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ABSTRACT

Transcriptional perturbation signatures are valuable
data sources for functional genomics. Linking per-
turbation signatures to screenings opens the possi-
bility to model cellular phenotypes from expression
data and to identify efficacious drugs. We linked per-
turbation transcriptomics data from the LINCS-L1000
project with cell viability information upon genetic
(Achilles project) and chemical (CTRP screen) pertur-
bations yielding more than 90 000 signature–viability
pairs. An integrated analysis showed that the cell via-
bility signature is a major factor underlying perturba-
tion signatures. The signature is linked to transcrip-
tion factors regulating cell death, proliferation and
division time. We used the cell viability–signature re-
lationship to predict viability from transcriptomics
signatures, and identified and validated compounds
that induce cell death in tumor cell lines. We showed
that cellular toxicity can lead to unexpected similarity
of signatures, confounding mechanism of action dis-
covery. Consensus compound signatures predicted
cell-specific drug sensitivity, even if the signature
is not measured in the same cell line, and outper-
formed conventional drug-specific features. Our re-
sults can help in understanding mechanisms be-
hind cell death and removing confounding factors
of transcriptomic perturbation screens. To interac-
tively browse our results and predict cell viability
in new gene expression samples, we developed CE-
VIChE (CEll VIability Calculator from gene Expres-
sion; https://saezlab.shinyapps.io/ceviche/).

INTRODUCTION

Predicting cellular phenotypes (disease state, cancer drug
sensitivity etc.) from high-coverage molecular (‘omics’) data
is a key question of current systems biology research. Tran-
scriptomics (microarrays or more recently RNA-Seq) is one
of the key data sources for these studies due to its afford-
able acquisition and the well-established methodologies for
analysis (1). While basal gene expression can give valu-
able information about cell state and function, perturba-
tion transcriptomics signatures (i.e. measured gene expres-
sion changes after different perturbations such as drugs,
gene overexpression or knockdown/knockout) provide ad-
ditional possibilities to infer cellular function (2). Com-
pounds with similar mechanism of action (MoA) tend to
lead to similar transcriptomics changes, making perturba-
tion signatures a valuable tool to identify MoA of unknown
compounds (2–4). Furthermore, perturbation of different
cellular pathways with pathway specific perturbagenes al-
lows the identification of pathway-regulated genes, from
which pathway activity can be effectively inferred (5,6).

Small scale studies (comprehensively collected in (7)) and
the original Connectivity Map study (2) provide rich per-
turbation signature data. The recent release of the LINCS-
L1000 dataset (4), with more than 1 000 000 signatures,
increases these numbers by an order of magnitude. In
the LINCS-L1000 screen, more than 20 000 different per-
turbagenes (compounds, shRNAs etc.) were used in dozens
of different cell lines, with different concentrations and per-
turbation times. Importantly, these high-throughput mea-
surements were possible based on the inexpensive L1000
methodology, that measures only ∼1000 (landmark) genes,
while the rest of gene expression values were inferred. While
this dataset alone opens myriads of possible applications,
linking these perturbation signatures with other large scale,
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phenotypic studies enable the modeling of cellular function
on a previously unavailable scale.

Arguably the simplest, but at the same time one of the
most important cellular phenotypes is cell viability––cell
death or proliferation. Analyzing cell viability data together
with perturbation signatures is especially important in can-
cer research, as it can help to understand the mechanism
of anticancer drugs, and open new therapeutic possibilities.
A recent study (8) analyzed about 600 pairs of anticancer
drugs and breast cancer cell lines where perturbation tran-
scriptomics signatures (using the L1000 methodology) and
cell viability were measured in parallel, leading to important
information regarding cell line specific drug effects and drug
synergy. There are also rich sources of other cell viability
datasets available––but without the corresponding expres-
sion measurements upon perturbation. In particular, pre-
clinical studies like GDSC (9), CTRP (10) or NCI60 (11)
generated large scale cell viability datasets following drug
(compound) perturbations, to identify potential drug sen-
sitivity biomarkers. Other approaches, like project Achilles
(12), used shRNA screens and created large scale gene es-
sentiality data sources, with the aim of identifying poten-
tial new anticancer targets. These datasets partially overlap
with the LINCS-L1000, allowing an integrated analysis of
perturbation signatures and cell phenotype (13).

Another important aspect of cell viability and perturba-
tion signatures is related to the fact that cell death can lead
to transcriptomic changes unrelated to the perturbation,
and this phenomenon can be a confounding factor to in-
fer mechanism of action. Also one of the original LINCS-
L1000 papers (14) found that some cell line and perturba-
tion independent factor is responsible for the largest part
of variability in the L1000 signatures. This factor has been
hypothesized to be related to some general cell biological ef-
fects like cell viability or proliferation, but this has not been
analyzed and thus remains uncertain.

In this study, we analyzed the associations between per-
turbation signatures and cell viability by matching (same
cell line and perturbation) more than 90 000 data points
between LINCS-L1000 project (perturbation signature)
and the CTRP drug and Achilles shRNA screens (cell
viability)––creating, to our knowledge, the largest integra-
tive analysis of gene expression signatures and cell viability.
We identified a common cell viability signature (CVS) and
were able to predict cell viability effectively even across stud-
ies from different sources and types of perturbations. By an-
alyzing the CVS, we found several transcription factors with
a causal role in cell death and proliferation, and found as-
sociations between this signature and cell division time. By
analyzing pairwise signature similarities, we found that the
‘cell death signature’ can lead to unexpected similarity be-
tween signatures of toxic compounds and thereby can influ-
ence the mechanism of action identification. However, using
a reduced perturbation signature (removing genes showing
high correlation with cell viability), we were able to reduce
this effect. Our models allowed us to predict cell viability
for all the compounds used in the LINCS-L1000 dataset,
identifying several potential drugs with death-inducing or
pro-growth properties. By using consensus compound sig-
natures and machine learning models, we were able to pre-
dict anticancer drug sensitivity even in cell lines where the

drug signature was not measured, outperforming conven-
tional drug specific features (e.g. nominal drug targets or
chemical fingerprints).

MATERIALS AND METHODS

Databases and data preprocessing

We used the Phase I and Phase II LINCS-L1000 perturba-
tional profiles (4) (GSE92472 and GSE70138 respectively,
downloaded from Gene Expression Omnibus (15)) in this
study. Replicate-collapsed differential expression signatures
(Level5 dataset) of the measured (landmark) genes were
used in our analysis pipeline. For accessing L1000 signa-
tures, we used cmapPy Python library (16). Phase I and
Phase II data were merged, and signatures corresponding
to the same conditions (treatment, cell line, time and con-
centration in case of compounds, or treatment, cell line and
time in case of shRNA) were averaged using the MODZ
method.

CTRPv2 cell viability dataset (10) was downloaded from
CTD2 Data Portal (https://ocg.cancer.gov/programs/ctd2/
data-portal). For further analysis the post-quality-control
cell viability values were used. We matched CTRP and
L1000 instances based on cell line and Broad compound
IDs. For matching compound concentrations, we matched
the instances between CTRP and L1000, where the concen-
tration difference was the smallest, and the absolute log10
concentration difference was smaller than 0.2 (∼1.5-fold
concentration difference). From CTRP dataset, we used
percent cell viability data for creating linear models, while
as summary statistics dose–response AUC was used in case
of predicting NCI60 drug toxicity.

Achilles 2.4.6 and 2.19.2 datasets (12) were down-
loaded from Project Achilles Data Portal (https://portals.
broadinstitute.org/achilles). We used the shRNA log fold
change scores in our analysis (i.e. without separating on-
and off-target effects of shRNAs). We matched Achilles and
L1000 instances based on cell lines and shRNA treatment.
As LINCS-L1000 identifies shRNAs with Construct ID
and Achilles uses Barcode Sequence, we mapped these two
identifiers with the help of the reference files from the Ge-
netic Perturbation Platform (https://portals.broadinstitute.
org/gpp/public/).

