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Fibroblasts from patients with major depressive disorder show
distinct transcriptional response to metabolic stressors
KA Garbett1, A Vereczkei1,2, S Kálmán1,3, L Wang4, Ž Korade1,5, RC Shelton6 and K Mirnics1,3,5

Major depressive disorder (MDD) is increasingly viewed as interplay of environmental stressors and genetic predisposition, and
recent data suggest that the disease affects not only the brain, but the entire body. As a result, we aimed at determining whether
patients with major depression have aberrant molecular responses to stress in peripheral tissues. We examined the effects of two
metabolic stressors, galactose (GAL) or reduced lipids (RL), on the transcriptome and miRNome of human fibroblasts from 16 pairs
of patients with MDD and matched healthy controls (CNTR). Our results demonstrate that both MDD and CNTR fibroblasts had a
robust molecular response to GAL and RL challenges. Most importantly, a significant part (messenger RNAs (mRNAs): 26–33%;
microRNAs (miRNAs): 81–90%) of the molecular response was only observed in MDD, but not in CNTR fibroblasts. The applied
metabolic challenges uncovered mRNA and miRNA signatures, identifying responses to each stressor characteristic for the MDD
fibroblasts. The distinct responses of MDD fibroblasts to GAL and RL revealed an aberrant engagement of molecular pathways, such
as apoptosis, regulation of cell cycle, cell migration, metabolic control and energy production. In conclusion, the metabolic
challenges evoked by GAL or RL in dermal fibroblasts exposed adaptive dysfunctions on mRNA and miRNA levels that are
characteristic for MDD. This finding underscores the need to challenge biological systems to bring out disease-specific deficits,
which otherwise might remain hidden under resting conditions.
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INTRODUCTION
Major depressive disorder (MDD) is a mental disorder character-
ized by persistent depressed mood, anhedonia, sleep and appetite
disturbances, and feelings of worthlessness, guilt and hope-
lessness. It is increasingly viewed as an illness of the body as well
as of the mind.1 Both genetic and environmental factors have
been associated with the etiology of the disease,2 but their
interplay remains unexplained to date. Stressful life events are
associated with the onset and severity of major depression;3

therefore, we speculated that aberrant adaptive responses to
stressors would be also detectable at the cellular level.
Coordination of cellular responses to stress is largely accom-

plished by mitochondria.4 Regardless of the type of stress a cell is
experiencing (for example, exposure to harmful chemicals,
changes of nutrient or oxygen supplies, dangerous levels of
reactive oxygen species or even pathogen invasion), mitochondria
utilize a wide array of mechanisms aimed at restoring cellular
homeostasis.5 Therefore, the health of these cellular organelles is
critical not only for the fate of the individual cells, but for the well-
being of the entire organism. Not surprisingly, abnormalities in
mitochondrial functions have been implicated in neurological6

and psychiatric disorders,7–9 and specifically in MDD.10 In addition,
mitochondria are involved in multiple metabolic pathways and are
the most prominent generators of energy in the cell. Energy is
produced in the cytoplasm through glycolysis, or in the
mitochondria through oxidative phosphorylation, also known as
mitochondrial respiration. The reliance on energy produced by
mitochondrial respiration, rather than glycolysis, can be

experimentally shifted by changing the sugar source in the cell
culture medium from glucose to galactose (GAL).11 The shift to
oxidative phosphorylation can reveal mitochondrial deficits
intersecting control of carbohydrate metabolism and energy
homeostasis. Energy production is also tightly interconnected with
lipid metabolism through the key metabolite acetyl-CoA. Acetyl-
CoA may remain in the mitochondria for energy production or
may be exported for de novo fatty acid synthesis into the
cytoplasm, depending mainly on the availability of fatty acids. This
adaptive shift can be experimentally directed by limiting the fatty
acid supply in the cell culture medium. Therefore, cellular
adaptation to stress can be tested by simple manipulations of
the carbohydrate and fatty acids source in the culture medium.
Molecular adaptation to stress in the context of mental

disorders is difficult to address in the human brain. Alternatively,
we used in vitro propagated peripheral cells to test the effects of
metabolic stress. Dermal fibroblasts are an appealing cell-based
model for studying peripheral events associated with brain
disorders, based on the ease of establishing them from skin
biopsies, and the ability to maintain in culture without additional
reprograming.12 In addition, the confounding variability in human
samples on the basis of patients’ hormones, life style or
medication use, are virtually eliminated after several cell divisions.
To date, skin fibroblast cultures have been used successfully to
elucidate molecular mechanisms associated with
schizophrenia13,14 and developmental disorders,15,16 and for
discerning abnormalities in signal transduction pathways in
MDD.12,17–19 In addition, previous reports for dysregulations in

