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Abstract: Whole exome sequencing (WES) enables the analysis of all protein coding sequences in
the human genome. This technology enables the investigation of cancer-related genetic aberrations
that are predominantly located in the exonic regions. WES delivers high-throughput results at a
reasonable price. Here, we review analysis tools enabling utilization of WES data in clinical and
research settings. Technically, WES initially allows the detection of single nucleotide variants (SNVs)
and copy number variations (CNVs), and data obtained through these methods can be combined
and further utilized. Variant calling algorithms for SNVs range from standalone tools to machine
learning-based combined pipelines. Tools for CNV detection compare the number of reads aligned to
a dedicated segment. Both SNVs and CNVs help to identify mutations resulting in pharmacologically
druggable alterations. The identification of homologous recombination deficiency enables the use
of PARP inhibitors. Determining microsatellite instability and tumor mutation burden helps to
select patients eligible for immunotherapy. To pave the way for clinical applications, we have to
recognize some limitations of WES, including its restricted ability to detect CNVs, low coverage
compared to targeted sequencing, and the missing consensus regarding references and minimal
application requirements. Recently, Galaxy became the leading platform in non-command line-based
WES data processing. The maturation of next-generation sequencing is reinforced by Food and Drug
Administration (FDA)-approved methods for cancer screening, detection, and follow-up. WES is on
the verge of becoming an affordable and sufficiently evolved technology for everyday clinical use.
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1. Introduction

In the last decade, the price of genome sequencing has shrunk significantly, most of the work has
become automated, and preparation guidelines have evolved. Due to these achievements, sequencing
a whole genome has become a readily available possibility. Sequencing only targeting regions or the
exome, however, implies a significantly smaller financial burden. In whole exome sequencing (WES),
we primarily target specific fragments of the genome, the protein-coding part, and we therefore are
able to identify genetic variants that will affect proteins. Since most of the known disease-causing
mutations fall into this category, exome sequencing is a method that significantly reduces sequencing
costs and therefore represents a clinically feasible approach for patient diagnostics. In this paper, we
provide a summary of bioinformatic methods addressing the detection of the most frequent genetic
aberrations influencing the development and progression of cancer.

Cancer is characterized by a set of essential steps that each renegade cell has to master before it
can evolve to cancer [1]. The multitude of experimental methods that are at hand to investigate these
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cancer hallmarks have been systematically reviewed recently [2]. Whole exome sequencing provides
a versatile tool to simultaneously monitor multiple different genomic changes in the tumor tissue.
Mutations in both coding and noncoding DNA sequence regions have proven to be influential in the
development of cancer [3,4]. Nucleic acid changes in the exome can result in amino acid changes
in protein sequences. Amino acid changes lead to weakened activity of tumor suppressors, such as
APC in colorectal cancer, VHL in renal cell cancer, or BRCA in breast cancer [5–7]. Copy number
changes in cell cycle regulators, such as TP53 and RB1 [8], as well as malfunctions in repair mechanisms
including the homologous recombination and DNA mismatch repair systems, predispose cells to
cancer development. The activity of these repair systems can be monitored by measuring tumor
mutational burden or microsatellite instability [9,10].

2. First Steps of Whole Exome Sequencing

At present, there are two main categories of next-generation sequencing (NGS) methods,
consisting of DNA amplification-based sequencing (Illumina, Ion Torrent) and single molecule
real-time sequencing (Pacific Biosciences, Oxford Nanopore). The investigated tissue samples can be
freshly frozen, formalin-fixed and paraffin-embedded (FFPE), or liquid-based (blood sample); typically,
each of these samples has its own isolation kits.

