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Abstract 

Cardiovascular diseases are the leading causes of morbidity and mortality in industrialized 

countries worldwide, despite highly effective preventive treatments available. As a difference 

continues to exist between the estimated and true number of events, further improvement of 

risk stratification is an essential part of cardiovascular research.  

Among hypertensive patients measurement of arterial stiffness parameters, like carotid-femoral 

pulse wave velocity (cfPWV) or brachial-ankle pulse wave velocity (baPWV) can contribute to 

the identification of high-risk subpopulation of patients. This is a hot topic of vascular research 

including the possibility of the non-invasive measurement of central hemodynamics, wave 

reflections and recently, 24-hour arterial stiffness monitoring as well. This chapter discusses 

the past and the present of this area including the scientific achievements with cfPWV, baPWV 

and other measures, provides a short overview of methodologies and the representation of 

arterial stiffness parameters in guidelines.     
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Introduction  

Hypertension has many aspects and a wild range of medical professions are involved in its 

research and treatment, like cardiology, angiology, endocrinology, nephrology, neurology or 

psychiatry. In this chapter we focus on the arteries, especially their mechanical properties, that 

can be non-invasively measured with the identification and analysis of pulse wave curves 

leading to the evaluation of arterial stiffness, wave reflection and central hemodynamic 

parameters. The spread of this research area and its implantation into clinical practice might 

lead to the development of a new profession, which could be called "arteriology".     

The palpation of the  pulse is a fundamental part of physical examination since the early ages 

of the Greek and Chinese medicine (1). The first European milestone of vascular research is 

dated back to 1628, when William Harvey described the basics of circulation in his classical 

text "de Motu Cordis..." (2, 3). Pulse wave analysis is rooted in the 19th century, when after the 

theoretical basis of Marey (4), Frederick Akbar Mahomed developed sphygmograph,  described 

normal radial pressure waveform and demonstrated differences from carotid wave (5). In the 

middle of the 20th century McDonald enlightened that this difference is based on wave reflection 

(6) and Womersley introduced transfer functions to characterize vascular beds in the frequency 

domain, an invention, that led to the development of the modern pulse wave analysis (3, 7). The 

history of arterial stiffness measurement begins in 1985, when Levy, Targett and their co-

workers described in two articles the first device and computer program to automatically record 

and calculate pulse wave velocity (PWV) (8, 9).   

The shape of pulse wave curves is changing with age-associated arterial stiffening due to 

increased wave reflections, as it is demonstrated in Figure 1. The pathopysiological background 

of this phenomenon is complex. It is thought, that with ageing, the chronic cyclical stress on 

the wall of large arteries leads to elastin fracturing and thinning, which is accelerated in the 
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presence of hypertension (10). Since in adulthood the production of elastin is not possible, this 

process leads to the irreversible change of the elastin/collagen ratio, which causes the stiffening 

of the large arteries (11). Among the autocrine, paracrine and neuroendocrine effects leading to 

an increase in arterial stiffening, the role of the renin-angiotensin-aldosterone system have been 

extensively studied. Its activation stimulate multiple inflammatory pathways, such as tissue 

growth factor-β and NF-κB, promoting reactive oxygen species production with reduction in 

nitric oxide bioavailability (12-14). In hypertension, systemic arterial compliance was strongly 

and negatively correlated with plasma aldosterone level (15). Other deleterious effect of 

inflammatory processes is the impair of the balance between the production of proteases and 

their inhibitors and the promotion of the synthesis of advanced glycation end-products (AGEs). 

Matrix metalloproteases are proteases that are responsible for the accelerated breakdown of 

elastin and destruction of the molecular folding of collagen. AGEs promote the irreversible 

cross-linking of collagen, which together with overexpression of MMPs, eventuate in a stiff 

extracellular matrix (14). Sodium is also an important player in the process of arterial stiffening. 

High sodium concentration itself leads to the hypertrophy of vascular smooth muscle cells (16). 