1Department of Psychiatry, Vanderbilt University, Nashville, TN, USA; 2Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University,
Budapest, Hungary; 3Department of Psychiatry, University of Szeged, Szeged, Hungary; 4Department of Biostatistics, Vanderbilt University, Nashville, TN, USA; 5Vanderbilt
Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA and 6Department of Psychiatry, University of Alabama, Birmingham, AL, USA.
Correspondence: Dr KA Garbett, Department of Psychiatry, Vanderbilt University, 8128 MRB III, 465 21st Avenue South, Nashville, TN 37232, USA.
E-mail: krassimira.garbett@vanderbilt.edu
Received 2 October 2014; revised 12 December 2014; accepted 19 December 2014

Citation: Transl Psychiatry (2015) 5, e523; doi:10.1038/tp.2015.14

www.nature.com/tp

mailto:krassimira.garbett@vanderbilt.edu
http://www.nature.com/tp


lipid metabolism20 and mitochondrial respiration,21 suggest
abnormalities in mitochondrial function in the periphery of MDD
patients. Therefore, we aimed at elucidating whether MDD
fibroblasts would in addition exhibit molecular deficits in response
to metabolic stressors such as GAL and reduced lipids (RL) in the
culture medium. In this manuscript, we present the experimental
data gathered from metabolically challenged human dermal
fibroblasts and discuss their relevance to MDD.

MATERIALS AND METHODS
Human fibroblasts
This study was approved by the Vanderbilt University Institutional Review
Board. Participants were diagnosed with a current major depressive
episode according to the Structured Clinical Interview for DSM-IV-TR22 with
an exclusion criteria of other primary axis I DSM-IV diagnosis. Procedures
for recruitment and diagnosis have been described previously.12,18 A
written informed consent was obtained from all the participants before
any procedures were conducted. Sixteen healthy controls (CNTR) were
matched by age, race and gender to MDD patients (Supplementary
Material 1). The MDD and CNTR subject groups had similar average age
(MDD=34.9, CNTR= 35.2), representation of gender (12 female and four
male) and race (12 white and four African American). Fibroblast cultures
were established from skin biopsies according to a protocol previously
described.12,18

Briefly, fibroblast cultures underwent 5–10 passages with DMEM
(Dulbecco’s Modified Eagle’s medium; Mediatech, Manassas, VA, USA)
containing 250mM glucose and 1mM sodium pyruvate, supplemented
with 2 mM L-glutamine (Mediatech), 10% fetal bovine serum (Thermo
Scientific HyClone, Logan, UT, USA) and antibiotic/antimycotic solution
(Invitrogen, Carlsbad, CA, USA). Cultures were maintained at 37 °C and 5%
CO2. A cell line from each patient was divided into three plates (plating
density 1.2 × 106 cells per plate) and after overnight adherence, each plate
received one of the following formulations: (1) standard (STD) medium:
DMEM containing 25mM glucose; (2) galactose-containing (GAL) medium:
DMEM with no glucose, supplemented with 10mM GAL (Sigma-Aldrich, St.
Louis, MO, USA); (3) RL medium: DMEM containing 25mM glucose,
supplemented with lipid-reduced fetal bovine serum (Thermo Scientific
HyClone). All the cultures were grown for 7 days, refreshing the media
every 2 days. The cells were collected after washing with ice-cold
phosphate-buffered saline twice, and then trypsinized, pelleted (700 g for
8 min at 18 ºC) and stored at −80 °C until RNA isolation. In all the tested cell
lines, neither GAL nor RL exhibited a detectable effect on cell growth and
mortality.

RNA isolation and analyses
Total RNA and small RNA fractions were isolated from frozen fibroblasts
using mirVana microRNA (miRNA) isolation Kit (Ambion, Austin, TX, USA)
according to manufacturer’s instruction. Both total RNA and small RNA
were eluted with 100 μl Elution Solution. Agilent 2100 Bioanalyzer was
used to determine the quality and size of the RNA preps. Total RNA
integrity number for all messenger RNA (mRNA) samples ranged from 9.4
to 10, and was similar between the MDD and CNTR groups and various
conditions. The samples were stored at −80 °C until further use.
The mRNA levels in each fibroblast culture were examined with the

