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A B S T R A C T

Neutrophil extracellular traps (NETs) are DNA and histone-based networks enriched with granule-derived
proteins cast out by neutrophils in response to various inflammatory stimuli. Another molecular network, fibrin
is the primary protein scaffold that holds both physiological blood clots and pathological thrombi together.
There is mounting evidence that NETs and fibrin form a composite network within thrombi: in the past 10 years,
a variety of molecular pathways have been revealed that help elucidate the nature of the NET-fibrin interaction.
Besides discussing the effects of various NET components on hemostasis, this review takes a closer look at the
interaction of these individual effects, with novel perspectives on how the NET and fibrin networks stabilize each
other. Similarities and molecular connections are also outlined between the processes responsible for the de-
gradation (fibrinolysis and NET lysis) as well as elimination of these networks. In addition, the complex re-
lationship of pathogens with the NET-fibrin network is discussed, with a particular focus on the role of peptidyl-
arginyl deiminases (PADs) in NET formation as well as in pathogen intrusion, where PADs act as a virulence
factor expressed by bacteria -an aspect that is currently left out from discussions in the field.

1. Introduction

While Metchnikoff [1] and Ehrlich [2] examined neutrophils under
the microscope as early as the 19th century, the discovery that these
cells are capable of actively casting their nuclear constituents into the
extracellular space was made only 15 years ago [3]. Since then, while
neutrophil extracellular traps (NETs) have remained in the center of
marked interdisciplinary attention, their exact nature has been criti-
cally examined with some healthy skepticism (reviewed in [4,5]). It is
becoming increasingly clearer that the process of NET formation (NE-
Tosis [6]) is not a monolith, rather an umbrella term for multiple
pathways that similarly result in active nuclear expulsion [7]. At
minimum, the literature suggests suicidal, vital, and mitochondrial
NETosis as distinct forms. However, as the concepts for the intracellular
mechanism of NETosis are being continuously refined, ambiguities arise
in terms of the exact requirements for these processes, implying that the
main NETosis forms should be further divided (reviewed in [8]).

NADPH oxidase activity was originally deemed crucial for NET re-
lease, supported by the observation that neutrophils from NADPH
oxidase-deficient patients are incapable of NET formation [6,9],
whereas the gene therapy for this enzyme deficiency restores their NET-
forming capability [10]. However, later it was shown that certain

bacterial stimuli such as ionophores do not require oxidative burst to
induce NETosis [11]. Furthermore, a NETosis-independent role for
oxidative burst has been suggested as an alternative explanation for
restored antimicrobial action at least in certain infections: NADPH
oxidase activity enhances kynurenine formation from tryptophan [12].
This process is dependent on superoxide and is crucial in the host's
ability to fight Aspergillus infections [13]. With regards to the role of
myeloperoxidase (MPO), while its blockade results in inhibited NETosis
in human neutrophils, in the same study, murine neutrophils have
preserved their NETotic activity [14]. The role of neutrophil elastase
(NE) has also been challenged as, in a thrombosis model, NE deficient
murine neutrophils still produced NETs [15]. Autophagy was originally
believed to be involved in NET formation [16], but later this has also
been questioned [17]. The role of peptidyl-arginyl deiminases, PADs in
NETosis is a much-debated topic which, given its wide implications for
both immunity and hemostasis, will be discussed under a separate
section. Besides ambiguities around the formation of NETs, there is
mounting evidence that their structure and composition [18] is also far
from uniform, which contributes to the difficulty of finding appropriate
and comparable methods for the in/ex vivo detection of NETs [19].

While many of the basic steps and requirements of NETs have been
questioned, the evidence that NETs contribute to pathological
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thrombosis [20] has been steadily accumulating in the past 10 years.
Accordingly, there is no shortage of excellent reviews on the topic
[21–25]. Animal models of thrombosis have reported that submaximal
ligation of inferior vena cava results in NET-rich thrombi [26], and
during laser-induced arterial injury in mice, neutrophils are the first
cells at the site of the injury [27]. NETs are abundant in human venous
thrombus samples, particularly those in the organizing stages [28].
Similarly, arterial thrombi from patients who suffered heart attack
[29,30], stroke [31], or peripheral arterial disease [32] contain NETs
(Fig. 1). Remarkably, NETs alone have been shown to cause vascular
occlusion in a non-canonical thrombosis model [33].

In light of these findings, NET/neutrophil inhibition has been sug-
gested as a potential antithrombotic strategy, which has been ex-
tensively discussed in a recent review in this journal [25]. To dissect the
molecular basis of these clinical perspectives, the current review will
specifically focus on the intersection of NETs with the two classic as-
pects of hemostasis (coagulation and fibrinolysis). The mechanical and
chemical stability of the fibrin-NET composite network will be ap-
proached from two broad perspectives: from the aspect of thrombosis in
the absence of infectious pathogens as well as from a pathogen per-
spective.

