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ROCplot.org: Validating predictive biomarkers of
chemotherapy/hormonal therapy/anti-HER2 therapy using
transcriptomic data of 3,104 breast cancer patients

Janos T. Fekete (! and Balazs GyGrffy™->

12"d Department of Pediatrics, Semmelweis University, Budapest, Hungary
2MTA TTK Lendiilet Cancer Biomarker Research Group, Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary

Systemic therapy of breast cancer can include chemotherapy, hormonal therapy and targeted therapy. Prognostic biomarkers
are able to predict survival and predictive biomarkers are able to predict therapy response. In this report, we describe the
initial release of the first available online tool able to identify gene expression-based predictive biomarkers using
transcriptomic data of a large set of breast cancer patients. Published gene expression data of 36 publicly available datasets
were integrated with treatment data into a unified database. Response to therapy was determined using either author-reported
pathological complete response data (n = 1,775) or relapse-free survival status at 5 years (n = 1,329). Treatment data includes
chemotherapy (n = 2,108), endocrine therapy (n = 971) and anti-human epidermal growth factor receptor 2 (HER2) therapy

(n = 267). The transcriptomic database includes 20,089 unique genes and 54,675 probe sets. Gene expression and therapy
response are compared using receiver operating characteristics and Mann-Whitney tests. We demonstrate the utility of the
pipeline by cross-validating 23 paclitaxel resistance-associated genes in different molecular subtypes of breast cancer. An
additional set of established biomarkers including TP53 for chemotherapy in Luminal breast cancer (p = 1.01E-19,

AUC = 0.769), HER2 for trastuzumab therapy (p = 8.4E-04, AUC = 0.629) and PGR for hormonal therapy (p = 8.6E-05,

AUC = 0.7), are also endorsed. The tool is designed to validate and rank new predictive biomarker candidates in real time. By
analyzing the selected genes in a large set of independent patients, one can select the most robust candidates and quickly
eliminate those that are most likely to fail in a clinical setting. The analysis tool is accessible at www.rocplot.org.

Key words: chemotherapy, hormonal therapy, targeted therapy, ROC, relapse-free survival, molecular subtypes

Abbreviations: ABCB1: ATP binding cassette subfamily B member 1; ABCB11: ATP binding cassette subfamily B member 11; AUC: area
under the curve; BBC3: BCL2 binding component 3; BCAP29: B cell receptor-associated protein 29; BCL2: BCL2 apoptosis regulator; BCL2L1:
BCL2 like 1; BMF: BCL2 modifying factor; CMF: cyclophosphamide, methotrexate, fluorouracil; CNGA3: cyclic nucleotide gated channel alpha
3; CSAG2: CSAG family member 2; CYP2C8: cytochrome P450 family 2 subfamily C member 8; CYP3A4: cytochrome P450 family 3 subfamily
A member 4; ERBB2: erb-b2 receptor tyrosine kinase 2; ESR1: estrogen receptor 1; FAC: fluorouracil, adriamycin, cytoxan; FDR: false discovery
rate; FEC: fluorouracil, epirubicin, cyclophosphamide; FN1: fibronectin 1; GBP1: guanylate binding protein 1; GEO: Gene Expression Omnibus;
HER2: human epidermal growth factor receptor 2; MAP2: microtubule-associated protein 2; MAP4: microtubule-associated protein 4; MDR:
multiple drug resistance; MIAME: minimum information about a microarray experiment; MKI67: marker of proliferation Ki-67; OPRK1: opi-
oid receptor kappa 1; pCR: pathological complete response; PGR: progesterone receptor; RES: relapse-free survival; ROC: receiver operating
characteristic; SLCO1B3: solute carrier organic anion transporter family member 1B3; TNBC: triple-negative breast cancer; TP53: tumor pro-
tein p53; TUBBL: tubulin beta 1 class VI; TUBB4: tubulin beta 4A class IVa; TWIST1: twist family bHLH transcription factor 1
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While several online tools capable of delivering a prognostic prediction for breast cancer already exist, no such genome-wide
biomarker validation tool is available to evaluate and compare predictive biomarker candidates. Here, the authors combine
multiple datasets to establish a sufficiently large breast cancer cohort with transcriptomic, anticancer treatment, and clinical
response data. Then, they establish a framework capable of studying new candidate genes by mining this database and
demonstrate the robustness of the pipeline by cross-validating an established set of resistance-associated genes. The novel
online platform provides an easily accessed resource for researchers to validate and rank future biomarker candidates.