NCI60 drug toxicity datasets (11) (GI50, LC50 and
TGI values) were downloaded from the Developmental
Therapeutics Program data portal (https://dtp.cancer.gov/
discovery development/nci-60/). We restricted our anal-
ysis to those compounds that overlap between L1000
and NCI60 screens. For easier comparison, we ex-
tracted the PubChem Compound IDs using PUG REST
services in R (https://pubchemdocs.ncbi.nlm.nih.gov/pug-
rest-tutorial). For compounds in the NCI60 dataset, we
converted Substance IDs to Compound IDs. Whereas for
compounds in the L1000 dataset, we either used the Com-
pound IDs directly (when available) or retrieved them based
on the InChi keys. As the original (PubChem Compound
ID based) intersection between L1000 and NCI60 datasets
was relatively small (373 compounds), we matched com-
pounds based on their name synonyms (retrieved using
PubChemPy Python library) that resulted in 583 shared
compounds between the two datasets.
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GDSC data (expression and drug response (9)) was
downloaded from https://www.cancerrxgene.org/. We used
GDSC drug response summary metrics ln(IC50) and AUC
in our analysis.

For accessing gCSI dataset (expression and doubling
time, (17)) we used the compareDrugScreens R package
from http://research-pub.gene.com/gCSI-cellline-data/.

Moderated z-score (MODZ)

We calculated consensus signatures using a moderated z-
score, described in the original LINCS-L1000 paper (4,14).
Basically, for each set of signatures a pairwise Spearman
correlation matrix was calculated. Diagonals (self correla-
tions) were set to 0, while negative correlations were set
to a small value (0.01). The weight for each signature was
the sum of these correlation values row-wise (normalized
so that the sum of the weights was 1). The final consensus
signature was calculated as a weighted average of the signa-
tures.

Linear models

We used linear regression (y = Xβ) with L2 regularization (α
= 1.0) to predict cell viability (y, n*1 column vector, where
n is the number of samples) from perturbation gene expres-
sion signatures (X, n*g matrix, where n is the number of
samples and g is the number of genes in the signatures). To
evaluate prediction performance, we used a random sub-
sampling validation strategy: half of a given dataset was
used to train the models, while cell viability was predicted
for the other half of the dataset. This process was repeated
for 20 iterations and we used the Pearson correlation be-
tween the predicted and observed cell viability values as
an evaluation metric. We refer ‘within dataset prediction’,
when the training and the test data come from the same
dataset (e.g. CTRP-L1000-24h). In contrast, when we train
a model on one dataset and predict cell viability for an-
other dataset (e.g.: CTRP-L1000-24h and Achilles-L1000-
96h, respectively), we use the term ‘across dataset predic-
tion’. In case of ‘across dataset prediction’, we trained the
linear model on half of the training data but used all of the
test data for evaluation. For the ‘standard’ model, feature
matrix (X) was composed of vectors of cell line and pertur-
bation IDs and a vector containing log10 drug concentra-
tion (only in case of CTRP-L1000 datasets).

Enrichment analysis

We calculated Pearson correlation r values between cell vi-
ability and gene expression for each gene in the Achilles-
L1000 and CTRP-L1000 datasets. We used these r values
as input for the piano R package (18), and calculated Gene
Ontology (19) and KEGG pathway (20) enrichment (fgsea
method). We report FDR adjusted P values for the top 10
Gene Ontology terms. For transcription factor regulon en-
richment, we used TF regulons from the DoRothEA frame-
work (21,22). Normalized Enrichment Scores were calcu-
lated using the viper R package (23). For pathway activity
inference, we used the PROGENy (5) method. Z scores for
pathway activity were calculated by permuting gene labels.

Statistical analysis of signature score associations

Cell viability signature score was calculated from (normal-
ized) baseline expression. For associations with GDSC drug
sensitivity, we fit the linear model (Sensitivity = f(CVS,
Tissue, MSI), where CVS denotes the cell viability signa-
ture score of cell lines) for each drug. For comparison
with random/single gene associations, we created random
Achilles-based models to predict cell viability (by permut-
ing gene or sample labels before modeling) and either calcu-
lated signature scores from these models or used expression
of the L1000 genes as ‘single’ gene signature score. General
level of drug sensitivity (GLDS) was calculated by fitting
one linear model (Sensitivity = f(Cell, Drug), where Cell
and Drug corresponds factors denoting cell and drug ID)
for the whole GDSC drug sensitivity dataset, and the cell
line specific coefficient of this model was used as GLDS
metric for each cell line. For partial correlation calculation
between GLDS (or doubling time) and signature score we fit
two linear models, GLDS = f(Tissue) and CVS = f(Tissue),
and calculated partial correlation as the Pearson correlation
between the residuals of these two linear models.

Average silhouette analysis

For evaluation of the different factor-based (cell line, drug,
perturbation time and cell viability) clusterings of CTRP-
L1000 data points in the first two principal component
plane, we used average silhouette analysis with Euclidean
distances. Silhouette coefficient (b − a) / max(a,b) was cal-
culated for each datapoint, where a was the mean intra- and
b was the mean nearest-cluster distance. For each clustering
factor, the average of Silhouette Coefficients were calculated
(scikit-learn Python library (24)). A negative average silhou-
ette score corresponds to the absence of clustering, while a
positive score means clustering of data points is based on
the selected factor.

Signature similarity analysis and MoA prediction

We analyzed mechanism of action and cell death based sig-
nature similarity using the Spearman correlation as a sim-
ilarity metric. We calculated the similarity between signa-
ture pairs of the CTRP-L1000-24h dataset, where signature
pairs were coming from nontoxic (cell viability > 0.8) per-
turbations with shared MoA, or toxic (cell viability < 0.8)
perturbations with different MoA. For the MoA definition,
we used compound metadata (the gene symbol of the pro-
tein target, target or activity of the compound) from the
CTRP screen. For defining nontoxic and strongly toxic cell
viability thresholds, we fit a Gaussian Mixed model on cell
viability values (mean of nontoxic group ∼1.0, SD ∼0.1, so
a threshold of 0.8 corresponds to mean − 2 * SD). For ana-
lyzing the effect of reduced signatures, we either removed
random n genes from the perturbation signatures or the
top n genes with the highest absolute Pearson correlation
with cell viability phenotype. To prevent ‘data leakage’, the
Pearson correlation between gene expression and cell via-
bility was calculated from the Achilles-L1000-96h dataset.
For residual gene expression signatures, we fit a linear model
between cell viability and gene expression (G = f(CV)) for
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each gene, and used the residuals of these models as gene
expression values.

For MoA prediction, we used the CTRP-L1000-24h and
a larger part of the LINCS-L1000 dataset, where we selected
compounds with known MoA based (25) on the Drug Re-
purposing Hub (clue.io/repurposing, May 2018 version).
We calculated consensus signatures for each compound us-
ing the MODZ method, using all signatures for the given
compound. For each pair of compounds, signature similar-
ity was calculated by Spearman correlation. To analyze the
prediction performance of these similarity values for mech-
anism of action, ROC and Precision Recall curves were
used, where true positive values correspond to compounds
with a shared MoA. For comparison, we calculated struc-
ture and (in case of CTRP data) sensitivity profile based
similarity. Structure-based similarity was calculated by the
Tanimoto similarity among chemical fingerprints (calcu-
lated by RDKit modules in Python) of compounds. For
sensitivity profile similarity, we calculated Pearson corre-
lations between the drug sensitivity AUCs for compound
pairs across all cell lines. For combining signatures and
chemical similarities, we simply summed the (normalized)
similarity vectors.

NCI60 validation

The NCI60 screen (11) calculated GI50 (50% growth in-
hibition concentration), TGI (total growth inhibition con-
centration) and LC50 (50% lethal concentration) as drug
sensitivity metrics for the used cell line compound pairs. A
sensitivity metric was only given, if the desired effect (50%
growth inhibition etc.) is reached in the used concentra-
tion range, otherwise the maximal tested drug concentra-
tion is assigned. Based on this, we defined the delta con-
centration metric as: sensitivity metric minus the maximal
tested concentration (log10 concentration values). Based on
this definition of delta concentration values, delta concen-
trations < 0 indicate an effective drug, so this threshold was
used for binarization for the ROC analysis. For the ROC
analysis, we used binarized delta concentration values as
true positive/negative, while the predictions of linear mod-
els were used as target scores. For each cell line––compound
pair, we used the lowest predicted cell viability (when mul-
tiple signatures were available) as the target score. For the
‘ground truth’ model (predicting drug sensitivity in NCI60
from drug sensitivity in CTRP for shared cell lines and com-
pounds), the dose–response AUC values from the CTRP
screen were used.

Cell viability assay

PC3 and VCaP cell lines were purchased from ATCC.
Cytotoxicity of different test compounds were studied on
both PC3 and VCaP cell lines by determining the num-
ber of viable cells based on quantitation of ATP us-
ing the CellTiter-Glo® Luminescent Cell Viability Assay
(Promega, Mannheim, Germany).