2. NETs from a hemostatic perspective

The coupling of NETs and thrombus formation is reflected in the
term immunothrombosis, which refers to the cooperation of hemostatic
and immune systems in fighting pathogens [34]. In lower-level in-
vertebrates, such as the horseshoe crab, hemocytes (nucleated im-
munohemostatic cells) are responsible for both protection from patho-
gens and sealing damage to prevent hemolymph loss (reviewed in
[35]). In higher-level organisms, these two functionalities (immunity
and hemostasis) appear to have begun an evolutionary separation
process. Platelets, traditionally thought of as master regulators of he-
mostasis, have lost their nuclei and accumulated coagulation factors
and fibrinogen intracellularly (reviewed in [36]). These are released
upon activation and contribute to the coagulation cascade, even though
this seems to be redundant given that fibrinogen is secreted by hepa-
tocytes at micromolar concentrations in the circulation. At the end of
the coagulation serine protease cascade, soluble fibrinogen is cleaved,
and an extracellular protein network is built up from fibrin monomers
(reviewed in [37]). At the same time, neutrophils, traditionally in-
volved in immunity, have kept their nuclei and become responsible for
the production of a complementary extracellular network that captures
pathogens. Neutrophil nuclei are a pre-packaged source of NETs to be
decondensed and cast out in the extracellular space upon microbial and
inflammatory stimuli [7]. According to this view, both platelets and

neutrophils die while contributing to the higher cause, i.e. the forma-
tion of a composite meshwork -resembling honey bees which can only
sting humans once in their lives.

The two meshworks, NETs and fibrin are structurally intertwined
(Fig. 1) and their co-localization has important functional con-
sequences. In the following sections, the NET-fibrin link will be ex-
amined first from a hemostatic perspective, focusing on the DNA
backbone of NETs as well as on the effects of the two major proteins
found in NETs: histones and elastase [38].

2.1. NETs stabilizing the clot I.: DNA

Throughout the literature, the DNA backbone of NETs has been
overwhelmingly shown to exert prothrombotic and anti-fibrinolytic
effects (reviewed in [39]). DNA induces coagulation through the in-
trinsic pathway, which aligns well with the rule of thumb that highly
negatively charged surfaces enhance the activation of factor XII (FXII),
the initiator of this pathway (reviewed in [40]). While it is increasingly
accepted that the intrinsic pathway is not required for physiological
hemostasis, under pathological conditions, when DNA is released upon
cellular damage (e.g. due to inflammation), this pathway can become
crucial in initiating fibrin formation (reviewed in [41]). Interestingly,
another example of a negatively charged trigger of clotting is relevant
in the course of NET formation, namely, polyphosphates released from
histone-activated platelets [42,43]. Besides supporting the intrinsic
pathway, DNA has been suggested to act as a cofactor surface in
thrombin-dependent factor XI activation [44] and contribute to the
propagation of the tissue factor-dependent coagulation pathway as well
[45]. In addition, a variety of antifibrinolytic attributes of DNA have
been described in the literature. Purified DNA has been shown to ac-
celerate the formation of tissue-type plasminogen activator (tPA) –
plasminogen activator inhibitor 1 (PAI-1) complexes [46], serve as a
template for an inactive plasmin-fibrin-DNA complex [47], decelerate
plasminogen-plasmin conversion by tPA on clot surfaces [48], bind fi-
brin degradation peptides and delay their release from fibrin clots [49],
as well as intercalate into fibrin fibers and delay plasmin-mediated lysis
of plasma clots [48,49]. Accordingly, thrombus samples from heart
attack [30] and stroke [31] have shown faster ex vivo thrombolysis in
the presence of DNAses in addition to tPA, just as in an in vitro NETosis-
thrombosis model [48]. Nevertheless, these results mostly reflect the
effect of pathologically high DNA concentrations within the micro-
environment of NET-containing thrombi. Notably, lower concentrations
of purified DNA might support fibrinolysis through the facilitation of
plasminogen activation by tPA in soluble phase [46].

Fig. 1. Intertwined fibrin and NET scaffolds of thrombi. A: Scanning electron micrograph of NETs released by phorbol myristate acetate-activated isolated neu-
trophils in a fibrin clot. B: Confocal micrograph of a coronary thrombus removed with percutaneous coronary thromboaspiration from a 39-year old female patient
with acute myocardial infarction and immunostained for fibrin (green) and citrullinated histone H3 (red) and stained for DNA with TOTO-3 (blue), (unpublished
work of the authors). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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2.2. NETs stabilizing the clot II.: histones

