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Complex effects of atmospheric 
parameters on acute cardiovascular 
diseases and major cardiovascular 
risk factors: data from the 
CardiometeorologySM study
Nora Boussoussou1, Melinda Boussoussou1, Gergő Merész2, Márton Rakovics3, László Entz1 & 
Attila Nemes1

Several studies have examined the cardiovascular effects of atmospheric parameters as separate 
factors; however, few have investigated atmospheric parameters’ joint effects. We aim to explore 
the joint effects of atmospheric parameters on acute cardiovascular diseases (ACVDs) and on major 
cardiovascular risk factors (CRFs). We correlated all ACVD admissions with major CRFs and local 
atmospheric conditions during a 5-year study period. A seasonal variation was detected in a higher 
incidence rate during cold atmospheric conditions. There were significant incidence relative ratios, 
including: 1.140 (95% CI [1.020, 1.283]) for daily temperature change (≥5 °C); 0.991 (95% CI [0.988, 
0.994]) for average daily temperature; and 1.290 (95% CI [1.090, 1.599]) for the interaction of daily 
temperature change (≥5 °C) with humidity change (≥40%). We observed a significant association 
between the atmospheric parameters’ joint effects and hyperlipidaemia, diabetes, and previous ACVDs. 
Patients with diabetes had the highest significant incidence relative ratio at 2.429 (95% CI [1.088, 
5.424]) for humidity-temperature interactions. Thus, the atmospheric parameters’ joint effects play an 
important role as minor CRFs. These unfavourable atmospheric situations are predicted to increase the 
number of ACVDs mainly. Our study may help to organize prevention strategies more effectively and to 
reduce cardiovascular risks.

There is substantial evidence that the health threat of global climate change is real, and it is a medical emergency. 
The Lancet Commission on Health and Climate Change has declared that the biggest health challenge in the 
21st century is climate change1. Unfavourable atmospheric situations caused by climate change are predicted to 
increase the number of acute cardiovascular diseases (ACVDs) mainly. ACVDs are already major public health 
issues, and, in the future, adverse atmospheric parameters can further increase this problem. Europe, North-East 
America, and North Asia are the most affected geographical regions in terms of extreme atmospheric parameters. 
Additionally, various epidemiological studies have shown that there is a seasonal variation in the incidence of 
ACVDs. A greater ACVD incidence, both during cold and warm temperatures, has been detected2–8. Few studies 
have shown an association between atmospheric pressure, humidity, wind, sunlight, and cardiovascular diseases 
(CVDs)9–12. Nevertheless, most studies have mentioned the aforementioned atmospheric parameters as separate 
factors.

The aim of our CardiometeorologySM study was to investigate the joint effects of atmospheric parameters on 
ACVD incidences and on major CRFs. To our knowledge, this is the first study to qualify the association between 
the joint effects of atmospheric parameters and major CRFs based on ACVD hospitalizations. In light of global 
climate change, it is essential to focus on atmospheric parameters, such as minor CRFs. According to the Fourth 
Assessment Report of the Intergovernmental Panel on Climate Change in 2007, extreme weather conditions and 
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rapid, short-term changes in atmospheric conditions will become more and more frequent in the future13. Thus, 
a better understanding of atmospheric parameters can help establish new cardiovascular prevention strategies 
against them.

Results
In a 5-year period from 2009–2013, 6,499 patients were admitted to the Department of Vascular Surgery of 
Semmelweis University with a diagnosis of ACVD. The number of monthly ACVD hospitalizations and the 
aggregated number of patients for each month in every year are shown in Fig. 1. The seasonal admission for 
ACVDs is also shown. The aggregated number of hospitalizations was moderately stable throughout all years; 
however, there was an observable increase in the total monthly hospitalizations in the months of late spring and 
towards the end of the calendar year. The lowest number of hospitalizations could be observed in August. This 
attests to the presence of substantial seasonality in the data.

As part of the descriptive analysis, the average daily hospitalisation count was plotted against the average daily 
atmospheric temperature by age group, showing a slight but consistent negative association, which appeared to be 
more dominant as age increased. In Fig. 2, linear lines represent the trendlines that were fitted for each age group.