Cells were seeded into 384-well plates (Corning Life Sci-
ences, Tewksbury, MA, USA) at 1000 cells/well density in
40 �l media and incubated for 4 h at 37◦C. Test compounds

were dissolved in dimethyl sulfoxide (DMSO, Sigma, Bu-
dapest, Hungary) and cells were treated with an increas-
ing concentration of drugs (1.11–90 �M). The highest ap-
plied DMSO content of the treated cells was 0.5%. After
48-h incubation at 37◦C under 5% CO2, 40 �l CellTiter-
Glo® Reagent (Promega) was added to each well and the
luminescent signal was recorded by luminometer (VICTOR
Multilabel Plate Reader, Perkin Elmer). Viability was calcu-
lated with relation to untreated control cells after extracting
signals from blank wells containing only culture medium.
IC50 values (50% inhibiting concentration) were calculated
by GraphPad Prism®5 (La Jolla, CA, USA).

Machine learning models

Transcription factor and pathway activities were calculated
as cell line specific features from baseline gene expression
data (9). For each g gene and c cell line, standardized gene
expression was calculated as Zgc = (Egc − �g)/�g, where Egc
is gene expression, �g and �g are means and standard de-
viations, respectively, of a gene across cell lines. From these
standardized gene expression values transcription and path-
way activities were calculated using DoRothEA (21,22) and
PROGENy (5,26) methods, as described previously.

Nominal target and targeted pathway features were
created from manually annotated drug metadata from
the GDSC portal (www.cancerrxgene.org). Extended-
Connectivity Fingerprints (ECFP-like) were generated by
using the RDKit fingerprint module in Python with the
radius and number of bits being set to 2 and 256, respec-
tively. For consensus signature-based features, we mapped
the PubChem compound IDs of the GDSC drugs with that
of the compound IDs in LINCS-L1000 dataset. For each
GDSC drug, a consensus signature was calculated by us-
ing the MODZ method (using all available 24-h signatures,
irrespective of cell line and concentration). To reduce the
dimensionality (978) of these signature features, we per-
formed a PCA and selected the first 40 Principal Compo-
nents (explained variance: 95%).

We used Random Forest Regression models (with 50
trees) from the scikit-learn Python library (24). For each
model, the specified drug features (targets, pathways, chemi-
cal fingerprints or consensus signatures) and all cell-specific
features (tissue type, pathway and transcription factor ac-
tivities) were concatenated to create the feature matrix. The
area under the dose–response curve (AUC) was used as a
drug sensitivity metric. We used a random sub-sampling
strategy to train and evaluate model performance––for each
run, half of the drugs were included in the training set, while
the remaining half formed the test set. Three different meth-
ods were used to split the GDSC drugs into training and test
sets: random splitting, splitting where for each drug in the
test set there was a corresponding drug with a shared target
in the training set, and splitting where all drugs targeting a
given protein were either in the test or in the training set.
For evaluation, the Pearson correlation was calculated for
each cell line between the predicted and observed AUC val-
ues and these cell wise Pearson correlations were averaged.
This random sub-sampling validation process was repeated
20 times.
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Statistical analysis

Statistical significance was calculated using the correspond-
ing functions of SciPy library (Pearson correlation, Spear-
man correlation, Mann–Whitney U test, Fisher exact test,
paired t-test) and ANOVA and pROC (27) from R.

RESULTS

Signatures of cell death in the LINCS-L1000 dataset

To analyze the possible effect of cell viability on the pertur-
bation signatures from LINCS-L1000 dataset, we matched
instances from LINCS-L1000 (4) with percent cell via-
bility (data from the Cancer Therapeutics Response Por-
tal (CTRP) (10) and shRNA abundance (measured after
lentiviral based pooled RNA interference) data from project
Achilles (12). The matching was done based on cell line,
perturbation, and, in the case of compounds, concentration
(Figure 1A; Materials and Methods section). We removed
data points where matching was not possible (e.g. cell lines
present in cell viability dataset but not in LINCS-L1000).
While percent cell viability and shRNA abundance are dif-
ferent metrics, they are related terms (as both of them are
proportional to the number of surviving cells after drug or
shRNA treatment), so for simplicity we will refer to both as
cell viability hereafter. For perturbation signatures, we in-
cluded only the actual measured (landmark) genes in this
whole study. While in the CTRP and Achilles screen all cell
viability values were measured at one time point (72 h and
40 days/16 population doublings, respectively) after per-
turbation, in the LINCS-L1000 dataset perturbation sig-
natures were measured at different time points. Hence, it
is possible to match two different LINCS-L1000 signatures
(same compound/shRNA and cell line, but different time
points) with the same cell viability value (Figure 1A). Using
our matching criteria we were able to compose two datasets:
CTRP-L1000 of 18748 matched perturbation signature–cell
viability pairs (332 compounds, 48 cell lines, Supplementary
Table S1) and Achilles-L1000 of 77230 matched perturba-
tion signature–cell viability pairs (12925 shRNAs, 11 cell
lines, Supplementary Table S1).

To explore the main factors behind the perturbation
signatures, we performed Principal Component Analysis
(PCA) on the signatures of the CTRP-L1000 dataset. While
we observed no clustering of signatures in the first two prin-
cipal component (PC) plane based on cell lines, perturbato-
gen compounds or perturbation time (Supplementary Fig-
ure S1), we found a weak but significant relationship be-
tween PC1 and matched cell viability values (Figure 1B,
Spearman correlation: −0.278, P < 1e-300).

Based on this PCA, we hypothesized that cell viability
can be effectively predicted from perturbation signatures.
We used linear models (y = Xβ) with L2 regularization
trained on the L1000 signatures (X) and cell viability values
(y). Using random sub-sampling validation (Materials and
Methods), we were able to predict ‘within’ the CTRP-L1000
dataset (Figure 1C) with average Pearson correlation 0.59
(predicted versus observed cell viability, average log10(p) <
-300) while the performance of ‘within’ Achilles-L1000 pre-
diction models was 0.49 (average log10(p) < -300). Further-
more, we were able to predict cell viability ‘across’ the two

dataset, predicting cell viability in the CTRP-L1000 dataset
with model trained on Achilles-L1000 (average Pearson cor-
relation: 0.33, average log10(p) value −246) and with mod-
est performance (average Pearson correlation: 0.19, average
log10(p) value < -300) in the Achilles-L1000 dataset with
model trained on CTRP-L1000. These results suggest that
perturbation signatures are associated with cell viability in-
dependent of the perturbation agent.

As previously mentioned, LINCS-L1000 dataset
contains signatures from different elapsed time between
perturbation and measurement. To analyze the effect of this
elapsed time on the prediction performance and to select
the best datasets for prediction, we split the CTRP-L1000
and Achilles-L1000 datasets based on measurement times
(resulting CTRP-L1000-3h, CTRP-L1000-6h, CTRP-
L1000-24h, Achilles-L1000-96h, Achilles-L1000-120h and
Achilles-L1000-144h datasets, Supplementary Table S1).
To further evaluate the performance of signature-based
prediction (Figure 1D), we also introduced ‘standard’
models (linear models trained not on signature–cell viabil-
ity data, but on cell line and perturbation ID–cell viability
data, see ‘Materials and Methods’ section for further
details). We trained linear models (with L2 regularization)
for each time specific dataset, and tested them on the
same dataset (‘within’ dataset prediction) and all the
other datasets (‘across’ dataset prediction) using random
sub-sampling validation. ‘Standard’ models were only
used in the ‘within’ dataset setting, as there is no overlap
between perturbations for CTRP (drugs) and Achilles
(shRNA) datasets, making ‘across’ dataset prediction
impossible. While standard models enabled no ‘across’
dataset prediction, we assumed that they show the gold
standard for ‘within’ dataset predictions, as they have full
information about the used perturbations and cell lines.
While all signature-based models performed reasonably
well in the ‘within’ dataset setting (Figure 1D diagonal), the
CTRP-L1000-24h and Achilles-L1000-96h models reached
the best performances in the ‘across’ dataset prediction.
These two models also reached comparable performances
(0.62 versus 0.66 and 0.51 versus 0.61 Pearson correlation,
respectively) with the ‘standard’ models, and were able to
make translatable predictions across CTRP and Achilles
datasets (which would be impossible for the ‘standard’
models, as discussed previously). Based on this benchmark,
we selected CTRP-L1000-24h and Achilles-L1000-96h
models for further use in this study.