GeneChip HT HG-U133+ PM Array Plate (Affymetrix, Santa Clara, CA, USA).
The complementary DNA synthesis from total RNA, labeling and
hybridization were performed according to manufacturer’s protocol. The
segmented images from each GeneChip were normalized and log2
transformed using GC-robust multi-array analysis.23 The average logarith-
mic ratio (ALR=MeanMDD−MeanCNTR) was calculated for each gene probe,
as an indicator for magnitude of change and Student’s paired and group
two-tailed P-values as indicators for significance of change. Significance
was established according to the dual criteria of |ALR|40.3785 (30%
change) and both pairwise and groupwise P⩽ 0.01. Quantitaive PCR
validation of the microarray data was performed with RT2 custom Profiler
PCR Arrays (Qiagen, Valencia, CA, USA), designed to test the mRNA
expression level of 10 genes involved in the regulation of lipid metabolism:
stearoyl-CoA desaturase (delta-9-desaturase), fatty acid binding protein 3,
7-dehydrocholesterol reductase, insulin induced gene 1, quinolinate
phosphoribosyltransferase, 3-hydroxy-3-methylglutaryl-CoA reductase, 3-
hydroxy-3-methylglutaryl-CoA synthase 1, low-density lipoprotein recep-
tor, fatty acid desaturase 1, fatty acid desaturase 2. The differentially

expressed genes were subjected to a two-way hierarchical clustering
analysis using GenePattern software.24 In addition, for each gene probe,
we applied a linear statistical model with gene expression values as the
outcome variable and group, stressor and group× stressor as fixed effects
(groups: CNTR, MDD; stressors: GAL, RL). Data were analyzed with
procedure MIXED in SAS software (version 9.3, SAS Institute, Cary, NC,
USA). Gene set enrichment analysis (GSEA) based on pre-defined gene
classes were carried out with the GenePattern software.25 BioCarta defined
set of genes were considered significantly overrepresented at P⩽ 0.05.
The miRNA levels were interrogated with miRNome miScript miRNA PCR

Arrays (Qiagen). The complementary DNA was prepared from small RNA
preps with miScript HiSpec Buffer according to miScript II RT Kit (Qiagen)
instructions. The complementary DNA from each sample was quantified
and proportionately combined into four pools of samples according to age
and gender (Supplementary Material 1). Creating multiple sample pools
from closely matched individuals allowed us a reduced work load and cost,
while still retaining the ability to establish statistical significance in the
downstream analyses. However, to avoid any pooling biases and outlier
effects, the outcome of these data had to be validated in the individual
samples. As a result, significantly changed miRNA levels in each individual
fibroblast sample were examined with custom miScript miRNA PCR Arrays.
(Qiagen), containing assays for the following miRNAs: miR-146b-5p,
miR-550a, miR-214, miR-132*, miR-376c, miR-19a, miR-181a*, miR-486-5p,
miR-424*, miR-542-3p, miR-22, miR-376b, miR-29b, miR-564. The selection
of the 14 miRNA assays was based on a statistically significant difference in
response to GAL or RL in the MDD or the CNTR group. The Ct values for
each miRNA from both miRNome and custom qPCR arrays were
normalized to the average Ct from a set of housekeeping genes and thus
ΔCt values were generated. At Ct 435, a miRNA level was considered non-
detectable. In cases where the levels of a miRNA were non-detectable in
two or more samples within a group, the miRNA was not used for further
comparisons. The miRNA difference of expression between groups was
measured by ΔΔCtRL =MeanΔCtRL−MeanΔCtSTD and ΔΔCtGAL =MeanΔCt
GAL−MeanΔCtSTD. A miRNA was considered differentially expressed when |
ΔΔCt|40.3785 and pairwise P⩽ 0.05. Group× stressor interaction was
determined by the dual criteria of |ΔΔΔCt|40.3785 (30% difference) and
groupwise P⩽ 0.05. ΔΔΔCtGAL =ΔΔCtMDDGAL−ΔΔCtCNTRGAL; ΔΔΔCtRL
=ΔΔCtMDDRL−ΔΔCtCNTRRL.

RESULTS
MDD fibroblast response to metabolic stress: mRNA changes
Metabolic stress response in MDD and CNTR fibroblasts from 32
subjects (16 MDD and 16 CNTR) was achieved by exposure to
culture media containing GAL or RL (Supplementary Material 2).
Analysis of mRNA species by oligonucleotide microarrays revealed
that GAL substitution of glucose in the growth medium resulted in
robust changes in the transcriptome of both MDD and
CNTR fibroblasts. Using dual criteria for establishing significant
expression differences (|ALRGAL− STD| 4 0.3785 (30% change)
and both group- and pairwise P⩽ 0.01), we identified 1196
transcripts changed in GAL-treated MDD fibroblasts
(Supplementary Material 3A). Of those, 975 were upregulated as
a result of GAL treatment. According to the same criteria, 1111
probes were changed in CNTR fibroblasts, 733 of which were
upregulated. In comparison with the CNTR fibroblasts, MDD
fibroblasts revealed a distinct GAL-induced mRNA pattern; of the
total number of mRNAs, 310 (26%) were only exhibited in MDD
(Supplementary Material 4A).
RL treatment also resulted in pronounced mRNA changes in