A critical initial step of NGS is adequate pathological examination, as a properly selected and
dissected tissue sample is a necessity for any further investigation [11]. Samples should contain
a sufficient proportion of tumor cells to differentiate germline and somatic mutations. DNA from
an adjacent normal tissue or from a blood sample is needed to identify all germ-line mutations.
DNA quality deteriorates with time and after FFPE conservation, which has a degrading effect on
the DNA. As the fragmentation of the DNA increases, the genome assembly following sequencing
becomes more challenging [12]. During library construction, the exons are captured after an initial
fragmentation step. Exome capture can be microarray-based or magnetic-bead based. In this second
case, specific probes are hybridized to the sample, which are then pulled out using the magnetic
beads. Then, the intronic sequences are discarded, and sequencing is performed using all the exonic
sequences. The magnetic-bead-based capture methods are more widespread due to their simplicity [13].
To reach sufficient depth of coverage, properly capturing the targeted regions is necessary. Overall,
currently used technologies deliver high efficiency [14]. Actual sequencing comes following exome
capture and PCR amplification. The overall process of WES, including data processing and utilization,
is summarized in Figure 1.

Usually, the data processing part starts with quality control and trimming at which low-quality
reads are removed. This step is followed by the alignment of reads to a chosen reference genome
followed by a second quality check step and removal of the duplicate reads. After these data processing
steps, the variant calling splits, and at this point, a plethora of tools are available, depending on the
clinical question one is attempting to answer.
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Figure 1. From tissue to data—steps of whole exome sequencing. Tissue preprocessing starts with
the identification of tumor regions by an experienced pathologist, followed by DNA extraction,
library construction, and amplification. Data procession commences with the quality check of reads.
If the quality of trimmed reads is sufficient, the alignment of the reads to a reference genome is
launched. When Binary Alignment Map (BAM) files are processed, the calling of single nucleotide
variants, insertions and deletions, and copy number variants comes next, using one or more of the
numerous existing algorithms. The data can be further utilized to detect microsatellite instability status,
intratumor heterogeneity, tumor mutational burden, and homologous recombination deficiency.

3. Short Nucleotide Variants

Whole exome sequencing is capable of delivering information for all protein-coding regions of the
genome, which makes it a useful tool to identify germline and somatic mutations from a tumor sample
(Figure 2). Compared to targeted sequencing, WES has the advantage of being able to elucidate the
whole exome profile of a sample and to provide information on those low-frequency mutations that
can collectively ground a complex phenotypic appearance [15]. Single nucleotide variants are able
to increase the expression of key druggable targets, as has been suggested in lung [16], breast [17],
colon [18], and gastric cancer [19].

Accurate variant calling is a crucial component in the identification of such short variants. Currently,
the most common variant caller tools in use include MuTect [20], VarScan2 [21], SomaticSniper [22],
Strelka [23], and FreeBayes [24]. In addition, several clinical studies used a combination of these
applications for variant calling [25–35]. A comprehensive list of all available tools is presented in
Table 1, and the most common tools are presented in Figure 3.
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Figure 2. Effects of sequence alterations. Sequence variants in regulatory regions can activate or
inhibit transcription. Mutations in exons result in an altered mRNA. Repair mechanisms, such as
nonsense-mediated mRNA decay (NMD), can eliminate such abnormal mRNAs. As a result,
missense mutations cause amino acid changes, while synonymous mutations result in the original
amino acid sequence. Premature stop codons result in terminated amino acid sequences. Base insertions
or deletions lead to frameshift mutations resulting in completely different proteins.

Figure 3. Overview of the most common methods for aberration detection useful in cancer diagnostics.
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Table 1. Bioinformatic methods available for single nucleotide variant calling. Tools marked with an
asterisk (*) are suitable for both whole genome sequencing (WGS) and whole exome sequencing (WES)
data analysis.

Name Published Cited in
2018

Control
Needed

InDel
detection

Contamination
Correction

Trained on
Cancer Data Environment Ref

Varscan2 2012 2229 + + − +
Java, Perl, R,

Galaxy [21]

MuTect2 * 2013 2005 + − + + Java, R [20]

FreeBayes 2012 1121 − + − + C, C++, Galaxy [24]

Strelka * 2012 759 + + − + C++, Perl [23]

Platypus * 2014 462 − + − +
C, Cython,

Python [36]

SomaticSniper
* 2012 373 + − − + C, Galaxy [22]

LoFreq * 2012 349 − + + + Python [37]

VarDict * 2016 171 − + − + Perl [38]

JointSNVMix * 2012 160 + − − +
C, C++, Python,

Galaxy [39]

MutationSeq * 2012 108 + − − + C++, Python [40]