Another stream of publications examines the hemostatic effects of
histones, highly positively charged DNA-binding molecules that re-
present the majority of the proteins found in NETs [38]. Interest in the
effect of polycationic polypeptides on fibrin formation and degradation
goes back as far as the 1950s. Ginsburg and colleagues have shown that
polylysine (which might mimic lysine-rich histones such as H1 [50])
inhibits streptokinase-induced fibrinolysis [51] and the same substance
facilitated fibrin formation when added to staphylocoagulase and pro-
thrombin [52]. With specific regards to histones, their interference with
the hemostatic system has been observed in classic laboratory hemo-
static tests mostly as prolonging clotting times [53], probably due to
shielding the procoagulant phospholipid membranes [54]. Histone
binding is thought to occur at phosphodiester bonds in phospholipids
such as cardiolipin [54], which might mimic the phosphodiester sites in
DNA, where nuclear histone binding normally occurs. In vivo, the
majority of phospholipids are found in cellular membranes, where
histone binding may exacerbate coagulation in various ways. Histones
disrupt the anticoagulant endothelial barrier (reviewed in [55]) by in-
ducing endothelial damage via pore formation or membrane destruc-
tion and consequential ion influx [56,57]. During endothelial activation
or even death [58] induced by histones, H2O2 might be released, which
is a further inducer of NETosis [6]. The contents of endothelial Weibel-
Palade bodies are exocytosed alongside with von Willebrand factor
(vWF) [59] that binds platelets and thus further supports thrombosis.
Histone binding to neutrophils also contributes to a vicious cycle by
triggering further NET formation [60]. The interaction of histones with
platelet membranes results in calcium influx either by pore formation
[61] or opening of pre-existing channels [62], triggering activation of
integrin α2bβ3 [63] that facilitates fibrin binding. As histones bind to
fibrinogen [48], this chain of events could explain the unsaturable
nature of histones binding to platelets [64]. In addition to less specific
binding, histones also trigger platelet activation via toll-like receptors
TLR2 and TLR4 [42] and potentiate thrombin-dependent platelet-acti-
vation [65]. The in vivo result of these processes is a massive induction
of thrombocytopenia and thrombosis [27,57,64]. Red blood cells
(RBC), traditionally thought of as inert cells with regards to hemostasis
have more recently been shown to mechanically [66] and chemically
[67] strengthen clot structure, and to contribute to up to 40% of the
thrombin-generating potential of the whole blood through phosphati-
dylserine exposure in even a small fraction of the whole RBC population
[68]. Histone binding enhances this membrane rearrangement [69],
possibly further increasing the thrombogenicity of RBC during NETosis.

Besides their cellular effects, histones interfere with proteins of the
coagulation cascade. They enhance prothrombin autoactivation [70]
and appear to impair antithrombin-induced thrombin inactivation [48].
Histones bind fibrinogen and fibrin, and get incorporated into poly-
merized fibrin in vitro, which results in mechanically and chemically
more stable clots (49). Histones interfere with the thrombin-thrombo-
modulin interaction [71], a prerequisite for the formation of the an-
ticoagulant, histone-digesting activated protein C (APC) [57], which is
also capable of inhibiting NETosis via PAR receptors on neutrophils
[72]. Given the well-supported anticoagulant and anti-NET role of APC,
it is not surprising that NETs offer histone-independent ways of pre-
venting its activation: both neutrophil oxidases and neutrophil elastase
(NE) are capable of inactivating it [73,74]. However, an aspect of the
thrombin-thrombomodulin interaction often forgotten in reviews is the
ability of the complex to activate not only protein C, but the thrombin-
activatable fibrinolysis inhibitor (TAFI) as well [75]. The action of
TAFI, on the other hand, is far from anticoagulant: it eliminates C-
terminal lysines in fibrin that serve as binding sites for plasminogen
[76]. Histone-mediated disruption, therefore, might also lead to sparing
of these binding sites and accelerated lysis. However, the half-life of
TAFI is remarkably low [77] and a myriad of opposing NET effects
might override its influence on fibrinolysis in vivo. One additional way

in which histones might support fibrinolysis is suggested by the ob-
servation that histone 2B binds and recruits plasminogen on certain cell
surfaces, which raises the possibility that it acts similarly in NETs [78].

2.3. NETs stabilizing the clot III.: elastase

Accounting for one-third of the cytosolic proteins found on NETs
[38], NE has been shown to interfere with clotting and fibrinolysis
alike. Earlier studies pointed to the role of elastase supporting fi-
brinolysis. NE cleaves and inactivates the major plasma plasmin in-
hibitor, α2-PI [79] and expresses direct fibrinolytic activity [80]. NE is
capable of clipping miniplasminogen out of plasminogen, which is more
readily activatable than plasminogen [79], and once converted to
miniplasmin, has a higher catalytic efficiency in digesting cross-linked
fibrin than that of plasmin [81]. This might contribute to the finding
that, in the absence of α1-antitrypsin, the major inhibitor of NE, in vitro
fibrin clots containing neutrophils lyse spontaneously, unlike plasma
clots [48], even in the absence of NETosis [82]. NE has been shown to
cleave vWF and thereby release platelets from vessel walls under high
shear stress [83]. Under certain circumstances, NE may also consume a
portion of coagulation factors such as thrombin and factor X, releasing
peptides with antimicrobial activity (e.g. GKY25) [84]. This antic-
oagulant and fibrinolytic modality of elastase and neutrophils in gen-
eral is in line with the finding that plasminogen-knockout mice have
increased number of neutrophils in their thrombi, and that neutrophils
isolated from them show increased individual profibrinolytic activity
[85].

Nevertheless, since the discovery of NETs, clot stabilizing effects of
NE have been receiving more attention and are increasingly in-
vestigated. Such effects include procoagulant properties, such as clea-
vage of tissue factor pathway inhibitor [86], thrombomodulin as dis-
cussed above [75], antithrombin [87] and certain proteins in the
damaged vessel wall, making the subendothelium more thrombogenic
[88]. Furthermore, NE has shown antifibrinolytic properties in certain
experimental settings via cleavage of plasminogen activators (ur-
okinase-type, uPA and tissue-type, tPA) [89].