both MDD and CNTR cells. Differential expression in RL conditions
(compared with STD media) was noted for 312 transcripts in the
MDD: 262 upregulated and 50 downregulated mRNAs. Similarly, in
CNTR fibroblast, 360 mRNA species (261 upregulated, 99 down-
regulated) were differentially expressed in RL compared with STD
conditions (Supplementary Material 3B). Importantly, the MDD
fibroblasts responded to RL condition differently than CNTR; 103
(33.4%) of all mRNA changes induced by RL were only exhibited in
MDD (Supplementary Material 4B).
It was remarkable that both GAL and RL treatments resulted in

distinct mRNA changes in MDD fibroblasts that were not present
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in CNTR, therefore, we further sought to identify the interaction
effect between disease state and metabolic challenge (group×
stressor) by applying a linear statistical model. We used a dual
significance cutoff criterion of |ΔALR|40.3785 (30% change) and
P⩽ 0.01. We found that the characteristic MDD signature in
response to GAL (MDD×GAL) was defined by 28 (Figure 1a), and
in response to RL (MDD×RL) was defined by 20 mRNA species
(Figure 1b). Two of the genes (integrator complex subunit 4; INTS4
and NEDD4 binding protein 2-like 1; N4BP2L1) overlapped in the
MDD×GAL and MDD×RL response-defining pattern.
Custom qPCR arrays were used to validate the microarray-

detected mRNA changes in response to GAL and RL. The arrays
were designed to test the mRNA expression level of 10 genes
involved in lipid metabolism with significantly changed expression

in MDD and in CNTR samples in GAL vs STD and in RL vs STD
conditions. The statistical significance of the microarray-detected
expression changes for all 10 genes was confirmed by qPCR
(Figure 2). In addition, the microarray’s ALRs had a high correlation
with the qPCR’s −ΔΔCt in both GAL vs STD and RL vs STD
comparisons.
To better understand what molecular pathways are differently

engaged in MDD compared with CNTR in response to metabolic
stress, we performed GSEA with predetermined gene sets by
BioCarta. Significantly enriched gene sets, representing molecular
pathways, were identified for both MDD and CNTR in GAL and RL
environment (Table 1, GSEA). GAL treatment induced enrichment of
21 pathways in MDD and 17 in CNTR. Nine of the 21 gene sets
(43%) were only enriched in MDD and are involved in cell cycle

Figure 1. Disease × stressor interaction mRNA signatures. (a) MDD×GAL and (b) MDD×RL. The ALR (MeanRL−MeanSTD) of the probes with
significant disease × challenge interaction were subjected to unsupervised hierarchical clustering. The colored squares represent the increase
(red) or decrease (blue) of each ALR from the mean. Color intensity is proportional to magnitude of change. Clear separation of MDD and
CNTR groups was observed. Furthermore, two genes (INTS4 and N4BP2L1—denoted by arrows) are commonly present in both signatures.
CNTR, control; GAL, galactose; MDD, major depressive disorder; mRNA, messenger RNA; RL, reduced lipid; STD, standard.
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regulation (PTC1, MPR, ACAP95, ARF), apoptosis (HSP27, SET, BAD),
anti-inflammation (IL10) and cell survival (IL7). RL resulted in
enrichment of 19 pathways in MDD and 15 in CNTR. Ten of the 19
gene sets (53%) were only enriched in MDD and are involved in cell
repair (TFF), survival (TRKA), migration (ECM) and proliferation
(CDMAC, SPRY), and also in regulation of metabolism (GH) and
energy production (FEEDER, GLYCOLYSIS). Overall, GSEA revealed
that the specific changes in MDD evoked by both metabolic
stressors are represented by approximately half of all detected
molecular pathways, indicating that MDD fibroblasts utilize different
strategies for adaptation to the metabolic stressors. Moreover,
challenging the MDD fibroblasts with GAL and RL exposed
characteristic molecular signatures undetectable at STD conditions.

MDD fibroblast response to metabolic stress: miRNA changes
The miRNAs are important regulators of mRNA function and they
are heavily involved in control of metabolism and energy
homeostasis.26 Therefore, we sought to identify the miRNA
response to metabolic challenges in the same MDD fibroblasts
in which differential mRNA expression patterns had been
established.
The miRNA samples, isolated individually from the 16 MDD and

16 CNTR fibroblast cultures, were pooled into four sets according
to the patients’ age and gender (Supplementary Material 1).
Human miRNome miScript miRNA PCR Arrays (Qiagen) were used
to profile the expression of the 1008 most abundantly expressed
miRNA species in the human miRNA genome (miRNome).