EBCall * 2013 85 + + − +
C++, Perl, R,

Shell [41]

MuSE * 2016 65 + − + + C, C++ [42]

RADIA 2014 53 + − + + Python [43]

Virmid 2013 49 + − + + Java [44]

deepSNV * 2014 47 + − − + R [45]

Shimmer * 2013 45 + − + + C, Perl, R [46]

qSNP * 2013 40 + − + − Java [47]

BAYSIC 2014 39 + − − + R [48]

SomaticSeq * 2015 38 + + − + Python, R [49]

CaVEMan * 2016 31 + − + + C [50]

SNooPer * 2016 26 − + + + Perl [51]

SNVSniffer * 2016 17 − + − + C++ [52]

HapMuC 2014 15 − + − +
C++, Python,

Ruby [53]

FaSD-somatic 2014 13 − − − + C, C++ [54]

LocHap * 2016 8 + + + +
g++ complier,

GNU Make [55]

LoLoPicker * 2017 6 + − + + Python [56]

According to a comparative analysis [57], selection of the right variant caller algorithm depends
on the interest of variants. Some tools excel when dealing with low-coverage data (SomaticSniper [22],
FaSD-somatic [54], and SNVSniffer [52]), while others perform better in regard to analyze low-frequency
variants from high-coverage data (Strelka [23], MuTect [20], LoFreq [37], EBCall [41], deepSNV [45],
LoLoPicker [56], and MuSE [42]). Other investigations also supported the approach of using specific
variant callers: VarScan identified more high-quality single nucleotide variants (SNVs), while MuTect
showed better performance in low-quality detection; therefore, the combinational usage of these can
provide improved accuracy [58]. Examination of data from five breast cancer patients with nine variant
caller algorithms affirmed the discrepant effect of coverage variability on the results [59]. Comparison
of the four most frequently used applications (MuTect2, Strelka, VarsScan2, and SomaticSniper) lead to
comparable results [60]. Each caller delivered a divergent outcome, although MuTect2 and Strelka
outperformed VarScan and SomaticSniper in some cases. At the end, the authors conclude that the
combination of tools could increase performance but with the sacrifice of a vast amount of detected
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calls [60]. Similar conclusions of complementary algorithms were drawn in another study evaluating
four variant callers using whole exome sequencing and simulated data [61]. These researchers also
noted differences based on different aligner tools. A further study also underlined the importance
of the adequate mixture of aligner and variant caller selection and recommended the combination of
the BWA-MEM aligner and SAMtools for SNP calling and the BWA-MEM GATK-Haplotype caller
for indel detection [62]. It is important to note that in most comparative studies, the authors used the
default settings of the tools; thus, for several methods, the performance might be improved by fine
tuning and customization of filters.

4. Integrated Tools

Overall, different algorithms produce divergent output results. The utilization of combined
pipelines can successfully filter the false positive hits and provide a platform for the customization of
variant calling pipelines for the designated research objective. Such applications developed to deliver
consensus Variant Call Format (VCF) files include VCFtools [63] NGS-pipe [64], VariantTools [65],
vcfr [66], and myVCF [67]. These tools are notably useful when one aims to build pipelines that analyze
VCF files generated in other tools (listed in the previous chapter). Other algorithms, such as Cake,
can use BAM files as inputs. Cake runs all the variant caller tools separately and then unites the
SNVs confirmed by at least two of the caller tools. Cake also offers numerous postprocessing filtering
options [68]. Isma, an R package for the integrative analysis of mutations detected by multiple pipelines,
provides a common platform for Strelka, MuTect/MuTect 2, MuSE, SomaticSniper, and VarScan2.
Isma provides qualification for the used calling algorithms and highlights outlier results [69].