2.4. Do DNA+histones+ elastase equal NETs?

Studies on the isolated effects of NET components are invaluable
even outside of the NETosis context as DNA and histones might be re-
leased in a multitude of NETosis-independent ways (reviewed by Gould
[39]). However, when trying to identify NET effects in the course of
(immuno)thrombosis, the combined effects of individual NET compo-
nents become a question of balance between the ratio of these mole-
cules as well as the timing and the format of their release.

In vitro studies show that the effect of simultaneous addition of DNA
and histones does not always lead to additive effects. For instance, DNA
enhances mechanical stability of fibrin clots, which is already increased
in the presence of histones [49], while addition of DNA does not seem
to have any additional effect on the tPA-induced degradation of plasma
clots supplemented with histones [48]. In synthetic NET-like micro-
webs, addition of DNA reduces the microbicidal activity of histones
[90]. When added to coagulation assays in octamer forms, which is
closer to their DNA-bound state, histones show reduced procoagulant
activity [45]. Nuclear substance isolated from leukocytes suppresses in
vitro coagulation less than pure histones isolated from the same ma-
terial [53]. Isolated NETs have shown variable potential to induce NETs
in platelet-independent assays [45,91], despite the fact that individual
histones and DNA were both shown to possess in vitro procoagulant
properties [91]. Since mixing activated neutrophils with whole blood
does result in clot formation (20), it has been suggested that in vivo,
NETs might contribute to clotting primarily through indirect means
[45] (e.g. platelet activation). Taken together, these results imply an
intricate fine-tuning mechanism during simultaneous release of DNA
and histones, where these nuclear constituents might mutually silence
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the hemostatic as well as the toxic effects of each other (on host cells
and pathogens alike).

The presence of NE in NETs further increases the complexity of
possible interactions. First of all, NE might continue to digest NET-
bound histones in the extracellular space, thereby limiting their effects.
Secondly, the presence of DNA as well as NE-DNA interactions may be
of crucial importance. Extrusion of a single neutrophil granule results in
a remarkable local NE concentration of 5.33mM, however, in an en-
vironment with physiological antiprotease concentrations, the proteo-
lytic effect of this release is limited to a 1.33 μm radius for 12.4ms
[92,93]. On the other hand, in NETs, MPO co-localizing with DNA-
bound NE is well-positioned for the rapid oxidation of Met358 of α1-
antitrypsin, resulting in the inactivation of the major NE inhibitor [94].
Access of inhibitors to NET-bound NE may also be impaired: DNA from
bronchial secretions (which have been later shown to frequently con-
tain NETs [95]) retards the inhibitory action of α1-antitrypsin on NE
[96]. Providing further means of fine-tuning, DNA has been shown to
be an inhibitor of NE activity [97], just like other negatively charged
molecules that provide binding surface for the enzyme such as heparins
[98]. This is in line with the effects of intragranular acidic proteogly-
cans, which are thought to keep NE silent inside azurophil granules
prior to its release triggered by the oxidative burst [99]. All of these
interactions may be profoundly influenced by ionic strength or pH,
factors that are very hard to predict in the local microcompartments of
NETs in vivo. Nevertheless, these results suggest that DNA might act as
a protective molecular leash for NE, which is confirmed by the ob-
servation that NET-bound NE stays active in the circulation even after
NET digestion by DNAses [100]. At the same time, soluble-phase NE
(e.g. released during degranulation) might not be as protected from
inhibitors, and may possess a different affinity towards various sub-
strates than NET-bound NE. Such a modification of substrate specificity
is not unprecedented in the regulation of serine proteases: thrombin for
instance is known to go through a series of changes in substrate pre-
ference when exiting the soluble phase and binding to fibrin, platelet
surfaces, endothelium, or heparin (reviewed in [101]). This idea of
different NE modalities during degranulation versus NETosis is sup-
ported by the observation that certain stimuli predominantly induce
NETosis (reviewed in [7]) while others lead to degranulation only (such
as fMLP released from bacteria or damaged mitochondria [102] or tPA
[103], a major fibrinolysis activator). Intriguingly, recent work suggests
that NE itself plays a key role in delineating degranulation from NE-
Tosis, via its gasdermin-cleaving activity [104]. If NE is extruded from
the cell via degranulation before it could process gasdermin in-
tracellularly, gasdermin is unable to form vesicular pores that help
channel NE into the nucleus, which has been shown to be an important
step, at least in certain forms of NETosis [105].

2.5. Returning the favor: hemostasis-dependent and other ways of
increasing NET stability

The previous sections illustrate the variety of pathways through
which NETs might stabilize thrombi including direct interference (his-
tones disrupting the thrombin-thrombomodulin interaction), cleavage
of inhibitors (e.g. by NE), and covalent modification of inhibitors (ci-
trullination and oxidation). On the flipside, however, little is known
about whether the hemostatic system is able to return the favor and
propagate NET formation or contribute to their stabilization.