Introduction

A biomarker is a scientifically supported analytical tool with a
clinically useful significance. A biomarker can be measured in
a test system and has a recognized characteristic that enables
researchers to use it for support in making decisions in phar-
macology, physiology or toxicology. Today, the Food and
Drug Administration (FDA) encourages the use of biomarkers
to increase the efficacy of new drugs.' In cancer treatment,
two major types of biomarkers can be implemented. Prognos-
tic biomarkers are able to predict patient survival and predic-
tive biomarkers are able to predict the response to a selected
anticancer therapy.’

Depending on the molecular and pathological characteris-
tics of a tumor and the projected survival of the patient, sys-
temic therapy of breast cancer can include chemotherapy,
hormonal therapy, and molecular targeted therapy. Each of
these therapies is supported by prognostic and predictive bio-
markers. Estrogen receptor and progesterone receptor are the
most important predictive biomarkers to select those eligible
for hormonal therapy.’ Molecular targeted therapy is given to
those whose tumors harbor an amplification or overexpression
of the erb-b2 receptor tyrosine kinase 2 (ERBB2)/human epi-
dermal growth factor receptor 2 (HER2) receptor.4 Multigene
tests can provide support to select those most benefiting from
chemotherapy (for a comprehensive review, see Ref. 2).

Response to an anticancer agent depends on pharmacologi-
cal (dose, pharmacokinetics and localization of the tumor)
and cellular factors. This second group of cellular factors can
be further subdivided according to three major mechanisms
of action. First, the intracellular drug concentration can be
decreased in cases where transmembrane transport systems
are activated® or when the agent is intracellularly metabo-
lized.° Second, an altered interaction between the drug and
the target can lead to lower efficiency of a given drug.” Third,
a change in the cellular response, including mutations and
expression changes in genes related to cell cycle, DNA repair®
and apoptosis’ can also allow cancer cells to evade the effects
of systemic anticancer therapy.

In the last decade, several online tools capable of delivering
a prognostic prediction were developed for breast cancer.
Almost all of these tools include a platform linking survival
and gene expression (see KM-plotter,”® PROGgene,"
GenExMiner,'? APPEX,"> KMexpress'* or PPISURV'®). Other
tools use miRNA expression (miRpower,'® BreastMark'”) or

estimate survival for a given patient (RecurrenceOnline'®).
However, to date, no such genome-wide biomarker validation
tool has been made available to evaluate and compare predic-
tive biomarker candidates.

In our study, we report an online platform enabling the
identification of predictive biomarkers in breast cancer. Multi-
ple transcriptome-level gene expression datasets were inte-
grated into a single database containing 3,104 breast cancer
patients with treatment and response data. Responder and
nonresponder patients are compared via two diverse statistical
approaches. In the second part of the project, prediction
results delivered by the pipeline are used to validate clinically
used and previously proposed biomarker candidates.

Methods

Database construction

Breast cancer datasets were identified in Gene Expression
Omnibus (GEO; http://www.ncbi.nlm.nih.gov/gds) using the
GEO platform IDs “GPL96” (for HG-U133A), “GPL570” (for
HG-U133 Plus 2.0), “GPL571” (for HG-U133A_2) and the
keywords “breast,” “cancer” and “therapy.” Datasets with less
than 30 samples were excluded at this stage (a few datasets
included more than 30 specimens initially, but some of the
samples dropped out because only a reduced amount of
patient samples were actually useful for our study). We
selected the above platforms because they are widely used and
because they use the exact same probes to measure the same
genes. For genes with multiple probes, we used Jetset' to
select the most reliable probe set (http://www.cbs.dtu.dk/
biotools/jetset/).