Using machine learning methods might further improve the specificity, sensitivity and
comparability of these applications. BAYSIC integrates, among others, FreeBayes, SamTools,
and GATK, and it can accept input from any variant caller algorithm [48]. SomaticSeq merges
five algorithms (MuTect, VarScan2, SomaticSniper, JointSNVMix2, and VarDict), providing another
machine learning-based ensembled application for SNV and indel identification [49]. SMuRF is another
machine learning-based pipeline combining MuTect2, Freebayes, VarDict, and VarScan. SMuRF had the
advantage of faster computing speed than other machine learning tools. While SMuRF outperformed
several methods, it showed slightly poorer results than SomaticSeq; however, the time needed for
SMuRF to compute the results was unsubstantial compared to SomaticSeq (10 min vs. 24 h) [70].
NeoMutate, a recently developed framework, also has the advantages of a mixture of separate tools
and a machine learning-based perspective [71].

The application of machine learning ensemble methods has become increasingly accepted
and shows a possible path for the development of future variant calling methods. However,
currently implemented tools have an important drawback, as their sensitivity depends on that
of the included algorithms.

5. Galaxy—An Open Source, Web-Based Platform

To use the applications discussed above, one has to possess advanced or at least intermediate
programing skills, not to mention that many of these algorithms require different programming
languages. Numerous user-friendly platforms have been established in the past years to overcome this
obstacle. Generally, these are capable to give a platform in which users can build workflows made of
genomic analysis tools. Researchers can use local workflow management systems like Taverna [72]
or KNIME [73]. However, computing power is limited by the performance of the local computer.
Cloud computing can serve as a possible solution for this issue [74]. Platforms like Cancer Genomics
Cloud (CGC) [75], GenePattern [76], or Galaxy [77] are becoming more and more popular amongst
scientists. Additional platforms available are listed in Table 2. Of these tools, Galaxy is the most
widespread, due to the wide range of tools included and free availability. Users can utilize publicly
available Galaxy servers or can set up their own private server.
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Table 2. Platforms available for bioinformatic analysis.

Name Description Year Citation License System type Ref.

Galaxy Open-source web-platform with several analysis tools 2005 1977 free cloud-based [77]

GenePattern Workflow management system, provides access to
multiple genomic analysis tools 2006 1573 free cloud-based [76]

KNIME Software enabling creation, analysis,
and visualization of data 2008 1476 free

local
installation

needed
[73]

UGENE Workflow management system installed on a
local computer 2012 876 free

local
installation

needed
[78]

Taverna Open source software tool for designing and
executing workflows 2013 643 free

local
installation

needed
[72]

Cancer
Genomics

Cloud

Provides access to data, tools,
and computing resources 2017 32 commercial cloud-based [75]

SciApps Platform for building, running, and sharing
scientific workflows 2018 5 free cloud-based [79]

Terra Bioinformatic workspace, including a repository of
public best practices, methods, and public data sets − − commercial cloud-based −

When setting up a private server, one can include any of more than 5500 tools and algorithms
from the Galaxy toolshed, which serves as an “AppStore” of applications [80]. However, establishing a
private server requires constant maintenance and a skilled system administrator. Using a publicly
available server, on the other hand, requires only a registration to the designated server, and the
leading Galaxy servers already contain most commonly used tools. In addition to accessible research,
Galaxy also has two additional important advantages: it makes it easier to reproduce analyses and
provides a platform for users to communicate.

In regard to variant calling, Galaxy ToolShed provides numerous algorithms. The Galaxy training
materials suggest a few recommended tools: VarScan for the identification of germline and somatic
variants from tumor-normal sample pairs and FreeBayes for germ line variant calling.

As the clinical significance of variant caller methods expands, demands are increasing to solve
specific problems. These problems include the detection of low-frequency variants—one possible
solution could be utilization of unique molecule identifiers—and the accommodation of non-Illumina
platforms. The perpetual improvement of the algorithmic tools is foreseeable if they want to compete
with deep learning algorithms [57]. On the other hand, it is important to note that even the most
well-established pipelines can be inefficient if the quality of utilized data is poor, e.g., inadequate
exome capture, low coverage or modest sequencing quality [62].

6. Copy Number Variations

Copy number variations (CNVs) are structural changes of DNA, sized between a couple of
hundred base changes and amplification or deletion of millions of base pairs [81]. The clinical relevance
of CNVs in oncology has risen in the past several years, and CNVs have been indicated to be important
in several types of cancer, such as adenomatous polyposis coli, familiar breast cancer, and ovarian
cancer [8].