Recently, it has been described that a serine protease of the intrinsic
coagulation cascade, fXII (FXII), is able to promote NET formation in
neutrophils via a uPA-receptor mediated mechanism, providing a link
between inflammation-induced coagulation and NET formation [106].
Another protease cascade, the complement system represents a two-
way link between the coagulation and NETosis (reviewed in [107]).
Thrombin is able to convert C5 and C3 to C5a and C3a, respectively,
which attract leukocytes and C5a stimulates NETosis following inter-
feron gamma-mediated priming of neutrophils [107]. The fact that

properdin, Factor B and C3 have been found bound to PMA-induced
NETs and that MPO is known to activate properdin suggests that NETs
might provide a surface for complement activation [107]. In turn this
might support coagulation as previous studies have observed more
bleeding propensity in complement-deficient mice [107]. Another
consequence of complement binding is the increased chemical stability
of NETs themselves: C1q binds to DNA and protects it from DNAse
action either by shielding phosphodiester bonds or by directly in-
hibiting DNAse 1 [107].

DNA oxidized by H2O2 or sodium-hypochlorite is resistant to di-
gestion by the intracellular endonuclease TREX-1 [108]. Given that
NETs are exposed to both MPO-derived hypochlorite and H2O2 origi-
nating from neutrophils or formed from superoxide released from ac-
tivated platelets [109], DNA in NETs might possess increased resistance
towards nucleases due to oxidation.

An intriguing finding is that, similarly to fibrin, NETs are also sta-
bilized by transglutaminase-dependent crosslinking [110], and that this
crosslinking is critical to pathogen trapping. Lysine rich histones offer
ample sites for transglutaminase action, and it has been shown earlier
that histones are prone to tissue-type transglutaminase-mediated
crosslinking, a process that might play a role in chromatin condensation
during erythrocyte differentiation [111]. Extracellular crosslinking of
histones in NETs showed no change when factor XIII (FXIII, the trans-
glutaminase primarily responsible for fibrin crosslinking) was inhibited,
which points to the involvement of neutrophil-derived transglutami-
nases in the process [110]. Nevertheless, contribution of thrombin-ac-
tivated platelets cannot be excluded as platelets trapped in thrombi
eventually disintegrate and their own transglutaminase content might
be released [112].

Another way to strengthen the ties between NETs and the fibrin
network is offered by vWF which is secreted from endothelial cells in
the presence of histones [59], or from the alpha granules of platelets
activated during thrombosis [36]. vWF is known to bind to histones
[113] as well as DNA [114] (possibly through its heparin binding sites).
This cross-binding of the two networks might further stabilize the
thrombus mechanically, and even enzymatically, since vWF has been
shown to inhibit plasmin-induced fibrinolysis [115] and binding to
DNA might shield DNAse-susceptible sites. These observations are in
line with the concept proposed by Martinod and Wagner [23] which
suggests that vWF multimers themselves might form a third stabilizing
scaffold in thrombi. Fig. 2 summarizes some of the possible elements of
the fibrin-vwF-NET interactions.

Besides superoxide and vWF, other factors released from platelets
during activation might support NETosis, such as P selectin [116,117],
interleukins (29) and High Mobility Group Box-1, HMGB-1 (reviewed in
[118]).

Taking a bird's eye view, certain properties of the hemostatic end-
product fibrin might also indirectly support NET formation by serving
as an extracellular scaffold for the adherence and migration of leuko-
cytes [119,120] during tissue injury. However, recent work suggests
that in the circulation, fibrin formation might protect neutrophils from
shear stress-induced NETosis [121]. Furthermore, the fibrin itself might
capture and limit the availability of triggers of NET formation such as
lipopolysaccharide or bacteria [122].

2.6. Clearance hand in hand? Degradation of fibrin and NETs

On the flipside, connections between the degradation of both fibrin
and NETs are much less elaborated. Nevertheless, there is some evi-
dence for the cooperation of systems that eliminate fibrin and extra-
cellular DNA.

Classic fibrinolysis is mediated by the serine protease plasmin,
which is synthesized and secreted by hepatocytes in its inactive pre-
cursor form, plasminogen. Plasminogen is activated either by en-
dogenous activators (such as tPA, mainly in the circulation, and uPA,
mainly in tissues and on cell surfaces, reviewed in [123]), or by
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exogenous activators from pathogens (see later). Regardless of its ac-
tivation pattern, plasmin represents a plausible link between the de-
gradation of the fibrin network and NETs as it has been shown to co-
operate with DNAse I in the clearance of extracellular chromatin by
cleaving histones [124]. This concerted action of plasmin and DNAses
might be especially relevant in tissues where cellular death results in
clot-like protein aggregates alongside with DNA released from dying
cells [125]. Interestingly, this cooperation is not observed with the
other major nuclease in the circulation, DNAse1-like 3, as this DNAse is
sensitive to plasmin cleavage [124]. In addition to plasmin, APC has
also been shown to cleave histones [57], however, several studies
suggest that its efficiency is reduced when histones are bound to DNA
[48,57]. Additionally, excess thrombin might lend a helping hand in
cleaving histones [126], and also a host of other NET-bound proteins
[127].

