIAP and cIAPs. Mol Cancer Therapeut 2014;13:5–15.

- 30. Vandenabeele P, Declercq W, Van Herreweghe F, Vanden Berghe T. The role of the kinases RIP1 and RIP3 in TNF-induced necrosis. Sci Signaling 2010;3:re4–re4.
- Zhao J, Jitkaew S, Cai Z, Choksi S, Li Q, Luo J, et al. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci USA 2012;109: 5322–7.
- Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C, et al. Catalytic activity of the caspase-8-FLIPL complex inhibits RIPK3-dependent necrosis. Nature 2012;471:363–7.
- Lee J-S, Li Q, Lee J-Y, Lee S-H, Jeong JH, Lee H-R, et al. FLIP-mediated autophagy regulation in cell death control. Nature Publishing Group 2009; 11:1355–62.
- 34. Salon C, Eymin B, Micheau O, Chaperot L, Plumas J, Brambilla C, et al. E2F1 induces apoptosis and sensitizes human lung adenocarcinoma cells to death-receptor-mediated apoptosis through specific downregulation of c-FLIP(short). Cell Death and Differentiation 2006;13: 260–72.
- Ryu BK, Lee MG, Chi SG, Kim YW, Park JH. Increased expression of cFLIP(L) in colonic adenocarcinoma. J Pathol 2001;194:15–9.
- Day T, Najafi F, Wu C, Safa A. Cellular FLICE-like inhibitory protein (c-FLIP): a novel target for Taxol-induced apoptosis. Biochem Pharmacol 2006;71:1551–61.

- 37. Kataoka T, Schröter M, Hahne M, Schneider P, Irmler M, Thome M, et al. FLIP prevents apoptosis induced by death receptors but not by perforin/ granzyme B, chemotherapeutic drugs, and gamma irradiation. J Immunol 1998;161:3936–42.
- Ramp U, Caliskan E, Mahotka C, Krieg A, Heikaus S, Gabbert HE, et al. Apoptosis induction in renal cell carcinoma by TRAIL and γ-radiation is impaired by deficient caspase-9 cleavage. Br J Cancer 2003;88:1800–7.
- Luo A, Wang W, Sima N, Lu Y, Zhou J, Xu G, et al. Short hairpin RNA targeting c-FLIP sensitizes human cervical adenocarcinoma Hela cells to chemotherapy and radiotherapy. Cancer Lett 2008;271:323–32.
- Day TW, Huang S, Safa AR. c-FLIP knockdown induces ligand-independent DR5-, FADD-, caspase-8-, and caspase-9-dependent apoptosis in breast cancer cells. Biochem Pharmacol 2008;76:1694–704.
- 41. Camphausen K.Enhanced radiation-induced cell killing and prolongation of gH2AX foci expression by the histone deacetylase inhibitor MS-275. Cancer Res 2004;64:316-21.
- Seo S-K, Jin H-O, Woo S-H, Kim Y-S, An S, Lee J-H, et al. Histone deacetylase inhibitors sensitize human non–small cell lung cancer cells to ionizing radiation through acetyl p53-mediated c-myc down-regulation. J Thorac Oncol 2011;6:1313–9.
- Diyabalanage HVK, Granda ML, Hooker JM. Combination therapy: histone deacetylase inhibitors and platinum-based chemotherapeutics for cancer. Cancer Lett 2013;329:1–8.