The clinically used gold standards for CNV detection are array Comparative Genome Hybridization
(aCGH), Fluorescent In Situ Hybridization (FISH), and qPCR [82]. Current Food and Drug
Administration (FDA)-approved methods for CNV detection are mainly FISH-based such as the
“Dako TOP2A FISH PharmDX kit” for the detection of Topoisomerase 2-alpha aberrations or targeted
sequencing based on the “FoundationOneCDx” NGS panel, which is capable of measuring the copy
number changes in 324 genes. Each of the gold standard techniques is relatively inexpensive and
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provides reliable clinical data. Nonetheless, the opportunity to use sequencing can provide a robust
amount of additional data with versatile further utility. Using whole genome sequencing (WGS)
data for CNV detection has already been demonstrated to be useful [83]. However, due to financial
issues, WGS is unlikely to become a clinical tool in the near future. WES, on the other hand, is a more
affordable option to identify CNV changes.

Currently, dozens of algorithms and pipelines exist to detect CNVs from WES data; we have
summarized these in Table 3, and the most common tools are listed in Figure 3. Most of the algorithms
are based on the Read Depth approach, and they attempt to measure the CNV changes based
on the number of reads aligned to a dedicated segment [84]. Although these algorithms can be
relatively precise, normalization problems and other biases present as limitations of NGS technology.
These limitations include contamination with normal cells, multiple types of clones among one sample
and other experimental noises [85]. Only a few of the methods are capable of detecting CNV from cancer
data, and substantial discrepancies can be observed when paralleling these tools. Although several
studies have been conducted to compare these applications, only a few have focused on patients
suffering from cancer as the study population.

Table 3. Computational methods available for copy number variation estimation from whole exome
sequencing data. Tools marked with an asterisk are suitable for both WGS and WES data analysis.

Name Published Control
Needed

Contamination
Correction

GC-Content
Correction

Trained on
Cancer Data

Cited
in 2018 Environment Ref.

Varscan2 2012 + − − + 2229 Java, Perl,
R, Galaxy [21]

CNVnator 2011 + − + − 767 C++ [86]

CNV-Seq 2009 + − − − 463 Perl, R [87]

CoNIFER 2012 − + − − 378 Python [88]

Control-FREEC * 2012 − + + + 342 C, C++, R [89]

ExomeCNV 2011 + + − + 338 R [90]

XHMM 2012 − + + + 322 C++ [91]

ExomeDepth 2012 + − + − 264 R [92]

cn.MOPS 2012 − + + − 249 R [93]

Cnvkit * 2016 + + + + 219 Python,
Galaxy [94]

CONTRA 2012 − − + − 194 Python, R [95]

Sequenza * 2015 + − + + 167 Python, R [96]

EXCAVATOR 2013 + + + + 155 Perl [97]

CODEX 2015 − + + + 72 R [98]

ADTEx 2014 + + − + 57 Python, R [99]

Seqgene 2011 + − − + 43 R [100]

FishingCNV 2013 − − − − 41 Java, R [101]

HMZDelFinder 2017 − − − − 33 R [102]

ExoCNVTest 2012 + − − − 27 Java, R [103]

CLAMMS 2016 − − + − 23 C [104]

falcon 2015 + + − + 22 C [105]

saasCNV * 2015 + + − + 17 R [106]

WISExome 2017 − − − − 1 C, C++ [107]

Zare et. al. examined five algorithms on tumorous samples and concluded that some applications
have achieved relatively good results on specificity and sensitivity [108]. In particular, ExomeCNV [90]
showed high specificity and sensitivity with a moderate false discovery rate. SAAS-CNV [106] might
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be a useful tool for CNV detection; however, the specificity and sensitivity of the algorithm are inferior
compared to the array methods [109].

Regarding overall specificity and sensitivity using simulated data [110], ADTEx [99] produced
the best results followed by ControlFREEC [89], VarScan2 and ExomeCNV, but ExomeCNV and
VarScan2 missed several homozygous deletions. Using breast cancer data in the same comparative
study, ExomeCNV [90] showed the best results, while it produced moderate concordance with SNP
arrays. Overall, ControlFREEC presented the best algorithm due to the balanced performance on both
simulated and cancer data [110].