In sodium-sensitive, borderline-hypertensive patients large artery compliance was found 

reduced compared to age-matched sodium-resistant subjects which suggests alterations in the 

viscoelastic properties of arterial wall characteristics in sodium-sensitive patients (17).   

It remains a conundrum, whether arterial stiffening is a cause or a consequence of hypertension?  

It was a widely accepted belief, that increased arterial stiffness is a consequence of 

hypertension. But in contrast to this dogma, in treated hypertensive patients baseline arterial 

stiffness measures were found to be associated with longitudinal increases of systolic blood 

pressure, mean arterial pressure and pulse pressure (18). Moreover, in an analysis of the 

Framingham Heart Study higher arterial stiffness was associated with blood pressure 
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progression and incident hypertension 7 years later, but higher blood pressure at the initial 

examination was not associated with progressive arterial stiffening (19).   

What is might mostly approaching the truth is, that arterial stiffening is both a cause and a 

consequence of hypertension in a sort of vicious circle. Elastic and muscular type arteries adapt 

differently to hemodynamic changes caused by the left ventricule construction. The ability of 

large and elastic arteries to accommodate for the nonlinear pressure-volume changes caused by 

stroke volume (conduit and Windkessel function) can be characterized by several functional 

and structural parameters, especially compliance, distensibility, that provides information about 

the extrinsic features of the arteries, meanwhile i.e. elastic modulus (Young’s) describe the 

intrinsic elastic properties of the vessel walls. The conduit and Windkessel functions of the 

aorta balance the effect of pressure-volume overload that generate central pulse pressure. It 

transfers toward the peripheral muscular vessels those of smaller inner diameter, thinner and 

stiffer vessel wall (20). The altered geometry and structure of muscular type arteries protect 

small vessels against higher pulse pressure from the central arteries that is called phenomenon 

of impedance mismatch. During aging the elasticity of the arterial wall decreases and become 

stiffer. Thus after a prime age small vessels can not be protected against the pressure load, that 

lead to increased shear stress and endothelial damage in the periphery.  Physiologically, the 

transfer of pulse pressure are displayed as pulse wave that is reflected back from the points of 

vessel junctions and reach the heart at the diastolic phase. Stiffer arteries - transition from elastic 

to muscular type arteries and that of resistance arteries – can reflect the pulse wave earlier, thus 

the augmented pressure approach the heart cycle during the systolic phase causing pressure 

burden on the left ventricle.  

Structural damage and functional deterioration of arteries reinforce the hemodynamic vicious 

circle of stiffness and high blood pressure, while highlighting the chicken and the egg debate 

of the possible origin of hypertension per se. These findings also underscore the importance of 
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the better understanding of the pathophysiology of arterial stiffening, with the hope of providing 

a new potential targets for the prevention of hypertension.   

 

Aortic and carotid-femoral pulse wave velocity 

The most accepted and wildly used arterial stiffness parameter is pulse wave velocity (PWV), 

derived from less flow velocity, but rather diameter and pressure waveforms recorded at 

different points of the arterial tree. PWV, as the Bramwell-Hill equation demonstrates, is a 

functional measurement of distensibility, which is defined by a volume change in proportion to 

a change in pressure relative to the initial volume (21):  

𝑃𝑊𝑉 = √
𝑉 × ∆𝑃

𝜌 × ∆𝑉
 

 

where PWV is the pulse wave velocity, V  is the volume, P is the pressure and ρ is the blood 

density. Consequently, PWV is closely related to changes in volume and arterial pressure as 

well. Arterial wall properties are also important in determining PWV, and these are described 

by the Moens-Kroteweg equation (10):  

𝑃𝑊𝑉 =  √𝐸𝑖𝑛𝑐 ×
ℎ

𝜌
× 𝐷 

 

where PWV is the pulse wave velocity, Einc is the Young's elastic modulus of arterial wall (a 

measure of the arterial wall mechanical properties), h is the arterial wall thickness, ρ is the blood 

density and D is the vessel diameter. An increase in wall stiffness (Einc) and/or in wall thickness 

is accompanied with an increase in PWV and arterial calibre is inversely proportional to PWV. 
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Taken together, arterial stiffness can be modulated directly by the changes in vascular tone, 

arterial wall mechanical properties and thickness and also indirectly, by changes in blood 

pressure (14).   