Functional genomic analysis of cell death signature

Effective performance of linear models across compound-
and shRNA-based viability datasets suggests that there is
some general transcriptomics signature of cell viability. To
functionally analyze this cell viability related gene expres-
sion signature, we calculated the Pearson correlation co-
efficient values between gene expression and cell viability
(Achilles-L1000-96h dataset) for each gene (representative
examples in Figure 2A, left), and performed gene set enrich-
ment analysis using these correlation values as gene level
statistics. Using KEGG pathways (20) as gene sets, the most
significantly enriched pathways are closely related to cell
proliferation and death processes (Figure 2A, top right). We
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A B
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Figure 1. LINCS-L1000 perturbation signatures allow efficient prediction of cell viability. (A) Schematic representation of database matching pipeline.
Perturbation signatures from LINCS-L1000 dataset were matched with cell viability data from CTRP and Achilles datasets based on metadata (cell line,
perturbation and concentration). It is possible to match one CTRP/Achilles cell viability instance with more than one LINCS-L1000 signature (same
cell line and perturbation but different perturbation time in LINCS-L1000). (B) Principal Component Analysis (PCA) of perturbation signatures from
the CTRP-L1000 dataset. Each point represents a unique cell line–compound–concentration–perturbation time instance. Points are colored according to
corresponding cell viability from CTRP screen (Spearman correlation between PC1 and cell viability: −0.278, P < 1e–300). (C) Prediction of cell viability
using linear models. Linear models were trained on CTRP-L1000 and Achilles-L1000 datasets (x axis). Prediction performance was evaluated on CTRP-
L1000 and Achilles-L1000 datasets (color coded) by calculating Pearson correlation (y axis) between predicted and observed values (results from 20 random
sub-sampling validations, means ± SD). (D) The effects of perturbation time on the predictability of cell viability. Signatures from different time points (3,
6, and 24 h for CTRP-L1000 and 96, 120 and 144 h for Achilles-L1000) were used to train (x axis) and test (y axis) linear models. Standard models were
trained on cell line–perturbation ID data. Size and colors of circles are proportional with the Pearson correlation, which is also labeled in selected cases
(mean results from 20 random sub-sampling validations).
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Figure 2. Functional genomics analysis of cell death signature. (A) Pearson correlations between gene expression and cell viability values were calculated for
the Achilles-L1000-96h dataset for each gene (left, representative examples for PIK3CA and TOP2A). Using these correlation values, KEGG pathway (top
right) and Transcription Factor regulon (bottom right) enrichment scores were calculated. (B) Association between activity and average Gene Essentiality
for transcription factors. Negative Gene Essentiality means the genes are essential (Pearson, r: 0.32, P = 0.005). (C) Volcano plot of cell death signature–
drug sensitivity associations from the GDSC dataset. Cell death signature scores were calculated for each cell line using baseline gene expression. A linear
model was fit to ln IC50s and signature scores (using tissue type and microsatellite instability as covariates) for each drug. FDR corrected P values (y
axis) for the coefficient of signature scores are plotted against effect size (linear model coefficient) for the signature score parameters. Negative effect size
means IC50 values for a given drug are lower (i.e. increased sensitivity) for cell lines with higher cell viability signature scores. (D) Associations between
cell viability signature score and general level of drug sensitivity (GLDS). GLDS was calculated from GDSC drug sensitivity data. Each point represents
a cell line (color coded by tissue type). Pearson correlation: r = −0.18 P = 5.02e-07. (E) Association between cell viability signature score and doubling
time. Doubling time (and gene expression for signature score calculation) are from the gCSI dataset. Each point represents a cell line (color coded by tissue
type)–Pearson correlation r = −0.23, P = 2.4e-5.
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also performed Gene Ontology (GO) enrichment, using bi-
ological process GO terms (19). The most significantly en-
riched GO terms (Supplementary Figure S2A) were also re-
lated to cell viability phenotype. Performing the same anal-
ysis using data from the CTRP-L1000-24h dataset led to
similar results (Supplementary Figure S2).

While KEGG pathway and GO term enrichment fo-
cused on the function of genes with cell viability associ-
ated expression, we were also interested in the pathways
and transcription factors (TFs) regulating these genes. We
estimated pathway and transcription factor activities using
the PROGENy (5,26) and DoRothEA (21,22) tools, respec-
tively (using the same gene–cell viability correlations as for
GO and KEGG enrichment analysis). Some of the most
activated (e.g. TP53, FOXO3) and inactivated (e.g. E2F1,
FOXM1 and MYC) transcription factors (Figure 2A, right
bottom) during cell death are well known regulators of cell
death or proliferation. As TFs are main drivers of gene ex-
pression changes, we hypothesized that TFs whose activity
is correlated with cell viability could be causal factors be-
hind cell death or proliferation. To test this hypothesis, we
calculated average gene essentialities across all tested cell
lines, for TF coding genes from the Achilles screen, and
compared them with the previously calculated transcrip-
tion factor activities (Figure 2B). The significant correla-
tion (Pearson correlation: 0.32, P = 0.005) between these
two independently derived metrics suggests that TFs identi-
fied by the analysis of the cell viability signature (e.g. MYC,
YY1, TFDP1, FOXO3 and ESR2) can be directly involved
in growth and survival. The calculated pathway activities
from PROGENy also showed an association between pro-
survival (e.g. MAPK and PI3K), apoptotic (p53) signaling
pathways, and cell viability signature (Supplementary Fig-
ure S2E).

To further investigate the functional properties of the cell
viability signature, we analyzed the associations between
baseline activity of the cell viability signature and GDSC
drug sensitivity data (9). Cell viability signature scores were
calculated using the Achilles-L1000-96h linear model and
baseline gene expression values of the ∼1000 GDSC cell
lines. For each of the 266 drugs, we fit a linear model be-
tween drug sensitivity (ln IC50 values) and signature score,
using tissue type and microsatellite instability status as co-
variates (according to (5)). Several drugs showed significant
(FDR < 0.05 for the coefficient of signature score) associ-
ations with the cell viability signature (Figure 2C) includ-
ing mostly direct cell proliferation inhibitor compounds like
CHEK1/2 inhibitor AZD7762, HDAC inhibitor Vorinos-
tat and TOP2 inhibitor Etoposide, where increased CVS is
associated with drug sensitivity. To assess the importance of
these significant associations, we performed the same anal-
ysis with randomized signatures (randomizing gene or sam-
ple IDs before fitting the Achilles-L1000-96h linear model)
and with ‘single gene’ signatures (using only one of the
L1000 genes). Our cell viability signature showed more sig-
nificant associations than random or single gene signatures
(8.0, 4.1 and 9.0 percent of signatures showed a larger or
equal number of significant associations with drug sensi-
tivity in the case of randomized gene IDs, sample IDs and
single gene expressions, respectively, Supplementary Fig-
ure S3A), showing biological relevance of the cell viabil-

ity signature. We obtained similar results using AUC values
from GDSC screen as drug sensitivity metric (Supplemen-
tary Figure S3B).

There were a large number of associations between the
cell viability signature and cytotoxic (not targeted)/direct
proliferation inhibitor compounds. This raised the possi-
bility of the cell viability signature associating with some
general features of the cell lines related to drug sensitivity.
To investigate this, we compared our signature score with
the general level of drug sensitivity metric from (28). Gen-
eral level of drug sensitivity (GLDS) measures drug (and
target) independent drug sensitivity of cell lines. We calcu-
lated GLDS for GDSC cell lines (Materials and Methods)
and found a significant correlation between the cell viabil-
ity signature score and the GLDS (Pearson correlation: r =
−0.18 P = 5.02e-07, Figure 2D). As GLDS is known to be
associated with tissue type ((28) and Supplementary Figure
S3C), we wondered whether the CVS score–GLDS correla-
tion is due to the confounding effect of tissue type. To an-
alyze this, we calculated partial correlations between CVS
scores and GLDS (using tissue type as covariate, see Ma-
terials and Methods) and compared this partial correlation
value with partial correlations between GLDS and random
or ‘single gene’ signatures. We found that CVS performed
better (with 3.6, 2.1 and 5.3 percent of signatures showing
smaller partial correlation with GLDS in case of random-
ized gene IDs, sample IDs and single gene expressions, re-
spectively; Supplementary Figure S3E). Based on recent re-
sults suggesting that general drug sensitivity of cancer cell
lines is related to division time (29,30), we further analyzed
the association between cell viability signature and cell divi-
sion. We evaluated the gCSI (17) dataset, since baseline gene
expression and doubling time were both measured in this
study. Signature score showed significant correlation with
doubling time (Pearson correlation r = −0.23, P = 2.4e-
5, Figure 2D). Based on the relationship between doubling
time and tissue type (Supplementary Figure S3D), we cal-
culated the partial correlation between doubling time and
cell viability signature score (using tissue type as a covari-
ate) and compared it with partial correlations for random
signatures and single genes. We also found a superior per-
formance of the cell viability signature over single gene and
random signatures (0.2, 0.0 and 0.5 percent of signatures
showed smaller partial correlation with doubling time, in
case of randomized gene IDs, sample IDs and single gene
expressions, respectively, Supplementary Figure S3F). This
analysis suggests that the cell viability signature is also use-
ful with baseline gene expression values, and shows associ-
ation with cell division time.