While many studies point to the primary importance of DNAses in
terms of clearing NETs, a recent atomic force microscopy (AFM)-fo-
cused structural study suggests that proteins are pivotal in determining
the stability of NETs and that proteases could be effective in dis-
mantling them [128]. While the authors used trypsin to demonstrate
this phenomenon in their in vitro setting, they speculate that NET-borne
proteases, such as NE or proteinase-3 might carry out a similar function
in vivo, thereby contributing to a more dispersed NET structure or even
the gradual clearance thereof. While this hypothesis needs further
evidence, NETs would not be the only networks that induce their own
decay: fibrin eventually facilitates its own proteolysis by serving as a
cofactor in plasminogen activation by tPA [123].

Further similarities can be found in the cell-mediated clearance of
fibrin and NETs, as it appears that leukocytes and endothelial cells
cooperate in the elimination of both networks. Macrophages seem to
play a major role in the clearance of NETs [129]. Macrophages and

neutrophils have been shown to phagocytose fibrin in the extracellular
space, and it is likely that they do so intravascularly as well (reviewed
in [130]). Underlining the role of endothelium in thrombus resolution,
during the process of angiophagy, the endothelium engulfs clots up to a
certain size, as demonstrated in an elegant study by Lam et al. [131].
Similarly, endothelial cells have been recently shown capable of pha-
gocytosing NETs to a certain extent [132].

3. Requesting a seat at the table: the role of pathogens

3.1. The NET-fibrin meshwork from the pathogen's perspective

An intriguing aspect of the NET-fibrin merger is the modulatory role
of pathogens during infection. The concept of immunothrombosis
suggests that both fibrin and NETs might be important in immobilizing,
and perhaps eliminating bacteria [34]. Both networks form a fibrous
structures that are tightly intertwined (Fig. 1).

The fibrin network is generally formed of thicker fibers (ranging
generally between 100 and 200 nm with pore diameters ranging from
0.1 to 5 μm [133,134]. However, a multitude of factors influence the
final structure (concentrations of thrombin, fibrinogen, ionic strength,
pH, presence of plasma proteins, histones, DNA, cells, and even bacteria
themselves [135], as reviewed in [37,123]. Furthermore, the network is
largely heterogeneous (e.g. with higher fiber density and thinner fibers
in the proximity of platelets [136]). While the well-known structure of
fibrin under SEM is typical for the inner parts of thrombi, a recent study
has revealed that, on the outside, a fibrin shield is formed that shows a
dramatically altered structure and serves as a barrier to bacterial entry
[137]. This barrier might also contribute to the long-known finding
that, in the absence of flow, even fibrinolytic enzymes have a difficult
time diffusing into the fibrin clot: it takes about 10 days for uPA to

Fig. 2. Synergy of NETs and fibrin thrombin thrombus stabilization. On the left: triggered neutrophils at the site of endothelial activation eject NETs (as represented
by histone beads on DNA strings) [27]. In the middle: NETs themselves induce endothelial damage [56,57], which leads to vWF release (red line) [59]. Platelets bind
to vWF and are activated by NETs [44]. On the right: activated platelets provide surface for coagulation complex assembly, secrete coagulation factors, and
polyphosphates that activate factor XII, which in turn supports NET formation [106]. Coagulation cascade assembly leads to thrombin activation with multiple
consequences. Thrombin catalyzes conversion of fibrinogen into fibrin monomers (represented as dumbbells) that form double-stranded fibrin protofibrils. Thrombin
also activates FXIII which introduces covalent crosslinks into fibrin and possibly between histones and other proteins in NETs [110,111]. Thrombin also catalyzes
complement activation which supports NET formation [107]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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travel an axial distance of 1 cm [138]. According to SEM and AFM
studies, NETs form thinner threads (15–25 nm) with globular domains
of 30–50 nm diameter, containing NET-bound proteins and enzymes
[3]. While this thinner network generally has smaller pores than that of
fibrin, in some regions, aggregation of strands creates thicker threads
(up to 100 nm [3]) and openings that could fit bacterial cells [128].
Based on these data, and SEM images of composite NET-fibrin clots
[48], it is tempting to speculate that fibrin and NETs complete each
other: if bacteria slip through the pores of one network, they might still
get caught up in another. Accordingly, both fibrin [139] and NETs [3]
have been shown to capture bacteria, and NETs have been suggested to
even kill pathogens in a variety of ways: oxidative action by MPO or
H2O2, damage by proteases or histones, and limited access to divalent
cations by the chelating effect of DNA [3].

3.2. Pathogen interference with NETs and hemostasis

Taken together, invading pathogens face a difficult task when trying
to enter the bloodstream through the double-sieve formed by inter-
twined NET and fibrin structures. No wonder that throughout evolu-
tion, they have equipped themselves with a variety of tools to dismantle
both networks, as summarized by some excellent reviews [140,141].

The need to degrade both fibrin and DNA is especially well illu-
strated by Streptococci which produce SK (streptokinase, a non-enzy-
matic fibrin-independent activator of plasminogen) and SD (strepto-
dornase, a DNAse) at the same time [142]. The intertwined nature of
these two enzymes is also reflected in the fact that separating them
poses a methodological challenge, and even many currently available
SK preparations contain SD. In addition to secretion of a DNAse [143],
Streptococcus pneumoniae is also able to change the composition of its
surface to decrease binding to NETs [144].