As the thoracic and abdominal aorta gives the largest contribution to the arterial buffering 

function (22), aortic PWV (aPWV) is an arterial stiffness parameter of high priority. As the 

exact evaluation of aPWV requires invasive intervention or MRI, methodologies with limited 

possibility of involvement into epidemiological studies, surrogate methodologies are used for 

approximations of aPWV. Among them, carotid-femoral PWV (cfPWV), the velocity of pulse 

as it travels from the heart to the carotid and to the femoral artery, is the most commonly applied 

non-invasive method and considered as the "gold standard" measurement of arterial stiffness 

(23). cfPWV is usually evaluated using the "foot-to-foot" velocity method from a number of 

waveforms. Surface tonometry probes are usually applied at the right common carotid artery 

and the right femoral artery. cfPWV is calculated using the following formula:  

𝑐𝑓𝑃𝑊𝑉 = 𝐷/𝐷𝑡 

 where cfPWV is carotid-femoral pulse wave velocity, D is the distance between the two 

recording sites and Dt is the time delay between the "foot" of the carotid and the femoral 

waveforms. The "foot" of the wave is defined at the end of diastole, when the steep rise of the 

waveform begins (24). The unit of cfPWV is meter/second (m/s).  

From this formula it is clear, that a crucial point of cfPWV evaluation is the correct 

measurement of the travelled distance. Different measurement methodologies can lead to 

different PWV values which can also have different prognostic significances (25). For a long 

time there has been no agreement in this field until 2012, when consensus document was 

published recommending the use of the 80% of the direct carotid to femoral distance as it 

provides only 0.4% difference with MRI-calculated value (26). Another important point of view 
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in respect of methodological considerations is the accuracy of distance measurement between 

the carotid and femoral sites. In women the breast contour and in both sexes obesity can limit 

the use of tape measure, so it is recommended to apply sliding caliper instead of tape (27).  

Several devices are commercially available to measure directly cfPWV. The first was the 

Complior System (Alam Medical, Vincennes, France), which is based on the simultaneous 

recording of arterial pulse waves at carotid and femoral sites, through mechanotransducer 

probes (28). The next was the SphygmoCor system (AtCor, Sydney, Australia), which uses a 

large-band piezoelectronic probe (applanation tonometer) and records consecutively carotid 

and femoral arterial pulse waves, with both signals being synchronized to the same ECG R 

wave (29). The PulsePen (Diatecne, Milano, Italy) based also on applanation tonometry and 

uses successive carotid and femoral pulse waves synchronized with ECG (30). The Vicorder 

(Skidmore Medical Limited, Bristol, United Kingdom) is based on oscillometric technique to 

measure cfPWV through the inflation of a neck pad and a cuff around the thigh (31). Moreover, 

cfPWV can also be measured by pulsed Doppler ultrasound with a Linear Array, with ECG 

gating, as it was demonstrated by Calabia et al. (32). However, among these devices Complior 

and SpygmoCor are the most frequently used ones, also in epidemiologic studies.  

Before implementation of a novel biomarker into clinical practice the applicant must fulfill 

different criteria, as table 1. demonstrates. From this point of view cfPWV fulfill almost all 

requirements.  

A number of studies have proven, that cfPWV is associated with different cardiovascular 

pathophysiological conditions and has strong prognostic value. Apart from the dominant effect 

of ageing (33), hypertension was found to be another main contributor to enhanced arterial 

stiffening (34). In uncomplicated essential hypertension the independent predictive value of 

cfPWV from classic cardiovascular risk factors was clearly demonstrated (35-37). Moreover, 
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its predictive value was also confirmed in end-stage renal disease (38), in patients after ischemic 

stroke (39), in elderly subjects (40, 41) and in the general population (42). The independent 

predictive value of cfPWV was even confirmed by a recent meta-analysis, in which Ben-

Shlomo et al. nicely demonstrated that after the adjustment of additional risk factors an increase 

in 1 SD change in log cfPWV is related to 30%, 28% and 17% increase in cardiovascular (CV) 

events, CV mortality and all-cause mortality, respectively (43). In the practical interpretation 

of the results, for a 60-year-old man who is a non-smoker, non-diabetic, normotensive and 

normolipemic, a 1 m/s increase in cfPWV leads to a 7% increase of the hazard for CV events 

(43, 44). The independent association with all-cause mortality suggests that the impact of 

arterial stiffening extends beyond the diseases of CV system.    