To evaluate the effect of atmospheric temperature on the daily hospitalization counts by exploring the poten-
tial interaction with other atmospheric parameters, the mean daily humidity was also described by estimating the 
average humidity and the standard deviation from the overall mean of daily event counts according to the mean 
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Figure 1.  The monthly and aggregated number of patients for each month in all years. Monthly number of 
patients (left axis) and aggregated number of patients for each month in all years (right axis). Greyscale bars 
show number of patients for all months for years 2009–2013, measured on the left axis. The dashed line shows 
total number of patients by year, measured of the right axis.
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Figure 2.  Average number of daily hospital admissions by average daily temperature, (°C). Markers show the 
average number for patient admissions by average daily temperature (°C) for each age group. Triangles are 
average counts for the age group <44, diamonds are for age group 45–54, squares are for age group 55<. Dashed 
lines show a downward sloping linear trend in average counts for higher average daily temperatures in all three 
groups.
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daily temperature categories. Figure 3 confirms a negative association between the temperature and hospitaliza-
tion counts; however, there were also yields of high humidity and high hospitalization counts on days with an 
average temperature of ≥30 °C, suggesting an interaction between these two factors.

To further explore interactions between atmospheric parameters and seasonality, daily hospitalization counts 
were estimated according to categories of variation in temperature, humidity, and mean daily wind velocity 
according to colder and warmer months. Figure 4 shows that the interaction between the temperature and humid-
ity changes yielded a differential effect in colder and warmer months, whereas adding wind velocity increased the 
mean daily hospitalization counts in both warmer and colder months.

To correct for these effects in both the mean and variation of atmospheric parameters, a multivariate regres-
sion approach was adapted to estimate the effects of atmospheric parameters on daily hospitalization counts. 
The Poisson-regression model was applied and used covariates as explanatory variables to capture the annual 
seasonality in the data. The results of the multivariate regression analyses are shown in Table 1. The daily mean 
and variation in atmospheric temperature were shown to have statistically significant associations with the daily 
ACVD hospitalizations; for example, a daily temperature change of ≥5 °C was associated with an average 14.0% 
increase in hospitalization counts, and a 1 °C decrease in average daily atmospheric temperature was associated 
with a modest but statistically significant increase of 0.9%.

The term “daily” is used to refer to event counts and weather parameters observed over one calendar day. A 
5 °C change was included as an indicator variable, with a value of 1 if the difference between the daytime maxi-
mum and minimum temperature exceeded 5 °C and a value of 0 otherwise. The adjustment for the variation in 
temperature attributable to the change from night-time to daytime was addressed implicitly when accounting for 
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Figure 3.  Humidity and average daily event counts by categories of atmospheric temperature. Relationship of 
humidity and average daily event counts with different categories of mean atmospheric temperature. Bars show 
average humidity by mean temperature categories, measured on the left axis. Cross markers show differences 
of average daily event counts by categories of atmospheric temperature from the grand mean, measured on the 
right axis.
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Figure 4.  Average daily event counts and number of days with specific weather conditions by warmer and 
colder months of the year. Daily number of hospital admissions for different weather conditions by colder and 
warmer months. Lighter bars show average of daily counts for warmer months (March to August), darker bars 
show average of daily counts for colder months (September to February). Numbers at the base of bars show total 
counts for each category of weather conditions and months.
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seasonality, as there is no general rule for the size of this effect, and there was only one measurement of weather 
pattern per day. The adjustment for the effect of seasonality on the index day was carried out by considering the 
changes in the observed variables from one day before and, additionally, from 365 days before. This implicates 
that the difference in the effect of the weather parameters on the hospitalization event counts across the whole 
year is similar throughout the years; therefore, even if there was a bias attributable to the 5 °C changes not being 
distributed evenly over the course of a year, the overall effect should be similar across a longer time horizon.