The raw CEL files were MAS5 normalized in the R statisti-
cal environment (http://www.r-project.org) using the Affy
Bioconductor library. A second scaling normalization was per-
formed to set the mean expression of the 22,277 identical
probe sets in each array to 1,000 to reduce batch effects due
to different mean targets during normalization of the three
human genome arrays (Supporting Information Fig. SI).

Repeatedly published arrays (n = 46) were identified by
searching for identical expression values. Of these arrays, only
the first one was retained in the final database.

Quality control
Each included study fulfilled the Minimum Information About
a Microarray Experiment (MIAME) criteria—description of
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extraction protocol, hybridization protocol, scan protocol and
data processing.

Quality control of the gene chips was performed as
described previously.'® In brief, each array was examined for
background intensity, scaling factor, percentage of present
calls, bioB-, bioC-, bioD-, cre-, dap-, lys-, phe-, thr- and tryp-
spikes, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
and beta-actin 3'-5 ratio. Arrays with more than one parame-
ter outside of the 95% range across all arrays were excluded
from further analysis.

Some of the datasets used samples from randomized clini-
cal trials. As the reliability of clinical data collected in these
studies can be superior to those not from a clinical trial, we
marked each of these studies.

Receptor status determination

Patients were assigned into molecular subtypes based on the
expression of estrogen receptor 1 (ESR1), HER2 and marker of
proliferation Ki-67 (MKI67). For ESRI, the probe set
205225 _at was used with a cutoff value of 500, for the HER2
receptor, the probe set 216836_s_at was used with a cutoff
value of 4,800 and for MKI67, the probe set 212021_s_at was
used with a cutoff value of 470.'®> We compared the gene-array
based receptor designations to the IHC-based receptor designa-
tions in patients where IHC data was available and found sub-
stantial agreement in both the RFS and pathological complete
response (pCR) cohorts (Supporting Information Table S1).

Statistical methods

First, the patients are assigned to two cohorts (responder and
nonresponder) based on their clinical characteristics. Patients
with neoadjuvant chemotherapy were classified according to
pathological response as published by the authors. In this,
instead of four cohorts (progressive disease, stable disease,
partial response and complete response), we have assigned all
patients into two cohorts, including those where no residual
histological evidence of the tumor remains after chemotherapy
(responders) and all other patients with residual tumor tissue
(nonresponders).

Patients with adjuvant therapy were classified into two
cohorts based on survival status at 5-year follow-up. In this
case, expression of the gene in patients relapsed before 5 years
is compared to the expression of the gene in patients surviving
over 5 years. Patients censored before 5 years are excluded.

The two cohorts are compared using Mann-Whitney test or
Receiver Operating Characteristic test in the R statistical environ-
ment (www.r-project.org) using Bioconductor libraries (www.
bioconductor.org). Statistical significance was set at p < 0.05.

Validation of established markers and discovery of new
candidates

First, we evaluated a set of commonly referenced predictive
biomarkers including progesterone receptor (PGR), HER2 and
tumor protein p53 (TP53).

Predictive biomarkers in breast cancer

A more exciting validation analysis was executed to con-
firm previously published paclitaxel resistance biomarkers.
To this end, we used an established set of 31 genes.”” From
the 31-gene panel, we analyzed 29 genes because the
Affymetrix chip does not have probes to CSAG family mem-
ber 2 (CSAG2) and because the expression of tubulin beta
4A class IVa (TUBB4A) and TUBB4B are combined in the
TUBB4 probe set. The study of Dorman et al. was selected
because of two major advantages: first, they used support
vector machines, an approach different from our analysis
pipeline. Second, the genes identified in their analysis were
independently validated using tumor blocks from a panel of
340 independent patients. In this instance, the receiver oper-
ating characteristic (ROC) plotter was used to compute path-
ological complete response (pCR) based classifications for
each of the proposed genes in each of the molecular sub-
types. To this end, we used all of the samples in which the
clinical file confirmed the administration of paclitaxel as a
chemotherapy agent.