Another tool to dismantle the NET-fibrin conglomerate is the pro-
motion of plasminogen activation resulting in fibrin and histone di-
gestion. This route is exemplified by the enzyme Pla produced by
Yersinia Pestis, which serves as a potent activator of plasminogen and
uPA, inactivates plasminogen activator inhibitor-1 (PAI-1) and α2-an-
tiplasmin, and cleaves TAFI, reducing its activatability by the thrombin-
thrombomodulin complex (reviewed in [145]). While these effects are
in line with the classic clinical picture of bubonic plague with massive
hemorrhage, a study by Yun et al. reports that TFPI is also sensitive to
Pla [146]. In agreement with the authors' discussion of this finding, one
might speculate that the structural similarity between inhibitors of
coagulation and fibrinolysis might have evolved in the host to serve as a
protective mechanism to preserve hemostatic balance even in the face
of detrimental effects of pathogen-triggered protease action. Further
support for this theory is provided by the fact that NE released from
neutrophils as a response to pathogens is also able to cleave both TFPI
and α2-antiplasmin (see previous sections). Besides these broad ap-
proaches to degrade the NET-fibrin sieve, some pathogens possess more
specific tools of destruction, such as the histone-specific protease of
Chlamydia trachomatis [147].

An important aspect of lysis of the NET-fibrin barrier by pathogens
is the effect of the released digestion products. Lysis of host proteins
such as fibrinogen may not only serve as a way to clear obstacles but
potentially gives rise to peptides that bacteria can further metabolize to
sustain themselves [148]. Furthermore, prior to its complete metabo-
lism, the Bβ15–42 fragment liberated during the plasmin-mediated di-
gestion of fibrin is capable of silencing leukocyte function [149]. Si-
milarly, degradation of DNA in NETs might also contribute to
dampening the action of leukocytes. In addition to a nuclease, Staphy-
lococcus aureus also secretes adenosine synthase which results in the
formation of dATP [150], a long-known apoptosis trigger that NET-
bound immune cells are susceptible to. In addition to turning the
weapon of the host immunity against itself, S. aureus also secretes sta-
phylokinase [151] to generate plasmin and bind it on its own surface
[152], thereby further aiding its escape from clots.

On the flipside, there are plenty of examples for pathogens hijacking
fibrin rather than fighting it. These include their own surfaces [153] as
well as secreted molecules (such as staphylocoagulase [154]) that in-
duce fibrin polymerization, and proteins that bind fibrin (e.g. protein M
[155]). Interestingly, this versatility of approaches are not only seen
with external parasites, but also with internal ones: tumor cells have
been suggested to use fibrin formation to their advantage possibly by
similarly shielding themselves from immune recognition [156], or, in
certain cases, inducing fibrinolysis which is thought to help tumor
dissemination and metastasis [157].

3.3. PADs-whose weapon are they really?

Citrullination, the conversion of peptidyl-arginyl residues to pep-
tidyl-citrulline via deimination has been in the center of attention in the
field of rheumatoid arthritis for a long time (reviewed in [158]), and
PAD enzymes responsible for this irreversible post-translational mod-
ification have been extensively investigated. Of particular relevance to
the current review, several nuclear substrates of the subtype PAD4 have
been identified: lamin C (during apoptosis [159]), PAD4 itself (either
down-regulating its own action or not [160,161]), and various core
[162] and linker histones [163]. Following the discovery of NETs,
deimination of histones by PAD4 was soon identified as a hallmark of
chromatin decondensation during NETosis [162]. Since then, the pic-
ture has become more nuanced, and there is evidence that deimination
might not be the only way of weakening histone-DNA interactions to
enhance NET formation. NE travels to the nucleus after clipping gas-
dermin [104] and possibly actin on its way [164], and processes his-
tones [105]. Hypochlorite released by MPO is also suggested to reduce
histone charge by chlorination [14]. Relatedly, pharmacological in-
hibition of PAD4 leads to externalization of NET-like chromatin from
human neutrophils, but with little histone citrullination [165]. Recent
analysis has shown that PMA-induced NETs contain fewer citrullinated
histones than ionophore-induced NETs [7], and certain authors explain
this phenomenon by pointing out that PMA activates a PKC isoform that
actually inhibits PAD4, rather than activating it [166]. Finally, plant
cells are capable of forming NET-like structures, even though they do
not express PAD enzymes [167].