Based on the study examining six methods (ADTEx, CONTRA [95], ControlFREEC, EXCAVATOR,
ExomeCNV, and VarScan2), these can identify homozygous deletions or large gains from WES
data, but heterozygous deletions or low-level amplifications cannot be detected with sufficient
consistency [111]. The results provided by ADTEx and EXCAVATOR were the most reliable [111].

Taken together, all the cited studies compare algorithms that were designed for somatic CNV
detection from cancer-related data, and each came to a similar conclusion. At present, neither sensitivity
nor specificity is precise enough to compete with the existing non-WES methods. Furthermore,
multiple studies highlighted that using these algorithms on stimulated data shows better performance
than on patient data, which indicates that the tools are not sufficiently fine-tuned to address tumor
complexity, although some of them, such as ADTEx and ExomeCNV, have a built-in tool to tackle
this issue.

Each application has different strengths and weaknesses; for instance, ADTEx can detect
medium-sized CNVs, while EXCAVATOR is suitable for the identification of larger CNVs. Similar to
SNVs, merging, fine tuning and recalibration of these tools could be a means of improving the specificity
and sensitivity [112,113]. It is important to mention, however, that these discrepancies are not specific
to somatic mutation detection, as similar issues appeared in germline mutation-based comparison [84].

Dealing with NGS data demands well-trained bioinformaticians because most of the algorithms
can only be used in command line-based platforms. The availability of the aforementioned applications
in Galaxy is slightly limited—to date, VarScan2 and a CNV caller part of the bcftools package are
available in the basic Galaxy setup. Several further algorithms can be installed in the case of a private
Galaxy server.

7. Homologous Recombination Deficiency

DNA double-strand breaks are one of the most mutagenic forms of DNA damage [114,115].
Cells have developed multiple solutions to confront these effects, such as homologous recombination
and nonhomologous end-joining [116]. Germline mutations of the BRCA genes have been described as
reliable markers to identify homologous recombination deficiency (HRD). Currently, one FDA-approved
clinical tool is available to detect germline BRCA mutations, the BRACAnalysisCDx platform
(Myriad Genetics; Salt Lake City, UT, USA), which is used to identify BRCA status in patients
with ovarian cancer. The presence of a BRCA mutation enables treatment with a PARP inhibitor.
PARP repairs single strand breaks, and the loss of both double-strand and single-strand break repair
renders the tumor highly vulnerable to chemotherapy.

HRDetect is a WGS-based method to identify the presence of homologous recombination repair
mechanism mutations; this tool has proven to be effective and reliable regardless of germline and somatic
mutation or tissue type. However, using this tool on WES data revealed a considerable decrease in the
detection sensitivity [117]. Another recent WES-based tool promises comparable results with SNP array
examinations based on genomic scar analysis and might be a useful tool to detect BRCA status [118].
Since HRD detection mainly focuses on BRCA status, we currently have a lack of application capable
of measuring overall HRD status involving all related genetic aberrations. Meanwhile, several other
genes have also been shown to play important roles in HRD [119]. An improved future WES-based
algorithm could enable the simultaneous investigation of all involved genes.
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8. Response to Immunotherapy

Immune checkpoint inhibitors and immunomodulatory agents have become standard treatments
for solid tumors, including renal-cell carcinoma, melanoma and NSCLC [120]. The number of mutations
per coding sequence in the tumor genome is a reliable predictive biomarker of immunotherapy
response [121]. At present, the application of WES to detect tumor mutational burden (TMB) is a widely
accepted gold standard. In addition, multiple targeted panels have also been accepted as targeted
sequencing show comparable results in the detection of TMB status as exome sequencing [122].

Although TMB bears strong potential as a predictive biomarker, there is a lack of unambiguous
consensus on the correct determination, definition, and cut-off values. The Friends of Cancer Research
established a working group to create a universal reference and harmonize these methods to address
this issue [123]. Because of the lack of solid guidelines, various studies have used numerous methods
and computational techniques for TMB status determination. We evaluated eleven phase II and III
clinical studies, and MuTect was the most frequently used tool for somatic variant detection, while the
applications applied for InDel detection showed a wide variety [25–35]. A significant set of publications
use the pipeline proposed by the Genome Analysis Toolkit—supplementing it with additional
tools—which recommends GATK-Mutect2, which is based on MuTect and the GATK-HaplotypeCaller.