The interaction between a daily temperature change of ≥5 °C and a daily humidity change of ≥40% showed a 
positive association with daily hospitalization counts, increasing the daily number of hospitalizations by 29.0%. 
Table 2 shows further analyses that reveal consistent findings when fitting the same regression model for the sub-
populations of hypertensive, diabetic, and hyperlipidaemic patients as well as patients with a history of previous 
ACVDs. The regression models revealed a significant association between atmospheric interactions, changes, and 
subpopulations, including hyperlipidaemia, diabetes, and previous ACVD history. The highest significant associ-
ation that was detected between CRFs and the atmospheric parameters’ interactions was the association between 
the humidity-temperature interaction and diabetes. The effect of the humidity and temperature interactions was 
positively associated with the daily hospitalization counts on days with a temperature change of ≥5 °C and a 
humidity change of 40%; the mean number of hospitalizations increased by an average of 142.9%.

The effects of atmospheric parameters were also tested on the daily hospitalization counts of patients with 
different ACVDs: acute myocardial infarction (AMI), pulmonary embolism (PE), dissection of the aorta (AD), 
aortic aneurysm rupture (AAR), thromboembolism. Table 3 shows that daily temperature change of ≥5 °C and 
average daily temperature in the AMI group were the only significant results due to small sample sizes in the other 
groups, but there was no statistical evidence for differences of weather parameters across groups.

Discussion
The principal finding of this study shows that daily atmospheric parameter changes based on temperature, 
humidity, and wind interactions are associated with ACVDs, and that the relative risk varied by age and other 
major CRFs. To our knowledge, this is the first reported retrospective, observational, population-based study 
in Central-Europe to identify the association between the atmospheric parameters’ complex interactions and 
the ACVD hospital admissions with major CRFs. Moreover, the seasonality of cardiovascular morbidity is well 
known. Our results further illustrated a trend of a seasonal variation in the incidence of ACVDs; a higher hospi-
talisation rate during the cold season was also detected.

Cold temperature causes several pathophysiological changes that can act as a minor CRF. At low temperatures, 
upregulation of the sympathetic nervous system occurs. Cardiac contractility, frequency, the rate of relaxation, and the 
impulse conduction through the atrioventricular node also increase. As a result of the cold, the plasma catecholamine 
and vasopressin levels are increased, and the activity of the renin angiotensin system intensifies14. These mechanisms 
lead to an increase in blood pressure. Furthermore, the cold exerts negative effects on inflammation and haemostasis. 
The levels of C-reactive protein, Interleukin 6, P- and E-selectin, intercellular adhesion molecule 1, vascular cell adhe-
sion molecule 1, and the levels of haemoglobin, haematocrit, red blood cells, white blood cell count, thrombocytes, 
plasminogen activator inhibitor type 1, α2-macroglobulin, factor VII, and fibrinogen are increased15–18. These elevated 
levels lead to an inflammatory and hypercoagulable status, with a higher risk of developing thromboembolism.

Moreover, during cold effects, the level of Endothelin 1 is increased while the endothelial nitrogen monoxide 
level is decreased19. In winter, higher levels of low-density lipoprotein cholesterol and lower levels of high-density 
lipoprotein cholesterol can be detected20. Exposure to the cold has also been shown to affect thyroid hormone 
levels, causing triiodothyronine and thyroxine levels to decrease and thyroid-stimulating hormone levels to rise21. 
The hormones increase myocardial inotropy and the heart rate and cause the dilation of the peripheral arteries 
to elevate the cardiac output. Chlamydia pneumonia, Helicobacter pylori, and Influenza virus infections show 
a greater incidence in winter time as well. Furthermore, respiratory-infection-causing agents play a significant 
role in the onset of atherosclerosis. Infectious states accompanied by tachycardia and increased cardiac output 
can cause increased stress on atheromatous plaque22. In the case of vulnerable plaque, this can result in an acute 
cardiovascular incident.