Signature of cell death as a confounding factor for mechanism
of action discovery

One important application of perturbation signatures is
to analyze the mechanism of action of drugs (3,4). Com-
pounds that have the same or similar target molecules lead
to similar transcriptomic responses. This can help to iden-
tify previously unknown targets of compounds. However,
toxic compounds with different MoA can lead to a cell
death specific signature, which can be incorrectly inter-
preted as MoA similarity.
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To analyze if this can be a confounding factor to infer
mechanism of action, we calculated signature similarity be-
tween all signature pairs of CTRP-L1000-24h datasets, us-
ing the Spearman correlation as a similarity metric. We fo-
cused on the similarities between signatures of nontoxic (de-
fined by cell viability >0.8 for the given cell line, drug and
concentration) perturbation pairs with shared MoA (based
on (25)) and toxic (cell viability <0.8) perturbation pairs
with different MoA (Figure 3A). We calculated similarity
irrespective of cell line and for signatures from the same cell
line, allowing us to analyze the general and cell line specific
nature of signature similarity. Signature pairs of nontoxic
perturbations with shared MoA are more similar than ran-
dom pairs (Medians: 0.023 versus 0.008 and 0.058 versus
0.014, for different and same cell line signatures, respec-
tively, Mann–Whitney U P values: <1e-300). More inter-
estingly, signature pairs of toxic perturbations with differ-
ent MoA are also more similar than random pairs (medi-
ans: 0.061 versus 0.008 and 0.091 versus 0.014, for different
and same cell line signatures, respectively, Mann–Whitney
U P values: <1e-300) and similarity between toxic, differ-
ent MoA signatures was higher than nontoxic, shared MoA
signature similarity (Mann–Whitney U P values: <1e-300).
These results suggest that cell death/toxicity is at least as
important factor for signature similarity as mechanism of
action, potentially confounding signature-based MoA dis-
covery.

To reduce this unwanted, cell death based signature sim-
ilarity, we systematically removed the genes with highest
absolute Pearson correlation with cell viability and calcu-
lated signature similarity based on these reduced signature
vectors (Figure 3B). While removing these genes did not
strongly affect the MoA-based similarity, it significantly re-
duced the similarity of toxic signatures (P value of the lin-
ear model coefficients: 3.2e-05 and 1.6e-04 for different and
same cell line signatures, respectively). In contrast, remov-
ing genes randomly did not affect signature similarity (Sup-
plementary Figure S4A). We also tried an alternative ap-
proach to remove the unwanted effect of cell viability on
signature similarity. In this case, we regressed out the ef-
fect of cell viability from the gene expression signature be-
fore the similarity calculation (see Materials and Methods
section for further details), leading to a better performance
(decreased similarity for signatures of toxic but unrelated
compounds Figure 3B) than raw signatures. In summary,
removing the association between cell viability and gene ex-
pression (either by removing highly correlated genes or by
a regression model) decreased the toxicity based similarity,
but did not affected the MoA based similarity.

We also analyzed how signature similarity could pre-
dict mechanism of action. For this purpose, we focused
on consensus signatures of compounds (calculated using
the MODZ method, see Materials and Methods section).
We calculated the consensus signature for each compound
in the CTRP-L1000-24h dataset, and calculated the pair-
wise similarity (Spearman correlation) between the consen-
sus signature vectors. We used these similarity values as
predicted values for the ROC and Precision–Recall curve
(PRC) analyses (Figure 3C and D). The ground truth val-
ues were 1 for compound pairs with shared MoA and 0
otherwise. We also compared the performance of signature

similarity based MoA predictions with structure and drug
sensitivity similarity based MoA predictions, similar to the
work of El-Hachem et al. (31) (see Materials and Methods
section for details). Predictions based on structure and sen-
sitivity outperformed the method based on the full signature
(0.76 and 0.79 ROC AUC versus 0.63, respectively, P values
<1e-12, DeLong test). However, using a reduced signature
(by removing 700 genes with the highest absolute correla-
tion to cell viability) led to a comparable performance with
structure and sensitivity based methods (0.74 ROC AUC,
P values 0.14 and 0.0004 versus structure and sensitivity
based similarity, respectively, DeLong test). It also led to
a clear performance increase when compared to the full sig-
nature (P < 1e-12, DeLong test). We had similar results
for PR curves with PR AUCs of 0.056, 0.153, 0.131 and
0.089 for full signature, structure, sensitivity and reduced
signature-based similarity, respectively, while random per-
formance showed a PR AUC of 0.013. In case of MoA pre-
diction, residual signatures did not reach the performance
of full signatures (0.61 ROC AUC and 0.04 PRC AUC). Re-
moving different numbers of cell viability correlated genes
(Supplementary Figure S4B) had a similar effect to individ-
ual signatures, and removing random genes did not strongly
affect performance (Supplementary Figure S4C), support-
ing the confounding nature of cell viability for MoA dis-
covery. As the CTRP dataset uses known anticancer drugs,
we hypothesized that cell viability could have a more pro-
nounced effect in this dataset than in the case of general
drugs. To analyze our method on a more balanced dataset
(with less toxic drugs), we selected all of the compound per-
turbation signatures from LINCS-L1000 with known target
molecules (LINCS-L1000-MoA dataset, 2865 compounds,
Supplementary Table S1) (25). For this dataset, we also per-
formed ROC and PR analysis using signature and chemical
similarity based MoA prediction (without drug sensitivity
data, as it was unavailable). While structure based similar-
ity had better performance in this case also, reduced sig-
nature outperformed full signature (ROC AUCs 0.61 ver-
sus 0.57 and PRC AUCs 0.024 versus 0.021, Supplementary
Figure S4D and E), and more importantly combining the
reduced signature with chemical similarity led to the best
results (ROC AUC 0.7, PRC AUC 0.088 versus 0.67, and
0.081 for chemical similarity alone), highlighting the impor-
tance of transcriptomic signatures in MoA discovery and
the confounding nature of cell viability.

LINCS-L1000 as a cell viability assay

LINCS-L1000 contains a large number of chemical pertur-
bations (which we shall call LINCS-L1000-Chem subset,
21921 compounds, Supplementary Table S1), where most
of the used compounds are not known as anticancer drugs.
We hypothesized that some of these drugs could have an un-
expected, cell line specific anticancer activity that could be
identified by predicting cell viability from the perturbation
signatures. We used the CTRP-L1000-24h and Achilles-
L1000-96h models (based on their top performance, Figure
1D) to predict cell viability for the whole LINCS-L1000-
Chem dataset and identified several known and also poten-
tially clinically interesting drugs with cell line specific toxi-
cities.
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Figure 3. Cell viability signature as a confounding factor for mechanism of action discovery. (A) Mechanism of action and cell viability based signature
similarity. Spearman correlation (x axis) was calculated for pairs of CTRP-L1000-24h signatures with the following constraints (color code): unrelated,
nontoxic (cell viability >0.8) compounds with shared MoA and toxic (cell viability <0.8) compounds with different MoA. The Spearman correlation was
calculated irrespective of cell line and for signatures from the same cell line. (B) The effect of removing cell viability correlated genes on signature similarity.
Top n (x axis) genes with highest absolute Pearson correlation to cell viability were removed from the signatures before similarity calculation. The median
Spearman correlations (y) axis are shown. The color code corresponds to (A) panel. Similarity for residual gene expression (after regressing out cell
viability) was also calculated. *: significant effect (P < 0.001, for linear model coefficient) of removing cell death correlated genes (C and D). The effect of
removing cell viability correlated genes on MoA discovery. Average signatures for 327 compounds from CTRP-L1000-24h dataset were calculated using the
MODZ method, either using all genes or after removing 700 genes with the highest (absolute) correlation to cell viability. Signature similarity (Spearman
correlation) was calculated for each compound pair. For comparison, chemical structure similarity (Tanimoto similarity of chemical fingerprints) and
sensitivity profile similarity were also calculated. ROC (C) and Precision Recall curves (D) were used to evaluate the predictive performance of similarity
scores on drugs with shared mechanisms of action.