Another concept recently gaining attention is the examination of mutational signatures.
Mutations in cancer can originate in different mutagenic effects or defects in repair mechanisms.
Each genetic aberration has its unique mutational signature which can include base substitutions, small
insertions and deletions, CNV changes, or genomic rearrangements [124]. As the quantity of explored
signatures is growing, a systematic and curated archive of genetic patterns is needed. The Catalogue
of Somatic Mutations in Cancer (COSMIC) provides such a repository for mutational signatures and
specific summary vignettes. Deciphering characteristic mutational patterns in a chosen cancer type
requires bioinformatic analysis as well. Currently, there are several algorithms designed for mutational
landscape identification, such as SigProfiler [125], deconstrutSigs [126], and mutationalPatterns [127].
HRDetect, a tool developed as a kind of mutational signature detecting algorithm designed for the
identification of homologue recombination repair deficiency, has been already discussed in a separate
paragraph. Accepted analysis standards for these methods are still missing [128]. Clinical cancer
diagnostics might benefit from the application of mutational signature detection, as aberration patterns
can be useful for targeted treatment selection [129].

A different predictive biomarker for immune modulatory response is the evaluation of
Microsatellite Instability (MSI). From the time when the FDA approved pembrolizumab for the
treatment of adult and pediatric microsatellite instability high (MSI-H) or mismatch repair-deficient
(dMMR) solid tumors, MSI detection gathered significant clinical attention [29]. A recent study
suggests that impaired mismatch repair activity might result in higher mutational burden resulting
in augmented response to immunomodulatory agents [130]. The currently existing method for MSI
detection, known as the combination of PCR with fluorescent primers and capillary electrophoresis,
is becoming obsolete with the introduction of WES and targeted gene panel sequencing [131].

At present, the number of applications for MSI identification from exome sequencing data
is not as high as the number of those for CNV or short variant detection. Comparing some of
these tools in six cancer types revealed that MANTIS produces better sensitivity and specificity
than MSIsensor and mSINGS [132]. MSIseq show results comparable to MSISensor and mSINGS,
while the MSIseq R package runs much faster than the two other [133]. MSIseq and MSIpred
have the advantage that these algorithms can measure MSI from tumor data only. Based on data
comparison using TCGA data, MSIpred exhibited higher accuracy and sensitivity than MSIseq [134].
MIRMMR also displayed similarities in accuracy and sensitivity with MSIsensor and mSINGS [135].
A recently implemented tool based on the examination of 5930 tumor exomes across 18 cancer types,
called MOSAIC, produced remarkable sensitivity and specificity [136]. Overall, out of the seven
algorithms available, MOSAIC has the strongest and most well-established analytical background,
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while MSIpred shows better performance than others with the advantage that it can operate without a
normal reference sample.

Unfortunately, no specific tool has been developed for MSI detection from exome sequencing data
for those who have less experience in command line coding. This finding indicates that the Galaxy
platform is the only alternative.

Finally, predicting response to immunotherapy has an additional option as—according to a
state-of-the-art paper—elevated DNA damage might be a possible biomarker of response [137].

9. Tumor Heterogeneity

Tumor heterogeneity stands for diversity within one tumor population, where several different
populations coexist. These cancerous populations coexist with normal cells and infiltrating
immune-related cells in a special microenvironment. The subclonal populations can cooperatively
evolve and are even capable of adapting to altered circumstances, including the emergence of
therapy-resistant clones following systemic anticancer treatments [138]. Currently, there is no broadly
accepted consensus method for the estimation of tumor heterogeneity. Identification of the clonal
subpopulations is possible by all three sequencing methods—WGS, WES, and targeted panel—and by
single-cell approaches.