The clinical utility of cfPWV measurement was confirmed by two studies and a meta-analysis 

demonstrating that patients at intermediate risk could be reclassified into a higher or lower CV 

risk category when cfPWV is measured (42, 45, 46). In the Framingham study for individuals 

at intermediate CV risk, addition of cfPWV resulted in upward reclassification of 14.3% of 

participants who experienced a CV event and downward reclassification of 1.4% of participants 

who did not experience a CV event, yielding a net reclassification of 15.7% (46). Based on the 

above-mentioned results it is obvious, the cfPWV fulfills the requirements of the 1-4 points of 

table 1.  

According to point 5., the influence of cfPWV modification for clinical outcome, there is only 

one study available so far, in which in patients with end-stage renal disease the lack of the 

decrease of cfPWV in response to blood pressure medication was a predictor of all-cause and 

cardiovascular mortality (47). A randomized clinical trial called Statégie de Prévention 

Cardiovasculaire Basée sur la Rigidité Arterielle Study (SPARTE) was started in 2012 in 40 

French clinical centres with the planned involvement of 3000 hypertensive patients and with 

the follow-up period of 4 years, aiming to test the hypothesis that a therapeutic strategy that 
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targets the normalization of arterial stiffness is more effective in preventing CV events than 

usual care. In the control group, the target is blood pressure, while in the active group the target 

is aortic stiffness with the aim of normalizing it to <10 m/s (48). Without the result of this and 

other future trials with similar setups, there is a lack of evidence on broader patient population 

that the normalization of cfPWV or any other arterial stiffness parameter has positive impact 

on CV outcome above that of reaching the blood pressure target values. 

No data are currently available about the cost-effectiveness of cfPWV measurement. 

Potentially, the spread of the technology could reduce device prices, however no marked 

reduction was observed in the latest years. The main expense is the salary of the examiner, 

which geographically can differ markedly. Considering the high reclassification rate of patients 

and the comparison of cost with other powerful, but costly biomarkers, like coronary calcium 

score, cfPWV is probably a cost-effective risk stratification methodology.  

The accurate and reproducible measurement of cfPWV requires moderate expertise. It is easy 

in most of the cases, but obesity and picnic stature may render measurements challenging. A 

true disadvantage of cfPWV measurement is the manipulation in the inguinal region which can 

be uncomfortable for some patients.  

An expert consensus document on the measurement of aortic stiffness on the daily practice 

using cfPWV is available involving such scientific communities, like the Artery Society, the 

European Society of Hypertension and the European Network for Noninvasive Investigation of 

Large Arteries (26).     

Reference values of cfPWV have been established in 2010 involving 1455 healthy subjects 

together with 11 092 patients with different CV risk factors (49). However, this paper was 

published before the consensus document on distance measurement (26), but cfPWV values 

were calculated according to the later accepted 80% of the direct carotid-femoral distance. 
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Table 2. demonstrates the distribution of cfPWV according to the age category in apparently 

healthy population. 