To further evaluate the prediction performance of these
linear models, we compared the predicted cell viability val-
ues with the results of the NCI60 screen (11). As NCI60
is a discovery screen (most of the drugs used did not have
strong anti-cancer activity, Supplementary Figure S5A),
it is a realistic benchmark dataset for our LINCS-L1000-
Chem predictions. We found an intersection of 583 com-
pounds and 6 cell lines (NCI60-L1000-24h dataset, Sup-
plementary Table S1) between the two screens. We bina-
rized GI50 (50% growth inhibition) results of the NCI60
screen (effective/ineffective anticancer drugs, where inef-
fective means 50% growth inhibition was not reached in
the used concentration range, see Materials and Methods

section for further details), and compared them with the
predicted cell viability (lowest value for each compound
- cell line pair) with ROC and PR curves. We also se-
lected the intersection between LINCS-L1000, NCI60 and
CTRP datasets (NCI60-CTRP-L1000-24h dataset, 99 com-
pounds, Supplementary Table S1), where we could com-
pare the performance of the linear models against a ‘ground
truth based’ method. In this case, the CTRP drug sensitiv-
ity metric (the area under the dose–response curve, AUC)
was used to predict the effectiveness in NCI60. ROC and
PR analysis (Figure 4A) revealed that the performance of
the perturbation signature based models is comparable with
the ‘ground truth based’ method (P values 0.48 and 0.04
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Figure 4. Predictions of cell viability for the whole LINCS-L1000 dataset. (A and B) ROC and Precision Recall analysis of the prediction performance
of linear models on NCI60 data. Cell viability was predicted for the intersection of NCI60 and LINCS-L1000 or for the intersection of NCI60, CTRP
and LINCS-L1000 datasets (NCI60 and NCI60-CTRP, respectively) using linear models trained on CTRP-L1000-24h or Achilles-L1000-96h data. Either
these predicted cell viability values or the known AUC values from CTRP screen (CTRP AUC) were used to predict the binarised (effective/ineffective
in the investigated concentration range) GI50 from NCI60. ROC (A) and PR (B) curves are shown with corresponding AUC values. (C) Classification of
the compounds from the LINCS-L1000 dataset based on their effect on cell viability. Cell viability was predicted for the LINCS-L1000-Chem dataset (24
h signatures, highest used concentration) using the Achilles-L1000-96h model. The minimum (x axis) and maximum (y axis) predicted cell viability was
plotted for each compound. Compounds were classified as toxic (predicted cell viability < −3) or proliferative (predicted cell viability >1.5) and colored
based on toxicity and selectivity (based on maximal and minimal predicted values). Compounds present in the CTRP dataset (known anticancer drugs)
were also labeled. For selected compounds the name of the compound and the corresponding cell line is text labeled. (D) Cell selective toxicity of LINCS-
L1000 compounds in prostate cancer cell lines. Minimal predicted cell viability for VCaP (x axis) and PC3 (y axis) prostate cancer cell lines was plotted
for each compound. Data points are color coded based on the minimal predicted cell viability in nonprostate cancer cell lines. For selected compounds
showing selective toxicity in prostate cancer cell lines the name of the compound is text labeled. (E) IC50 values of experimentally validated compounds
for VCaP and PC3 cell lines. For meclocycline and formestane dose–response curves are also shown (right up and down, respectively), while other full
dose–response curves for other compounds are shown in Supplementary Figure S7.
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for Achille-L1000 96h and CTRP-L1000-24h models, re-
spectively, DeLong test), and that the Achilles-L1000-96h
model performed better than the CTRP-L1000-24h model
on the NCI-L1000-24h dataset (AUC = 0.78 versus 0.72,
P = 1.143e-13, DeLong test). We had similar results when
TGI (total growth inhibition) or LC50 (50% lethal concen-
tration) were used as NCI60 drug sensitivity metrics (Sup-
plementary Figure S5B and C), further suggesting the reli-
able performance of our models to predict cell viability in
independent datasets.

As the Achilles-L1000-96h model had the best perfor-
mance across all benchmarking experiments (Figures 1D
and 4A; Supplementary Figure S4D and E), we analyzed
the predictions of this model for the whole LINCS-L1000-
Chem dataset . We focused on the highest concentration
instances of each compound and selected the lowest (most
toxic) and highest (least toxic/most proliferative) predicted
cell viability for each compound. These lowest and high-
est predicted cell viability instances came from different
cell lines, thus allowing joint-analysis of general and cell-
specific compound toxicity. We plotted the lowest and high-
est predicted cell viability values for each compound against
each other, and grouped compounds to toxic and prolifer-
ative groups based on arbitrary thresholds (5th and 95th
percentiles of cell viability values from the Achilles-L1000
data) of predicted cell viability (Figure 4B). Comparing
the maximal tested concentrations of toxic and nontoxic
compounds (Supplementary Figure S6) revealed that toxic
compounds had slightly higher maximal used concentra-
tion (median 10 �M versus 5 �M for toxic and nontoxic
compounds, respectively, Mann–Whitney U test P value <
1e-10), but still lower maximal tested concentration than
the ones in a typical cell viability screen (e.g. for CTRP
median 66 �M, Mann–Whitney U test P value < 1e-10
versus toxic group). The known anticancer drugs from the
CTRP screen had a high representation in the toxic group
(57.9 percent versus 6.8 percent for all compounds, Fisher
exact test P value: 5.9e-130). In the general toxic group
(toxic effect in all screened cell lines), we found proteasome
inhibitors (delanzomib, oprozomib), detergent (benzetho-
nium), cell cycle inhibitor (PHA-848125), topoisomerase
inhibitor (SN-38), antieukaryotic antibiotic (romidepsin)
and plant derivative (bruceantin). Our predictions also re-
vealed the known proliferative effect of epithelial growth
factor receptor (EGFR) agonist ligands (EGF, TGFa and
betacellulin) in breast cell lines. More interestingly, we iden-
tified several cyclin-dependent kinase (CDK) inhibitors (di-
naciclib, CGP-60474, PHA-767491) with cell line specific
predicted proliferative/toxic effects.

To further analyze the ability of the Achille-L1000-96h
model to predict cell line specific compound toxicity, we fo-
cused on the two prostate cancer cell lines (PC3 and VCaP)
present in the core cell lines of LINCS-L1000 (Figure 4C).
Our model predicted several compounds with cell line spe-
cific toxicity for these two prostate cancer cell lines, includ-
ing HIF1A inhibitor CAY-10585, several androgen receptor
related compounds (androstanol, testosterone-propionate
and formestane) for VCaP, and antibiotics ornidazole and
meclocycline for PC3 (Figure 4C, text labeled data points).
For these six drugs, with markedly different predicted toxi-
city in the two prostate cancer cell lines, we performed cell

viability measurements (Materials and Methods section).
Half inhibitory concentrations (IC50s, Figure 4D and Sup-
plementary Figure S7) showed increased sensitivity of PC3
for meclocycline (4.23 �M versus 11.2 �M for VCaP) and
increased sensitivity of VCaP for testosterone, androstanol,
and formestane (3.26, 4.44 and 7.17 �M versus 40.79, 24.2
and 89.85 for PC3, respectively), confirming 4 of our 6
predictions. In the case of the two other predictions, we
observed low toxicity (ornidazole) and ambiguous results
(lower IC50 but also lower maximal toxicity in VCaP cell
lines for CAY-10585).

Drug perturbation signatures as features for machine learn-
ing models

As shown in the previous sections, cell viability can be ef-
fectively predicted from perturbation transcriptomics data.
However, for these predictions, the linear models needed
measurements of the perturbation signatures for the inves-
tigated cell line–compound pairs. We then asked if it would
be also possible to predict cell viability/drug sensitivity for
cancer cell lines where the actual perturbation measurement
was not performed––a much more challenging task. We rea-
soned that this could be attempted using drug specific con-
sensus signatures together with cell line specific information
to predict drug sensitivity.