A widely accepted way to measure tumor diversity is the use of WES to measure the genetic
heterogeneity of a tumor sample by counting Shannon’s diversity index of the estimated SNVs [139].
The determination of tumor clonality and evolutionary background from bulk sequencing data is a
multistep process. This method begins with the cancer cell fraction estimation, then the identification
of tumor subclones followed by the construction of a phylogenic tree based on the distribution of
somatic variants and/or CNV status. Finally, temporal differentiation can assist in distinguishing
between passenger and driver mutations [140].

In addition to the aforementioned approach, numerous algorithms have been developed to
illuminate subclone phylogenesis. Unfortunately, due to the scarcity of comparative studies, we have
only limited guidance on proper algorithm selection at this time. In a study of nine methods, LICHeE and
CloneFinder produced decent accuracy compared to the others [141]. In a recent comparative study
currently available in a preprint server only, the authors examined seven clonality prediction methods.
CloneFinder, MACHINA, Treeomics, and LICHeE showed the best performance, but it is important
to mention that none of the applications showed impaired overall performance on all the stimulated
datasets [142].

Overall, the examination of tumor heterogeneity by NGS-based methods has a limited history,
and because of this reason, many of the currently existing methods require further fine-tuning. In vitro
experiments might serve as guidance for adequate algorithm calibration and could provide further
information on the detection threshold and coverage cut-off value selection. Recently, we have shown
that cellular movement can also lead to a significant technical bias when using NGS to determine
the clonal composition of a tumor [143]. With the technical development of both bulk sequencing
and single cell methods, we will soon be able to confidently obtain an accurate picture of a cancer
population in its complete heterogeneity.

10. Discussion

The first U.S. Food and Drug Administration (FDA) approval for NGS technology was issued in
2013, and a few years later, the approval of the first tests for diagnostic and screening was granted.
We provide an overview of NGS-based tests approved for somatic or germline mutation detection in
Table 4.
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Table 4. Food and Drug Administration (FDA)-approved next-generation sequencing (NGS)-based
methods suitable for cancer predisposition identification, cancer detection, or follow-up.

Tradename Description Year Target Tumor Utility

Illumina MiSeqDX
platform High throughput DNA sequence analyzer 2013 - - technology

FoundationFocus
CDxBRCA

NGS oncology panel, somatic or germline
variant detection system 2016 BRCA ovarian diagnosis

MSK-IMPACT NGS-based tumor profiling test 2017 468 genes various predisposition,
diagnosis

FoundationOne
CDx

NGS oncology panel, somatic or germline
variant detection system 2017 324 genes various predisposition,

diagnosis

Oncomine Dx
Target Test

NGS oncology panel, somatic or germline
variant detection system 2017 24 genes lung diagnosis

Praxis Extended
RAS Panel

NGS oncology panel, somatic or germline
variant detection system 2017 RAS colon diagnosis

Adaptive
Biotechnologies

clonoSEQ

DNA-based test for minimal residual
disease for hematologic malignancies 2018 BCL1,

BCL2
leukemia,
myeloma follow-up

We are now in the big data era borne by the vast amount of data delivered by new sequencing
methods. Deciphering this information requires complex bioinformatical analytical tools. At the
same time, we have to account for the unquestionable weaknesses of exome sequencing [144].
These disadvantages include the limited power to detect structural gene fusions and the limited ability
to delineate tumor purity and differentiate from normal cell contamination. The previously discussed
machine learning algorithms in short variant detection can improve the accuracy of TMB and MSI
detection, as punctual short variant identification is a crucial part of both. Improved detection of copy
number changes can lead to more accurate HRD and tumor heterogeneity analysis [145].

The final outcome of our paper is that, due to discrepancies amongst tools used during sample
preparation and data preprocessing and processing, it is almost impossible to define a gold standard
guideline of the most handy algorithms. Of note, anyone can customize the selected algorithms
specifically for their own experiment rather than using it on default settings.

The clinical significance of NGS-based methods is consistently expanding. Although discrepancies
can be observed among the currently available tools, the continuous fine-tuning and the merged
utilization of these applications paves the way for clinically reliable applications in the coming
years. Overall, WES is emerging as a future “Swiss army knife” of cancer genome profiling. After as
bioinformatic processes have evolved to trustworthy pipelines, WES will be an affordable and mature
technology for everyday clinical use.
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