Figure 2. qPCR validation of the differential mRNA expression detected with microarrays. The differential expression of 10 mRNAs, detected
with microarrays, was validated with custom qPCR arrays (groups: MDD, CNTR; culture conditions: STD, GAL, RL). ALR (ALRGAL=MeanGAL−
MeanSTD, blue, ALRRL=MeanRL− MeanSTD, pink) was used as an estimate for the microarray expression changes and was plotted on the x axis.
ΔΔCt (ΔΔCtGAL=ΔCtGAL−ΔCtSTD, blue; ΔΔCtRL=ΔCtRL−ΔCtSTD, pink) was used for a qPCR expression changes estimate and was plotted as
−ΔΔCt on the y axis. Note that the estimates from both analyses in each comparison were highly correlated. CNTR, control; GAL, galactose;
MDD, major depressive disorder; mRNA, messenger RNA; qPCR, quantitative PCR; RL, reduced lipid; STD, standard.
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Approximately 50% of the assayed miRNAs were detected in
human cultured dermal fibroblasts, regardless of disease status or
culture condition. Significant expression differences in metabolic
stress vs STD conditions were defined when change was larger
than 30% (|ΔΔCt|40.3785) and paired t-test P⩽ 0.05. In response
to GAL challenge, MDD fibroblasts revealed expression changes in
63 miRNAs (Supplementary Material 5A). The number of miRNAs
changed by GAL challenge in CNTR samples was substantially
lower, 38 miRNAs. In addition, 81% of the miRNAs changed in GAL
were specific for MDD fibroblasts.
RL elicited much stronger miRNA response in MDD (147

miRNAs), compared with CNTR (38 miRNA) (Supplementary
Material 5B), leading us to believe that MDD fibroblasts are
experiencing the RL environment as much more stressful than
CNTRs. Furthermore, 90% of the miRNA RL-response pattern was
observed only in MDD, but not in CNTR.
Validation of miRNome analyses on pooled samples was

performed with custom qPCR array of 14 miRNAs (SABiosciences,
Qiagen) on individual samples. The ΔΔCt (ΔΔCtGAL =ΔCtGAL−ΔCt
STD, ΔΔCtRL =ΔCtRL−ΔCtSTD) from the pooled samples for each
miRNA was correlated with the corresponding ΔΔCt from the
individual samples (Figure 3). Both GAL- and RL-induced miRNA
response demonstrated high correlation between pooled and
individual samples with coefficients of rGAL = 0.920 and rRL = 0.785.
In addition, 85% of the miRNA changes in the individual samples
were significantly different in the predicted direction (P⩽ 0.05),
providing a strong validation for the miRNome data.
In addition, in an attempt to identify the miRNA changes that

characterize the specific response of MDD to each metabolic
challenge, we used a group× challenge linear statistical model
and the dual significance criterion of |ΔΔΔCt|40.3785 and
P⩽ 0.05. Thus, we derived two miRNA signatures: (1) representing
MDD×GAL interaction (16 miRNAs) and (2) representing MDD×
RL interaction (36 miRNAs, Figure 4). It is noteworthy that miR-7,
miR-382, miR-296-5p and miR-3176 were common for both
signatures.
Literature search in PubMed for the roles of the MDD×GAL and

MDD×RL signature miRNAs revealed an interesting trend toward
extensive miRNA involvement in the regulation of metabolism, cell
proliferation, survival and migration (Table 2). In relation to control
of metabolism, we found miRNAs regulating insulin levels and
secretion, obesity and starvation in both MDD×GAL (38%) and
MDD×RL (37%) panels. In addition, eight miRNAs from the
MDD×RL panel: miR-3613-3p, miR-33a, miR-192, miR-26a, miR-
-34a, miR-370, miR-15b and miR-296-5p, have been described in
the literature as regulators of lipid metabolism. With regard to cell
proliferation and apoptosis, 56% of the MDD×GAL and 61% of
the MDD×RL miRNAs are known controllers of various signaling

Table 1. BioCarta GSEA enrichment of mRNA expression in response
to GAL and RL challenges

Pathway Size NES P-value

Enriched in CNTR GAL
RACCYCD 26 1.89 0.0076
CELLCYCLE 23 1.81 0.0000
TEL 18 1.74 0.0040
SRCRPTP 11 1.72 0.0000
P53 16 1.66 0.0078
CERAMIDE 22 1.65 0.0115
CFTR 12 1.62 0.0000
CHREBP2 42 1.61 0.0275
G2 24 1.61 0.0199
ATRBRCA 21 1.58 0.0159
CARM_ER 34 1.58 0.0373
STATHMIN 19 1.56 0.0233
ATM 20 1.55 0.0492
CHEMICAL 22 1.53 0.0497
RB 13 1.53 0.0346
AKAPCENTROSOME 15 1.52 0.0471
PLCE 12 1.51 0.0299