Finally, we performed the analysis across all genes in
triple-negative breast cancer (TNBC) patients to identify new
biomarker candidates of chemotherapy resistance specifically
in this cohort. For this, ESR1- and HER2-negative patients
were designated as TNBC, HER2-positive and ESR1-negative
patients were designated as HER2, ESRI-positive and
MKI67-negative patients were designated as Luminal A, and
all remaining samples were designated as Luminal B patients.

Results

Database—pCR dataset

Processing of the GEO samples is summarized in Figure la.
Overall, 5,476 breast cancer patients were identified in GEO
with relapse data. After exclusion of repeatedly published
arrays and samples measured using a different platform, 3,756
patients from 20 datasets remained. Sufficient clinical data
were available for 1,775 patients from 16 datasets (Fig. 1b).
Aggregate clinical characteristics of the pCR samples are pres-
ented in Table 1a and Figure 1c.

Database—RFS dataset

Overall, 9,013 breast cancer patients with follow-up data were
identified in GEO. Of these patients, 3,070 samples from
28 datasets represent unique samples measured by the Human
Genome Arrays. Sufficient clinical data, including relapse-free
survival (RFS) time and treatment data, were available for
1,329 patients from 20 datasets (Fig. 1b). Aggregate clinical
characteristics of the RFS samples are presented in Table 1b
and Figure 1c.

Treatment cohorts

Most patients in the pCR cohort have received cytotoxic che-
motherapy, including a regimen containing an anthracycline
(n=1,626) or taxane (n = 1,213). Smaller cohorts comprise
patients with cyclophosphamide, methotrexate, fluorouracil
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Figure 1. Overview of database setup. Pipeline used to select samples to be included in the pathological response (pCR dataset) and in
the relapse-free survival (RFS dataset) cohorts (a), proportion of datasets included in each cohort (b) and distribution of molecular
subtypes (c). [Color figure can be viewed at wileyonlinelibrary.com]

(CMF; n =156), fluorouracil, epirubicin, cyclophosphamide minor group of patients was administered hormonal therapy
(FEC; n =303) or fluorouracil, adriamycin, cytoxan (FAC; (aromatase inhibitors).
n = 248) protocols and patients with ixabepilone (n = 136), Two-thirds of patients in the RFS cohort have received a

lapatinib (n = 65) and trastuzumab (n = 186) treatments. A  hormonal therapy (n = 907). The most common chemotherapy
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Table 1. Overview of datasets included in the analysis with available response data (a) and survival and follow-up at 5 years (b) (Continued)

Molecular subtype

Grade Nodal

Outcome (responder/
nonresponder)

61/110

Sample
size

Reference
(PMID)

(Basal/LumA/LumB/HER2+)

60/38/69/4
5/201/43/1

38/2/2/8

status (0/1)

45/126

(a/2/3)

Age

Year

Platform

Dataset

6/58/94

50.62 + 11.1

171
250

2011

21,558,518
21,807,638
21,422,418
22,220,191

HG-U133A
HG-U133A

GSE25066
GSE26971

110/100
24/26
19/9

229/21
27/23
9/20

2011

—/9/36
-/-/21

50

2011

HG-U133A

HG-U133A

HG-U133_PLUS_2
HG-U133A

GSE16446
GSE31519

18/-/9/2
3/1/16/6

29
26
57

2011

16/10
37/20
41/5

2012 47.88 £12.3
53.12 £ 11.1

22,460,789
23,618,380
25,848,952

GSE37946

7/16/31/3

31/26

5/23/28

2013

GSE45255

13/13/11/9

46
1,329

2015

HG-U133_PLUS_2

GSE65194
Total

178/687/399/65

464[476

59/193/305

978/351

54.92 + 11.94
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agents include anthracyclines (n = 383) and taxanes (n = 237).
Smaller groups of patients were treated with trastuzumab
(n=50) and CMF (n = 66). Treatment cohorts with less
than 50 patients were excluded from further analysis. A sum-
mary of the different treatment regimens, as well as the pro-
portion of patients in each of these cohorts, is presented in
Figure 2.