To achieve this prediction of cell line specific drug sensi-
tivity from a consensus signature, we used machine learn-
ing models and applied them to an independent dataset.
We chose the GDSC (9) data as it is the largest pharma-
cogenomic drug screening available. Before evaluating the
performance of machine learning models, we analyzed how
the consensus drug signatures correspond to the known
mechanism of action of the GDSC drugs. Consensus sig-
natures (the MODZ method) were generated for GDSC
drugs present in the LINCS-L1000 screen (GDSC-L1000-
24h dataset, 148 drugs, Supplementary Table S1). Relation-
ship between consensus signatures were visualized after di-
mensionality reduction by the t-SNE algorithm (32) (Fig-
ure 5A). Some drugs with shared mechanism of action (e.g.
MAPK, PI3K and HDAC inhibitors) formed clusters in
the t-SNE plane and, even more interestingly, we could ob-
serve several clusters formed by unrelated drugs. For exam-
ple, GSK3 inhibitors CHIR-99021 and SB216763 formed a
cluster with PKC inhibitor Enzastaurin, MAPK7 inhibitors
XMD8-92 and XMD8-85 formed a cluster with PLK in-
hibitor BI-2536 and JAK2 inhibitor Fedratinib, while topoi-
somerase inhibitor Doxorubicin formed clusters with CDK
inhibitors, AT-7519 and CGP-60474 (Figure 5A, inserts),
which suggests consensus signatures can potentially reveal
unknown similarities between anticancer drugs.

We then used Random Forest Regression in multitask
setting (predicting drug sensitivity for different cell lines
and drugs with the same model) to predict drug sensitivity
(area under the dose–response curve, AUC) values from the
GDSC, using consensus perturbation transcriptomics sig-
natures from the LINCS-L1000 study as features. To predict
drug sensitivity in different cell lines and for different drugs,
the Random Forest Regression model required cell line and
drug specific features (Figure 5B). For cell line specific fea-
tures we used tissue type, pathway (5,26) and transcription
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Figure 5. Consensus perturbation signatures for drug sensitivity prediction. (A) t-SNE plot (learning rate 80, perplexity 20, number of iterations 1000) of
the consensus signatures of GDSC drugs. Data points (intersection of GDSC and LINCS-L1000 drugs, 148 drugs) are colored based on targeted pathway.
For selected clusters, the targeted pathway is also text labeled. Inserts: selected clusters of drugs with different pathway annotations. (B) A schematic
representation of the machine learning pipeline. Cell line specific (tissue type, pathway and transcription factor activity) and drug specific (nominal target,
targeted pathway, chemical structure based Extended-Connectivity Fingerprints and consensus signature) feature matrices were created for the cell lines
and drugs of the GDSC study. Features were concatenated for each drug–cell line pair where drug response was available in the GDSC screen and this
feature matrix was used to train the Random Forest Regression models. (C) The results of the machine learning models for drug response AUC predictions.
The data were split into training and test sets based on drugs (50–50% percent). Splitting was performed three different ways (color coded): randomly, with
the constraint that for each drug in the test set there was a drug with the same nominal target in the training set (shared target), or with the constraint that
for each drug in the test set there was no other drug with shared nominal targets in the training set (different target). Different drug specific features (x
axis) were used by the models. Cell wise average Pearson correlation values are shown as boxplots for the different drug specific features/splitting strategies
(results from 20 random subsampling validation).
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factor (21,22) activities inferred from baseline gene expres-
sion (see Materials and Methods section for further details),
while consensus perturbation signatures were used as drug
specific features. For benchmarking, we used other types
of drug specific features (see Materials and Methods sec-
tion for further details): nominal target of the drug, tar-
geted pathway of the drug and chemical structure based
Extended-Connectivity Fingerprints (ECFP-like), to com-
pare the performance of signature based features with these.

We focused on the prediction of drug sensitivity for new
(model unknown) drugs. To do this, we split the GDSC
dataset in half, based on the drugs (i.e. half of the drugs
were in our training, the other half in the test set). We used
three different splitting schemes: random, shared target and
different target. In shared target splitting, each drug in the
test had a corresponding pair in the training set with the
same nominal target, while in different target splitting the
drugs in the training and test sets had strictly different nom-
inal targets (see Methods for further details). We evaluated
prediction performance by calculating the Pearson correla-
tion between predicted and observed drug sensitivity (dose
response AUC) values for each cell line (Figure 5C). In the
shared target setting, nominal target, targeted pathway and
consensus signature based features had similar performance
(mean Pearson correlations: 0.44, 0.44 and 0.42, respec-
tively, ANOVA P value for used features: 0.68). Not sur-
prisingly nominal target based drug features were not use-
ful in the case of different target sampling (P value from one
sample t-test with 0 population mean: 0.06), while consen-
sus signature based features outperformed targeted path-
way features in this case (mean Pearson correlations: 0.38
and 0.10 respectively, P value from paired t-test: 7.1e-10). In
summary, consensus signature based drug features for ma-
chine learning models had better performance than current
gold standard drug specific features like nominal target or
target pathway, and allowed cell line specific prediction of
drug sensitivity. We predicted AUC as drug sensitivity met-
ric in this case, as differences between mean IC50 values for
different drugs could have been a confounding factor in our
predictions. Nevertheless using (ln) IC50 as a drug sensitiv-
ity metric resulted in a similar performance (Supplementary
Figure S8).

DISCUSSION

In this paper, we integrated recent large-scale functional and
pharmacogenomic studies to analyze the effect of cell via-
bility on perturbation transcriptomics signatures. Integrat-
ing gene expression profiles with phenotypic data (7,33) and
drug effect (3,34) have been performed in recent years. How-
ever, the association between gene expression and cell viabil-
ity has not been systematically investigated. We found that
cell viability (i.e. cell death and cell proliferation) has a ma-
jor contribution to the perturbation signatures. While the
association between cell viability phenotype and transcrip-
tional signatures enables efficient prediction of cell viability
values from perturbation signatures, it can also mask the
compound specific transcriptional signal, thus confound-
ing discovery of mechanism of action. By analyzing cell vi-
ability signature, we also found transcription factors with

causal roles in cell death and proliferation, and found an as-
sociation between cell viability signature and division time.

Using perturbation metadata from the LINCS-L1000,
CTRP and Achilles projects, we composed the largest
matched cell viability–perturbation signature dataset (to
our knowledge) with >15 000 compounds and >75 000
shRNA treatments. Principal Component Analysis of the
CTRP-L1000 dataset revealed that the first PC (explaining
9% of total gene expression variance) is associated (Fig-
ure 1B) with cell viability. The cell line and perturbation
independent nature of PC1 was already described in one
of the original LINCS-L1000 manuscripts (14), and it was
speculated that it was connected to some general biolog-
ical effects, but it was not explicitly analyzed previously.
Also, a recent analysis (13) compared perturbation signa-
tures with cell viability. Jung et al. matched perturbation
signatures from the LINCS-L1000 screen with correspond-
ing cell growth inhibition (cell viability) values from an ear-
lier version of the GDCS with 639 cell line–compound pairs
(35) and used these data to identify essential gene signa-
tures. Our study focused on the predictive value of pertur-
bation signatures, the confounding effect of cell viability on
signature similarity and mechanism of action identification,
and the functional genomic analysis of the identified cell
death signature.

Based on this association between cell viability and per-
turbation signatures, we were able to predict cell viabil-
ity from the gene expression data. Most importantly, lin-
ear models trained on drug perturbations (CTRP data)
were able to predict cell viability after shRNA treatment
(Achilles data), and vice versa (Figure 1C and D). While
‘standard models’, using perturbation and cell line infor-
mation, were also able to perform effectively within a given
dataset (CTRP or Achilles), the efficacy ‘across’ dataset
prediction is unique for the perturbation signature based
models. Also, several studies investigated the predictabil-
ity of drug sensitivity (9,36,37) and gene essentiality (38)
with good results; however, translatable prediction was not
attempted among these different, yet related phenotypes.
There could be two main reasons for the efficacy across
dataset prediction performance of our methods. First, that
the models could learn the drug/shRNA specific changes
in signatures and utilize the similarities between signatures
to predict cell viability across different perturbations. The
second possibility is that there is a specific cell death sig-
nature, independent of the original perturbation agent, and
linear models learn this signature. Our functional genomic
analysis (Figure 2 and Supplementary Figure S2) suggests
the latter. We also analyzed how the elapsed time between
perturbation and transcriptomic measurements affects the
predictability of cell viability. While the two best performing
models (CTRP-L1000-24h and Achilles-L1000-96h) have
the largest amount of data available (Supplementary Table
S1), the poor performance of 3- and 6-h models also sug-
gest that the cell viability related gene expression changes
are only observable after longer perturbations. Importantly,
our models were trained on transcriptomic data from the
LINCS project and cell viability data from the CTRP and
Achilles projects and were evaluated on the NCI60 cell vi-
ability data (Figure 4A) i.e. we used data from four differ-
ent sources. The effective performance of the models across
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these different studies suggests the underlying biological
phenomenon is robust, and also provides a step to help ad-
dress the challenge of translating models across drug sensi-
tivity screens (39,40).