Enriched in CNTR RL
PPARA 56 1.83 0.0000
RACCYCD 26 1.71 0.0229
CHREBP2 42 1.65 0.0136
CD40 15 1.59 0.0301
ARF 17 1.57 0.0359
VIP 26 1.57 0.0169
P38MAPK 39 1.53 0.0076
HSP27 15 1.50 0.0389
BAD 26 1.50 0.0217
GCR 19 1.47 0.0360
LYM 11 1.43 0.0368
PLCE 12 1.43 0.0443
IL22BP 16 − 1.53 0.0300
DNAFRAGMENT 10 − 1.54 0.0237
AHSP 11 − 1.56 0.0412

Enriched in MDD GAL
TEL 18 1.98 0.0000
SRCRPTP 11 1.73 0.0020
PTC1 11 1.73 0.0000
G2 24 1.66 0.0021
CARM_ER 34 1.66 0.0056
HSP27 15 1.65 0.0116
RB 13 1.62 0.0062
CERAMIDE 22 1.60 0.0212
P53 16 1.58 0.0220
SET 11 1.58 0.0328
CHEMICAL 22 1.58 0.0243
ATRBRCA 21 1.57 0.0080
MPR 34 1.56 0.0413
CELLCYCLE 23 1.56 0.0305
AKAP95 12 1.56 0.0469
CHREBP2 42 1.56 0.0222
IL10 17 1.53 0.0320
ARF 17 1.50 0.0382
PLCE 12 1.47 0.0301
IL7 17 1.46 0.0258
BAD 26 1.43 0.0138

Enriched in MDD RL
RACCYCD 26 1.90 0.0040
TFF 21 1.88 0.0064
CD40 15 1.78 0.0102
TRKA 12 1.74 0.0084
ECM 24 1.67 0.0234
PPARA 56 1.63 0.0066
HSP27 15 1.62 0.0176
GH 28 1.60 0.0204
GLEEVEC 23 1.58 0.0361

Table. 1. (Continued )

Pathway Size NES P-value

ARF 17 1.54 0.0463
EXTRINSIC 13 1.53 0.0140
CHREBP2 42 1.53 0.0246
CDMAC 16 1.52 0.0355
BAD 26 1.48 0.0118
SPRY 18 1.45 0.0417
FEEDER 9 − 1.53 0.0236
DNAFRAGMENT 10 − 1.54 0.0488
AHSP 11 − 1.56 0.0354
GLYCOLYSIS 10 −1.63 0.0040

Abbreviations: CNTR, control; GAL, galactose; GSEA, gene set enrichment
analysis; MDD, major depressive disorder; mRNA, messenger RNA; RL,
reduced lipid. Molecular pathway enrichment of mRNA in MDD and CNTR.
Pathways enriched only in one group (MDD or CNTR) are in bold.
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cascades, out of which 13% (GAL) and 33% (RL) affect or are
affected by the tumor suppressor protein p53. As p53 is not only a
modulator of apoptosis, but is also involved in regulation of
metabolism,27 some overlap between these categories is
expected. Furthermore, 25% (MDD×GAL) and 39% (MDD×RL)
of the signature miRNAs are known to regulate cell motility.
Interestingly, three of them: miR-34a, miR-34b and miR-199a-3p,
are recognized as regulators of the hepatocyte growth factor
receptor, c-Met,28,29 a key controller of cell migration.

DISCUSSION
Our results demonstrate that the metabolic challenges evoked by
substitution of glucose with GAL or reducing the abundance of
lipids in the growth media of fibroblast cultures result in robust
changes of mRNA and miRNA expression. MDD fibroblasts
responded to the metabolic stress with alternate expression of
1196 (GAL) and 312 (RL) transcripts. A substantial fraction of these
mRNA changes, 26% (GAL) and 33% (RL) were only observed in
MDD, but not in CNTR. The specific response of MDD fibroblasts to
each challenge was represented by 20 (MDD×GAL) and 28
(MDD×RL) mRNAs with significant group by challenge interaction.
The characteristic response of MDD fibroblasts to the metabolic
stressors was even more pronounced on the miRNA level; 81%
(GAL) and 90% (RL) of the total miRNA changes were only
observed in MDD, but not in CNTR. The miRNA signature response
of MDD fibroblasts was defined by 16 (MDD×GAL) and 36
(MDD×RL) miRNAs. The stress-induced changes, observed on
both mRNA and miRNA level, revealed MDD-associated impair-
ments in molecular pathways involved in the control of
metabolism and energy production, cell survival, proliferation
and migration. These impairments are likely to be present in all
the somatic cells, and therefore are informative of the disease
process. In fact, the results are consistent with our previous
findings in human postmortem brain tissue, as both studies
implicated disturbances in apoptotic molecular pathways.30