Parameter* Relative risk CI 95% lower CI 95% upper p-value

Daily atmospheric temperature change ≥5 °C 1.140 1.020 1.283 0.021

Daily atmospheric air pressure change ≥10 hPa 0.986 0.894 1.092 0.798

Daily humidity change ≥40% 0.798 0.643 0.950 0.051

Average daily atmospheric temperature, °C 0.991 0.988 0.994 <0.001

Average daily atmospheric pressure, hPa 1.001 0.999 1.004 0.285

Average daily humidity, % 0.999 0.997 1.001 0.589

Average daily wind velocity over 2 m/s 1.054 0.960 1.151 0.300

Interaction of daily atmospheric temperature change ≥5 °C and humidity 
change ≥40% 1.290 1.090 1.599 0.034

Interaction of daily atmospheric temperature change ≥5 °C and wind velocity 
≥2 m/s 0.967 0.863 1.074 0.576

Table 1.  Relative risk estimates for atmospheric parameters from Poisson model to estimate daily event counts 
(n = 6′499). *Parameters are adjusted for seasonality. Bold rows indicate parameters significantly associated 
with daily event counts (p ≤ 0.05).
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Based on our results, the association between cold weather and ACVD admissions tends to be stronger in 
elderly patients. However, this is descriptive data that is not specifically related to the primary aim of our study; 
it is highly possible that the elderly population is more vulnerable to having ACVDs during cold atmospheric 
conditions. This finding is consistent with a recent study, which demonstrated that the greatest number of hospi-
tal admissions for ACVDs concerning the elderly occurred in the cold season23. Due to lower thermoregulatory 
responses, the elderly population has a more pronounced vulnerability to cold atmospheric conditions.

Parameter* Relative risk CI 95% lower CI 95% upper p-value

Relative risk estimates for atmospheric parameters from Poisson model to estimate daily event counts for the hypertensive subsample 
(n = 2,886)

Daily atmospheric temperature change ≥5 °C 1.018 0.858 1.207 0.850

Daily atmospheric air pressure change ≥10 hPa 0.970 0.830 1.134 0.717

Daily humidity change ≥40% 0.826 0.609 1.121 0.222

Average daily atmospheric temperature, °C 0.996 0.990 1.002 0.185

Average daily atmospheric pressure, hPa 1.006 1.000 1.012 0.036

Average daily humidity, % 0.992 0.989 0.996 <0.001

Average daily wind velocity over 2 m/s 1.114 0.937 1.325 0.224

Interaction of daily atmospheric temperature change ≥5 °C and humidity 
change ≥40% 1.211 0.882 1.662 0.240

Interaction of daily atmospheric temperature change ≥5 °C and wind velocity 
≥2 m/s 1.119 0.923 1.356 0.255

Relative risk estimates for atmospheric parameters from Poisson model to estimate daily event counts for the diabetic subsample (n = 1,074)

Daily atmospheric temperature change ≥5 °C 1.480 1.062 2.062 0.020

Daily atmospheric air pressure change ≥10 hPa 0.975 0.765 1.244 0.850

Daily humidity change ≥40% 0.351 0.159 0.773 0.009

Average daily atmospheric temperature, °C 0.987 0.978 0.997 0.009

Average daily atmospheric pressure, hPa 0.999 0.991 1.008 0.898

Average daily humidity, % 0.992 0.987 0.998 0.005

Average daily wind velocity over 2 m/s 1.693 1.214 2.360 0.002

Interaction of daily atmospheric temperature change ≥5 °C and humidity 
change ≥40% 2.429 1.088 5.424 0.030

Interaction of daily atmospheric temperature change ≥5 °C and wind velocity 
≥2 m/s 1.010 0.703 1.451 0.961

Relative risk estimates for atmospheric parameters from Poisson model to estimate daily event counts for the CVD subsample (n = 1,004)

Daily atmospheric temperature change ≥5 °C 1.190 0.881 1.606 0.260

Daily atmospheric air pressure change ≥10 hPa 0.815 0.613 1.081 0.156

Daily humidity change ≥40% 1.659 1.045 2.633 0.031

Average daily atmospheric temperature, °C 0.997 0.987 1.007 0.524

Average daily atmospheric pressure, hPa 1.000 0.991 1.010 0.960

Average daily humidity, % 0.993 0.988 0.999 0.021

Average daily wind velocity over 2 m/s 1.038 0.756 1.425 0.829

Interaction of daily atmospheric temperature change ≥5 °C and humidity 
change ≥40% 0.511 0.314 0.830 0.007