Using these models, we were able to predict cell viability
for the whole compound perturbation part of the LINCS-
L1000 study. We were able to identify not only well known
general toxic compounds like detergents and proteasome
and topoisomerase inhibitors, but also compounds lead-
ing to proliferation like EGF in breast cancer cell lines
(Figure 4B). Most interestingly, several CDK inhibitors
had cell line specific toxic or proliferative effects, where
the proliferative effect was observed in adipocyte stem cells
(ASCs). While CDK inhibitors can uncouple cell cycle from
apoptotic function (41), so the proliferative effect can be a
false positive, some experimental evidence also suggests that
CDKs can have a paradoxically proliferative effect in stem
cells (42). We also analyzed cell line specific predictions in
prostate cancer cell lines VCaP and PC3, and performed ex-
perimental validations for six compounds showing marked
differences of toxicities between these two cell lines. We
found that several androgen receptor signaling related com-
pounds (like androstanol and testosterone-propionate) have
selective toxic effects in VCaP cell lines. This paradoxically
toxic effect of androgen receptor agonists have been re-
ported in another castration resistant prostate cancer model
(43). Our results show that sensitivity of different prostate
cancer cell lines can be markedly different for androgen
treatment, suggesting androgens as therapeutic options in
selected cases of metastatic disease (44). We also observed
selective toxicity of meclocycline in PC3 cell lines. As meclo-
cycline is an antibacterial antibiotic, it could also be used
as a potential treatment with a low adverse effect profile
in prostate cancer. Interestingly, meclocycline is a tetracy-
cline antibiotic, a group of drugs known to have a metal-
loprotease inhibitor effect (45). Matrix metalloproteinases
were recently described as potentially important molecules
and drug targets in prostate cancer (46). These in vitro val-
idations suggest that the predicted cell line selective com-
pounds can be useful anticancer drugs. Further studies, in
particular in vivo, are needed to confirm that this is the case
in a clinical setting.

While our models were able to predict cell viability from
the actual measured perturbation signatures, one can ar-
gue that, in this case, the experiment is already performed,
and if somebody is interested in cell viability, testing via-
bility is simpler and cheaper than perturbation transcrip-
tomics profiling. Yet, our machine learning predictions on
the GDSC dataset showed that using consensus signatures
(delivered from a small number of core cell lines) as features
for machine learning models allows the prediction of drug
sensitivity in new cell lines as well. Our results showed that
the consensus signature outperforms gold standard features
like nominal targets, targeted pathways and chemical finger-
prints (Figure 5C) and allows prediction of drug sensitivity
for new drugs (unrelated to the ones present in the training
set). Also, our models can be used to predict cell viability
in previously performed gene expression studies, where cell
viability data were not measured.

Clustering of the GDSC drugs based on the consen-
sus signatures (Figure 5A) also revealed important infor-

mation regarding their mechanism of action. While some
drugs with the same MoA (e.g. ERK/MAPK inhibitors and
PI3K/MTOR inhibitors) formed tight clusters, we also ob-
served clusters of seemingly unrelated drugs. The similar-
ity of the PKC inhibitor Enzastaurin’s signature to GSK in-
hibitors’ have been reported in the original LINCS-L1000
study (4), while the connection between CDK inhibitors
and Doxorubicin have also been described previously (3).
We also observed a cluster composed of XMD8-92, XMD8-
85, BI-2536 and Fedratinib (MAPK7, MAPK7, PLK and
JAK2 inhibitors, respectively). Recent experiments support
that all of these drugs have a common BET inhibitor effect
(47,48), likely responsible for the signature similarity.

While the association of perturbation signatures with cell
viability enables effective prediction, it can also be a con-
founding factor for mechanism of action discovery. The
similarity between toxic compounds with different MoA is
comparable to the similarity among nontoxic compounds
with the same MoA (Figure 3A), which can negatively in-
fluence MoA discovery (Figure 3C and D). Importantly, re-
moving genes with high absolute correlations with cell via-
bility helps to overcome this problem (Figure 3B and Sup-
plementary Figure S4B), and can help to analyze the results
of perturbation transcriptomic signatures more rigorously.
We also used signature similarity based MoA prediction
on a larger, more diverse dataset (LINCS-L1000-MoA),
where, although generally our results were weaker, remov-
ing cell viability correlating genes also led to an increased
prediction performance (Supplementary Figure S4D and
E). While chemical structure based similarities had the su-
perior prediction performance (similar to (31)), it is impor-
tant to mention that known MoA is mostly based on the on-
target activity of drugs (which can be closely associated with
chemical structure), but signature based similarity can help
to identify off-targets of drugs. While our work focused on
using signature, structure and sensitivity profile based simi-
larities independently, recent works (31,49) used the fusion
of different similarities to reach optimal MoA predictions.
Since removing cell viability correlated genes significantly
improved our MoA predictions, using it together with these
advanced similarity fusion techniques could further boost
MoA prediction in the future.

The functional genomic analysis of the identified cell vi-
ability signature also gave us insight into the mechanism of
cell death and proliferation. Comparing transcription fac-
tor activities and Gene Essentialities (Figure 2B), we identi-
fied several transcription factors potentially involved in cell
proliferation and cell death (Figure 2A and B). MYC (50)
and YY1 (51) are known, promising drug targets, addition-
ally, our analysis also highlighted the TFDP1 transcription
factor as a potential drug candidate. The transcription fac-
tors showing increased activity during cell death are well
known (like TP53 and FOXO3) or emerging (like ESR2
(52)) regulators of apoptosis. We also identified associations
between cell viability signature scores and doubling time
(Figure 2E) suggesting that, using our models, cell viabil-
ity related information could also be predicted from base-
line (not perturbed) gene expression data. It is important to
mention that while doubling time shows associations with
the tissue type of tumor cell lines, cell viability signature as-
sociated with doubling time independent of the tissue type.
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The linear models and pre-calculated predicted cell via-
bility values can be an important resource for further stud-
ies working with perturbation gene expression signatures.
All of our results are publically available with CEVIChE
(CEll VIability Calculator from gene Expression, https://
saezlab.shinyapps.io/ceviche/), an R Shiny application, for
further analysis. CEVIChE can be also applied to predict
cell viability from existing and future signatures. The ap-
plication can be explored with an example dataset coming
from (53). Furthermore, recent methods have been devel-
oped to predict unmeasured perturbation gene expression
(54) for which our cell viability prediction methods could
also potentially be utilized. Also, our results suggest that
removing cell death correlating genes from the gene expres-
sion signature can help to better interpret the similarities
between signatures and identify mechanism of action. Fur-
thermore, drug sensitivity prediction with machine learn-
ing models is an important area of current research, and
our results (together with other recent works (55)) highlight
the importance of using perturbation signatures as features
in this field. Finally, while we solely analyzed cell viability
for cellular phenotype, the methods presented here could be
used in the context of other perturbation–phenotypic mea-
surement studies as well.

DATA AVAILABILITY

All analysis code is available at https://github.com/bence-
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analysis of our results and also the prediction of cell via-
bility in new gene expression samples.
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upregulates FOXO3a and causes induction of apoptosis through
PUMA in prostate cancer. Oncogene, 33, 4213–4225.

53. Poussin,C., Mathis,C., Alexopoulos,L.G., Messinis,D.E.,
Dulize,R.H.J., Belcastro,V., Melas,I.N., Sakellaropoulos,T.,
Rhrissorrakrai,K., Bilal,E. et al. (2014) The species translation
challenge-a systems biology perspective on human and rat bronchial
epithelial cells. Sci. Data, 1, 140009.

54. Hodos,R., Zhang,P., Lee,H.-C., Duan,Q., Wang,Z., Clark,N.R.,
Ma’ayan,A., Wang,F., Kidd,B., Hu,J. et al. (2018) Cell-specific
prediction and application of drug-induced gene expression profiles.
Pac. Symp. Biocomput., 23, 32–43.
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