Server setup

We have established a webpage for automated analysis of
future biomarker candidates. The PHP-based homepage runs
an R server in the background and enables mining the data-
base via Mann-Whitney or ROC analysis (Fig. 3a) using
either the pathological response data or RFS at 5 years
(Fig. 3b). Clinical variables (grade, nodal status, receptor sta-
tus and molecular subtype) are implemented as filters when
selecting any combination of these, then only samples with
available information for each parameter are included in the
analysis.

Samples collected in a clinical trial include the datasets
GSE16446 (clinical trial ID: NCT00017095, NCT00336791),
GSE41998 (NCT00455533), GSE50948 (ISRCTN86043495),
GSE66305 (NCT00429299) and GSE16391 (NCT00004205).
An additional filter enables to run the analysis using these
patients only (n = 628 for the pCR dataset).

ROC also gives a numerical representation of the classi-
fier performance when providing the “area under the curve”
(AUC) value. An AUC of 0.5 corresponds to no classifica-
tion power at all, and an AUC value of 1 denotes a perfect
biomarker. In addition to a p-value and an AUC value, the
ROC analysis also enables researchers to determine the
strongest cutoff capable of best discriminating between
responder and nonresponder patients (Fig. 3¢). In case, the
user enters multiple genes, then false discovery rate (FDR)
is computed for each of the genes and a table is displayed
showing the results at the FDR cutoffs of 20, 10 and 5%.
The page is registration-free and can be accessed at www.
rocplot.org.

Validation analyses
First, we analyzed a set of established biomarkers, including
TP53 for chemotherapy in Luminal breast cancer (p = 1.01E-
19, AUC = 0.769), HER?2 for trastuzumab therapy (p = 8.4E-04,
AUC = 0.629) and PGR for hormonal therapy (p = 8.6E-05,
AUC =0.7).

Second, we validated a set of paclitaxel-resistance markers.
In this step, each of the biomarker candidates was checked in
the pCR cohort. Of the 29 total genes, 23 genes reached signif-
icance (Table 2). We have uncovered 16 significant genes in
Basal, 15 genes in Luminal A, 8 genes in Luminal B and
5 genes in HER2 + ER— subgroups.

The best-performing genes in the Basal samples were
BCL2 modifying factor (BMF; p=0.023, AUC = 0.688),
B cell receptor-associated protein 29 (BCAP29; p = 0.028,

Int. ). Cancer: 145, 3140-3151 (2019) © 2019 The Authors. International Journal of Cancer published by John Wiley & Sons Ltd on behalf

of UICC

(/]
(9]
S
=
s
£
&
-
&
<
=
=
(/]
g
<
s
=
P
S
g
s
I



http://www.rocplot.org
http://www.rocplot.org

3146 Predictive biomarkers in breast cancer

(b) RFS dataset
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Figure 2. Treatment and response data. The circos plots summarize patient distribution for samples included in the pathological response
dataset (pCR dataset—a) and in the relapse-free survival-based dataset (RFS dataset—b). The width of the connecting lines is proportional to
the relative number of patients. [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 4. ROC curves and box-plots of top genes validated for Paclitaxel resistance by molecular subtype: BMF in Basal (a), BCL2, BCL2L1 and
GBP1 in Luminal A (b—d), BCAP29 in Luminal B (e) and CNGA3 in HER2-enriched (f). [Color figure can be viewed at wileyonlinelibrary.com]

AUC = 0.682) and ATP binding cassette subfamily B member
11 (ABCBL11; p = 5.8E-05, AUC = 0.647). In Luminal A tumors,
the most significant genes include BCL2 apoptosis regulator
(BCL2; p = 9.6E-13, AUC = 0.799), BCL2 like 1 (BCL2L1;

p =82E-13, AUC =0.8) and guanylate binding protein
1 (GBPI; p = 6.1E-12, AUC = 0.789). In Luminal B, the stron-
gest genes include BCAP29 (p = 4.04E-03, AUC = 0.695),
tubulin beta 1 class VI (TUBB1; p = 0.032, AUC = 0.646) and
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Table 3. Top 10 new biomarker candidates of chemotherapy response in the TNBC subtype (n = 473)