Impairments in any of the detected molecular pathways could

be critical for the development and plasticity of the brain and can
result in the disease state of MDD.31 In a previous study, MDD
fibroblasts cultured in STD condition revealed deficits in cell
proliferation and cell motility.32 In this study, we demonstrated
that molecular pathways involved in the same processes were also
impaired in response to metabolic challenges with GAL and RL,
and revealed previously unknown disruption of pathways
regulating metabolism and energy production. Presenting meta-
bolic challenges was instrumental for defining distinct MDD mRNA
and miRNA response signatures that might also contribute to
patients’ aberrant responses to life stressors.
GAL and RL treatments elicited common responses in MDD

fibroblasts. The commonality was demonstrated on both mRNA
and miRNA level. On mRNA level, the overlap between MDD×GAL
and MDD×RL signatures was defined by the integrator complex
subunit 4 (INTS4), and the NEDD4 binding protein 2-like 1
(N4BP2L1). The INTS4 associates with RNA polymerase II, and
therefore potentially has a general effect on regulation of gene
transcription and RNA processing.33 The N4BP2L1 is a paralog of
N4BP2 and is likely involved in cell survival.34 Evidence for MDD
impairment in the regulation of cell survival and proliferation
streamed from the molecular pathway analyses as well. The
HSP27, BAD and ARF molecular pathways were the commonly
enriched pathways in MDD during GAL and RL challenges; all of
which affect cell survival and proliferation. Furthermore, 38%
(GAL) and 17% (RL) of the MDD-enriched gene sets (PTC1, MPR,
ACAP95, ARF, HSP27, SET, BAD, IL7, TRKA, CDMAC, SPRY),
contribute to the regulation of cell survival and proliferation. On
the miRNA level, three of the commonly changed miRNAs are
regulators of cell proliferation and apoptosis.35–37 In addition, a
striking 56–61% of the miRNAs from the MDD×GAL and
MDD×RL signatures have roles in cell cycle and survival
regulation. Overall, these data provide an overwhelming support
for the aberrant engagement of mechanisms regulating cell
proliferation and survival by MDD fibroblasts when exposed to
two distinct metabolic challenges. Commonality between GAL-
and RL-induced responses in MDD was also detected in their
respective miRNA signatures, where at least 38% (GAL) and 37%
(RL) of the miRNAs were regulators of metabolism or energy
homeostasis, indicating deficiencies in those signaling cascades in
MDD as well. In summary, the challenges presented by GAL and RL
in MDD fibroblasts affected cellular processes, such as control of
cell proliferation and survival, regulation of metabolism and
energy production. The molecular machinery for regulation of
these processes is located mainly in the mitochondria. Therefore,
our data strongly support the disruption of mitochondrial
functions in patients with MDD, as previously suggested.10

The GAL and RL treatment also evoked different responses in
MDD fibroblasts. The number of mRNAs with changed expression
in GAL was four times the number of mRNAs changed in RL. In
contrast, the mRNA signatures characterizing the specific response
of MDD to each stress, have similar number of mRNAs (MDD×
GAL= 28, MDD×RL= 20). Therefore, the proportion of the specific
mRNAs from the total mRNA changes (GAL= 1196, RL = 360) is in
favor of RL (5.6 vs 2.3%). Consequently, we concluded that RL vs
GAL environment more strongly illuminates the molecular deficits
of MDD. Furthermore, additional data, obtained from RL
treatment, reveal abnormalities in MDD, which were not apparent
in GAL. These are the eight miRNAs in the MDD×RL miRNA
signature known to control lipid metabolism, pointing toward the
possibility of fatty acid metabolism dysregulation in patients with
MDD, a phenomenon studied in many different ways during the
last couple of decades.38–42 Another interesting fact revealed only
in RL environment is the presence of six hypoxamirs in the
MDD×RL miRNA signature. Hypoxamirs have been identified as
miRNAs contributing to mitochondrial respiration arrest in a low
oxygen environment.43 In our study, CNTR fibroblasts upregulated
six hypoxamirs (let-7b*, miR-192, miR-26a, miR-98, miR-23a and

Figure 3. Differential miRNA expression in pooled samples is
validated in individual samples. The expression level of 14 miRNAs,
detected in miRNome analyses of pooled samples, was validated
with independent qPCR arrays of individual samples (groups: MDD,
CNTR; culture conditions: STD, GAL, RL). The expression changes,
estimated with ΔΔCt (ΔΔCtGAL=ΔCtGAL−ΔCtSTD, blue; ΔΔCtRL
=ΔCtRL−ΔCtSTD, pink), from the pooled samples are plotted on the
x axis, and from the individual samples on the y axis. Note that the
values from each comparison were highly correlated. CNTR, control;
GAL, galactose; MDD, major depressive disorder; miRNA, microRNA;
qPCR, quantitative PCR; RL, reduced lipid; STD, standard.
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miR-7)44 in response to RL, whereas MDD fibroblasts down-
regulated them. This particular difference in the MDD response
compared with CNTR further supports the notion of mitochondrial
dysfunction in MDD. The RL challenge was also very informative in
uncovering abnormalities in the process of cell migration; 39% of
the miRNAs in the MDD×RL miRNA signature were regulators of
metastasis. Also, MDD responded to RL with enrichment of ECM
(extracellular matrix) pathway and TFF (Trefoil factors initiate
mucosal healing) pathway; both important players in the
processes of cell migration. The deficit of MDD in cell migration
was not as apparent during adaptation to GAL, but was observed
in a previous study in STD conditions.32