As a consequence that cfPWV fulfills almost all the 9 requirements of table 1 to be an accepted 

biomarker, it has already been involved into some guidelines. It was first recommended as a 

marker of subclinical organ damage with the value >12 m/s in 2007, in the guideline of the 

European Society of Hypertension (ESH) and the European Society of Cardiology (ESC), for 

the management of arterial hypertension (50). In the next ESH-ESC hypertension guideline in 

2013 cfPWV is recommended to be evaluated as a measure of asymptomatic organ damage 

with the strength of class IIa, level of evidence B (51). In the recent ESC- Artery Society 

position paper, the evaluation of cfPWV as a vascular biomarker is recommended as a class 

IIa, level of evidence A method (24). Pulse wave velocity measurement is also recommended 

in the recent ESC- European Association for the Study of Diabetes guideline, as a useful 

cardiovascular marker, adding predictive value to the usual risk estimate (52). In 2010, in the 

American College of Cardiology Foundation (ACCF)/ American Heart Association (AHA) task 

force document the measurement of cfPWV was not recommended to be used in asymptomatic 

adults, outside of research settings (53) and cfPWV measurement was even not mentioned in 

the next ACC/AHA guideline for the assessment of cardiovascular risk (54). However, in a 

recently published AHA scientific statement it is declared that it is reasonable to measure 

arterial stiffness to provide incremental information beyond standard CV disease risk factors in 

the prediction of future CV disease events (class: IIa, level of evidence: A) (55). With this 

statement document the position of cfPWV measurement in the cardiovascular risk 

stratification has become similar both in Europe and in America.          

 

Oscillometric approximations of aortic pulse wave velocity 
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As cfPWV measurement is partly operator-dependent and the manipulation in the inguinal 

region can cause discomfort for the subject, oscillometric approximations of aortic PWV 

through a brachial cuff can have perspectives in the future. Mobil-o-Graph (56), Arteriograph 

(57) and Vasotens (58) are such devices, and all of them are able per se or have versions 

developed for 24-hour blood pressure and arterial stiffness monitoring as well (59). So far none 

of these new techniques is involved in the recommendations as an alternative of cfPWV (24, 

51, 55). As in case of these new methodologies in validation studies the determination 

coefficients (R2) in comparison with gold-standard methods are mostly between 0.4-0.7, which 

reflect very imperfect agreement, experts do not recommend their involvement into prospective 

studies (60). This fact can lead to a catch-22, as a manufacturer company per se rarely have 

enough funds to perform large population-based investigations. A solution for this discrepancy 

were the use of gold-standard and oscillometric methods parallel in prospective studies, which 

could provide both answers for clinical questions and validations of these alternative 

methodologies.   

 

Brachial-ankle Pulse Wave Velocity and Other promising parameters 

In this paragraph we would like to provide an overview of an arterial stiffness parameter which 

is widely accepted and used in Japan and China and the cumulating data with this methodology 

also enabled its involvement into guidelines. Brachial-ankle pulse wave velocity (baPWV) is a 

simple-to-assess stiffness marker of the large and middle-size arteries. It is measured with a 

volume-plethysmographic device (eg VP1000, VP2000, OMRON Health Care Co. Ltd., Kyota, 

Japan) using 4 cuffs placed on both arms (brachial) and ankles, connected to plethysmographic 

and oscillometric sensors, recording the brachial and posterior tibial pressure waveforms (24, 

61). Travel distance is calculated using the path lengths from the suprasternal notch to the 
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brachium (Lb) and from the suprasternal notch to the ankle (La) with a correction for the height 

of the individual using validated equations. baPWV is calculated with the following equation:  

𝑏𝑎𝑃𝑊𝑉 =
(𝐿𝑎 − 𝐿𝑏)

∆𝑇𝑏𝑎
⁄  

, where ∆𝑇𝑏𝑎 is the time interval between the wavefront of the brachial waveform and that of 

the ankle waveform (24, 61).  

It has been demonstrated, that baPWV is closely correlated with cfPWV and invasively assessed 

aortic PWV and the presence of CV risk factors is linked with its elevated value (62-64). 