Affymetrix 1D Symbol Approved name AUC ROC p-value
200959_at FUS FUS RNA binding protein 0.699 3.30E-16
203276_at LMNB1 Lamin B1 0.698 2.20E-16
215905_s_at SNRNP40 Small nuclear ribonucleoprotein U5 subunit 40 0.694 4.20E15
202416_at DNAJC7 Dna) heat shock protein family (Hsp40) member C7 0.693 4.20E-15
218733_at MSL2 MSL complex subunit 2 0.678 7.70E-13
200773_x_at PTMA Prothymosin alpha 0.677 5.60E-13
204415_at IFl6 Interferon alpha inducible protein 6 0.676 7.80E-13
40850_at FKBP8 FKBP prolyl isomerase 8 0.675 2.30E-12
204166_at SBNO2 Strawberry notch homolog 2 0.674 3.20E-12
202785_at NDUFA7 NADH ubiquinone oxidoreductase subunit A7 0.671 5.80E-12

The analysis was performed across all genes in the pCR cohort.
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opioid receptor kappa 1 (OPRKI; p = 0.033, AUC = 0.646). In
HER2-positive samples, the genes with the highest correla-
tion to resistance include cyclic nucleotide gated channel
alpha 3 (CNGA3; p = 1.4E-03, AUC = 0.668), the classical
multiple drug resistance (MDR) gene ATP binding cassette
subfamily B member 1 (ABCB1; p = 3.7E-03, AUC = 0.652)
and BCAP29 (p = 0.039, AUC = 0.643). The ROC plots and
the mean plots for the best performing genes are presented
in Figure 4.

Finally, we run the analysis for all available samples desig-
nated as TNBC (n = 473). This exploration was performed in
the pCR cohort. The analysis was performed across all genes
and the 10 strongest new biomarker candidates are presented
in Table 3.

Discussion

In our study, we had two major aims: first, to combine avail-
able datasets to establish a sufficiently large breast cancer
cohort with transcriptomic and clinical response data, includ-
ing information regarding the systemic anticancer therapy
administered to these patients. Second, we aimed to establish
a framework capable of validating and ranking new candidate
genes by mining this database. We also performed a validation
analysis for established biomarkers to corroborate the reliabil-
ity of our approach.

First, we have executed the pipeline for the most widely
used clinical biomarkers, including HER2 and PGR. In each
setting, only patients who actually received targeted therapy
(for HER2) and hormonal therapy (for PGR) were included.
For HER?2, the results confirmed the predictive role of HER2
expression for RFS. Notably, most of the HER2-positive
patients included in the database did not receive anti-HER2
therapy. This points to the still limited accessibility of samples
with anti-HER2 therapy. Furthermore, the proportion of
patients included in these therapies is also limited due to del-
ayed administration, even in developed countries such as the
US.2! We have to note that the proportion of patients desig-
nated as HER2-positive also depends on the used cutoff. Cur-
rent ASCO recommendations are in favor of lowering the
cutoff percentage for ESRI positivity,”> and such a trend
might also be feasible for HER2 status determination. How-
ever, the limited number of patients in the trastuzumab- and
lapatinib-treated cohorts did not enable us to investigate this
hypothesis.

Progesterone receptor (PGR) is an estrogen-regulated
gene,”” and its used to support the selection of patients for
hormonal therapy has been questioned several times. A study
of more than 155,000 women from the SEER registry has
uncovered a declining trend of estrogen-negative, PGR-
positive patients, possibly hinting at an improvement in recep-
tor diagnosis accuracy.”* In the United Kingdom, the National
Institute for Health and Clinical Excellence recommendations
do not have included PGR since 2009.” In our pipeline, one
of the reasons for setting the cutoff to 60 months to

3149

discriminate responder and nonresponder patients was the
StGallen/NCCN-recommended 5-year length of hormonal
therapy.”® Thus, the used cutoff enables us to identify those
who progress during these initial 5 years. As PGR delivered a
high significance in our analysis, our results support the con-
tinued utilization of PGR to select those who are eligible for
hormonal therapy.