Even if not a uniform requirement for all forms of NETosis, PAD4
expressed in neutrophils is still the only PAD with a nuclear localization
signal [168]. This means that, when NETs are ejected, PAD4 reaches the
extracellular space [169], which opens up a range of possible interac-
tions, especially given that isolated PAD4 requires calcium concentra-
tions that are more similar to the millimolar extracellular range than
that of the intracellular milieu (reviewed in [170]). This characteristic
of PADs continues to puzzle researchers, even if certain PAD4 binding
proteins have been identified that might modulate its catalytic prop-
erties in vivo [171]. PAD2, unlike PAD4, lacks a nuclear localization
signal, however, it is still found inside the nucleus in certain cells [172]
and is also secreted during NETosis [169]. Hemostatic proteins that
have been shown to be prone to either PAD4 or PAD2 action are fi-
brinogen (the thrombin cleavage site of which contains a critical argi-
nine that is lost during citrullination [173]), antithrombin (which is
more prone to citrullination in the presence of heparin [174] and loses
its inhibitory effect on thrombin activity [175]), and, according to a
recent citrullinome analysis, inhibitors as well as activators of the
plasminogen-plasmin axis [174]. Given this variety of hemostatic PAD
substrates, the net effect of citrullination on fibrin stability is hard to
predict, and it is possible that the presence of other NET components
such as DNA and histones overrides the PAD effects in this complex
environment.

Complements that provide a link between the coagulation cascade
and NETosis, are also affected by citrullination. PAD 1, 2, and 4 have
been shown to citrullinate C1q inhibitor (alongside with other serpins),
which reduces its inhibitory activity [174]. LL37, an antimicrobial
protein formed via proteinase-3-catalyzed cleavage from hCAP-18
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[176], has a protective effect against DNAse action in certain assays
[177]. Remarkably, LL37 is also prone to citrullination, which de-
creases its antimicrobial efficiency [178]. Sorvillo et al. demonstrate in
an elegant study that PAD4-catalyzed citrullination of ADAMTS 13
decreases its catalytic efficiency [179], which in vivo might result in
increased half-life of vWF multimers that predispose to thrombosis.

What is often left out of the discussions about the role of PADs in
immunothrombosis is that certain bacteria express PADs as a virulence
factor, as reviewed by György et al. back in 2006 -at that time, un-
related to NETosis [180]. The PAD secreted by Porphyromonas gingi-
valis (PPAD) has been shown to contribute to the process of invasion,
partially through creating a neutralizing NH4

+-rich environment [181].
At the same time, PPAD is able to citrullinate chemokines and various
proteins of the complement system, downsizing the immune reaction
thereby [182]. PPAD seems to be more efficient in citrullinating NET-
associated histone H3 than human PADs secreted during NETosis [183].
This phenomenon is well aligned with the dependence of (host- and
pathogen-directed) histone toxicity on positively charged amino acid
sidechains [183,184], and points in the direction of Konig and Anrade's
argument about citrullination being a bacterial tactic rather than an
antimicrobial one [166]. Nevertheless, controversy remains, as it has
been shown that PAD4 is essential in the killing function of NETs [184].

It is possible that intracellular and extracellular histone citrullina-
tion serve different functions. Intracellular citrullination might be
useful in weakening the link between histone octamers and DNA, and
also help unleash potent antibacterial histones from DNA once ex-
ternalized. A small fraction of histones citrullinated might be sufficient
for this purpose, and more toxic non-citrullinated histones may be also
released. On the other hand, ‘extracellular’ citrullination might be a
defense mechanism to reduce toxicity of histones as demonstrated by
neutrophils that otherwise would be prone to histone toxicity and
which expresses PAD4 on their plasma membrane [185], as well as by
bacteria that evolved to defend themselves from histone-mediated
killing. To date, it remains unclear if citrullination of hemostatic pro-
teins identified above can be induced by PPAD, and if so, if citrullina-
tion occurs at the same or different sites.

4. Perspectives

The increasing number of findings around the interrelated effects of
NETs and hemostasis call for further studies to decide which of the
individually examined effects hold true in vivo. Furthermore, stronger
emphasis should be placed on delineating the effects of different neu-
trophil modalities on hemostasis, as it seems clear that degranulating
neutrophils might have profoundly different effects on clotting than
NET-forming ones. Relatedly, the question whether these modalities are
merely dependent on different signals or represent different sub-
populations of neutrophils is still open [186]. Further elaboration of
NET effects should be attempted when examining how pathogens in-
teract with the NET-fibrin meshwork: the case of PADs exemplifies the
uncertainties in the current knowledge.

Furthermore, it is high time that citrullination gets thoroughly ex-
amined in the context of thrombosis. To date, while citrullination has
been extensively studied in the synovia overwhelmingly tied to rheu-
matoid arthritis, no studies have been carried out on the hemostatic
effects of the released PAD enzymes in blood. Given that citrullination
has been shown to affect a series of human proteins in inflammatory
diseases, bacterial PADs also deserve more attention. In the context of
infections, it needs to be clearly outlined which relevant proteins might
be citrullinated by which PADs (host or pathogen) and, if citrullination
patterns are different, the implications of those differences should be
investigated. Citrullination profile of thrombi should be evaluated in
the absence and in the presence of bacteria and a series of in vivo and in
vitro experiments are needed to decide which forms of deimination
have a substantial effect in vivo, and whether citrullination of extra-
cellular proteins is a bystander marker of NETosis or a pathogenetic

factor. Given that single amino acids (such as arginine [187]) or even
the presence of cations (such as Zn2+ [188]) can markedly alter clot
structure, it is perhaps not far-fetched to suggest that an enzyme that is
capable of covalently modifying multiple hemostatic players might
profoundly alter the course of in vivo fibrin formation and degradation.
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