Interaction of daily atmospheric temperature change ≥5 °C and wind velocity 
≥2 m/s 1.339 0.946 1.894 0.099

Relative risk estimates for atmospheric parameters from Poisson model to estimate daily event counts for the hyperlipidaemia subsample 
(n = 1,967)

Daily atmospheric temperature change ≥5 °C 0.882 0.721 1.078 0.223

Daily atmospheric air pressure change ≥10 hPa 0.989 0.817 1.198 0.918

Daily humidity change ≥40% 0.788 0.533 1.166 0.236

Average daily atmospheric temperature, °C 0.999 0.992 1.006 0.753

Average daily atmospheric pressure, hPa 1.008 1.002 1.015 0.015

Average daily humidity, % 0.991 0.987 0.995 <0.001

Average daily wind velocity over 2 m/s 0.950 0.772 1.170 0.642

Interaction of daily atmospheric temperature change ≥5 °C and humidity 
change ≥40% 1.280 0.853 1.920 0.235

Interaction of daily atmospheric temperature change ≥5 °C and wind velocity 
≥2 m/s 1.317 1.046 1.658 0.019

Table 2.  Relative risk estimates of subpopulation with hypertensive, diabetic, hyperlipidemic patients and 
patients with history of previous CVD associated with atmospheric parameters, lagged by 2 days. *Parameters 
are adjusted for seasonality. Bold rows indicate parameters significantly associated with daily event counts 
(p ≤ 0.05).
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Few studies have investigated an association between warm weather and CVDs24,25. In contrast, we observed 
a lower number of ACVD hospitalisations during the warm season. We did not detect any relationship between 
warm temperatures and ACVDs although we observed high hospitalisation counts on days with an average tem-
perature of ≥30 °C and high humidity, suggesting an interaction between these two factors.

Our findings are consistent with previous studies that suggested that ACVDs were significantly associated 
with temperature changes26,27. Most studies have shown a greater incidence of ACVDs associated with only a 
temperature factor. Our study, in contrast, has shown complex, interaction-based atmospheric parameter effects 
through simultaneous temperature and humidity fluctuations. We found a higher number of ACVD hospitali-
sations during those atmospheric conditions, when the daily difference in temperature was 5 °C higher and the 
humidity was 40% higher in the same day. In the case of high humidity, drops of moisture can create a surface 
of condensation when the vapour is inhaled. This, in turn, triggers a cascade of coagulation and raises the risk 
of increased onset of thromboembolism. During those days when the temperature change was equal to or more 
than 5 °C, the number of ACVD hospitalisations increased by 14.0%, whereas it rose even more, by 29.0%, during 
the days when fluctuations equal to or more than 5 °C occurred along with a 40% or more change in humidity. It 
could be hypothesized that these results might be due to the fact that the atmospheric parameters have complex 
and not merely individual effects on the development of ACVDs.

The cardiovascular effects of atmospheric parameters aggregate. A temperature fluctuation poses a higher risk 
of developing ACVDs if a humidity fluctuation also occurs than without the latter condition’s co-occurrence. We 
observed that a wind velocity over 2 m/s, both in the cold and hot seasons, enhanced the cardiovascular effects 
of temperature and humidity interactions when the temperature and humidity fluctuations were ≥5 °C and 40%, 
respectively. During these specific days, the daily hospitalization rates of ACVDs were higher. The human body 
adapts to weather changes, but, in some individuals, if the adaptation reaches a certain threshold, the ability to 
adapt is exhausted, and pathological processes start. The adaptation difficulties are more frequent when more 
atmospheric parameter changes occur at the same time.

Our study confirms that there is a significant association between atmospheric changes, interactions, and 
conditions such as hyperlipidaemia, diabetes, and previous CVD history. Based on our research, people pos-
sessing these CRFs have a higher risk of cardiovascular morbidity during specific atmospheric conditions due 
to the fact that they have stronger atmospheric vulnerability. Among vulnerable people, these atmospheric 
conditions could be defined as cardiovascular trigger factors with pathophysiological changes that increase the 
onset of ACVDs directly. In Europe, 50% of the population shows meteorological vulnerability. People with 
meteorosensitivity can be distinguished from those with meteoropathy; meteorosensitive individuals are those 
who have a biological tendency to perceive changes in atmospheric parameters, whereas people with meteor-
opathy are individuals who respond to changes in meteorological conditions with a disease or with worsening 
of an existing disease28.