We also used the pipeline to validate previously published
paclitaxel resistance biomarker candidates. In this analysis,
multiple transport genes were upregulated including ABCBI,
ABCBI11, CNGA3 and SLCO183. ABCB1 (also called MDR1
or PGP) is one of the most widely investigated genes linked to
multidrug resistance. ABCB11 encodes a sister gene of PGP,
and ABCBI11 transfectants display resistance against Taxol but
no other chemotherapy agents.”” Solute carrier organic anion
transporter family member 1B3 (SLCO1B3) encodes a mem-
ber of the organic anion transporter family. This gene’s over-
expression confers an antiapoptotic advantage against
chemotherapy treatments by blocking the transcription of
TP53.%® Lessening the intracellularly available drug molecules
is also the mechanism of action of the metabolic enzymes
cytochrome P450 family 2 subfamily C member 8 (CYP2C8)
and cytochrome P450 family 3 subfamily A member
4 (CYP3A4), both of which display higher expression in the
resistant patients and have previously been linked to paclitaxel
resistance.””°

Taxenes disrupt microtubule function and genes involved
in microtubule setup and assembly, including TUBBI,
TUBB4, microtubule-associated protein 2 (MAP2)*! and
microtubule-associated protein 4 (MAP4),*? therefore have
a critical role in resistance. TUBB1 was recently described as
the gene with the most frequently altered and amplified
isoforms in breast cancer.”> TUBB4 had higher expression
in an MCF7 cell line engineered to withstand paclitaxel
treatment by administering gradually increasing concentra-
tions of the drug.** Ultimately, the intent of any chemother-
apy agent is to send the damaged cancer cell into apoptosis.
Thus, genes involved in the cell cycle (fibronectin 1 [FN1],
twist family bHLH transcription factor 1 [TWIST1] and
GBP1) and apoptosis (BCL2, BCL2L1, BCAP, BMF and
BCL2 binding component 3 [BBC3]) play critical roles in
resistance against these agents. We can confirm previous
in vitro observations showing lower expression of TWIST1
and FNI in relation to paclitaxel resistance.”> The BCL2 and
BCL2L1 (BCL-xL) genes reached high significance in both
Basal and Luminal A samples. Overexpression of BCL2 was
recently linked to paclitaxel resistance in cell lines.”®
Tumors with higher BCL2L1 expression had shorter RFS
times.>’ Previously, knockdown of BBC3 (PUMA) reduced
paclitaxel-induced apoptosis in T47D cells.”® Overall, in our
study, we can confirm multiple previous in vitro observa-
tions linking different genes to paclitaxel resistance; we have
summarized the mechanisms for the significant genes in
Figure 5.
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Figure 5. Summary of the biological functions of the validated paclitaxel resistance-associated genes. Genes highlighted with red were
upregulated, whereas genes highlighted with green were downregulated in resistant patient samples. [Color figure can be viewed at

wileyonlinelibrary.com]

We have to mention some limitations of our analysis. First,
most patients included in the database have received multiple
agents. This finding makes it more complicated to link a given
gene to a response against a selected agent. At the same time,
today, almost no patients receive a monotherapy. Unfortu-
nately, this limits the chance of unearthing a large-scale
dataset with monotherapy in the near future.

A second limitation is the rather limited number of
patients in some of the treatment arms. We plan to extend the
database as new studies are published; thus, we will be able to
gradually increase the validation power of the analysis tool.
Similarly, we can expect large RNA-seq datasets to be publi-
shed in the near future. Unfortunately, the Cancer Genome
Atlas, the largest cohort published until today, has neither
pathological response data nor RFS data.

A third limitation is the different quality of the included
studies. Although each study fulfilled the MIAME criteria and
the array quality control, this only focus on the technical
issues. Clinical trials provide high-quality patient records—
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and here we took account of five datasets which used patients
from different clinical trials. An additional filter was built into
the online platform to enable the user to use exclusively these
samples in the analysis.

In summary, we established a large transcriptomic database
that includes treatment data and expression data of more than
20,000 genes from 3,104 samples. We used pathological
response data or RFS time at 5 years to assign the patients
into response cohorts. We demonstrated the robustness of the
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candidates.
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