Prospective studies have confirmed that baPWV is a useful predictor of future CV events not 

only in essential hypertension (65), but also in general population (66), in end-stage renal 

disease (67), in diabetes (68), in patients with acute coronary syndrome (69) and heart failure 

(70). In a meta-analysis it was demonstrated that a 1m/s increase in baPWV corresponds with 

an increase of 12%, 13% and 6% in total cardiovascular events, cardiovascular mortality and 

all-cause mortality, respectively (71). It seems, that an optimal cutoff value of baPWV is 18 

m/s in the assessment of high risk for CV disease (66, 69). Moreover, as baPWV can predict 

the development of hypertension or stage III chronic kidney disease (72-75), in healthy subjects 

under the age of 60, and baPWV values between 14-18 m/s lifestyle modifications are 

recommended by some experts of this field (64, 76). 

Although lots of achievements have been succeeded in respect of baPWV to be an accepted CV 

biomarker, but there are still some incomplete requirements. No consensus document is 

available on the measurement methodology, only the manufacturer's instructions. Reference 

values have been published only in Chinese populations (77, 78), data are missing in Caucasian 

or other races. So far, the potential clinical advantage of baPWV over traditional risk scores 

have not been proven. Although it has been demonstrated that baPWV improves for the 

treatment of hypertension, dyslipidemia, diabetes or lifestyle modifications (76, 79), only one 
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study reported so far, that improvement of baPWV obtained after 6 months of conventional 

therapy was a reliable marker of a better prognosis in patients with coronary artery disease (80).      

Based on these findings, in the recent ESC position paper on vascular biomarkers baPWV is 

recommended for primary and secondary CV disease prevention with the class of IIb, level of 

evidence B (24). The recent AHA recommendation states that baPWV is useful in 

cardiovascular outcome predictions in Asian populations, but longitudinal studies in the United 

States and Europe by these methods are lacking (Class I; Level of Evidence B) (55). 

Unfortunately the limited extent of this book chapter does not permit the detailed description 

of other parameters that also can have future perspectives. Parameters of pulse wave analysis 

and central hemodynamics can be estimated alone or connected with cfPWV measurement. 

Other parameters can be evaluated with specific devices. Some of these measures are already 

mentioned in the recommendations. The recent ESC/ESH hypertension guideline states that 

augmentation index and central blood pressure can be helpful risk stratification tools in young 

patients with isolated systolic hypertension, however, more data are needed before central 

hemodynamic indices are recommended for routine use in hypertensive patients in general (51). 

In the recent ESC biomarker position paper the usefulness of the measurement of central 

hemodynamics/wave reflections for primary and secondary CV disease prevention is judged as 

IIb/B (recommendation/level of evidence) (24). The AHA scientific statement declares that the 

use of wave separation analysis is recommended when investigations are focused specifically 

on the role of wave reflection as either an exposure for CV outcome or a target for intervention 

(class I, level of evidence B). The same document states that similarly to baPWV, the 

measurement of cardiac ankle vascular stiffness index is useful in CV outcome prediction in 

Asian populations, but longitudinal studies in the United States and Europe are lacking (class 

I, level of evidence B) (55). The measurement of carotid stiffness parameters is also promising. 

A recent meta-analysis demonstrated that greater carotid stiffness is associated with a higher 
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incidence of stroke independently of cfPWV and modestly improved risk prediction of stroke 

beyond Framingham stroke risk score factors and cfPWV (81). In summary, this research area 

is far not limited only for cfPWV or baPWV, the complexity is growing with new candidates 

with further potential in helping risk stratification and individual therapy adjustment.        

How can we improve the arterial stiffness of our patients?  

Many non-pharmacological interventions can improve arterial stiffness and/or wave reflection, 

like dietary changing including weight loss and salt reduction (82, 83), aerobic exercise training 

(84, 85), passive vibration (86) and enhanced external counterpulsation treatment (87). For 

maximal cardiovascular benefits, these interventions must be initially introduced immediately 

and continued over an extended period of time (55).  