Previous studies reported that there is an association between atmospheric pressure and ACVDs29.
In contrast with these results, we did not observe any cardiovascular effects of atmospheric pressure. Also 

examining the cardiovascular effects of atmospheric parameters on different ACVDs, relative risks for atmos-
pheric effects were not significantly different across patient groups.

There are some potential limitations to this study. Our study used available outdoor atmospheric parameter 
data to detect population exposure to climatic variables, and data concerning indoor atmospheric conditions 
were not available. Another aspect that must be considered is the fact that we did not consider certain risk factors, 
such as socioeconomic status and air pollution.

Our results highlight the complex association between atmospheric parameters and ACVDs. Atmospheric 
effects could be considered when scheduling elective surgeries, which could reduce the risk of developing post-
operative complications. In patients with other pre-existing CRFs, the initiation of preventive pharmacotherapy 
could be considered regarding atmospheric conditions that pose a risk. Based on the principles of treatment via 
medication, the timely delivery of the medication is a prerequisite for optimal treatment. In view of this fact, the 
administration and a possible up-titration of medicines affecting the cardiovascular system are recommended 
before the onset of atmospheric effects. Furthermore, individuals with meteorological vulnerability should reduce 
their physical activity during adverse atmospheric conditions. In order to protect against the cold, blood vessel 
exercise with cold water should be used as a preventive activity to achieve better adaptive abilities.

Moreover, patients with a high risk for cardiovascular diseases may not be prepared to protect themselves 
against extreme weather conditions that are not typical of their given region. Within the framework of a campaign 
in England between 1986 and 1987, staying indoors and avoiding outdoor environments were recommended on 
extremely cold days. As a result, in the given year, there were 30,000 fewer winter deaths than expected30. Great 
importance should be placed on biometeorological forecasts and early warning systems. Biometeorological fore-
cast information should also be available in hospitals, as this would help prepare for adverse atmospheric effects. 
It is important that the use of a suitable biometeorological forecast system, one that is accessible to the whole 
population, becomes widespread.

In conclusion, according to our results, the joint effects of wind, temperature, and humidity fluctuations may 
play an important role in the pathogenesis of ACVDs. Based on our research, patients with hyperlipidaemia, 
diabetes, and/or previous CVD history have a higher risk of developing ACVDs under the negative effects of the 
atmospheric parameter conditions. Our previously suggested preventive strategies concerning the negative effects 
of atmospheric parameters may be more effective when the focus is placed on their complex, interaction-based, 
joint effects. The importance of our findings is emphasized in the context of extreme atmospheric conditions and 
changes becoming more likely in the future as a result of climate change. Our findings indicate that population 
atmospheric vulnerability can be reduced by enhancing the effectiveness of the current public health strategies 
and innovating future cardiovascular preventive measurements.
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Methods
Geographical area, atmospheric parameters, and the hospital sampling framework.  
Retrospectively, we analysed the number of daily hospital admissions due to ACVDs (n = 6499) in a single centre 
with an intensive Cardiovascular Care Unit during a period of 5 years. Our research project was conducted in 
Budapest at the Department of Vascular Surgery of Semmelweis University. Budapest, the capital of Hungary, 
is located in Central Europe in the Carpathian Basin (geographic location coordinates: 47°29′54″ North and 
19°02′27″ East). Hungary has a continental climate with several extreme atmospheric situations and an annual 
mean temperature of between 10 and 11 °C. There is a significant temperature fluctuation between the seasons. 
The winters are long and cold, and the summer is characterized by warm and dry weather.

The study population was comprised only of those residents with ACVDs from Budapest who were admitted 
to Semmelweis University’s Heart and Vascular Centre from 2009–2013. We obtained the daily number of hospi-
talisations using information from the Medsolution IT program database. The ACVDs investigated in our study 
were determined on the basis of the International Classification of Diseases (ICD). Our study included ACVDs 
registered in the clinical database, including acute myocardial infarction (I21), pulmonary embolism (I26), dis-
section of the aorta (I71.0), aortic aneurysm rupture (I71.1/I71.3/I71.5/I71.8), arterial embolism and thrombosis 
(I74), portal vein embolism and venous thrombosis (I82).