An important question is whether the changes we detect in
peripheral tissues are relevant to a disease process that takes
place primarily in the brain. Genetic factors associated with MDD
are likely to be present throughout the entire body and not just be
specific to the brain. The adaptive deficits detected in fibroblast
cell lines can be linked back to the function of neurons and the
brain, with multiple examples found in the mRNA and miRNA
challenge-response signatures and in the altered molecular
pathways. On mRNA level, such examples are presented by genes
important for neurite outgrowth, neurodevelopment and synaptic

plasticity: Actin-related protein 2/3 complex, subunit 5 (ARPC5),45

ArfGAP with coiled-coil, ankyrin repeat and PH domains 2
(ACAP2)46 and Beta-1,3-glucuronyltransferase 2 (glucuronosyl-
transferase S, B3GAT2).47 Multiple important roles in the nervous
system are associated with miRNA challenge-response signatures
as well. Generally, 31% (GAL) and 47% (RL) of the miRNAs from the
miRNA signatures are either regulators of molecular events in the
brain or biological markers associated with psychiatric disorders in
the periphery. In particular, we identified miRNAs with roles in
neurite outgrowth and synapse formation: miR-7,48 miR-26a,49

miR-34a,50 miR-134 (ref. 51) and miR-132;52,53 cell cycle progres-
sion, apoptosis and specification of neurons: miR-25,54 miR-34a,55

miR-497 (ref. 56) and miR-376a;57 brain morphogenesis: miR-7,58

miR-370 (ref. 59) and myelination in the central nervous system:
miR-23a.60 Furthermore, our study identified miRNAs implicated in
the pathological development of schizophrenia, such as miR-132
(ref. 61) and miR-382;62 and of Alzheimer’s, such as miR-98.63 In
addition, several of the miRNAs with aberrant challenge-response
in MDD have been described as potential peripheral biomarkers
for psychiatric or neurological diseases: miR-564 (ref. 64) and
miR-132 for schizophrenia;65 hsa-let-7g and miR-15b for Alzhei-
mer's;66 and miR-1285, miR-34a and miR-34b for Huntington’s

Figure 4. Disease × stressor interaction miRNA signatures. (a) MDD×GAL and (b) MDD×RL. The ΔΔCts (ΔΔCtGAL=ΔCtGAL−ΔCtSTD; ΔΔCtRL
=ΔCtRL−ΔCtSTD) of the miRNAs with significant disease × challenge interaction were subjected to unsupervised hierarchical clustering. The
colored squares represent the increase (red) or decrease (blue) of each ΔΔCt from the mean. Increased ΔΔCt represents reduced level of
miRNA in metabolic stress compared with STD conditions. Clear separation of MDD and CNTR groups was observed. Four miRNAs (that is,
miR-7, miR-382, miR-296-5p and miR-3176), denoted by arrows, are commonly present in both signatures. CNTR, control; GAL, galactose; MDD,
major depressive disorder; miRNA, microRNA; RL, reduced lipid; STD, standard.
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disease.67 This study also identified a number of miRNAs that
respond to different stressors in the nervous system: miR-34b,
which affects the degree of oxidative stress and survival of
dopaminergic neurons;68 miR-296-5p, which responds to oxidative
stress in mouse hippocampal neuronal cultures;69 miR-199a, which
reacts to hypoxia in rat cortical pericytes;70 and miR-98, which is
elevated in the brains of newborn rats experiencing prenatal
stress.71 And last, miR-296-5p, which showed aberrant response to
both RL and GAL in MDD fibroblasts, presents a strong connection
to MDD; miR-296-5p has been identified as a regulator of
inducible I kappa-B kinase,72 a gene with genetic association
with MDD.73

Taken together, this information gives confidence to the
relevance of our observations in fibroblasts to the MDD disease
state. This study provides a solid foundation for future experi-
ments with human fibroblasts aimed at deciphering the systemic
immune disturbances in MDD. Moreover, our results demonstrate
that aberrant responses to stressors are indeed present in the
peripheral tissues from MDD patients. These responses intersect
multiple cellular processes associated with mitochondria, such as
regulation of metabolism and energy production, cell prolifera-
tion, survival and motility; therefore, they strongly suggest that the
stress-response impairments of MDD patients are most likely
based on impaired mitochondrial functions.
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