In respect of pharmaceutical interventions, it is demonstrated, that different kind of blood 

pressure medications have beneficial effect for arterial stiffening (14). The reduction of aortic 

PWV was confirmed with the administration of renin inhibitor (88), angiotensin converting 

enzyme (ACE) inhibitors/angiotensin AT1 receptor blockers (ARBs) (89-92), an endothelin-A 

receptor antagonist (93), with spironolactone and hydrochlorotiazide monotherapy in elderly 

(94), or with ACE inhibitor/ARBs in combination with spironolactone (95). The problem with 

these interventions, that the destiffening effect of a blood pressure medication can hardly be 

divided from the effect of blood pressure reduction per se, however, some authors state that the 

observed destiffening effect is at least partly independent of blood pressure reduction (91, 92, 

95). One compound with a direct destiffening effect was tested so far, but the advanced 

glycation end-products crosslink breaker alagebrium after promising initial results (96, 97) 

unfortunately did not get through all the clinical pharmacological phases, probably due to the 

financial problems of the developing company.  
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Numerous nutritional supplements have been found to improve arterial stiffening like 

flavonoids (98), omega-3 and soy isoflavone (82) or tetrahydrobiopterin (99, 100). As these 

interventions are also often accompanied with blood pressure reduction, their blood-pressure 

independent destiffening effect is not unambiguous as well. So the clinical importance of blood 

pressure-independent destiffening is still a pending question and such studies like the above-

mentioned SPARTE (48) are needed to give us answers.  

Conclusions, future directions  

In hypertensive patients the measurement of arterial stiffening, especially cfPWV is already a 

recommended method to detect target organ damage both in Europe and in America. Its role in 

risk stratification seems to be clarified, but the potential benefit in cardiovascular outcome from 

treating hypertensive patients until a certain cfPWV goal value is not confirmed yet. Besides 

cfPWV, other measures of arterial stiffness are getting closer to be recommended in clinical 

use, like baPWV, or different wave reflection parameters. Recently devices measuring 24-hour 

ambulatory arterial stiffness have become available on the market, opening a new field of 

research interest. These findings confirm that the study of large artery structure and function is 

becoming an essential part of hypertension care.     
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Table 1. Criteria for vascular biomarkers to qualify as clinical surrogate endpoints. Adapted 

from (24).  

1. Proof of concept Do novel biomarker levels differ between subjects with and 

without outcome? 



24 
 

2. Prospective validation Does the novel biomarker predict development of future 

outcomes in a prospective cohort or nested case-cohort study? 

3. Incremental value Does it add predictive information over and above established, 

standard risk markers? 

4. Clinical utility Does it change predicted risk sufficiently to change 

recommended therapy? 

5. Clinical outcomes Does the use of the novel biomarker improve clinical outcomes, 

especially when tested in a randomized clinical trial? 

6. Cost-effectiveness Does the use of the biomarker improve clinical outcomes 

sufficiently to justify the additional costs? 

7. Ease of use  Is it easy to use, allowing widespread application? 

8. Methodological consensus Is the biomarker measured uniformly in different laboratories? 

Are study results directly comparable? 

9. Reference values 

 (or cut-off values) 

Are there published reference values, or, at least, cut-off values? 
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Table 2. Distribution of carotid-femoral pulse wave velocity (m/s) according to the age 

category in healthy population (1455 subjects).  

Age category (years) Mean (±2 SD) Median (10–90 pc) 

<30 6.2 (4.7–7.6) 6.1 (5.3–7.1) 

30–39 6.5 (3.8–9.2) 6.4 (5.2–8.0) 

40–49 7.2 (4.6–9.8) 6.9 (5.9–8.6) 

50–59 8.3 (4.5–12.1) 8.1 (6.3–10.0) 

60–69 10.3 (5.5–15.0) 9.7 (7.9–13.1) 

≥70 10.9 (5.5–16.3) 10.6 (8.0–14.6) 

 

SD, standard deviation; 10 pc, the upper limit of the 10th percentile; 90 pc, the lower limit of 

the 90th percentile. Adapted from (49).  
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Figure legends 

Figure 1.  

Changes of pulse wave curves with ageing. A: carotid wave of a young patient (26 years); B: 

femoral wave of a young patient (26 years); C: carotid wave of an aged patient (78 years); D: 

femoral wave of an aged patient (78 years). Evaluated with the tonometric PulsePen device.  

 

 

   

    