The meteorological approach assumes that, in the same geographical area, all individuals experience the same 
climatic exposure. Data concerning atmospheric parameters, measured at the weather monitoring station, were 
obtained from the examined Budapest region by the National Meteorological Service database. Measurements 
from the meteorological service provided values for each parameter: minimum and maximum temperature 
(degrees Celsius); minimum and maximum relative humidity (percent); minimum and maximum atmospheric 
pressure (hPa); and wind speed (m/s). Measurements of atmospheric data were obtained for the day examined. A 
separate database was created based on the patients’ demographic characteristic (i.e., age) and other major CRFs 
(e.g., hypertonia, diabetes, hyperlipidaemia, smoking, alcohol, previous CVDs, family history) in order to identify 
the effects of the atmospheric parameters on major CRFs.

Statistical analysis.  The collected data was subject to descriptive analyses, presenting the average daily 
hospitalization counts by atmospheric and, to some extent, by demographic parameters as well as by their inter-
actions. Multivariate analyses were carried out in a time-series Poisson-regression framework to explore the 
adjusted effects of each atmospheric parameter on the ACVD hospitalisation count, allowing for adjustment of 
the mean and, if deemed relevant, in-day volatility of all measured atmospheric factors. As the present analysis 
aimed to explore the etiological factors of ACVD hospitalisation counts, the temperature, pressure, humidity, 
wind velocity, seasonality, and their relevant interactions were included as predictors in the full model. To eval-
uate the heterogeneity in the associations between hospitalisation counts and atmospheric parameters, the full 
model was fitted to morbidity subsamples of the complete population. Relative risk estimates were also obtained 
for all four patient groups admitted with different types of cardiovascular events using the same time-series 
Poisson regression model. Relying on the asymptotic normality of the maximum likelihood estimates for the 
model parameters, the Welch corrected F-test p-values showed that that relative risks for atmospheric effects were 
not significantly different across patient groups.

The statistical analyses were carried out using version 3.4.3 of the R statistical software and the tscount pack-
age31. Missing data points were omitted from the analyses; the level of statistical significance was set at 5%. The 
study was approved by the Data Protection Officer of Semmelweis University, according to 21. § (1) from the 
Hungarian Act CLIV of 1997 on public health.

Data Availability
The datasets generated and analyzed during the current study are available from the corresponding author on 
reasonable request.

Parameter*
Relative Risk p-value for 

comparing estimatesAMI thrombo-embolism AAR, AD PE

Daily atmospheric temperature change ≥5 °C 1.190 1.011 0.775 1.451 0.253

Daily atmospheric air pressure change ≥10 hPa 0.909 1.29 1.038 0.600 0.979

Daily humidity change ≥40% 0.845 0.621 0.001 1.109 0.433

Average daily atmospheric temperature, °C 0.989 0.996 0.974 1.011 0.680

Average daily atmospheric pressure, hPa 1.002 0.998 0.999 0.997 0.360

Average daily humidity, % 0.999 0.998 0.996 1.01 0.192

Average daily wind velocity over 2 m/s 1.018 1.167 0.677 3.486 0.183

Interaction of daily atmospheric temperature change 
≥5 °C and humidity change ≥40% 1.224 1.678 NA 0.974 0.433

Interaction of daily atmospheric temperature change 
≥5 °C and wind velocity ≥2 m/s 0.989 0.894 2.006 0.323 0.070

Table 3.  Relative risk estimates for atmospheric parameters from Poisson model to estimate daily event counts 
of different AVCDs (AMI: n = 5,221; thromboembolism: n = 1,211; AAR, AD: n = 28; PE: n = 63). *Parameters 
are adjusted for seasonality. Bold values indicate parameters significantly associated with daily event counts 
(p ≤ 0.05). NA indicates that reliable parameter estimation failed due to small sample size.
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